Program Linear B A B. A. Sistem Pertidaksamaan Linear Dua Variabel. B. Model Matematika. C. Nilai Optimum Suatu Fungsi Objektif

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Program Linear B A B. A. Sistem Pertidaksamaan Linear Dua Variabel. B. Model Matematika. C. Nilai Optimum Suatu Fungsi Objektif"

Transkripsi

1 Program Linear Program Linear B A B 2 A. Sistem Pertidaksamaan Linear Dua Variabel B. Model Matematika C. Nilai Optimum Suatu Fungsi Objektif Sumber: Dalam dunia usaha, seorang pengusaha pada umumna ingin memperoleh keuntungan sebanak-banakna dari bidang usaha ang digelutina. Untuk itu, pengusaha tersebut membuat perencanaan untuk mengoptimalisasi sumber daa ang tersedia, seperti bahan baku, transportasi, sumber daa manusia, dan lain-lain. Upaa optimalisasi ini dapat dimodelkan dengan program linear. Bab 2 Program Linear 35

2 A. Sistem Pertidaksamaan Linear Dua Variabel Suatu garis dalam bidang koordinat dapat dinatakan dengan persamaan ang berbentuk: a 1 a 2 b Persamaan semacam ini dinamakan persamaan linear dalam variabel dan (dua variabel). Secara umum, dapat didefinisikan sebagai persamaan linear dengan n variabel 1, 2,... n dalam bentuk berikut. a 1 1 a a n n b dengan a 1, a 2,..., a n, b adalah konstanta-konstanta real Jika melibatkan lebih dari satu persamaan, maka disebut dengan sistem persamaan linear. Dapat dituliskan sebagai berikut. a 11 1 a a 1n n b 1 a 21 1 a a 2n n b 2 a n1 1 a n a mn n b n dengan 1, 2,..., n adalah variabel a 11, a 12,..., a 1n, a 21, a 22,..., a 2n,..., a mn adalah konstanta real. Untuk saat ini, pembahasan dibatasi menjadi dua variabel saja. Untuk pertidaksamaan linear, tanda diganti dengan,,,. Sebagai contoh, untuk pertidaksamaan linear dua variabel dijelaskan sebagai berikut. Misalna, kalian menggambar garis 2 dapat digambarkan sebagai berikut O Gambar 2.1 Garis 2 Garis 2 membagi bidang koordinat menjadi dua daerah, aitu daerah 2 dan daerah 2. Sekarang, substitusi titik sembarang, misalna titik O(0, 0) ke persamaan garis tersebut. Didapat, Ini berarti, titik O(0, 0) berada pada daerah 2. Daerah 2 ini diarsir seperti pada gambar berikut Matematika Aplikasi SMA dan MA Kelas XII Program Studi Ilmu Alam

3 O Gambar 2.2 Daerah penelesaian 2 Jika daerah tersebut dibatasi untuk nilai-nilai, 0, maka diperoleh gambar seperti berikut O HP Gambar 2.3 Himpunan penelesaian sistem pertidaksamaan 2, 0, dan 0 Daerah ang diarsir berupa daerah segitiga. Tampak bahwa daerah ini merupakan himpunan penelesaian sistem pertidaksamaan linear 2, 0, dan 0. Untuk selanjutna, himpunan penelesaian sistem pertidaksamaan linear ini disebut daerah penelesaian. Bab 2 Program Linear 37

4 Contoh Tentukanlah daerah penelesaian dari pertidaksamaan dengan 3, 3 3 0, dan 0. Jawab: Daerah ang diarsir berikut merupakan daerah penelesaian dari sistem pertidaksamaan linear 3, 3 3 0, dan O HP daerah kanan ASAH KEMAMPUAN Waktu : 60 menit 1. Gambarlah daerah penelesaian dari sistem pertidaksamaan linear berikut untuk, R. a. 5 10, 5 b. 2 3, 0 4 c. 0 2, 2 2 d , 0 e. 3, 1, 3 f , 6 12, 0, 4 g , , 0, 0 h , 2 6, , 8, 4, 0 2. Gambarlah daerah penelesaian dari sistem pertidaksamaan linear berikut untuk, R , Tentukanlah luas daerah penelesaian tersebut. Kesimpulan apa ang diperoleh? Bobot soal: 80 Bobot soal: Matematika Aplikasi SMA dan MA Kelas XII Program Studi Ilmu Alam

