SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 2008/2009

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 2008/2009"

Transkripsi

1 OAL DAN PEMAHAAN UJIAN NAIONAL MA/MA IP / KEAGAMAAN TAHUN PELAJARAN 008/009. Nilai kebenaran yang tepat untuk pernyataan ( p q ) ~ p, pada tabel di bawah adalah... p q ( p q ) ~ p A. C. E.. D. p q Konjungsi ernilai salah jika ada yang salah (jika salah satu dari p dan q salah atau kedua-duanya salah) ~p ingkaran p ( p q ) ~ p Implikasi ernilai salah jika ( p q ) benar dan ~ p salah (jika tidak memenuhi kriteria ini nilainya benar) Dibuat tabel penjabarannya: p q p q ~p ( p q ) ~ p Jawabannya adalah Jawabannya adalah D. Ingkaran dari kalimat Lilin merupakan benda cair atau kertas merupakan benda padat adalah... A. Lilin bukan merupakan benda cair dan kertas bukan merupakan benda padat. Lilin bukan merupakan benda cair atau kertas bukan merupakan benda padat C. Lilin bukan merupakan benda cair atau kertas merupakan benda padat D. Lilin merupakan benda cair dan kertas bukan merupakan benda padat E. Lilin merupakan benda cair dan kertas merupakan benda padat Rumus ingkaran:. ~(p q) ~p ~q. ~(p q) ~p ~q. ~(p q) p ~q

2 dan ; atau ; maka yang sesuai dengan soal adalah rumus () p Lilin merupakan benda cair ; q kertas merupakan benda padat ~p Lilin bukan merupakan benda cair ; ~q kertas bukan merupakan benda padat ~(p q) ~p ~q Jawabannya adalah ~p ~q Lilin bukan merupakan benda cair dan kertas bukan merupakan benda padat Jawabannya adalah A. Diketahui premis premis seperti di bawah ini : - Jika ada kerusakan mesin maka mobil tidak dapat bergerak - Mobil dapat bergerak Kesimpulan yang sah dari kedua premis di atas adalah... A Ada kerusakan mobil. D. Tidak ada kerusakan roda Ada kerusakan pada mobil E. Masih banyak bahan bakar C. Tidak ada kerusakan mesin pada mobil p ada kerusakan mesin ; q mobil tidak dapat bergerak ~q mobil dapat bergerak kesimpulan: p q ~p ~q Modus Tollens Kesimpulannya adalah ~p Tidak ada kerusakan mesin. Diketahui m 6 dan n. Nilai m A. C. 9 6 E. n D. 8 9 m n 6. ( ) ( ) Jawabannya adalah D

3 . Hasil dari ( 6)( 6)... A. ( ) C. ( ) E. ( ). ( ) D. ( ) ( 6)( 6) (. - ) 6. Diketahui log, dan log y maka log adalah... A. y C. ½ ( y ) E. ½ ( y ). y D. ½ ( y ) log log 9. log 9 log log log log log ab log a log b log n m log a b n b m log a log log y ( y). Koordinat titik balik dai grafik funsi kuadrat yang persamaannya y ( 6 )( ) adalah... A. (,0 ) C. (, ) E. (, ). (, ) D. (, 6 ) entuk Umum fungsi kuadrat: f() y a b c dengan a 0 dan a,b,c R b titik puncak/titk balik /titik ekstrim, - b ac a a y ( 6 )( ) - Didapat a ; b - ; c - b titik puncak/titk balik, - b ac a a ( )..( ), ( 8), - Jawabannya adalah D 6 (, - ) (, - 6)

4 8. Persamaan grafik fungsi kuadrat mempunyai titik ekstrim (, ) dan melalui titik ( 0, ) adalah... A. y C. y E. y. y D. y Menentukan persamaan kuadrat Jika diketahui titik puncak/titik ekstrim ( p, y p ) gunakan rumus: y a ( - p ) titik ekstrim (, ) p - ; y p y p y a ( (-)) a ( ) Melalui titik ( 0, ) jika 0 maka y Masukkan nilai titik tersebut ke dalam persamaan: a ( 0 ) a a - sehingga persmaannya adalah : y a ( ) a ( ) masukkan nilai a - y - ( ) Diketahui fungsi f : R R dan g : R R yang dinyatakan dengan f() dan g(). Komposisi dari kedua fungsi ( f o g )()... A. C. E.. D. ( f o g )() f(g()) f( ) (-) - ( ) Jawabannya adalah 0. Fungsi invers dari A.. C.,,, f ( ), adalah f ()... D E,,

5 f ( ) y (-)y y y y y (y ) y y y Jawabannya adalah f (),. Jika salah satu akar persamaan a 0 adalah, maka nilai a dan akar yang lain adalah... A. ½ dan C. ½ dan E. ⅓ dan. ¼ dan D.⅔ dan 0 Misalkan akar persamaan fungsi kuadrat adalah dan dimana salah satunya diketahui misal Di tanya nilai a dan. Masukkan nilai ke dalam persamaan: a. 0 a 0 0 a 0 a a rumus : - a b Akar akar dari persamaan 9 0 adalah dan. Nilai dari... A. ¼ C. ¼ E. ¼. 6 ¾ D. 6 ¾.( ) a ; b - ; c -9

6 b. - - a c 9. a 9.( ) - ( ) Jawabannya adalah A. Himpunan penyelesaian dari 0 < 0, ε R adalah... A. { < atau > ; ε R }. { < atau > ; ε R } C. { < < ; ε R } D. { < < ; ε R } E. { < < ; ε R } 0 < 0 ( )( - ) < 0 didapat titik batasnya 0 atau 0 uji coba dengan grafik garis : Nilai-nilai yang memenuhi adalah yang bertanda --- karena nilai tersebut < 0 yaitu > dan < atau < < Jawabannya adalah E. Penyelesianan dari y adalah a dan y b, nilai ( a b )... y 6 A. C. E.. 9 D. 6 Eliminasi : y y y 6 6 y - y (-) - y 0 y 0 - b 6

7 6 a maka nilai ( a b ) ( (-) ) ( ) 8 6 Jawabannya adalah D. Ibu Rita membelanjakan uangnya sebesar Rp ,00 di toko untuk membeli kg gula dan kg terigu. Ibu iska membelanjakan Rp..000,00 untuk membeli kg gula dan kg terigu. Di toko yang sama Ibu Retno membeli kg gula dan kg terigu, Ia harus membayar... A. Rp 0.000,00 C. Rp.000,00 E. Rp 0.000,00. Rp 6.000,00 D. Rp.000,00 Misal : gula ; y terigu Ibu Rita y () Ibu iska y () Ibu Retno y...? Dari () dan () eliminasi y y 6000 y y y 6000 y y 8000 y 000 maka Uang yang harus dibayar Ibu Retno adalah y Rp..000,- 6. Daerah yang diarsir pada gambar merupakan himpunan penyelesaian suatu sistem pertidaksamaan linier. Nilai maksimum dari f(,y) 6y adalah...

