PROGRAM LINEAR. Fattaku Rohman, S.Pd. Kelas XII SMA Titian Teras Jambi

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "PROGRAM LINEAR. Fattaku Rohman, S.Pd. Kelas XII SMA Titian Teras Jambi"

Transkripsi

1 PROGRAM LINEAR Fattaku Rohman, S.Pd Kelas XII SMA Titian Teras Jambi

2 Apersepsi Standar Kompetensi & Kompetensi Dasar Materi Uji Kompetensi

3 Apersepsi Setiap orang atau perusahaan pasti menginginkan keuntungan atau laba sebesar besarnya dengan alokasi sumber yang terbatas. Sebagai contoh, sebuah perusahaan memproduksi dua model kapal pesiar. Model I membutuhkan waktu 30 jam untuk memotong dan merakit serta 40 jam untuk menyelesaikannya. Model 2 membutuhkan 45 jam untuk memotong dan merakit serta 30 jam untuk menyelesaikannya. Waktu yang tersedia 360 jam untuk memotong dan merakit serta 300 jam untuk menyelesaikannya. Keuntungan bersih untuk setiap unit model I sebesar Rp ,00 dan model II sebesar Rp ,00. Apakah Anda dapat menentukan berapa banyak kapal pesiar model I dan model II yang harus diproduksi agar diperoleh keuntungan maksimum? Kasus di atas adalah salah satu contoh permasalahan program linear. Masalah semacam itu sering kita jumpai dalam dunia usaha, ekonomi, ilmiah, dan sebagainya. Masalah program linear adalah masalah yang berhubungan dengan penentuan maksimum atau minimum suatu fungsi linear dengan kendala kendala berupa sistem pertidaksamaan linear.

4 Standar Kompetensi Standar Kompetensi : Menyelesaikan masalah program linear. Kompetensi Dasar : Menyelesaikan sistem pertidaksamaan linear dua variabel Merancang model matematika dari masalah program linear Menyelesaikan model matematika dari masalah program linear dan penafsirannya

5 Sistem Pertidaksamaan Linear Sebelum membahas pengertian sistem pertidaksamaan linear dua variabel, perlu diingat kembali tentang pertidaksamaan linear. Bentuk-bentuk pertidaksamaan linear : ax + by > c,ax + by < c, ax + by c dan ax + by c, a, b, c dan d adalah konstanta dan x,y adalah variabel. Daerah penyelesaian dari sebuah pertidaksamaan linear adalah daerah yang memuat nilai-nilai (x,y) yang memenuhi pertidaksamaan tersebut.

6 Sistem Pertidaksamaan Linear Perhatikan garis 3x + 5y = 15 di samping. Y Nampak bahwa daerah pada diagram kartesius terbagi menjadi 2, yaitu daerah di atas garis dan daerah di bawah garis. Jika kita substitusikan sembarang titik di bawah garis 3x + 5y = 15 ke ruas kiri persamaan tersebut (yaitu 3x + 5y), maka ternyata hasilnya kurang dari 15. Contoh diambil titik O(0,0). O(0,0) = 0 < 15 Ini berarti, daerah di bawah garis 3x + 5y = 15 merupakan daerah penyelesaian pertidaksamaan 3x + 5y < 15 dan sebaliknya daerah di atas garis 3x + 5y = 15 merupakan daerah penyelesaian pertidaksamaan 3x + 5y X

7 Sistem Pertidaksamaan Linear. Cara singkat : Misal terdapat garis ax + by = c Jika b > 0 (positif) Daerah penyelesaian dari ax + by c adalah daerah di atas garis Daerah penyelesaian dari ax + by c adalah daerah di bawah garis Jika b < 0 (negatif) Daerah penyelesaian dari ax + by c adalah daerah di bawah garis Daerah penyelesaian dari ax + by c adalah daerah di atas garis

8 Sistem Pertidaksamaan Linear Contoh : Tunjukkan daerah penyelesaian (DP) pertidaksamaan 2x + 3y 6 sebagai daerah yang bersih (tanpa arsiran)! Jawab : Y 2x + 3y = 6 X 0 3 y 2 0 (0, 2) (3, 0) Garis 2x + 3y = 6 melalui titik (3, 0) dan (0, 2) 2 Daerah Himpunan Penyelesaian 3 X

9 Sistem Pertidaksamaan Linear Contoh : Tunjukkan daerah penyelesaian (DP) pertidaksamaan 2x - 3y 6 sebagai daerah yang bersih (tanpa arsiran)! Jawab : 2x - 3y = 6 X 0 3 y -2 0 (0, -2) (3, 0) Garis 2x + 3y = 6 melalui titik (3, 0) dan (0, -2) Y -2 3 Daerah Himpunan Penyelesaian X

10 Sistem Pertidaksamaan Linear Sistem pertidaksamaan linear yaitu sebuah sistem yang terdiri dari dua buah pertidaksamaan linear atau lebih. Daerah himpunan penyelesaian dari sebuah sistem pertidaksamaan linear merupakan irisan dari daerah penyelesaian tiap pertidaksamaan yang membangunnya. Contoh : Tunjukkan daerah himpunan penyelesaian dari sistem pertidaksamaan linear x + y 6; x 2; y > 1 Jawab : Y 6 x + y = 6 x 0 6 Y HP X (0, 6) (6, 0) 2 6

11 Sistem Pertidaksamaan Linear Contoh : Tunjukkan daerah himpunan penyelesaian dari sistem pertidaksamaan linear 4x + 3y 12; 3x + 4y 12; x 0; y 0 Jawab : Garis 4x + 3y = 12 melalui titik (3, 0) dan (0, 4) Garis 3x + 4y = 12 melalui titik (4, 0) dan (0, 3) Y 4 3 HP X 3 4

12 Model Matematika Model matematika adalah suatu rumusan (dapat berupa persamaan, pertidaksamaan maupun fungsi) yang diperoleh dari penafsiran seseorang ketika menerjemahkan suatu masalah sehari-hari (masalah program linear) ke dalam bahasa matematika. Contoh Susi ingin membeli dua jenis jeruk, jeruk A dengan harga Rp 6.000,00 per kg dan jeruk B dengan harga Rp 4.000,00 per kg. Ia hanya menyediakan uang Rp ,00, sedangkan kapasitas keranjang yang ia bawa hanya 10 kg. Buatlah model matematika dari masalah ini! Jawab : x y < atau 3x + 2y < 25 x + y < 10 x > 0; y > 0

13 Model Matematika Contoh: Sebuah biro transportasi menyediakan tidak lebih dari 100 mobil yang terdiri dari 2 jenis untuk mengangkut penumpang sebanyak 500 orang. Mobil jenis A dan B masing-masing hanya mampu mengangkut 4 orang dan 6 orang. Tentukan model matematika untuk masalah ini. Jawab : x + y < 100 4x + 6y < 500 x > 0, y > 0.