5 B. Model Matematika Sistem pertidaksamaan linear ang telah dijelaskan sebelumna dapat diterapkan pada permasalahan sehari-hari dengan memodelkan permasalahan tersebut ke dalam model matematika. Sebagai ilustrasi perhatikan contoh berikut. PT. Samba Lababan memproduksi ban motor dan ban sepeda. Proses pembuatan ban motor melalui tiga mesin, aitu 2 menit pada mesin I, 8 menit pada mesin II, dan 10 menit pada mesin III. Adapun ban sepeda diprosesna melalui dua mesin, aitu 5 menit pada mesin I dan 4 menit pada mesin II. Tiap mesin ini dapat dioperasikan 800 menit per hari. Untuk memperoleh keuntungan maksimum, rencanana perusahaan ini akan mengambil keuntungan Rp40.000,00 dari setiap penjualan ban motor dan Rp30.000,00 dari setiap penjualan ban sepeda. Berdasarkan keuntungan ang ingin dicapai ini, maka pihak perusahaan merencanakan banak ban motor dan banak ban sepeda ang akan diproduksina dengan merumuskan berbagai kendala sebagai berikut. Perusahaan tersebut memisalkan banak ban motor ang diproduksi sebagai dan banak ban sepeda ang diproduksi sebagai, dengan dan bilangan asli. Dengan menggunakan variabel dan tersebut, perusahaan itu membuat rumusan kendala-kendala sebagai berikut. Pada mesin I : Persamaan 1 Pada mesin II : Persamaan 2 Pada mesin III : Persamaan 3, bilangan asli : 0, 0. Persamaan 4 Sumber: Fungsi tujuan (objektif) ang digunakan untuk memaksimumkan keuntungan adalah f(, ) Dalam merumuskan masalah tersebut, PT. Samba Lababan telah membuat model matematika dari suatu masalah program linear. DEFINISI Model matematika adalah suatu cara sederhana untuk menerjemahkan suatu masalah ke dalam bahasa matematika dengan menggunakan persamaan, pertidaksamaan, atau fungsi. Contoh Lia ingin membuat puding buah dan es buah. Untuk membuat puding buah, ia membutuhkan 3 kg mangga dan 2 kg melon. Sedangkan untuk membuat es buah, ia membutuhkan 1 kg mangga dan 4 kg melon. Lia memiliki persediaan 11 kg mangga dan 14 kg melon. Buatlah model matematika dari persoalan ini! Jawab: Misalkan: banakna puding buah banakna es buah Sumber: electronicintifada.net Bab 2 Program Linear 39

6 Kalian dapat merumuskan kendala-kendala dalam permasalahan ini sebagai berikut Persamaan Persamaan 2 0 Persamaan 3 0 Persamaan 4 Asah Kompetensi 1 1. Liliana memiliki sejumlah uang. Seperempat dari uang ini digunakanna untuk membeli buku, seperlimana untuk membeli spidol, dan sepertigana untuk membeli majalah. Harga buku tidak lebih dari Rp15.000,00, harga spidol tidak lebih dari Rp12.000,00, dan harga majalah tidak lebih dari Rp30,000,00. Jika sisa uangna Rp13.000,00, buatlah model matematika dari masalah tersebut! Sumber: 2. Luas suatu tempat parkir 300 m 2. Untuk memarkir mobil diperlukan tempat seluas 10 m 2 dan untuk bus diperlukan 20 m 2. Tempat parkir tersebut tidak dapat menampung lebih dari 15 mobil dan bus. Buatlah model matematika dari persoalan ini! Sumber: Fortune, 16 September Umar Bakri adalah pedagang roti. Ia menjual roti menggunakan gerobak ang hana dapat memuat 600 roti. Roti ang dijualna adalah roti manis dan roti tawar dengan harga masing-masing Rp5.500,00 dan Rp4.500,00 per bungkusna. Dari penjualan rotiroti ini, ia memperoleh keuntungan Rp500,00 dari sebungkus roti manis dan Rp600,00 dari sebungkus roti tawar. Jika modal ang dimiliki Umar Bakri Rp ,00, buatlah model matematika dengan tujuan untuk memperoleh keuntungan sebesar-besarna! 4. Sebuah pabrik pembuat boneka akan memproduksi boneka Si Unil dan Pak Ogah dengan menggunakan dua mesin. Waktu ang diperlukan untuk memproduksi kedua boneka ini dapat dilihat pada tabel berikut. Jenis Boneka Waktu untuk membuat sebuah boneka Mesin I Mesin II Si Unil Pak Ogah Mesin I dan mesin II masing-masing beroperasi 8 jam per hari. Jika pabrik tersebut menjual boneka Si Unil dan boneka Pak Ogah dengan keuntungan masing-masing Rp10.000,00 dan Rp8.500,00 per buah, buatlah model matematika dari permasalahan ini agar pabrik tersebut dapat memperoleh keuntungan sebesar-besarna! Matematika Aplikasi SMA dan MA Kelas XII Program Studi Ilmu Alam