8 A. 8 C. E.. 0 D. 8 Menentukan nilai maksimum ditentukan dari titk-titik pojok: Persamaan umum garis : a by ab persamaan garis g melalui titik (0,) dan (6,0) : a ; b 6 6y...() persamaan garis h melalui titk (0,) dan (,0 : a ; b y y...() titik potong garis g dan h: eliminasi 6y 6y y y 0 - y y y titik potongnya (, ) titik pojok 6y (0,0) 0 (,0) (0,) (,) nilai maksimumnya adalah. Daerah penyelesaian sistem pertidaksamaan linier y, y 6, 0, y 0 yang ditunjukkan gambar berikut adalah

9 A. I C. III E. II dan IV. II D. IV y daerah penyelesaianya di atas persamaan garis y 6 daerah penyelesaianya di atas persamaan garis 0, y 0 daerah penyelesaianya di atas sumbu dan sumbu y daerah yang memenuhi syarat adalah I Jawabannya adalah A 8. Pedagang sepatu mempunyai kios yang hanya cukup ditempati 0 pasang sepatu. epatu jenis I dibeli dengan harga Rp ,00 setiap pasang dan epatu jenis II dibeli dengan harga Rp ,00 setiap pasang. Jika pedagang tersebut mempunyai modal Rp ,00 untuk membeli sepatu jenis I dan jenis II, maka model matematika dari masalah tersebut adalah... A. y 0, y 0,, y 0. y 0, y 0,, y 0 C. y 0, y 0,, y 0 D. 6 8y 00, y 0,, y 0 E. 6 8y 00, y 0,, y 0 misal sepatu jenis I y sepatu jenis II model matematikanya: kios yang hanya cukup ditempati 0 pasang sepatu y 0 harga sepatu jenis I Rp ,00 dan harga sepatu jenis II Rp ,00 dengan modal Rp , y y 00 y 0 Nilai dan y sama dengan atau lebih besar dari 0, y 0 ehingga model matematikanya adalah: y 0, y 0,, y 0 9. eorang penjahit membuat dua jenis pakaian untuk dijual, pakaian jenis I memerlukan m kain katun dan m kain sutera, dan pakaian jenis II memerlukan m kain katun dan m kain sutera. ahan katun yang tersedia 0 m dan sutera 8 m. Pakaian jenis I dijual dengan laba Rp..000,00/buah dan pakaian jenis II mendapat laba Rp ,00/buah. Agar Ia memperoleh laba yang sebesar besarnya, maka pakaian jenis I dan jenis II berturu turut adalah... A. dan 8 C. 0 dan E.. 0 dan. 8 dan D. dan 0 9

10 Kain katun (m) kain sutera (m) laba pakain jenis I.000 Pakaian jenis II ahan yang tersedia 0 8 laba maksimum? Model matematikanya: y 0 y 8, y 0 laba maksimum y...? uat gambar grafiknya: y 0 Memotong sumbu di y 0 y titik (,0) Memotong sumbu y di 0.0 y 0 y 0 y titik (0,) y 8 Memotong sumbu di y 0 y titik (,0) Memotong sumbu y di 0.0 y 8 y 8 y 8 titik (0,8) Titik potongnya: y y 80 y 8 8 6y 68 - y y 8 0

11 y Titik potongnya (, 8) Titik pojok y (0,0) 0 (0,) (,0).000 (,8) Laba maksimum adalah Rp..000 apabila pakaian jenis I adalah dan pakaian jenis II adalah Jawabannya adalah A y Diketahui perkalian matriks. Nilai y... 6 A. C, E D. 6 y y 8 -y 6 -y y - y Maka y 6 (-) 8 Jawabannya adalah E

12 . Diketahui matriks A dan 0 A. C. - E.. D. C A 0 a Jika A c b d. Jika matriks C A, maka determinan C ( ).( ) ( ) maka det(a) A ad bc det. 0 (-. -) 0 - Jawabannya adalah A. Invers matriks A adalah A. A. C. E.. D. Jika A a c b, maka d A det( A ). d c b a ad bc d b. c a A A Jawabannya adalah A. (. ) Diketahui barisan bilangan aritmetika dengan suku kelima adalah dan suku kesepuluh adalah. Jumlah 0 suku pertama barisan bilangan tersebut adalah... A. 0 C. 600 E D. 60. uku ke n barisan aritmetika (U n ) : U n a (n-) b. Jumlah n suku pertama deret aritmetika ( n ) ditulis sbb: n U U U... U n n (a Un ) n (a (n-) b) U a (-) b a b.() U 0 a 9b.() Ditanya 0..?

13 Dari () dan (): eliminasi a a b a 9b - -b - b a b a. a 0 n 0 (a (n-) b) 0 (. 0 (0-) ) 0. 0 Jawabannya adalah. uku kedua dan kelima suatu barisan geometri berturut-turut adalah dan. uku ke barisan geometri tersebut adalah... A. 9 C. E D. uku ke n barisan geometri (U n ) ditulis sbb: n U n ar U ar a.r U ar U ar U ar r r a.r a. a U ar.. 8 Jawabannya adalah. Jumlah tak hingga deret... adalah A. C. E.. D. ila r < atau - < r < maka a r

14 r ; a r a 9 6. Nilai dari... A. C. E D bentuk tak tentu Dicari dengan : cara : faktorisasi ) ( ) ( ) ( ) )( ( ) ( 8 Cara : L Hospital... 8 Jawabannya adalah D. ( )... ~ A. C. ½ E.. D. ½ cara : rasionalisasi ( ) ~ ( ) 8 ~ ( ) 8 ~ 8 8 ~ 8 ) 8 ( ~ 8 8

15 ~ ~ ; bagi dengan 8 8 ~ Cara : menggunakan rumus: Lim ( a b c a p q) ~ bp ( ) ( 8 ~ ~ ) a ; b - ; p -8 bp a ( 8) Jawabannya adalah E 8. 6 a ; 8. Diketahui f() ( ) dan f adalah turunan pertama fungsi f. Nilai f () adalah... A. 6 C. E.. 08 D. 6 f() ( ) f ' () ( ). 8 ( ) f ' () 8 (. ) Jawabannya adalah A 9. Persamaan garis singgung pada kurva y 8 di titik (, ) adalah... A. y 6 0 C.y 0 E. y 0. y 0 D.y 9 0 Persamaan garis singgung: y - y m (- ) m y ' y 8 y ' 6 8 maka y ' persamaan garis singgung di titik (, ): y (-) - (- ) y - y 0