14 Fungsi Obyektif Fungsi obyektif atau fungsi sasaran atau fungsi tujuan adalah fungsi yang berbentuk f(x,y) = ax + by yang akan ditentukan nilai optimumnya (nilai maksimum atau nilai minimum) untuk (x,y) yang memenuhi syarat tertentu. Contoh : Seorang pedagang akan membeli sandal dan sepatu. Harga sepasang sandal Rp ,00 dan harga sepasang sepatu Rp ,00. Modal yang ia miliki Rp ,00. Kiosnya hanya cukup menampung 30 pasang sandal dan sepatu. Jika keuntungan sepasang sandal Rp 4.000,00 dan sepatu Rp 5.000,00 dengan keadaan ini pedagang tersebut ingin mendapatkan keuntungan yang sebesar-besarnya. Tentukan model matematika permasalahan tersebut lengkap dengan fungsi obyektif yang menyatakan keuntungan pedagang tersebut!

15 Fungsi Obyektif Jawab : Misal : banyaknya pasangan sandal = x banyaknya pasangan sepatu = y Model matematika : x y < atau x + 2y < 40 x + y < 30 x > 0, y > 0 Fungsi obyektif f(x,y) = 4.000x y (Perhatikan bahwa fungsi f(x,y) = 4.000x y menyatakan besar keuntungan yang diperoleh pedagang, yang nilainya tergantung dari banyak sandal dan sepatu yang ia jual)

16 Fungsi Obyektif Contoh : Seorang pasien diharuskan mengkonsumsi vitamin A paling sedikit 1000 mg dan vitamin C paling sedikit 1250 mg tiap hari. Tersedia 2 jenis kapsul, kapsul jenis I mengandung 50 mg vitamin A dan 75 mg vitamin C. Kapsul jenis II mengandung 60 mg vitamin A dan 50 mg vitamin C. Jika harga 1 butir kapsul jenis I dan jenis II masing-masing adalag Rp 8.000,00 dan Rp 6.000,00 maka tentukan model matematika dari masalah ini! Jawab : Misal banyak kapsul jenis I = x dan banyak kapsul jenis II = y Maka model matematika dari masalah ini adalah 50x + 60y > atau 5x + 6y > x + 50y > 1250 atau 3x + 2y > 50 x > 0; y > 0 Fungsi obyektif f(x, y) = 8.000x y (Perhatikan bahwa fungsi obyektif f(x, y) = 8.000x y menyatakan besar pengeluaran pasien tiap hari, yang tergantung dari banyak kedua kapsul yang ia konsumsi)

17 Nilai Optimum Fungsi Obyektif Untuk menentukan nilai optimum (maksimum/minimum) dari fungsi obyektif, cara yang biasa digunakan adalah dengan uji titik pojok atau dengan garis selidik. 1). Uji Titik Pojok Menentukan nilai optimum fungsi obyektif f(x, y) = ax + by dengan uji titik pojok dilakukan dengan cara menghitung nilai fungsi tersebut untuk setiap titik pojok (x, y) dari daerah himpunan penyelesaian. 2). Garis Selidik Apabila suatu persoalan program linear dengan fungsi obyektif f(x, y) = ax + by akan diselesaikan menggunkan garis selidik, maka persamaan umum garis selidik tersebut adalah ax + by = k. Dengan menggeser-geser garis ini melintasi semua daerah himpunan penyelesaian menjauhi dan mendekati titik O(0, 0) akan diperoleh nilai-nilai k yang berbeda. Nilai maksimum fungsi obyektif adalah nilai k garis selidik yang letaknya paling jauh dari titik O Nilai minimum fungsi obyektif adalah nilai k garis selidik yang letaknya paling dekat dari titik O

18 Nilai Optimum Fungsi Obyektif Contoh : Titik (x, y) f(x, y)= 4.000x y Seorang pedagang akan membeli sandal dan sepatu. Harga sepasang sandal Rp ,00 (0, dan 0) harga sepasang sepatu 0Rp ,00. Modal yang ia miliki Rp ,00. (30, 0) Kiosnya hanya cukup menampung 30 pasang sandal dan sepatu. Jika keuntungan sepasang sandal Rp 4.000,00 dan sepatu Rp 5.000,00 maka (20, 10) Maksimum tentukan keuntungan maksimum yang diperoleh pedagang tersebut. (0, 20) Jawab : Model matematika x + 2y < 40 x + y < 30 x > 0, y > 0 Fungsi obyektif f(x,y) = 4.000x y Y HP 30 (20, 10) 40 X

19 Nilai Optimum Fungsi Obyektif Contoh : Tentukan nilai minimum fungsi z = 5x + 3y dengan syarat x + y > 4, x + 3y > 6, x > 0, y > 0. Jawab : Uji titik pojok Titik (x,y) f(x,y) (6, 0) 30 (3, 1) 18 (0, 4) 12 Jadi nilai minimum fungsi z = 5x + 3y adalah 12, yang dicapai di titik (0, 4).

20 Nilai Optimum Fungsi Obyektif Contoh : Tentukan nilai maksimum dari Z = x + 3y pada daerah yang diarsir berikut Y Garis selidik x + 3y = 0 melalui titik (0, 0) dan (3, -1) y = x + 1 Maksimum 2x - 5y = 0 y = x + 1 x + y = 7 X Diperoleh x = 3 dan y = 4 Sehingga nilai maksimum Z = 3 + 3(4) = 15 7x + 2y = 14 x + y = 7

21 Berikut ini disediakan 5 (lima) butir soal untuk menguji kompetensi dari materi yang telah Kalian pelajari. Selamat Mengerjakan

22 Uji Kompetensi Daerah yang diarsir merupakan daerah himpunan penyelesaian sistem pertidaksamaan A 2 y 4; x + y 5; y 0 Y B C D 2 x 4; x + y 5; x 0 2 y 4; x + y 5; y 5 2 x 4; x + y X E 2 y 4; x + y 5; x 0

23 Uji Kompetensi Luas suatu tempat parkir 200 m 2. Untuk memarkirkan mobil rata-rata diperlukan tempat seluas 10 m 2 dan untuk bus rata-rata 20 m 2. Tempat parkir tersebut tidak dapat menampung lebih dari 12 mobil dan bus. Jika di tempat parkir itu akan diparkir x mobil dan y bus, maka x dan y harus memenuhi syarat... A x + y 12; x + 2y 20; x 0; y 0 B C D E x + y 12; x + 2y 20; x 0; y 0 x + y 12; x + 2y 20; x 0; y 0 x + y 12; x 2y 20; x 0; y 0 x + y 12; x + 2y 20; x 0; y 0

24 Uji Kompetensi Sebuah biro transportasi menyediakan tidak lebih dari 100 mobil yang terdiri dari 2 jenis untuk mengangkut penumpang sebanyak 500 orang. Mobil jenis A dan B masing-masing hanya mampu mengang-kut 4 orang dan 6 orang. Model matematika untuk masalah ini adalah... A B C D E x 0, y 0, x + y 100, 2x + 3y 250 x 0, y 0, x + y 100, 2x + 3y 250 x 0, y 0, x + y 120, 2x + 3y 500 x 0, y 0, x + y 500, 3x + 2y 100 x 0, y 0, x + y 500, 2x + 3y 100