7 Jumlah uang Niko Sentera dan Butet kurang dari Rp5.000,00. Jumlah uang mereka ini juga kurang dari uang Ivan setelah ditambah Rp3.000,00. Adapun uang Ivan kurang dari Rp1.000,00 dikurangi uang Niko Sentera. Buatlah model matematika dari persoalan tersebut! C. Nilai Optimum Suatu Fungsi Objektif Dalam pemodelan matematika masalah produksi ban PT. Samba Lababan, kalian akan mencari nilai dan sedemikian sehingga f(, ) maksimum. Bentuk umum dari fungsi tersebut adalah f(, ) a b. Suatu fungsi ang akan dioptimumkan (maksimum atau minimum). Fungsi ini disebut fungsi objektif. Untuk menentukan nilai optimum fungsi objektif ini, kalian dapat menggunakan dua metode, aitu metode uji titik pojok dan metode garis selidik. C. 1. Metode Uji Titik Pojok Untuk menentukan nilai optimum fungsi objektif dengan menggunakan metode uji titik pojok, lakukanlah langkah-langkah berikut. a. Gambarlah daerah penelesaian dari kendala-kendala dalam masalah program linear tersebut. b. Tentukan titik-titik pojok dari daerah penelesaian itu. c. Substitusikan koordinat setiap titik pojok itu ke dalam fungsi objektif. d. Bandingkan nilai-nilai fungsi objektif tersebut. Nilai terbesar berarti menunjukkan nilai maksimum dari fungsi f(, ), sedangkan nilai terkecil berarti menunjukkan nilai minimum dari fungsi f(, ). Sebagai contoh, kalian akan memaksimumkan keuntungan PT. Samba Lababan dari produksi ban dengan model matematika f(, ) Bab 2 Program Linear 41

8 200 D C 0 Daerah kanan O HP HP B 0 Daerah A atas Gambar 2.4 Daerah penelesaian ang memenuhi ; ; 0, Perhatikan daerah penelesaian dari grafik pada gambar di atas. a. Titik-titik pojokna adalah titik O, A, B, C, dan D. Titik O adalah titik pusat koordinat. Jadi, titik O(0,0). Titik A adalah titik potong antara garis 80 dan sumbu-. Jadi, titik A(80, 0). Titik B adalah titik potong antara garis 80 dan garis Substitusi 80 ke persamaan Jadi, titik B(80, 40). Titik C adalah titik potong antara garis dan Dari didapat Substitusi nilai ke persamaan (200 2) Substitusi 25 ke persamaan Jadi, titik C(25, 150). Titik D adalah titik potong antara garis dan sumbu-. Substitusi 0 ke persamaan Jadi, titik D(0, 160). Matematika Aplikasi SMA dan MA Kelas XII Program Studi Ilmu Alam