16 0. Nilai minimum fungsi kuadrat f() adalah... A. C. - E. -. D. - nilai minimum apabila f ' () 0 f() f ' () Masukkan nilai ke dalam f(): f() Jawabannya adalah D. ebuah perusahaan furniture mempunyai sebanyak orang pegawai yang masing masing memperoleh gaji yang dinyatakan dengan fungsi G() ( 900 ) dalam rupiah. Jika biaya tetap satu juta rupiah dan agar biayanya minimum, maka banyaknya karyawan seharusnya... orang. A. 00 C. 600 E D. 800 iaya biaya tetap gaji karyawan ( 900 ) Agar biaya minimum maka ' 0 ' ( 00) 0 0 atau 00 Maka banyaknya karywan seharusnya adalah 00 orang Jawabannya adalah A. Tono membeli sebuah sepeda motor. Ketika berkunjung ke ruang pamer sepeda motor ternyata ada pilihan merek sepeda motor dan masing masing merek menyediakan 6 pilihan warna. anyak cara Tono memilih merek dan warna sepeda motor adalah... cara. A. C. 0 E.. 6 D. 8 banyaknya cara : r r r n kaidah perkalian r r 6 banyaknya cara Tono memilih merek dan warna sepeda motor : 6 cara Jawabannya adalah E 6

17 . Dari 0 finalis lomba AFI akan dipilih juara I, II, dan III. anyaknya kemungkinan susunan terpilihnya sebagai juara adalah... A. 0 C. 80 E D. 60 misal: kemungkinan I : juara I A ; juara II ; juara III C kemungkinan II : juara I C ; juara II ; juara III A AC CA etiap finalis bisa menempati juara I, II dan III berarti urutan diperhatikan maka digunakan kaidah permutasi : n P r n 0 r n! P n r ( nr)! P 0 0! ! (0 )! ! Jawabannya adalah E. ebuah kompetisi sepak bola Eropa EURO diikuti oleh 6 negara. Pada babak awal setiap negara harus bertanding satu sama lain. anyaknya pertandingan pada babak awal adalah... A. 6 C. E D. Negara A vs Negara Negara vs Negara A tidak memperhatikan urutan ada Maka digunakan kaidah kombinasi n C r n! C n r r!( nr)! n 6 r setiap pertandingan diikuti oleh negara C 6 6!!(6 )! 6..!.! 6... ebuah kotak berisi kelereng merah dan kelereng kuning. Jika diambil dua kelereng secara acak satu persatu berturut turut tanpa pengembalian, maka peluang terambil pertama kelereng merah dan kedua kelereng kuning adalah... A. ¾ C, E D. 6 anyaknya kelereng 8 maka n()8 misalkan A kejadian terambilnya kelereng merah pada pengambilan pertama

18 n(a) maka P(A) n( A) n( ) 8 karena kelereng pada pengambilan pertama tidak dikembalikan maka banyaknya klereng dalam kotak menjadi 8 kelereng misalkan A adalah kejadian terambilnya kelereng kuning paa pengambilan kedua setelah terambilnya kelereng hitam pada pengambilan pertama: n ( A ) dan n() P ( A ) maka peluang terambilnya kelereng merah pada pengambilan pertama dan peluang terambilnya kelereng kuning pada pengambilan kedua adalah: P (A ) P(A) P ( A ) 8 6 Jawabannya adalah D 6. ebuah lempeng berbentuk lingkaran dibagi juring sama besar dan setiap juring diberi nomor sampai dengan dan dilengkapi jarum penunjuk. Jika jarum diputar sebanyak 0 kali, maka frekuensi harapan jarum menunjuk nomor yang merupakan bilangan prima adalah... kali. A. 60 C. 0 E D. 0 Frekuensi harapan dari kejadian A adalah : fh(a) P(A) N P(A) peluang jarum menunjuk angka prima n(a),,,, n() s/d P(A) n( A) n( ) fh(a) kali Jawabannya adalah. Diagram lingkaran pada gambar berikut adalah data siswa yang menggunakan kendaraan untuk pergi ke sekolah. Jika banyaknya siswa yang menggunakan kendaraan sepeda motor 80 siswa, maka banyaknya seluruh siswa yang menggunakan kendaraan adalah... siswa. % % sepeda sepeda motor 8 % bus kota % angkutan kota 8

19 A. 00 C. 60 E D. 0 anyaknya seluruh siswa yang menggunakan kendaraan adalah: 00% % 80 siswa 00 siswa Jawabannya adalah A 8. Tabel berikut adalah hasil ulangan matematika kelas XI IP. Modus nilai ulangan pada data di samping adalah... Nilai Frekuensi A. 68 C. 0 E.. 69, D.. Modus dari suatu data berkelompok adalah: M 0 L c Kelas modus adalah kelas 68 6 karena mempunyai frekuensi yang terbanyak (8) L tepi bawah kelas modus c panjang kelas (tepi atas tepi bawah kelas modus) selisih frekuensi kelas modus dengan frekuensi kelas sebelumnya 8 6 selisih frekuensi kelas modus dengan frekuensi kelas sesudahnya 8 masukkan nilai-nilai tersebut ke dalm rumus: M 0 L c Jawabannya adalah 9

20 9. impangan kuartil dari data :,6,,6,,,,,8,, adalah... A.,0 C., E.,.,00 D.,00 impangan Kuartil ( Jangkauan semi antar kuartil) adalah setengah dari hamparan. Q d H ( Q - Q ) usun data terlebih dahulu:,,,,,,, 6, 6,, 8 Q Q Q Didapat Q dan Q 6 Maka simpangan kuartilnya : Q d ( Q - Q ) ( 6 - )..0 Jawabannya adalah A 0. impangan baku dari data :,,,,6,6, adalah... A.. C. D. impangan aku/ tandar Deviasi n ( i ) n i Data :,,,,6,6, n 6 6 E. {( ) ( ) ( ) ( ) (6 ) (6 ) { ) } {( ) ( ) ( ) (0) () () {) } { 0 }.. Jawabannya adalah E.. 0

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 00/009. BAB VI Logika Matematika p q Konjungsi Bernilai salah jika ada yang salah (jika salah satu dari p dan q salah atau kedua-duanya

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 2009/2010 OAL DAN PEMAHAAN UJIAN NAIONAL MA/MA IP / KEAGAMAAN TAHUN PELAJARAN 9/. Nilai kebenaran yang tepat untuk pernyataan ( p q ) ~ p, pada tabel di bawah adalah... p q ( p q ) ~ p A. C. E.. D. p q Konjungsi

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 2007/2008

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 2007/2008 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 007/008. Negasi dari pernyataan Matematika tidak mengasyikkan atau membosankan adalah. A. Matematika mengasyikkan atau membosankan

Lebih terperinci

PREDIKSI UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPS TAHUN PELAJARAN

PREDIKSI UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPS TAHUN PELAJARAN PREDIKSI UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPS TAHUN PELAJARAN 0-0. Negasi dari pernyataan, Jika Harmelia lulus ujian maka ia akan melanjutkan kuliah di luar negeri adalah... Harmelia lulus ujian