25 Uji Kompetensi Nilai minimum fungsi z = 2x + 5y dengan syarat x + 2y 6, 2x + y 6, x 0, y 0 adalah... A B C D E

26 Uji Kompetensi Sebuah pesawat mempunyai tempat duduk 48 kursi. Setiap penumpang kelas utama boleh membawa bagasi 60 kg sedang tiap penumpang kelas ekonomi boleh membawa bagasi 20 kg. Pesawat hanya dapat membawa bagasi kg. Jika harga tiket kelas utama Rp ,00 dan kelas ekonomi Rp ,00. Agar diperoleh pendapatan maksimum, maka banyak penumpang kelas utama adalah. A B C D E

27

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan: -2x + y 0 x - 2y 0 dan x + 2y 8, maka a + b =. (A) 2 (B) 1 (C) 2 (D) (E) 6 02. Nilai maksimum dari

Lebih terperinci

Xpedia Matematika Dasar

Xpedia Matematika Dasar Xpedia Matematika Dasar Soal Program Linear Doc. Name: XPMATDAS0999 Doc. Version : 01-09 halaman 1 01. Nilai z = 3x + y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan

Lebih terperinci

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan Kehidupan Nyata Bisa Disajikan Bahasa Matematika Diperlukan Alat Bantu Model Matematika Menggunakan Persamaan atau pertidaksamaan Matematika Tujuan Penyelesaian masalah Kemampuan yang akan dibahas Menentukan

Lebih terperinci

Program Linear. Bab I

Program Linear. Bab I Program Linear 1 Bab I Program Linear Sumber: Ensiklopedia Pelajar, 1999 Motivasi Setiap pedagang, pengusaha, atau orang yang berkecimpung di bidang usaha pasti menginginkan keuntungan sebanyak-banyaknya

Lebih terperinci

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel.

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. NAMA : KELAS : 1 2 Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. x y PROGRAM LINEAR 2. Tentukan titik potong dengan sumbu X, yaitu saat y = 0. 3. Tentukan

Lebih terperinci

Gambar 1.1 Mesin dan SDM perusahaan

Gambar 1.1 Mesin dan SDM perusahaan BAB I PROGRAM LINEAR Tujuan Pembelajaran Setelah mempelajari materi bab ini, Anda diharapkan dapat: 1. menyelesaikan sistem pertidaksamaan linear dua variabel, 2. merancang model matematika dari masalah

Lebih terperinci

MODUL 1 : PROGRAM LINEAR

MODUL 1 : PROGRAM LINEAR MODUL 1 : PROGRAM LINEAR A. Pendahuluan Dalam kehidupan sehari-hari sering dijumpai aplikasi program linear, seperti pembangunan perumahan atau apartemen, pemakaian obat-obatan dalam penyembuhan pasien,

Lebih terperinci

PROGRAM LINEAR. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII

PROGRAM LINEAR. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII LA - WB (Lembar Aktivitas Warga Belajar) PROGRAM LINEAR Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII Created By Ita Yuliana 9 Program Linear Kompetensi

Lebih terperinci

K13 Revisi Antiremed Kelas 11 Matematika Wajib

K13 Revisi Antiremed Kelas 11 Matematika Wajib K13 Revisi Antiremed Kelas 11 Matematika Wajib Program Linier - Latihan Soal Doc. Name: RK13AR11MATWJB0401 Version : 2016-10 halaman 1 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan

Lebih terperinci

PROGRAM LINEAR. sudir15mks

PROGRAM LINEAR. sudir15mks PROGRAM LINEAR A. Sistem Pertidaksamaan Linear Dua Variabel Suatu garis dalam bidang koordinat dapat dinyatakan dengan persamaan yang berbentuk: x a x b a1 1 2 2 Persamaan semacam ini dinamakan persamaan

Lebih terperinci

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang :

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : 1. Menggambar daerah yang memenuhi 2. Menentukan system pertidaksamaan suatu daerah 3. Menentukan nilai optimum

Lebih terperinci

PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) y 2. (0, a) y 1. (x 1, y 1 ) (b, 0) X. x 1

PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) y 2. (0, a) y 1. (x 1, y 1 ) (b, 0) X. x 1 PROGRAM LINEAR A. Persamaan Garis Lurus y 1 (x 1, y 1 ) y 2 y 1 (x 1, y 1 ) (x 2, y 2 ) a (0, a) 0 x 1 x 1 0 x 2 (b, 0) 0 b a. Persamaan garis yang bergradien m dan melalui titik (x 1, y 1 ) adalah: y

Lebih terperinci

PERTIDAKSAMAAN LINEAR DUA VARIABEL

PERTIDAKSAMAAN LINEAR DUA VARIABEL PRGRAM LINEAR Intisari Teori A. PERTIDAKSAMAAN LINEAR DUA VARIABEL (PtLDV) Suatu pernyataan yang berbentuk a by c 0 (tanda ketidaksamaan dapat diganti dengan, >, atau < ) dengan a dan b tidak semuanya

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) I. Identitas Mata Pelajaran: 1. Nama Sekolah :SMA 6 YOGYAKARTA 2. Kelas : XII 3. Semester : 1 4. Program : IPA 5. Mata Pelajaran : Program Linier 6. Waktu : : 8 JP

Lebih terperinci

Contoh : Gambarlah daerah x + y 0. Jika daerah tersebut dibatasi untuk nilai-nilai x 0, dan y 0, maka diperoleh gambar seperti berikut.

Contoh : Gambarlah daerah x + y 0. Jika daerah tersebut dibatasi untuk nilai-nilai x 0, dan y 0, maka diperoleh gambar seperti berikut. Setelah mempelajari materi pada kompetensi dasar ini, kalian diharapkan dapat: menjelaskan pengertian program linier, menggambar grafik himpunan penyelesaian pertidaksamaan linier, dan menggambar grafik

Lebih terperinci

LEMBAR AKTIVITAS SISWA PROGRAM LINEAR

LEMBAR AKTIVITAS SISWA PROGRAM LINEAR LEMBAR AKTIVITAS SISWA PROGRAM LINEAR c) Subtitusikan titik (0,0) kedalam pertidaksamaan. Nama Siswa : Jika hasil benar, maka penyelesaiaannya adalah daerah Kelas : yang memuat titik tersebut. Jika hasil

Lebih terperinci

E-learning matematika, GRATIS

E-learning matematika, GRATIS 1 Penusun Editor : Rifan Nadhifi, S.Si. ; Imam Indra Gunawan, S.Si. : Drs. Keto Susanto, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Indra Gunawan, S.Si. A. Sistem Pertidaksamaan Linear Pertidaksamaan linear

Lebih terperinci

Bab. Program Linear. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id)

Bab. Program Linear. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id) Bab II Program Linear 51 Tujuan Pembelajaran Setelah mempelajari bab ini, diharapkan kalian dapat 1. menjelaskan sistem pertidaksamaan linear dua variabel dan penyelesaiannya; 2. menentukan fungsi tujuan

Lebih terperinci

1. Fungsi Objektif z = ax + by

1. Fungsi Objektif z = ax + by Nilai Optimum Suatu Fungsi Objektif, Program Linear, Fungsi Objektif, Cara Menentukan, Contoh Soal, Rumus, Pembahasan, Metode Uji Titik Sudut, Metode Garis Selidik, Matematika Nilai Optimum Suatu Fungsi

Lebih terperinci

a. 16 b. 24 c. 30 d. 36 e Nilai maksimum fungsi sasaran Z = 6x + 8y dari system pertidaksamaan 4x + 2y 60, 2x

a. 16 b. 24 c. 30 d. 36 e Nilai maksimum fungsi sasaran Z = 6x + 8y dari system pertidaksamaan 4x + 2y 60, 2x 1. Luas daerah parkir 1.760 m 2. Luas rata rata untuk mobil kecil 4 m 2 dan mobil besar 20 m 2. Daya tampung maksimum hanya 200 kendaraan, biaya parkir mobil kecil Rp. 1.000,00/jam dan mobil besar Rp.