9 b. Uji titik-titik pojok ke fungsi objektif f(, ) , sehingga fungsi objektif ini maksimum. Titik Pojok (, ) f(, ) A(80, 0) B(80, 40) C(25, 150) D(0, 160) Dari tabel tersebut dapat diperoleh nilai maksimum fungsi objektif f(, ) adalah f(25, 150) Jadi, PT. Samba Lababan harus memproduksi 25 ban motor dan 150 ban sepeda untuk memperoleh keuntungan maksimum. Untuk menentukan nilai minimum dilakukan langkah ang sama. Lebih jelasna, perhatikan contoh berikut ini. Contoh Tentukan nilai minimum fungsi objektif f(, ) 2 10 ang memenuhi 2 10, 3 15, 0, dan 0. Jawab: 15 C 0 Daerah kanan HP 0 Daerah 5 B atas A O a. Titik-titik pojokna adalah titik A, B, dan C. Titik A adalah titik potong garis 2 10 dengan sumbu-. Substitusi 0 ke persamaan Jadi, titik A(0, 10). Titik B adalah titik potong garis 2 10 dengan garis 3 15 Dari 2 10 diperoleh Substitusi nilai ke persamaan (10 2) Bab 2 Program Linear 43

10 Substitusi nilai 3 ke persamaan Jadi, titik B(4, 3). Titik C adalah titik potong garis 3 15 dengan sumbu-. Substitusi 0 ke persamaan Jadi, titik C(0, 15). b. Uji titik-titik pojok. Titik Pojok (, ) f(, ) 2 10 A(10, 0) 20 B(4, 3) 38 C(0, 15) 150 Dari tabel diperoleh nilai minimum fungsi objektif f(, ) 2 10 adalah f(10, 0) 20. C. 2. Metode Garis Selidik Untuk menentukan nilai optimum fungsi objektif dengan menggunakan metode garis selidik, lakukanlah langkah-langkah berikut. a. Tentukan garis selidik, aitu garis-garis ang sejajar dengan garis a b k, a 0, b 0, dan k R. b. Gambarkan garis selidik-garis selidik tersebut pada koordinat Cartesius! c. Untuk menentukan nilai maksimum fungsi tujuan maka carilah garis selidik ang jarakna terbesar terhadap titik pusat O(0, 0) dan berada pada daerah penelesaian. Sedangkan untuk menentukan nilai minimum fungsi tujuan maka carilah garis selidik ang jarakna terkecil terhadap titik pusat O(0, 0) dan berada pada daerah penelesaian. Sebagai contoh, grafik berikut ini adalah produksi ban PT. Samba Lababan C 0 Daerah kanan HP 0 Daerah 5 B atas A O Gambar 2.5 Daerah penelesaian ang memenuhi ; ; 0; Matematika Aplikasi SMA dan MA Kelas XII Program Studi Ilmu Alam

11 Garis selidik dari fungsi objektif f(, ) adalah 4 3 k. Ambil k 120, didapat garis selidik Ambil k 240, didapat garis selidik Ambil k 550, didapat garis selidik Gambarkan garis-garis selidik ini sehingga kamu dapat menentukan nilai maksimum fungsi objektif f(, ) O Gambar 2.6 Garis-garis selidik ang memenuhi = 800; = 550; = 800; = 240; = 120 Perhatikan bahwa garis selidik ang menebabkan fungsi objektif maksimum adalah Dengan mengalikan kedua ruas persamaan garis selidik dengan , kamu mendapatkan nilai maksimum fungsi objektif sebagai berikut (4 3) (550) Jadi, nilai maksimum fungsi objektif f(, ) adalah Dari gambar di atas tampak bahwa garis selidik melalui titik C(25, 150). Ini berarti, fungsi objektif f(, ) mencapai maksimum pada titik C(25, 150). Jadi, PT. Samba Lababan harus memproduksi 25 ban motor dan 150 ban sepeda untuk memperoleh keuntungan maksimum Rp ,00. Asah Kompetensi 2 1. Gambarkan daerah penelesaian dari setiap sistem pertidaksamaan berikut ini. Kemudian, tentukanlah nilai maksimum dan minimum dari fungsi tujuanna dengan metode uji titik pojok dan metode garis selidik! a , 0 Fungsi tujuanna f(, ) 8 6 b , 0 Fungsi tujuanna f(, ) Bab 2 Program Linear 45