Lebih terperinci

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPS/Keagamaan

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPS/Keagamaan Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 00/0 Program Studi IPS/Keagamaan. Himpunan penyelesaian pertidaksamaan -x +x 5 0 adalah... A. { x x -5 atau x -, x R } D. { x x - atau

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2007/2008

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2007/2008 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 7/8. Diketahui premis premis : () Jika Badu rajin belajar dan patuh pada orang tua, maka Ayah membelikan bola basket () Ayah tidak membelikan

Lebih terperinci

UJIAN NASIONAL SMA/MA

UJIAN NASIONAL SMA/MA UN Matematika Jurusan IP 0 UJIAN NAIONAL MA/MA Tahun Pelajaran 00/0 Mata Pelajaran Program tudi : MATEMATIKA (D) : IP / KEAGAMAAN MATA PELAJARAN Hari/Tanggal : elasa, 9 April 0 Jam : 08.00 0.00 WAKTU PELAKANAAN

Lebih terperinci

B Nilai dari 2 A. 8 7 D B E C ( 2 ) 2 log 9 + a

B Nilai dari 2 A. 8 7 D B E C ( 2 ) 2 log 9 + a . Premis : Jika Aldi baik hati maka Aldi disenangi teman Premis : Jika Aldi pemarah maka Aldi tidak disenangi teman DEPARTEMEN PENDIDIKAN NASIONAL UJIAN NASIONAL SMA/MA TAHUN PELAJARAN 006/00 Mata Pelajaran

Lebih terperinci

ISTIYANTO.COM PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPS. Kemampuan yang diuji UN 2009 = UN Materi. Soal UN 2009 Prediksi UN 2010

ISTIYANTO.COM PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPS. Kemampuan yang diuji UN 2009 = UN Materi. Soal UN 2009 Prediksi UN 2010 PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPS Materi Logika Matematika Kemampuan yang diuji UN 009 = UN 00 Menentukan nilai kebenaran suatu pernyataan majemuk Menentukan ingkaran suatu pernyataan Perhatikan

Lebih terperinci

UNIVERSITAS GUNADARMA

UNIVERSITAS GUNADARMA SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN PAKET Pilihan Ganda: Pilihlah satu jawaban yang paling tepat.. Ingkaran dari pernyataan Mathman tidak belajar atau dia dapat mengerjakan soal UN matematika

Lebih terperinci

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =...

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =... 1 1. Diketahui: Premis 1 : Jika hari hujan maka tanah basah. Premis : Tanah tidak basah. Ingkaran dari penarikan kesimpulan yang sah dari premis-premis di atas adalah.... Agar F(x) = (p - ) x² - (p - 3)

Lebih terperinci

1. Jika diketahui pernyataan p benar dan q salah, maka pernyataan di bawah ini yang benar adalah.

1. Jika diketahui pernyataan p benar dan q salah, maka pernyataan di bawah ini yang benar adalah. MAT IPS PAKET B PETUNJUK KHUSUS : Pilihlah satu jawaban yang benar untuk soal nomor sampai dengan 40 dengan menghitamkan huruf A, B, C, D, atau E pada lembar LJK!. Jika diketahui pernyataan p benar dan

Lebih terperinci

B B S S B S S B S S B B S S S B B S B S S S S B B S B B

B B S S B S S B S S B B S S S B B S B S S S S B B S B B 1. Ingkaran pertanyaan: Petani panen beras atau harga beras murah. A. Petani panen beras dan harga beras mahal. B. Petani panen beras dan harga beras murah. C. Petani tidak panen beras dan harga beras

Lebih terperinci

SOAL TRY OUT UN MATEMATIKA 2013 PROGRAM IPS. Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!

SOAL TRY OUT UN MATEMATIKA 2013 PROGRAM IPS. Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar! SOAL TRY OUT UN MATEMATIKA 0 PROGRAM IPS Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Ingkaran dari pernyataan Diana lulus ujian nasional dan kuliah di luar negeri

Lebih terperinci

Solusi: [Jawaban C] Solusi: [Jawaban ]

Solusi: [Jawaban C] Solusi: [Jawaban ] SOLUSI SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

Pilihlah jawaban yang paling tepat. 1. Ingkaran dari pernyataan: (~ q r) adalah... A. ~ ~ (~ q r) B. ( q ~ r ) C. ( ~ q) ~ r D. ~ (~ q r) E.

Pilihlah jawaban yang paling tepat. 1. Ingkaran dari pernyataan: (~ q r) adalah... A. ~ ~ (~ q r) B. ( q ~ r ) C. ( ~ q) ~ r D. ~ (~ q r) E. Pilihlah jawaban yang paling tepat. Ingkaran dari pernyataan: (~ q r) adalah... A. ~ ~ (~ q r) B. ( q ~ r ) C. ( ~ q) ~ r D. ~ (~ q r) E. ( q ~ r) Jawaban : B Ingkaran p ( q r ) adalah (p ( q r )) p (q

Lebih terperinci

UN SMA IPS 2009 Matematika

UN SMA IPS 2009 Matematika UN SMA IPS 009 Matematika Kode Soal P88 Doc. Name: UNSMAIPS009MATP88 Doc. Version : 011-06 halaman 1 01. Diberikan beberapa pernyataan: Premis 1: Jika Santi sakit maka ia pergi ke dokter Premis : Jika

Lebih terperinci

Pilihla jawaban yang paling tepat!

Pilihla jawaban yang paling tepat! Pilihla jawaban yang paling tepat!. Ingkaran dari pernyataan: ( ~ q) r adalah.... A. ( ~ q) ~ r B. (~ ( q) ~ r C. ( ~ q) ~ r D. ( ~ q) ~ r E. (~ q) ~ r Jawaban : A Ingkaran { p ~ q r} (p ~ q) ~ r. Pernyataan

Lebih terperinci

2009 ACADEMY QU IDMATHCIREBON

2009 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPS Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Diketahui:

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 008/009. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh

Lebih terperinci

Matematika Ebtanas IPS Tahun 1996

Matematika Ebtanas IPS Tahun 1996 Matematika Ebtanas IPS Tahun 6 EBTANAS-IPS-6-0 Koordinattitik balik grafik y = adalah (, ) (, ) (, ) (, 0) (, ) EBTANAS-IPS-6-0 Akar-akar persamaan kuadrat + = 0 adalah α dan β. Persamaan kuadrat baru

Lebih terperinci

SOAL PREDIKSI XII. I. Pilihlah jawaban yang paling benar!

SOAL PREDIKSI XII. I. Pilihlah jawaban yang paling benar! SOAL PREDIKSI XII I. Pilihlah jawaban yang paling benar! 1. Kiki melakukan perjalanan Surabaya Solo mengendarai sepeda motor dengan kecepatan rata-rata 85 km/jam dalam waktu 7 jam. Jika Dika menempuh jarak

Lebih terperinci

7. Himpunan penyelesaian dari 3x + 7 < 5x 3 adalah. a. { x x < 5 } b. { x x > 5 } c. { x x < 5 } d. { x x > 5 } e. { x x 5 } e. 3. d.