Lebih terperinci

PROGRAM LINIER. Sumber: Art & Gallery

PROGRAM LINIER. Sumber: Art & Gallery 4 PROGRAM LINIER Sumber: Art & Gallery 114 Matematika X SMK Kelompok: Penjualan dan Akuntansi Standar kompetensi program linier terdiri atas empat kompetensi dasar. Dalam penyajian pada buku ini setiap

Lebih terperinci

Explore. Your Potency From Now. Modul Belajar Kompetensi Program Linear Oleh Syaiful Hamzah Nasution. Pengertian Program Linear

Explore. Your Potency From Now. Modul Belajar Kompetensi Program Linear Oleh Syaiful Hamzah Nasution. Pengertian Program Linear Modul Belajar Kompetensi Program Linear Oleh Syaiful Hamzah Nasution Explore. Your Potency From Now. Pengertian Program Linear Fungsi Objektif dan Kendala pada Program Linear Model Matematika dan Nilai

Lebih terperinci

h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m

h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m 1. Dalam permasalahan program linear dikenal dua istilah, yaitu : a. Fungsi Kendala/ pembatas, berupa pertidaksamaan pertidaksamaan linear ax by 0; ax by p; ax by 0; ax by 0 b. Fungsi/ bentuk objektif,

Lebih terperinci

Program Linear - IPA

Program Linear - IPA Program Linear - IPA Tahun 2005 1. Tanah seluas 10.000 m² akan dibangun rumah tipe A dan tipe B. Untuk rumah tipe A diperlukan 100 m² dan tipe B diperlukan 75 m². Jumlah rumah yang dibangun paling banyak

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN DAN KEBUDAYAAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp. / Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN DAN KEBUDAYAAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp. / Fax Sidayu Gresik PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN DAN KEBUDAYAAN SMA NEGERI SIDAYU Jl. Pahlawan No.6 Telp. / Fa. -99 Sidayu Gresik ULANGAN TENGAH SEMESTER GASAL TAHUN PELAJARAN 8/9 L E M B A R S O A L Mata

Lebih terperinci

MODUL 1 : PROGRAM LINEAR

MODUL 1 : PROGRAM LINEAR MODUL 1 : PROGRAM LINEAR E. Kegiatan Belajar 2 PENERAPAN PROGRAM LINEAR 1. K A. Nilai Optimum Fungsi Obyektif Fungsi objektif merupakan fungsi yang menjelaskan tujuan (meminimumkan atau memaksimumkan)

Lebih terperinci

B. Fungsi Sasaran dan Kendala dalam Program Linier

B. Fungsi Sasaran dan Kendala dalam Program Linier Peta Konsep Jurnal PetaKonsep Daftar Hadir MateriB SoalLatihan2 Materi Umum PROGRAM LINIER Kelas XI, Semester 3 B. Fungsi Sasaran dan Kendala dalam Program Linier Sistem Pertidaksamaan Linier Fungsi Sasaran

Lebih terperinci

Program Linear B A B. A. Sistem Pertidaksamaan Linear Dua Variabel. B. Model Matematika. C. Nilai Optimum Suatu Fungsi Objektif

Program Linear B A B. A. Sistem Pertidaksamaan Linear Dua Variabel. B. Model Matematika. C. Nilai Optimum Suatu Fungsi Objektif Program Linear Program Linear B A B 2 A. Sistem Pertidaksamaan Linear Dua Variabel B. Model Matematika C. Nilai Optimum Suatu Fungsi Objektif Sumber: http://blontankpoer.blogsome.com Dalam dunia usaha,

Lebih terperinci

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3 Pilihlah jawaban yang paling tepat!. Ordo dari matriks A = 7 A. x B. x C. x D. x x adalah.. Berikut ini yang termasuk Matriks identitas adalah... A. 7 B. 7 C. D. a b. Diketahui A = dan B = b A. B. C. D..

Lebih terperinci

A. PENGERTIAN PROGRAM LINEAR

A. PENGERTIAN PROGRAM LINEAR Pertemuan 1 Standar Kompetensi : Menyelesaikan masalah program linier Kompetensi dasar : Membuat grafik himpunan penyelesaian sistem pertidaksamaan linier Indikator : Pertidaksamaan linier ditentukan daerah

Lebih terperinci

PROGRAM LINEAR. Bukti : ax + by = a.b. Pengertian Program Linear : Gunakan persamaan 2 di atas :

PROGRAM LINEAR. Bukti : ax + by = a.b. Pengertian Program Linear : Gunakan persamaan 2 di atas : PROGRAM LINEAR Bukti : + = a + b = a.b b a Pengertian Program Linear : Program Linear adalah bagian ilmu matematika terapan ang digunakan untuk memecahkan masalah optimasi (pemaksimalan atau peminimalan

Lebih terperinci

BAB XVII. PROGRAM LINEAR

BAB XVII. PROGRAM LINEAR BAB XVII. PROGRAM LINEAR Bukti : + a + b a.b b a Pengertian Program Linear : Program Linear adalah bagian ilmu matematika terapan ang digunakan untuk memecahkan masalah optimasi (pemaksimalan atau peminimalan

Lebih terperinci

Berdasarkan definisi di atas, maka pertidaksamaan linear dua variabel dapat dinyatakan dalam bentuk:

Berdasarkan definisi di atas, maka pertidaksamaan linear dua variabel dapat dinyatakan dalam bentuk: BAHAN AJAR A. Kompetensi Inti KI 1 : Menghayati dan mengamalkan ajaran agama yang dianutnya. KI 2: Menghayati dan mengamalkan perilaku jujur, disiplin, tanggungjawab, peduli (gotong royong, kerjasama,

Lebih terperinci

PROGRAM LINIER. B. Grafik Himpunan Penyelesaian Pertidaksamaan Linier Dua Variabel

PROGRAM LINIER. B. Grafik Himpunan Penyelesaian Pertidaksamaan Linier Dua Variabel PROGRAM LINIER A. Pengertian Program Linier Program linier adalah suatu cara ang dapat digunakan untuk memecahkan permasalahan ang berhubungan dengan optimasi linier (nilai maksimum atau nilai minimum).