12 c. d , 0 Fungsi tujuanna f(, ) , 0 Fungsi tujuanna f(, ) e , Fungsi tujuanna f(, ) Sebuah pesawat udara mempunai 48 buah tempat duduk ang terbagi dalam dua kelas, aitu kelas A dan kelas B. Setiap penumpang kelas A diberi hak membawa barang seberat 60 kg, sedang penumpang kelas B hana 20 kg, tempat bagasi paling banak dapat memuat kg. Bila banakna penumpang kelas A orang, sedang kelas B orang, maka: a. buatlah model matematika dari permasalahan tersebut! b. gambarkan daerah penelesaian sistem pertidaksamaan tersebut! 2 Waktu : 60 menit ASAH KEMAMPUAN 1. Dengan modal Rp , Pak Jeri membeli pepaa seharga Rp1.000,00 dan jeruk seharga Rp3.500,00 per kilogram. Buah-buahan ini dijualna kembali dengan menggunakan gerobak ang dapat memuat maksimum 300 kg. Jika keuntungan dari penjualan pepaa Rp500,00 per kilogram dan dari penjualan jeruk Rp1.000,00 per kilogram, tentukanlah keuntungan maksimum ang diperoleh Pak Jeri! 2. PT. Ketok Magic akan memproduksi dua jenis sepatu, aitu sepatu sepakbola dan sepatu kets. Sepatu sepakbola akan dijual Rp ,00 sepasang dan sepatu kets akan dijual Rp ,00 sepasang. Dari penjualan kedua jenis sepatu ini, direncanakan akan diperoleh keuntungan Rp ,00 dari sepasang sepatu sepakbola dan Rp dari sepasang sepatu kets. Jika kapasitas produksi sebulan pasang sepatu dan modal ang disediakan 15 milar rupiah, tentukanlah keuntungan maksimal ang mungkin didapat PT. Ketok Magic! Sumber: member.at.infoseek.co.jp Bobot soal: 20 Sumber: Bobot soal: Matematika Aplikasi SMA dan MA Kelas XII Program Studi Ilmu Alam

13 3. Ling ling membeli 120 ton beras untuk dijual lagi. Ia menewa dua jenis truk untuk mengangkut beras tersebut. Truk jenis a memiliki kapasitas 6 ton dan truk jenis b memiliki kapasitas 4 ton. Sewa tiap truk jenis a adalah Rp ,00 sekali jalan dan truk jenis b adalah Rp50.000,00 sekali jalan. Maka Ling ling menewa truk itu sekurang-kurangna 48 buah. Berapa banak jenis truk a dan b ang harus disewa agar biaa ang dikeluarkan minimum? 4. Robi Sigara adalah pedagang asongan ang menjual dua jenis rokok, aitu rokok kretek dan rokok filter. Rokok kretek dibeli dari agen Rp4.000,00 dan dijual Rp4.500,00 per bungkus. Rokok filter dibeli Rp4.750,00 dan dijual Rp5.500,00 per bungkus. Di kantongna terdapat uang Rp ,00 dan ia bermaksud membeli kedua jenis rokok tersebut. Namun karena keterbatasan tempat, ia tidak mau membeli lebih dari 150 bungkus. Jika kedua jenis rokok tersebut diperkirakan akan laku semuana, tentukanlah: a. fungsi tujuanna b. kendalana dalam bentuk suatu sistem pertidaksamaan dan gambarkanlah daerah penelesaianna c. titik-titik pojok dari daerah penelesaian tersebut. d. nilai fungsi tujuan dari setiap titik pojok tersebut. e. keuntungan maksimum ang dapat diperoleh dari penjualan kedua jenis rokok tersebut dan berapa bungkus rokok kretek dan rokok filter ang harus dibeli Robi Sigara untuk memperoleh keuntungan maksimum itu? Sumber: lh3.google.com Bobot soal: 20 Sumber: member.at.infoseek.co.jp Bobot soal: 40 Info Math Pada mulana program linear ini dikembangkan pada tahun 1940 oleh John Van Neumam, George B. Dantzig, dan para mitrana. Mula-mula digunakan oleh Marsekal Wood pada angkatan udara Amerika Serikat (USAF). Rangkuman 1. Bentuk umum pertidaksamaan linear dengan dua variabel adalah a b e c d f 2. Daerah ang merupakan himpunan penelesaian sistem pertidaksamaan disebut daerah laak. 3. Nilai optimum fungsi objektif (himpunan penelesaian) dapat ditentukan dengan menggunakan nilai metode, aitu: metode uji titik pojok metode garis selidik Bab 2 Program Linear 47