7. Himpunan penyelesaian dari 3x + 7 < 5x 3 adalah. a. { x x < 5 } b. { x x > 5 } c. { x x < 5 } d. { x x > 5 } e. { x x 5 } e. 3. d. 1. Suatu pabrik sepatu dapat memproduksi.400 sepatu dalam waktu 60 hari dengan menggunakan 10 mesin. Jika produksi itu ingin diselesaikan dalam waktu 40 hari maka pabrik harus menambah mesin sebanyak.

Lebih terperinci

UN SMA IPS 2011 Matematika

UN SMA IPS 2011 Matematika UN SMA IPS 0 Matematika Kode Soal Doc. Name: UNSMAIPS0MAT999 Version: 0- halaman 0. Koordinat titik potong grafik fungsi kuadrat y = - - dengan sumbu X dan sumbu Y (A) (-,0),(,0), dan (0,) (B) (-,0),(,0),dan

Lebih terperinci

UNIVERSITAS GUNADARMA

UNIVERSITAS GUNADARMA SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

6. Jika 2 log 3 = a dan 3 log 5 = b, maka 15 log 20 = a. 2. c. a. e

6. Jika 2 log 3 = a dan 3 log 5 = b, maka 15 log 20 = a. 2. c. a. e Page of. Negasi dari pernyataan Matematika tidak mengasyikkan atau adalah a. Matematika mengasyikkan atau Matematika mengasikkan atau tidak c. Matematika mengasikkan dan tidak Matematika tidak mengasikkan

Lebih terperinci

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3 Nama : Ximple Education No. Peserta : 08-6600-77. Nilai dari A. B. C. D. E. 6 0 0 7. Bentuk sederhana 6 =. A. 9 B. 9 + C. 9 D. 9 E. + 9. Nilai dari ( A. B. 7 8 C. 9 6 log log log 6 6 log 0 log 6 + log

Lebih terperinci

Soal-soal dan Pembahasan Matematika Dasar SNMPTN 2010

Soal-soal dan Pembahasan Matematika Dasar SNMPTN 2010 Soal-soal dan Pembahasan Matematika Dasar SNMPTN 010 1. Pernyataan yang mempunyai nilai kebenaran sama dengan pernyataan, Jika bilangan ganjil sama dengan bilangan genap, maka 1 + bilangan ganjil adalah

Lebih terperinci

BANK SOAL MATEMATIKA IPS

BANK SOAL MATEMATIKA IPS BANK SOAL MATEMATIKA IPS Tim Guru Matematika SMAN 1 Kendari KENDARI 2013 1. Bentuk sederhana dari adalah... A. B. E. Jawaban : E Bentuk sederhana dari : 2. Nilai x yang memenuhi persamaan adalah... A.

Lebih terperinci

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C.

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C. 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 Kunci : C Persamaan fungsi : F(x)

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut

Lebih terperinci

SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 2012

SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 2012 SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 0. Negasi dari semua siswa rajin belajar untuk menghadapi UN, adalah... A. tidak semua siswa rajin belajar untuk menghadapi UN B. semua siswa

Lebih terperinci

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA B TROUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 04/05 MATEMATIKA IPS Hasil Kerja Sama dengan Mata Pelajaran : Matematika IPS Jenjang : SMA/MA MATA PELAJARAN Hari, tanggal : Selasa,

Lebih terperinci

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPA

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPA Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 010/011 Program Studi IPA 1. Akar-akar persamaan 3x -1x + = 0 adalah α dan β. Persamaan Kuadrat baru yang akar-akarnya (α +) dan (β +)

Lebih terperinci

SOAL LATIHAN UN MATEMATIKA IPS 00. Negasi dari pernyataan Matematika tidak mengasyikkan dan membosankan adalah. Matematika mengasyikkan atau membosankan Matematika mengasyikkan atau tidak membosankan Matematika

Lebih terperinci

SOAL TO UN SMA MATEMATIKA

SOAL TO UN SMA MATEMATIKA 1 1) Perhatikan premis-premis berikut. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis di atas

Lebih terperinci

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan

Lebih terperinci

8. Nilai x yang memenuhi 2 log 2 (4x -

8. Nilai x yang memenuhi 2 log 2 (4x - 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 2. Fungsi kuadrat yang mempunyai nilai maksimum

Lebih terperinci

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPS TAHUN PELAJARAN 2011/2012

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPS TAHUN PELAJARAN 2011/2012 SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPS TAHUN PELAJARAN 2011/2012 1. Ingkaran pernyataan: Petani panen beras atau harga beras murah. A. Petani panen beras dan harga beras mahal B. Petani panen

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2007

SOAL UN DAN PENYELESAIANNYA 2007 1. Bentuk sederhana dari (1 + 3 ) - (4 - ) adalah... A. -2-3 B. -2 + 5 C. 8-3 D. 8 + 3 8 + 5 (1 + 3 ) - (4 - ) = (1 + 3 ) - (4-5 ) = 1 + 3-4 + 5 = 8-3 2. Jika 2 log 3 = a dan 3 log 5 = b, maka 15 log 20

Lebih terperinci

SMK Non Teknik Mata Pelajaran : Matematika

SMK Non Teknik Mata Pelajaran : Matematika Latihan Soal UN 0 Paket Sekolah Menengah Kejuruan SMK Non Teknik Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban Ujian Nasional (LJUN)

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

( )( ) ISTIYANTO.COM. Pembahasan: Nomor 2 Bentuk sederhana dari A. B. C. D. E. 5 a b. Pembahasan: Nomor 3. Bentuk sederhana dari

( )( ) ISTIYANTO.COM. Pembahasan: Nomor 2 Bentuk sederhana dari A. B. C. D. E. 5 a b. Pembahasan: Nomor 3. Bentuk sederhana dari ISTIYANTO.COM Pembahasan: Nomor (a b Bentuk sederhana dari (a b A. a b a b a b ab 9 a b 8 adalah Pembahasan: Soal UN Matematika IPA Dapatkan Buku Bank Soal Matematika SMA karangan Istiyanto untuk memudahkan

Lebih terperinci

TRY OUT UJIAN NASIONAL

TRY OUT UJIAN NASIONAL PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN MUSYAWARAH KERJA KEPALA SEKOLAH SMA Sekretariat : SMA Negeri 70 Jakarta Jalan Bulungan No. C, Jakarta Selatan Telepon (0) 7667, Fax (0)