Lebih terperinci

PROGRAM LINIER. Pembahasan: Jika: banyak sepatu jenis I = x banyak sepatu jenis II = y

PROGRAM LINIER. Pembahasan: Jika: banyak sepatu jenis I = x banyak sepatu jenis II = y PROGRAM LINIER A. Pengertian Program linier adalah suatu cara ang dapat digunakan untuk memecahkan permasalahan ang berhubungan dengan optimalisi linier (nilai maksimal atau nilai minimal). B. Model Matematika

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kelas Matematika Persiapan UTS Doc. Name: KARMATWJB0UTS Version: 04-0 halaman 0. Nilai maksimum dari 0 + 8 untuk dan y yang memenuhi + y 0, + y 48, 0 0 dan 0 y 48 adalah. (A) 408 (B) 456 (C)

Lebih terperinci

ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN MATEMATIKA XII BAHASA

ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN MATEMATIKA XII BAHASA ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN 29-21 MATEMATIKA XII BAHASA Hari / tanggal :... Desember 29 Waktu : 12 menit Pilih salah satu jawaban ang benar dengan memberi tanda silang

Lebih terperinci

PROGRAM LINEAR. Dasar Matematis

PROGRAM LINEAR. Dasar Matematis PROGRAM LINEAR Dasar Matematis PROGRAM LINIER adalah suatu teknik optimalisasi dimana variabel-variabelnya linier. Metode ini dipakai pada saat kita dihadapkan pada beberapa pilihan dengan batasan-batasan

Lebih terperinci

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0 BIDANG STUDI : MATEMATIKA 1. Harga 3 kg pepaya dan 5 kg jeruk adalah Rp 13.000, sedangkan harga 4 kg papaya dan 3 kg jeruk adalah Rp 10.000, maka harga 2 kg papaya dan 4 kg jeruk adalah. A. Rp 10.000 B.

Lebih terperinci

PROGRAM LINEAR 2 SMA SANTA ANGELA. Contoh Soal :

PROGRAM LINEAR 2 SMA SANTA ANGELA. Contoh Soal : 1 SMA SANTA ANGELA PROGRAM LINEAR Standar kompetensi : Menyelesaikan masalah program linear Kompetensi Dasar : Menyelesaikan sistem pertidaksamaan linear dua variabel. Menyelesaikan masalah program linear.

Lebih terperinci

Rencana Pelaksanaan Pembelajaran

Rencana Pelaksanaan Pembelajaran Rencana Pelaksanaan Pembelajaran I. Identitas Nama Sekolah : SMK N 1 Bonjol Mata Pelajaran : Matematika Kelas / Semester : x /2 Standar Kompetensi : 5. Memecahkan masalah program linear Kompetensi Dasar

Lebih terperinci

MAT. 04. Geometri Dimensi Dua

MAT. 04. Geometri Dimensi Dua MAT. 04. Geometri Dimensi Dua i Kode MAT.14 Program Linear BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN

Lebih terperinci

BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA

BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA Masalah 1.1 Sekelompok tani transmigran mendapatkan 10 hektar tanah yang dapat ditanami padi, jagung, dan palawija lain. Karena keterbatasan sumber daya petani

Lebih terperinci

Siswa dapat menggambar grafik himpunan penyelesaikan sistim pertidaksamaan linier dengan 2 varabel

Siswa dapat menggambar grafik himpunan penyelesaikan sistim pertidaksamaan linier dengan 2 varabel RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah :... Mata Pelajaran : Matematika Kelas/Semester : XI/3 Pertemuan ke : 1,2, dan 3 Alokasi Waktu : 6 x 45 menit Standar Kompetensi : Menyelesaikan program

Lebih terperinci

Soal No. 2 Daerah yang diarsir pada gambar ialah himpunan penyelesaian suatu sistem pertidaksamaan linear.

Soal No. 2 Daerah yang diarsir pada gambar ialah himpunan penyelesaian suatu sistem pertidaksamaan linear. Soal No. 1 Luas daerah parkir 1.760 m 2. Luas rata-rata untuk mobil kecil 4 m 2 dan mobil besar 20 m 2. Daya tampung maksimum hanya 200 kendaraan. Biaya parkir mobil kecil Rp 1.000,00/jam dan mobil besar

Lebih terperinci

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPS TAHUN PELAJARAN 2011/2012

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPS TAHUN PELAJARAN 2011/2012 SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPS TAHUN PELAJARAN 2011/2012 1. Ingkaran pernyataan: Petani panen beras atau harga beras murah. A. Petani panen beras dan harga beras mahal B. Petani panen

Lebih terperinci

CONTOH SOAL UAN PROGRAM LINIER

CONTOH SOAL UAN PROGRAM LINIER 1. Luas daerah parkir 1.760 m 2. Luas rata rata untuk mobil kecil 4 m 2 dan mobil besar 20 m 2. Daya tampung maksimum hanya 200 kendaraan, biaya parkir mobil kecil Rp 1.000,00/jam dan mobil besar Rp 2.000,00/jam.

Lebih terperinci

Tablet I x Tablet II y Batasan Vitamin A 5 10 Minimal 20 Vitamin B 3 1 Minimal 5 Harga/Biji 4 8

Tablet I x Tablet II y Batasan Vitamin A 5 10 Minimal 20 Vitamin B 3 1 Minimal 5 Harga/Biji 4 8 2. Program Linier a. Defenisi Program linier adalah metode untuk mendapatkan penyelesaian optimum dari suatu fungsi sasaran yang mengandung kendala atau batasan yang dapat dibuat dalam bentuk sistem pertidaksamaan

Lebih terperinci

Antiremed Kelas 12 Matematika

Antiremed Kelas 12 Matematika Antiremed Kelas Matematika Persiapan UAS Doc. Name: ARMAT0UAS Doc. Version : 06-08 halaman 0. Jika f(x)= (x x 5)dx dan f()=0, maka f(x) =... x + x - 5x - 6 4x - x + 5x - 4 5 5 x x x x - x + 5x - 5 x +

Lebih terperinci

Antiremed Kelas 12 Matematika

Antiremed Kelas 12 Matematika Antiremed Kelas Matematika Persiapan UTS Doc. Name: ARMAT0UTS Doc. Version : 04-0 halaman 0. Integral substitusi dasar serie A (A) x 4 dx 5 cos x dx = 0. (A) 5x dx sin x d x 0. 7 x x x dx 04. dx 5x 05.