14 Ulangan Bab 2 I. Pilihlah jawaban ang paling tepat! 1. Daerah ang diarsir pada gambar di bawah ini menunjukan himpunan titik (, ). Batasbatas ang memenuhi adalah.... C. E. (0, 4) ( 2, 2) (0, 2) O (6, 0) D. A. 0, 0, , 2 B. 0, 0, , 2 C. 0, 0, , 2 D. 0, 0, , 2 E. 0, 0, , 2 2. Daerah ang laak memenuhi , 0 berbentuk.... A. segitiga D. persegi panjang B. segi empat E. segi enam C. segi lima 3. Himpunan penelesaian dari pertidaksamaan ( )( ) 0 adalah.... A. B. 4. Daerah ang memenuhi pertidaksamaan I adalah.... II 3 A. I III B. II IV C. III 1,5 6 D. IV 3 E. III dan IV 5. Jika daerah ang diarsir pada diagram di bawah ini merupakan daaerah penelesaian dengan fungsi objektif f(, ), maka nilai maksimum f(, ) adalah O Matematika Aplikasi SMA dan MA Kelas XII Program Studi Ilmu Alam

15 A. f(2, 0) D. f(3, 2) 9 5 B. f, E. f(2, 1) C. f 2, 3 6. Jika 0,, 2 6, dan 2 6, maka fungsi Q mempunai nilai maksimum.... A. 6 D. 3 B. 5 E. 2 C Nilai maksimum fungsi objektif z 8 6, dengan sarat adalah.... A. 132 D. 144 B. 134 E. 164 C Nilai maksimum dari 6 ang memenuhi 0, 0, , dan adalah.... A. 52 D. 49 B. 51 E. 25 C Nilai maksimum dari z 3 6 ang memenuhi 4 20, 20, 10, 0, 0 adalah.... A. 180 D. 60 B. 150 E. 50 C Nilai minimum fungsi objektif f(, ) ang memenuhi , 0 adalah.... A. 0 D B E C Daerah ang diarsir pada gambar tersebut ini adalah himpunan semua (, ) ang Bab 2 Program Linear O memenuhi.... A. 2 30, , 0, 0 B. 2 30, , 0, 0 C. 2 30, , 0, 0 D. 2 30, , 0, 0 E. 2 30, , 0, Himpunan penelesaian sistem pertidaksamaan 2 40, 2 40, 0, 0 terletak pada daerah ang berbentuk.... A. persegi panjang D. segi lima B. segitiga E. trapesium C. segi empat O 3 I II 1,5 6 Daerah ang memenuhi penelesaian dari adalah.... A. I D. IV B. II E. V C. III 14. Nilai maksimum fungsi tujuan z 8 dengan sarat , 0 adalah.... III IV V 49