Lebih terperinci

Soal Ujian Nasional Tahun 2007 Bidang Matematika

Soal Ujian Nasional Tahun 2007 Bidang Matematika Soal Ujian Nasional Tahun 007 Bidang Matematika Oleh : Fendi Alfi Fauzi 6 Desember 01 1. Bentuk sederhana dari (1 + ) (4 50) adalah... A. B. + 5 C. 8 D. 8 + E. 8 + 5. Jika log = a dan log 5 = b, maka 15

Lebih terperinci

7. Himpunan penyelesaian dari 2(x 3) 4(2x + 3) adalah... a. x -1 c. X 1 e. x -3 b. x 1 d. x -3

7. Himpunan penyelesaian dari 2(x 3) 4(2x + 3) adalah... a. x -1 c. X 1 e. x -3 b. x 1 d. x -3 . 4% uang Ani diberikan kepada adiknya dan 5% dari uang tersebut untuk membayar rekening listrik dan 5% untuk membayar rekening telpon, sisa uang Ani adalah Rp 4.,. Berapakah jumlah uang Ani a. Rp 4.,

Lebih terperinci

PREDIKSI UN SMA IPS MATEMATIKA 2012

PREDIKSI UN SMA IPS MATEMATIKA 2012 Prediksi Matematika UN SMA IPS 01 PREDIKSI UN SMA IPS MATEMATIKA 01 1. Diketahui dua pernyataan p dan q p : bernilai besar q : bernilai salah Pernyataan majemuk di bawah ini bernilai benar, kecuali. A.

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDY IPA

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDY IPA PEMBAHASAN UN SMA TAHUN PELAJARAN 009/010 MATEMATIKA PROGRAM STUDY IPA PEMBAHAS : 1. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. PPPPTK MATEMATIKA 010 1. Perhatikan

Lebih terperinci

Page 1

Page 1 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 6/7. Bentuk sederhana dari ( + ) ( 5 ) adalah. A. C. 8 E. 8 + 5 B. + 5 D. 8 + ( + ) ( 5 ) ( + ) (. 5 ) ( + ) ( 5 ) + + 5 - + 8 8 - Jawabannya

Lebih terperinci

disesuaikan dengan soal yaitu 2 atau 3 )

disesuaikan dengan soal yaitu 2 atau 3 ) SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 6/7. Bentuk sederhana dari ( + ) ( 5 ) adalah. A. C. 8 E. 8 + 5 B. + 5 D. 8 + ( + ) ( 5 ) ( + ) (. 5 ) ( + ) ( 5 ) + + 5 - + 8 8 - Jawabannya

Lebih terperinci

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010 PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh

Lebih terperinci

Mata Pelajaran : Matematika

Mata Pelajaran : Matematika Pembahasan Pra Ujian Nasional Tahun Pelajaran 01/01 Mata Pelajaran : Matematika Program IPS Kode Paket A 6 Oleh : Fendi Al Fauzi 1 1. Nilai kebenaran yang tepat untuk pernyataan ( p q) p pada tabel berikut

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Budi rajin menabung atau tidak mencuri, maka Ibu membelikan komputer () Ibu tidak membelikan komputer Kesimpulan yang sah adalah. a. Budi rajin menabung dan Budi mencuri

Lebih terperinci

1. Dari suatu barisan aritmetika diketahui suku ke-15 adalah 222 dan suku ke-12 adalah 57. Suku ke-15 barisan ini adalah. A. 62 B. 68 C. 72 D. 74 E.

1. Dari suatu barisan aritmetika diketahui suku ke-15 adalah 222 dan suku ke-12 adalah 57. Suku ke-15 barisan ini adalah. A. 62 B. 68 C. 72 D. 74 E. . Dari suatu barisan aritmetika diketahui suku ke-5 adalah dan suku ke- adalah 57. Suku ke-5 barisan ini adalah. A. 6 B. 68 7 D. 74 E. 76. Suku ketiga dan suku keenam barisan geometri berturut-turut adalah

Lebih terperinci

PREDIKSI UJIAN NASIONAL SMK

PREDIKSI UJIAN NASIONAL SMK PREDIKSI UJIAN NASIONAL SMK TAHUN PELAJARAN / Mata Pelajaran Waktu : Matematika SMK TKP : menit PETUNJUK UMUM Isikan identitas Anda ke dalam Lembar Jawaban Ujian Nasional (LJUN) yang tersedia dengan menggunakan

Lebih terperinci

UNIVERSITAS GUNADARMA

UNIVERSITAS GUNADARMA SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

SOAL PREDIKSI XIII. I. Pilihlah jawaban yang paling benar!

SOAL PREDIKSI XIII. I. Pilihlah jawaban yang paling benar! SOAL PREDIKSI XIII I. Pilihlah jawaban yang paling benar! 1. Kiki melakukan perjalanan Surabaya Solo mengendarai sepeda motor dengan kecepatan rata-rata 80 km/jam dalam waktu 2 jam. Jika kecepatannya menjadi

Lebih terperinci

SOAL PREDIKSI XIV. I. Pilihlah jawaban yang paling benar!

SOAL PREDIKSI XIV. I. Pilihlah jawaban yang paling benar! SOAL PREDIKSI XIV I. Pilihlah jawaban yang paling benar! 1. Kiki melakukan perjalanan Surabaya Solo mengendarai sepeda motor dengan kecepatan rata-rata 85 km/jam dalam waktu 7 jam. Jika Dika menempuh jarak

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA PEMBAHASAN UN SMA TAHUN PELAJARAN 009/00 MATEMATIKA PROGRAM STUDI IPA PEMBAHAS :. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. PPPPTK MATEMATIKA 00 . Perhatikan

Lebih terperinci

4. Bentuk sederhana dari : a b

4. Bentuk sederhana dari : a b PAKET A. Pernyataan yang setara dengan Jika cuaca buruk, maka semua penerbangan ditunda adalah. A. Jika beberapa penerbangan tidak ditunda, maka cuaca baik. B. Jika semua penerbangan ditunda, maka cuaca

Lebih terperinci

SOAL PENJAJAKAN UN MATEMATIKA 2012 PROVINSI DIY

SOAL PENJAJAKAN UN MATEMATIKA 2012 PROVINSI DIY SOAL PENJAJAKAN UN MATEMATIKA 0 PROVINSI DIY. Suatu proyek akan selesai dalam waktu 0 hari oleh 0 orang pekerja. Tambahan pekerja yang dibutuhkan agar proyek tersebut selesai dalam waktu 90 hari adalah.

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

SOAL PREDIKSI VI. I. Pilihlah jawaban yang paling benar!

SOAL PREDIKSI VI. I. Pilihlah jawaban yang paling benar! SOAL PREDIKSI VI I. Pilihlah jawaban yang paling benar! 1. Kiki melakukan perjalanan Surabaya Solo mengendarai sepeda motor dengan kecepatan rata-rata 80 km/jam dalam waktu 2 jam. Jika kecepatannya menjadi

Lebih terperinci

SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012

SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 1. Akar-akar persamaan kuadrat x 2 +ax - 4=0 adalah p dan q. Jika p 2-2pq + q 2 =8a, maka nilai a =... A. -8 B. -4 C. 4 D. 6 E. 8 2. Persamaan

Lebih terperinci

SOAL PREDIKSI XV. I. Pilihlah jawaban yang paling benar!