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.9 Sukoharjo Telp. 0-590 55 TR OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran : MATEMATIKA

Lebih terperinci

PEDOMAN WAWANCARA DIALOG AWAL

PEDOMAN WAWANCARA DIALOG AWAL 51 Lampiran 1 PEDOMAN WAWANCARA DIALOG AWAL PENINGKATAN PEMAHAMAN KONSEP MATEMATIKA DENGAN PENERAPAN PEMBELAJARAN MATEMATIKA BERBASIS KONSTRUKTIVISME (PTK Pada Siswa Kelas X Jurusan Teknik Otomotif SMK

Lebih terperinci

MATEMATIKA. Sesi PROGRAM LINEAR CONTOH SOAL A. BENTUK UMUM PERTIDAKSAMAAN LINEAR B. MENGGAMBAR DAERAH PERTIDAKSAMAAN. ax + by c

MATEMATIKA. Sesi PROGRAM LINEAR CONTOH SOAL A. BENTUK UMUM PERTIDAKSAMAAN LINEAR B. MENGGAMBAR DAERAH PERTIDAKSAMAAN. ax + by c MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 07 Sesi N PROGRAM LINEAR A. BENTUK UMUM PERTIDAKSAMAAN LINEAR a + b c CONTOH SOAL 1. Ubahlah 4-4 kedalam bentuk umumna 4 - -4 B. MENGGAMBAR DAERAH PERTIDAKSAMAAN

Lebih terperinci

PROGRAM LINIER. SOAL LATIHAN 01 A. Sistem Pertidaksamaan Linier Dua Variabel

PROGRAM LINIER. SOAL LATIHAN 01 A. Sistem Pertidaksamaan Linier Dua Variabel PROGRAM LINIER SOAL LATIHAN 01 A. Sistem Pertidaksamaan Linier Dua Variabel 01. Lukislah daerah penyelesaian sistem pertidaksamaan : 3x + y 6 3x + 5y 15 02. Lukislah daerah penyelesaian sistem pertidaksamaan

Lebih terperinci

SOLUSI SOAL-SOAL LATIHAN NASKAH F

SOLUSI SOAL-SOAL LATIHAN NASKAH F URAIAN SLUSI SAL-SAL LATIHAN NASKAH F 1. Tentukan sistem pertidaksamaan linear dua variabel (SPtLDV) dari daerah penyelesaian (DP) berikut ini., 5,,0 dan 0, 2 2xy 8 PtLDV: x2y, dan 5, y x 5 y x x y 9 PtLDV:

Lebih terperinci

KELAS XII. IPA SEMESTER I

KELAS XII. IPA SEMESTER I MODUL MATEMATIKA PROGRAM LINEAR y 12.1.2 800 500 400 500 2x + y = 800 KELAS XII. IPA SEMESTER I Oleh : Drs. Pundjul Prijono ( http://vidyagata.wordpress.com ) SMA NEGERI 6 Jalan Mayjen Sungkono 58 Malang

Lebih terperinci

BAB III. PROGRAM LINEAR

BAB III. PROGRAM LINEAR BAB III. PROGRAM LINEAR Salah satu pokok bahasan dalam mata pelajaran matematika kelas III IPA semester gasal, menurut Kurikulum 2004 (KBK) SMA / MA, memuat : Kompetensi dasar : Siswa menggunakan dan menghargai

Lebih terperinci

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER X IBROHIM AJI KUSUMA Pendekatan Sainti k Buku Siswa Nama Kelas No. Absen Matematika Lembar Kerja Siswa Program Linier Kurikulum

Lebih terperinci

Wahana. Wahana UNTUK SEKOLAH MENENGAH ATAS DAN MADRASAH ALIYAH KELAS XII PROGRAM ILMU BAHASA

Wahana. Wahana UNTUK SEKOLAH MENENGAH ATAS DAN MADRASAH ALIYAH KELAS XII PROGRAM ILMU BAHASA Budi Usodo Sutrima Sutrima Budi Usodo Wahana MATEMATIKA Wahana UNTUK SEKOLAH MENENGAH ATAS DAN MADRASAH ALIYAH KELAS XII PROGRAM ILMU BAHASA MATEMATIKA 3 UNTUK SEKOLAH MENENGAH ATAS DAN MADRASAH ALIYAH

Lebih terperinci

UN SMA IPS 2012 Matematika

UN SMA IPS 2012 Matematika UN SMA IPS 01 Matematika Kode Soal A Doc. Name: UNSMAIPS01MATA Doc. Version : 01-1 halaman 1 01. Ingkaran pernyataan Pada hari Senin siswa SMAN memakai sepatu hitam dan atribut lengkap adalah. Pada hari

Lebih terperinci

SOAL-SOAL LATIHAN UN A35

SOAL-SOAL LATIHAN UN A35 SAL-SAL LATIHAN 1. UN A5 01 Penjahit Hidah Pantes akan membuat pakaian wanita dan pria. Untuk membuat pakaian wanita diperlukan bahan bergaris m dan bahan polos 1 m. Untuk membuat pakaian pria diperlukan

Lebih terperinci

KELAS XII. IPA SEMESTER I

KELAS XII. IPA SEMESTER I MODUL MATEMATIKA PROGRAM LINEAR y 12.1-2 800 500 400 500 2x + y = 800 KELAS XII. IPA SEMESTER I Oleh : Drs. Pundjul Prijono ( http://vidyagata.wordpres.com ) 1 M o d u l P r o g r a m L i n e a r Standar

Lebih terperinci

Mr.alex Hu Method Halaman 1

Mr.alex Hu Method Halaman 1 . EBTANAS 00/P-/No. Nilai minimum fungsi objektif +y yang memenuhi pertidaaksamaan +y, +y 8, +y 8, 0 adalah. A. 8 B. 9 C. D. 8 E. Objektif Z = AX +By Misal berat ke y B > A) Maka Z min = AX Z maks = By

Lebih terperinci

07/11/2009. By. M. Isral, S.Pd Page 1

07/11/2009. By. M. Isral, S.Pd Page 1 SISTEM PERSAMAAN LINEAR DUA VARIABEL (SPL2V) Standar Kompetensi 2. Memahami sistem persamaan linear dua variabel dan menggunakannya dalam pemecahan masalah. Kompetensi Dasar 2.1 Menyelesaikan sistem persamaan

Lebih terperinci

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER X IBROHIM AJI KUSUMA Pendekatan Sainti k Buku Guru Nama Kelas No. Absen Matematika Lembar Kerja Siswa Program Linier Kurikulum

Lebih terperinci

UJIAN NASIONAL TAHUN 2009/2010 MATEMATIKA (E-4.2) SMK

UJIAN NASIONAL TAHUN 2009/2010 MATEMATIKA (E-4.2) SMK UJIAN NASIONAL TAHUN 009/00 MATEMATIKA (E-.) SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran (P UTAMA). Konveksi milik Bu Nina mengerjakan

Lebih terperinci

PEMBAHASAN SOAL UN MATEMATIKA SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran

PEMBAHASAN SOAL UN MATEMATIKA SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran PEMBAHASAN SOAL UN MATEMATIKA SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran TAHUN PELAJARAN 9/ MATEMATIKA PEMBAHAS: UJIAN NASIONAL

Lebih terperinci

IPS. Untuk Sekolah Menengah Atas. þ Program Tahunan (Prota) þ Program Semester (Promes) þ Silabus. þ Rencana Pelaksanaan Pembelajaran (RPP)

IPS. Untuk Sekolah Menengah Atas. þ Program Tahunan (Prota) þ Program Semester (Promes) þ Silabus. þ Rencana Pelaksanaan Pembelajaran (RPP) PEMBELAJARAN STANDAR ISI 2006 þ Program Tahunan (Prota) þ Program Semester (Promes) þ Silabus þ Rencana Pelaksanaan Pembelajaran (RP MATEMATIKA Untuk Menengah Atas 12 IPS CV. SINDHUNATA Matematika 12 A

Lebih terperinci

Sistem Bilangan 06. UN-SMK-BIS adalah... Jika a = 4, b = 5 maka nilai dari

Sistem Bilangan 06. UN-SMK-BIS adalah... Jika a = 4, b = 5 maka nilai dari Sistem Bilangan 0. UN-SMK-PERT-0-0 Bentuk sederhana dari ( ) =... 7 8 9 8 0. UN-SMK-TEK-0-0 Hasil perkalian dari (a) - (a) =... a a a a a 0. UN-SMK-PERT-0-0 Bentuk sederhana dari 0. UN-SMK-TEK-0-0 6 6.