16 A. 120 D. 64 B. 108 E. 12 C Untuk (, ) ang memenuhi 4 4, dan , nilai minimum untuk f adalah.... A. B. C D E II. Jawablah pertanaan berikut dengan jelas dan tepat! 1. Wingki akan mendaftar ke sekolah favorit. Sarat untuk masuk ke sekolah tersebut adalah nilai Bahasa Indonesia tidak boleh kurang dari 6 dan nilai Matematika tidak boleh kurang dari 7, sedangkan jumlah nilai Bahasa Indonesia dan Matematika tidak boleh kurang dari 12. Wingki mendapat nilai dengan jumlah tiga kali nilai Bahasa Indonesia dan empat setengah kali nilai Matematika sama dengan 45. Apakah Wingki diterima di sekolah favorit tersebut? 2. Harga permen A Rp2.000,00 per bungkus dijual dengan keuntungan Rp200,00 per bungkus. Harga permen B Rp3.000,00 per bungkus dijual dengan keuntungan Rp300,00 per bungkus. Seorang pedagang mempunai modal Rp ,00 dan kiosna mampu menampung 500 bungkus permen. Berapa banak permen A dan permen B untuk memperoleh keuntungan maksimum? Gambarkanlah dengan laakna! 3. Seorang pemilik toko sepatu ingin mengisi tokona dengan sepatu laki-laki paling sedikit 100 pasang dan sepatu wanita paling sedikit 150 pasang. Toko tersebut dapat memuat 460 pasang sepatu. Keuntungan setiap pasang sepatu laki-laki Rp10.000,00 dan setiap pasang sepatu wanita Rp5.000,00. Jika banak sepatu laki-laki tidak boleh melebihi 150 pasang, tentukanlah keuntungan maksimum ang diperoleh pemilik toko! 4. Untuk membuat satu cetak roti A dipergunakan 50 gram mentega dan 60 gram tepung. Untuk membuat satu cetak roti B diperlukan 100 gram mentega dan 20 gram tepung. Jika tersedia 3,5 kg mentega dan 2,2 kg tepung, tentukanlah jumlah kedua roti terbanak ang dapat dibuat! 5. Suatu proek pembangunan gedung sekolah dapat diselesaikan dalam hari dengan biaa proek per hari ( /) ratus ribu rupiah. Agar biaa proek minimum, berapa lamakah proek tersebut diselesaikan? Matematika Aplikasi SMA dan MA Kelas XII Program Studi Ilmu Alam

PROGRAM LINEAR. sudir15mks

PROGRAM LINEAR. sudir15mks PROGRAM LINEAR A. Sistem Pertidaksamaan Linear Dua Variabel Suatu garis dalam bidang koordinat dapat dinyatakan dengan persamaan yang berbentuk: x a x b a1 1 2 2 Persamaan semacam ini dinamakan persamaan

Lebih terperinci

Contoh : Gambarlah daerah x + y 0. Jika daerah tersebut dibatasi untuk nilai-nilai x 0, dan y 0, maka diperoleh gambar seperti berikut.

Contoh : Gambarlah daerah x + y 0. Jika daerah tersebut dibatasi untuk nilai-nilai x 0, dan y 0, maka diperoleh gambar seperti berikut. Setelah mempelajari materi pada kompetensi dasar ini, kalian diharapkan dapat: menjelaskan pengertian program linier, menggambar grafik himpunan penyelesaian pertidaksamaan linier, dan menggambar grafik

Lebih terperinci

E-learning matematika, GRATIS

E-learning matematika, GRATIS 1 Penusun Editor : Rifan Nadhifi, S.Si. ; Imam Indra Gunawan, S.Si. : Drs. Keto Susanto, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Indra Gunawan, S.Si. A. Sistem Pertidaksamaan Linear Pertidaksamaan linear

Lebih terperinci

BAB II PROGRAM LINEAR

BAB II PROGRAM LINEAR BAB II PROGRAM LINEAR A RINGKASAN MATERI. Pengertian Program linear adalah suatu permasalahan dalam matematika dengan tujuan untuk mengoptimalkan fungsi obektif ang berbentuk linear dengan kendala/batasan

Lebih terperinci

BAB XVII. PROGRAM LINEAR

BAB XVII. PROGRAM LINEAR BAB XVII. PROGRAM LINEAR Bukti : + a + b a.b b a Pengertian Program Linear : Program Linear adalah bagian ilmu matematika terapan ang digunakan untuk memecahkan masalah optimasi (pemaksimalan atau peminimalan

Lebih terperinci

PROGRAM LINIER. B. Grafik Himpunan Penyelesaian Pertidaksamaan Linier Dua Variabel

PROGRAM LINIER. B. Grafik Himpunan Penyelesaian Pertidaksamaan Linier Dua Variabel PROGRAM LINIER A. Pengertian Program Linier Program linier adalah suatu cara ang dapat digunakan untuk memecahkan permasalahan ang berhubungan dengan optimasi linier (nilai maksimum atau nilai minimum).