SOAL PREDIKSI XV. I. Pilihlah jawaban yang paling benar! SOAL PREDIKSI XV I. Pilihlah jawaban yang paling benar! 1. Kiki melakukan perjalanan Surabaya Solo mengendarai sepeda motor dengan kecepatan rata-rata 70 km/jam dalam waktu 2 jam. Jika kecepatannya menjadi

Lebih terperinci

UN SMA IPS 2012 Matematika

UN SMA IPS 2012 Matematika UN SMA IPS 01 Matematika Kode Soal A Doc. Name: UNSMAIPS01MATA Doc. Version : 01-1 halaman 1 01. Ingkaran pernyataan Pada hari Senin siswa SMAN memakai sepatu hitam dan atribut lengkap adalah. Pada hari

Lebih terperinci

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75 Here is the Problem and the Answer. Diketahui premis premis berikut! a. Jika sebuah segitiga siku siku maka salah satu sudutnya 9 b. Jika salah satu sudutnya 9 maka berlaku teorema Phytagoras Ingkaran

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 PANDUAN MATERI SMA DAN MA M A T E M A T I K A PROGRAM STUDI IPS PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS KATA PENGANTAR Dalam rangka sosialisasi kebijakan

Lebih terperinci

UN SMA IPS 2010 Matematika

UN SMA IPS 2010 Matematika UN SMA IPS 00 Matematika Kode Soal Doc. Name: UNSMAIPS00MAT999 Doc. Version : 04-0 halaman 0. Nilai kebenaran yang tepat untuk pernyataan ( p q) ~ p, Pada table berikut adalah... p q (p q) ~ p B B... B

Lebih terperinci

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN adalah... adalah...

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN adalah... adalah... UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN 0. Bentuk sederhana dari A. B. 6 a b 6 6 a b 6 a C. 8 D. b 6 a 9 b 6 a E. 8 b Solusi: [E] a b 0

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Ibu tidak memasak nasi, maka Ayah membeli nasi di warung dan makan di rumah () Ibu memasak nasi Kesimpulan yang sah adalah. a. Ayah tidak membeli nasi di warung atau

Lebih terperinci

22. MATEMATIKA SMA/MA (PROGRAM IPA)

22. MATEMATIKA SMA/MA (PROGRAM IPA) 22. MATEMATIKA SMA/MA (PROGRAM IPA) NO. 1. Memahami pernyataan dalam matematika dan ingkarannya, menentukan nilai kebenaran pernyataan majemuk serta menggunakan prinsip logika matematika dalam pemecahan

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPS MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPS MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPS PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPS MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPS MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPS MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPS PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPS MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2007

Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2007 Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 007. Jika a > 0 dan a memenuhi a 4 b ( ) a, maka log b A. B. C. D. E. a a 4 b ( ) a 4 ( b a ) a 4 b a b 4 4 log b log 4 log ( ) log log. Jawabannya

Lebih terperinci

SOAL- SOAL MATEMATIKA KELAS XII IPB. 26. Nilai dari 2 log log 12 2 log 6 =. 27. Nilai dari 3 log log 6 3 log 10 =.

SOAL- SOAL MATEMATIKA KELAS XII IPB. 26. Nilai dari 2 log log 12 2 log 6 =. 27. Nilai dari 3 log log 6 3 log 10 =. A. LOGIKA MATEMATIKA. lngkaran dari pernyataan "Semua siswi SMA Tarakanita bertempat tinggal di Jakarta" adalah.... Negasi dari pernyataan Disa cantik tetapi sombong adalah... (kata lain dari tetapi adalah

Lebih terperinci

Soal dan Pembahasan UN Matematika Program IPS tahun 2008

Soal dan Pembahasan UN Matematika Program IPS tahun 2008 Soal dan Pembahasan UN Matematika Program IPS tahun 008. Negasi dari pernyataan Matematika tidak mengasyikan atau membosankan adalah A. Matematika mengasyikan atau membosankan. B. Matematika mengasyikan

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 MATEMATIKA (D10) SMA/MA - PROGRAM STUDI IPA KODE : P 15 UTAMA

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 MATEMATIKA (D10) SMA/MA - PROGRAM STUDI IPA KODE : P 15 UTAMA UJIAN NASIONAL TAHUN PELAJARAN 007/008 MATEMATIKA (D0) SMA/MA - PROGRAM STUDI IPA KODE : P 5 UTAMA SOAL :. Ingkaran dari pernyataan Beberapa siswa senang belajar matematika adalah... A. Ada siswa tidak

Lebih terperinci

adalah. 1. Bentuk sederhana dari A. 5 B. 5 C. 25 D. 20 E Bentuk sederhana dari ToT MATEMATIKA PARIWISATA

adalah. 1. Bentuk sederhana dari A. 5 B. 5 C. 25 D. 20 E Bentuk sederhana dari ToT MATEMATIKA PARIWISATA 1. Bentuk sederhana dari 10 a c b A. 0 a b 2 a b 2 c c 6 2 adalah. 20 a c b B. 10 a c b C. 2 0 0 20 a b c D. 20 10 a b c E. 0 0 2 2. Bentuk sederhana dari 6 12 2 27 7 adalah... A. 12 B. C. 2 D. 8 E.. Bentuk

Lebih terperinci

LATIHAN SOAL INDIKATOR UN 2011 MATEMATIKA IPS Oleh : Drs.Aleksander Hutauruk, M.Si

LATIHAN SOAL INDIKATOR UN 2011 MATEMATIKA IPS Oleh : Drs.Aleksander Hutauruk, M.Si LATIHAN SOAL INDIKATOR UN 0 MATEMATIKA IPS Oleh : Drs.Aleksander Hutauruk, M.Si SKL INDIKATOR Menentukan nilai kebenaran suatu pernyataan majemuk. Diketahui pernyataan p benar dan q salah pernyataan majemuk

Lebih terperinci

TRY OUT UJIAN NASIONAL

TRY OUT UJIAN NASIONAL PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN MUSYAWARAH KERJA KEPALA SEKOLAH SMA Sekretariat : SMA Negeri 70 Jakarta Jalan Bulungan No. C, Jakarta Selatan Telepon (0) 7667, Fax (0)

Lebih terperinci

Matematika SMA/MA IPA. Nama : No. Peserta : , dan z = 10, maka nilai dari 12 A. 36 B. 25 C D. 1 9 E Jika log 3.