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Mata Pelajaran : Matematika Kelas : X / 2 Pertemuan ke - : ---- Alokasi Waktu : 10 jam @ 45 menit Standar Kompetensi : Menelesaikan masalah program linier. Kompetensi Dasar

Lebih terperinci

UN SMA IPS 2009 Matematika

UN SMA IPS 2009 Matematika UN SMA IPS 009 Matematika Kode Soal P88 Doc. Name: UNSMAIPS009MATP88 Doc. Version : 011-06 halaman 1 01. Diberikan beberapa pernyataan: Premis 1: Jika Santi sakit maka ia pergi ke dokter Premis : Jika

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMA Negeri 2 Lahat Mata Pelajaran : Matematika Kelas / Program : XII / IPA Semester : Ganjil

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMA Negeri 2 Lahat Mata Pelajaran : Matematika Kelas / Program : XII / IPA Semester : Ganjil RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMA Negeri 2 Lahat Mata Pelajaran : Matematika Kelas / Program : XII / IPA Semester : Ganjil Standar Kompetensi : 2. Menyelesaikan masalah Kompetensi

Lebih terperinci

SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS

SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS UJI KOMPETENSI 1.1 1. PT Lasin adalah suatu pengembang perumahan di daerah pemukiman baru. PT tersebut memiliki tanah seluas 12.000 meter persegi berencana

Lebih terperinci

ISBN : (No. jil lengkap) ISBN : Harga Eceran Tertinggi: Rp10.021,-

ISBN : (No. jil lengkap) ISBN : Harga Eceran Tertinggi: Rp10.021,- ISBN : 978-979-068-858- (No. jil lengkap) ISBN : 978-979-068-863-6 PUSAT PERBUKUAN Departemen Pendidikan Nasional Harga Eceran Tertinggi: Rp0.0,- i Khazanah Matematika 3 untuk Kelas XII SMA dan MA Program

Lebih terperinci

SOAL DAN JAWABAN TENTANG NILAI MUTLAK. Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini.

SOAL DAN JAWABAN TENTANG NILAI MUTLAK. Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini. SOAL DAN JAWABAN TENTANG NILAI MUTLAK Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini. Jawaban: Bentuk-Bentuk persamaan nilai mutlak di atas dapat diselesaikan sebagai berikut.

Lebih terperinci

Model soal Ujian Matematika kelas XII AP- UPW - TB. Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e!

Model soal Ujian Matematika kelas XII AP- UPW - TB. Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e! Model soal Ujian Matematika kelas XII AP- UPW - TB Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e!. Diketahui sistem pertidaksamaan x + 2y 0 ; 3x + 2y

Lebih terperinci

PEMERINTAH KABUPATEN KEDIRI DINAS PENDIDIKAN SMA NEGERI 1 KANDANGAN JL. Hayam Wuruk No. 96 telp Kandangan

PEMERINTAH KABUPATEN KEDIRI DINAS PENDIDIKAN SMA NEGERI 1 KANDANGAN JL. Hayam Wuruk No. 96 telp Kandangan Pilihlah satu jawaban yang tepat.. (x x 4 ) dx.. ULANGAN AKHIR SEMESTER TAHUN PELAJARAN 007/008 Mata Pelajaran : Matematika Kelas / Program : XII / Ilmu Alam Hari, Tanggal : Waktu : 90 menit ( ) ` a. x

Lebih terperinci

PREDIKSI UN SMA IPS MATEMATIKA 2012

PREDIKSI UN SMA IPS MATEMATIKA 2012 Prediksi Matematika UN SMA IPS 01 PREDIKSI UN SMA IPS MATEMATIKA 01 1. Diketahui dua pernyataan p dan q p : bernilai besar q : bernilai salah Pernyataan majemuk di bawah ini bernilai benar, kecuali. A.

Lebih terperinci

SOAL-SOAL LATIHAN PROGRAM LINEAR UJIAN NASIONAL

SOAL-SOAL LATIHAN PROGRAM LINEAR UJIAN NASIONAL SAL-SAL LATIHAN PRGRAM LINEAR UJIAN NASINAL Peserta didik memiliki kemampuan memahami konsep pada topik program linear. Peserta didik memilki kemampuan mengaplikan konsep kalkulus dalam masalah kontekstual

Lebih terperinci

Model Optimisasi dan Pemrograman Linear

Model Optimisasi dan Pemrograman Linear Modul Model Optimisasi dan Pemrograman Linear Prof. Dr. Djati Kerami Dra. Denny Riama Silaban, M.Kom. S PENDAHULUAN ebelum membuat rancangan penyelesaian masalah dalam bentuk riset operasional, kita harus

Lebih terperinci

muhammadamien.wordpress.com

muhammadamien.wordpress.com 1. 2. Gradien garis singgung di setiap titik dapat dinyatakan sebagai 34 maka nilai minimumnya 1 3 5 7 9. Jika nilai maksimum 3. Jika maka 4. 5. 1 3 4 5 6 1 6. 7. Luas daerah yang dibatasi oleh parabola

Lebih terperinci

adalah. 1. Bentuk sederhana dari A. 5 B. 5 C. 25 D. 20 E Bentuk sederhana dari ToT MATEMATIKA PARIWISATA

adalah. 1. Bentuk sederhana dari A. 5 B. 5 C. 25 D. 20 E Bentuk sederhana dari ToT MATEMATIKA PARIWISATA 1. Bentuk sederhana dari 10 a c b A. 0 a b 2 a b 2 c c 6 2 adalah. 20 a c b B. 10 a c b C. 2 0 0 20 a b c D. 20 10 a b c E. 0 0 2 2. Bentuk sederhana dari 6 12 2 27 7 adalah... A. 12 B. C. 2 D. 8 E.. Bentuk

Lebih terperinci

Soal Pilihan Ganda Pilihlah satu jawaban yang benar dan tulis caranya

Soal Pilihan Ganda Pilihlah satu jawaban yang benar dan tulis caranya PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMK NEGERI 5 KOTA MALANG (Internatinal Benchmarking Schl) Jalan Ikan Piranha Atas, Malang 654 Telp. (04) 47895, Fax : (04) 477087 E-mail : smkn5mlg@yah.cm http://www.smkn5malang.sch.id