Matematika SMA/MA IPA. Nama : No. Peserta : , dan z = 10, maka nilai dari 12 A. 36 B. 25 C D. 1 9 E Jika log 3. Nama : No. Peserta :. Jika x =, y =, dan z = 0, maka nilai dari x y z =. x yz A. 6 B. 5 C. 6 D. 9 E.. Jika log A. ab+a+b a+ B. b+a+ a+ C. a+b+ a+ D. ab+a+ a+ E. ab+a+ a+ = a dan log 5 = b, maka log 60.

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 2015

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 2015 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 0 Paket Pilihlah jawaban yang paling tepat!. Diberikan premis-premis berikut!. Jika pengguna kendaraan bermotor bertambah banyak maka kemacetan di ruas jalan

Lebih terperinci

TAHUN PELAJARAN 2009 / 2010 MATEMATIKA SMA PROGRAM STUDI IPS. Rabu, 3 Februari Menit

TAHUN PELAJARAN 2009 / 2010 MATEMATIKA SMA PROGRAM STUDI IPS. Rabu, 3 Februari Menit Try Out TAHUN PELAJARAN 009 / 00 MATEMATIKA SMA PROGRAM STUDI IPS Rabu, Februari 00 0 Menit PETUNJUK :. Isikan identitas Anda ke dalam Lembar Jawaban Komputer (LJK) yang tersedia dengan menggunakan pensil

Lebih terperinci

UJI COBA UJIAN NASIONAL 2011

UJI COBA UJIAN NASIONAL 2011 UJI COA UJIAN NASIONAL 2011 Mata Pelajaran Alokasi Waktu Jumlah Soal entuk Soal : Matematika Teknik : 120 menit : 40 item : Pilihan Ganda 1. Seorang pedagang sparepart sepeda motor membeli dua lusin busi

Lebih terperinci

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0 BIDANG STUDI : MATEMATIKA 1. Harga 3 kg pepaya dan 5 kg jeruk adalah Rp 13.000, sedangkan harga 4 kg papaya dan 3 kg jeruk adalah Rp 10.000, maka harga 2 kg papaya dan 4 kg jeruk adalah. A. Rp 10.000 B.

Lebih terperinci

SANGGAR 16 SMA JAKARTA TIMUR

SANGGAR 16 SMA JAKARTA TIMUR SANGGAR 6 SMA JAKARTA TIMUR SOAL DAN SOLUSI TRY OUT BERSAMA Senin, 6 Pebruari 5. Ingkaran dari pernyataan : Jika semua sampah dibuang pada tempatnya maka Jakarta tidak banjir adalah A. Jika semua sampah

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

SMA / MA Bahasa Mata Pelajaran : Matematika

SMA / MA Bahasa Mata Pelajaran : Matematika Latihan Soal UN Paket Sekolah Menengah Atas / Madrasah Aliyah SMA / MA Bahasa Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban Ujian

Lebih terperinci

4. Bentuk sederhada dari : 3 2 ... D. E. 5. Bentuk sederhana dari

4. Bentuk sederhada dari : 3 2 ... D. E. 5. Bentuk sederhana dari . Pernyataan yang senilai dengan kalimat Jika Fatah dan Ichwan datang maka semua siswa senang adalah. A. Jika Fatah dan Ichwan tidak datang maka semua siswa tidak senang B. Jika Fatah atau Ichwan tidak

Lebih terperinci

Matematika Ebtanas IPS Tahun 1997

Matematika Ebtanas IPS Tahun 1997 Matematika Ebtanas IPS Tahun 99 EBTANAS-IPS-9-0 Bentuk sederhana dari 86 6 + 8 6 9 6 0 6 6 6 EBTANAS-IPS-9-0 Bentuk sederhana dari 8 + 6 + + 6 6 + + EBTANAS-IPS-9-0 x+ Nilai x yang memenuhi persamaan =

Lebih terperinci

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA A TROUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 0/05 MATEMATIKA IPS Hasil Kerja Sama dengan Mata Pelajaran : Matematika IPS Jenjang : SMA/MA MATA PELAJARAN Hari, tanggal : Selasa,

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPS

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPS PEMBAHASAN UN SMA TAHUN PELAJARAN 009/010 MATEMATIKA PROGRAM STUDI IPS PEMBAHAS : 1. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. EDITOR : Dra. Puji Iryanti, M.Sc.

Lebih terperinci

PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09)

PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09) PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09) 1. Luas daerah yang dibatasi oleh kurva y = x + x + 5, sumbu x, dan 0 x 1... satuan luas (A) (C) (E) 5 (B) 0 (D) 5 1. Diketahui segitiga ABC, siku-siku di

Lebih terperinci

7. Bentuk sederhana dari. adalah.. 4. Jika log 2 = a dan log 3 = b, maka nilai log 18 = a. a + 2b b. 2a + b c. a + b d. a 2 + b e.

7. Bentuk sederhana dari. adalah.. 4. Jika log 2 = a dan log 3 = b, maka nilai log 18 = a. a + 2b b. 2a + b c. a + b d. a 2 + b e. 1. Suatu pekerjaan jika dikerjakan 15 orang dapat diselesaikan dalam waktu 30 hari. Apabila pekerjaan tersebut ingin diselesaikan dalam waktu 25 hari, jumlah pekerja yang harus ditambah a. 3 orang b. 5

Lebih terperinci

Matematika SMA (Program Studi IPA)

Matematika SMA (Program Studi IPA) Soal Latihan UJIAN NASIONAL TAHUN PELAJARAN 0/0 Disusun Per Indikator Kisi-Kisi UN 0 Matematika SMA (Program Studi IPA) Written By : Team MKKS Jakarta Distributed by : Pak Anang PEMERINTAH PROVINSI DAERAH

Lebih terperinci

SANGGAR 16 SMA JAKARTA TIMUR

SANGGAR 16 SMA JAKARTA TIMUR SANGGAR 6 SMA JAKARTA TIMUR SOAL TRY OUT BERSAMA Senin, 6 Pebruari 05. Ingkaran dari pernyataan : Jika semua sampah dibuang pada tempatnya maka Jakarta tidak banjir adalah Jika semua sampah tidak dibuang

Lebih terperinci

UJI COBA UJIAN NASIONAL SMK

UJI COBA UJIAN NASIONAL SMK UJI COBA UJIAN NASIONAL SMK Tahun Pelajaran 014 / 015 MATEMATIKA NON TEKNIK KELOMPOKPARIWISATA, SENI DAN KERAJINAN, PEKERJAAN SOSIAL TEKNOLOGI KERUMAHTANGGAAN, DAN ADMINISTRASI PERKANTORAN (UTAMA) 1 MATA

Lebih terperinci

UN SMA IPS 2013 Matematika

UN SMA IPS 2013 Matematika UN SMA IPS 0 Matematika Kode Soal Doc. Name: UNSMAIPS0MAT999 Version: 0-07 halaman 0. Ingkaran dari pernyataan Semua peserta ujian mengharapkan nilai tinggi dan lulus (A) Ada peserta ujian mengharapkan

Lebih terperinci