Lebih terperinci

BAB I PERTIDAKSAMAAN RASIONAL, IRASIONAL & MUTLAK

BAB I PERTIDAKSAMAAN RASIONAL, IRASIONAL & MUTLAK Matematika Peminatan SMA kelas X Kurikulum 2013 BAB I PERTIDAKSAMAAN RASIONAL, IRASIONAL & MUTLAK I. Pertidaksamaan Rasional (Bentuk Pecahan) A. Pengertian Secara umum, terdapat empat macam bentuk umum

Lebih terperinci

BAB II PROGRAM LINEAR

BAB II PROGRAM LINEAR BAB II PROGRAM LINEAR A RINGKASAN MATERI. Pengertian Program linear adalah suatu permasalahan dalam matematika dengan tujuan untuk mengoptimalkan fungsi obektif ang berbentuk linear dengan kendala/batasan

Lebih terperinci

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN I TU URI HANDAY AN TW DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN 2009 Program Linear Matriks GY A Y O M AT E M A T AK A R Shadiq, M.App.Sc. DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL

Lebih terperinci

[RUMUS CEPAT MATEMATIKA]

[RUMUS CEPAT MATEMATIKA] htt://meetabied.wordress.com SMAN 1 Bone-Bone, Luwu Utara, Sul-Sel Sukses seringkali datang ada mereka yang berani bertindak, dan jarang menghamiri enakut yang tidak berani mengambil konsekuensi (Jawaharlal

Lebih terperinci

ISTIYANTO.COM PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPS. Kemampuan yang diuji UN 2009 = UN Materi. Soal UN 2009 Prediksi UN 2010

ISTIYANTO.COM PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPS. Kemampuan yang diuji UN 2009 = UN Materi. Soal UN 2009 Prediksi UN 2010 PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPS Materi Logika Matematika Kemampuan yang diuji UN 009 = UN 00 Menentukan nilai kebenaran suatu pernyataan majemuk Menentukan ingkaran suatu pernyataan Perhatikan

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB VII PROGRAM LINEAR

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB VII PROGRAM LINEAR SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB VII PROGRAM LINEAR Dr. Djadir, M.Pd. Dr. Ilham Minggi, M.Pd. Ja faruddin, S.Pd.,M.Pd. Ahmad Zaki, S.Si, M.Si. Sahlan Sidjara,

Lebih terperinci

MATEMATIKA. Matematika kelas XII Bahasa Untuk SMA & MA Pangarso Yuliatmoko Dewi Retno Sari S. Untuk Sekolah Menengah Atas & Madrasah Aliyah

MATEMATIKA. Matematika kelas XII Bahasa Untuk SMA & MA Pangarso Yuliatmoko Dewi Retno Sari S. Untuk Sekolah Menengah Atas & Madrasah Aliyah Pangarso Yuliatmoko - Dewi Retno Sari S Matematika kelas XII Bahasa Untuk SMA & MA Pangarso Yuliatmoko Dewi Retno Sari S MATEMATIKA Untuk Sekolah Menengah Atas & Madrasah Aliyah XII Bahasa PUSAT PERBUKUAN

Lebih terperinci

UN SMK PSP 2015 Matematika

UN SMK PSP 2015 Matematika UN SMK PSP 201 Matematika Soal Doc. Name: UNSMKPSP201MAT999 Doc. Version : 2016-0 halaman 1 01. Sebuah mobil menghabiskan 8 liter bensin untuk menempuh jarak 20 km, apabila mobil tersebut menghabiskan

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN NO: 1

RENCANA PELAKSANAAN PEMBELAJARAN NO: 1 RENCANA PELAKSANAAN PEMBELAJARAN NO: 1 Materi Pokok : Integral Pertemuan Ke- : 1 dan Alokasi Waktu : x pertemuan (4 x 45 menit) Standar Kompetensi : Menggunakan konsep integral dalam pemecahan masalah

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPS

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPS PEMBAHASAN UN SMA TAHUN PELAJARAN 009/010 MATEMATIKA PROGRAM STUDI IPS PEMBAHAS : 1. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. EDITOR : Dra. Puji Iryanti, M.Sc.

Lebih terperinci

IPA. Untuk Sekolah Menengah Atas. þ Program Tahunan (Prota) þ Program Semester (Promes) þ Silabus. þ Rencana Pelaksanaan Pembelajaran (RPP)

IPA. Untuk Sekolah Menengah Atas. þ Program Tahunan (Prota) þ Program Semester (Promes) þ Silabus. þ Rencana Pelaksanaan Pembelajaran (RPP) PEMBELAJARAN STANDAR ISI 2006 þ Program Tahunan (Prota) þ Program Semester (Promes) þ Silabus þ Rencana Pelaksanaan Pembelajaran (RP MATEMATIKA Untuk Menengah Atas 12 IPA CV. SINDHUNATA 12 A IPA (Standar

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah :... Mata Pelajaran : Matematika Kelas / Program : XII Semester : Ganjil

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah :... Mata Pelajaran : Matematika Kelas / Program : XII Semester : Ganjil RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah :... Mata Pelajaran : Matematika Kelas / Program : XII Semester : Ganjil Standar Kompetensi : 1. Menggunakan konsep integral dalam pemecahan masalah.

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.19 Sukoharjo Telp. 01-930 1 TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 01/013 Mata Pelajaran

Lebih terperinci

BAB 2. PROGRAM LINEAR

BAB 2. PROGRAM LINEAR BAB 2. PROGRAM LINEAR 2.1. Pengertian Program Linear Pemrograman Linier disingkat PL merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan

Lebih terperinci

Model Program Linear dan Daerah Penyelesaian Masalah

Model Program Linear dan Daerah Penyelesaian Masalah MATA4230/MODUL 1 1.1 Modul 1 Model Program Linear dan Daerah Penyelesaian Masalah D PENDAHULUAN Prof. Dr. Djati Kerami i dalam modul pertama ini Anda akan mempelajari penurunan model program linear dari

Lebih terperinci

7. Bentuk sederhana dari. adalah.. 4. Jika log 2 = a dan log 3 = b, maka nilai log 18 = a. a + 2b b. 2a + b c. a + b d. a 2 + b e.

7. Bentuk sederhana dari. adalah.. 4. Jika log 2 = a dan log 3 = b, maka nilai log 18 = a. a + 2b b. 2a + b c. a + b d. a 2 + b e. 1. Suatu pekerjaan jika dikerjakan 15 orang dapat diselesaikan dalam waktu 30 hari. Apabila pekerjaan tersebut ingin diselesaikan dalam waktu 25 hari, jumlah pekerja yang harus ditambah a. 3 orang b. 5

Lebih terperinci

Matematika Ebtanas IPS Tahun 1997

Matematika Ebtanas IPS Tahun 1997 Matematika Ebtanas IPS Tahun 99 EBTANAS-IPS-9-0 Bentuk sederhana dari 86 6 + 8 6 9 6 0 6 6 6 EBTANAS-IPS-9-0 Bentuk sederhana dari 8 + 6 + + 6 6 + + EBTANAS-IPS-9-0 x+ Nilai x yang memenuhi persamaan =

Lebih terperinci