Lebih terperinci

MATEMATIKA. Sesi MENCARI MAKSIMUM DAN MINIMUM FUNGSI A. METODE TITIK POJOK

MATEMATIKA. Sesi MENCARI MAKSIMUM DAN MINIMUM FUNGSI A. METODE TITIK POJOK MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 08 Sesi N MENCARI MAKSIMUM DAN MINIMUM FUNGSI Kita sudah belajar bagaimana menggambar daerah dari batas pertidaksamaan ang diketahui atau pun sebalikna. Suatu

Lebih terperinci

PROGRAM LINEAR. Bukti : ax + by = a.b. Pengertian Program Linear : Gunakan persamaan 2 di atas :

PROGRAM LINEAR. Bukti : ax + by = a.b. Pengertian Program Linear : Gunakan persamaan 2 di atas : PROGRAM LINEAR Bukti : + = a + b = a.b b a Pengertian Program Linear : Program Linear adalah bagian ilmu matematika terapan ang digunakan untuk memecahkan masalah optimasi (pemaksimalan atau peminimalan

Lebih terperinci

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear Bab w. me da li.c om : er mb Su ww Program Linear Program linear merupakan salah satu bidang matematika terapan ang banak digunakan untuk memecahkan permasalahan dalam kehidupan sehari-hari. Misalna, program

Lebih terperinci

MATEMATIKA. Sesi PROGRAM LINEAR CONTOH SOAL A. BENTUK UMUM PERTIDAKSAMAAN LINEAR B. MENGGAMBAR DAERAH PERTIDAKSAMAAN. ax + by c

MATEMATIKA. Sesi PROGRAM LINEAR CONTOH SOAL A. BENTUK UMUM PERTIDAKSAMAAN LINEAR B. MENGGAMBAR DAERAH PERTIDAKSAMAAN. ax + by c MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 07 Sesi N PROGRAM LINEAR A. BENTUK UMUM PERTIDAKSAMAAN LINEAR a + b c CONTOH SOAL 1. Ubahlah 4-4 kedalam bentuk umumna 4 - -4 B. MENGGAMBAR DAERAH PERTIDAKSAMAAN

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Mata Pelajaran : Matematika Kelas : X / 2 Pertemuan ke - : ---- Alokasi Waktu : 10 jam @ 45 menit Standar Kompetensi : Menelesaikan masalah program linier. Kompetensi Dasar

Lebih terperinci

Program Linear. Bab I

Program Linear. Bab I Program Linear 1 Bab I Program Linear Sumber: Ensiklopedia Pelajar, 1999 Motivasi Setiap pedagang, pengusaha, atau orang yang berkecimpung di bidang usaha pasti menginginkan keuntungan sebanyak-banyaknya

Lebih terperinci

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan: -2x + y 0 x - 2y 0 dan x + 2y 8, maka a + b =. (A) 2 (B) 1 (C) 2 (D) (E) 6 02. Nilai maksimum dari

Lebih terperinci

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear Bab w. me da li.c om : er mb Su ww Program Linear Program linear merupakan salah satu bidang matematika terapan ang banak digunakan untuk memecahkan permasalahan dalam kehidupan sehari-hari. Misalna, program

Lebih terperinci

PROGRAM LINIER. x y ( x, y ) 0 1 ( 0, 1 ) 3 0 ( 3, 0 ) Titik uji (0,0): x 3y (0) 3. Benar. Sehingga titik (0,0) termasuk daerah penyelesaian.

PROGRAM LINIER. x y ( x, y ) 0 1 ( 0, 1 ) 3 0 ( 3, 0 ) Titik uji (0,0): x 3y (0) 3. Benar. Sehingga titik (0,0) termasuk daerah penyelesaian. PROGRAM LINIER ). Pengertian program linier Program linier adalah suatu cara ang dapat digunakan untuk memecahkan permasalahan ang berhubungan dengan optimasi linier (nilai maksimum atau nilai minimum).

Lebih terperinci

Xpedia Matematika Dasar

Xpedia Matematika Dasar Xpedia Matematika Dasar Soal Program Linear Doc. Name: XPMATDAS0999 Doc. Version : 01-09 halaman 1 01. Nilai z = 3x + y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan

Lebih terperinci

Explore. Your Potency From Now. Modul Belajar Kompetensi Program Linear Oleh Syaiful Hamzah Nasution. Pengertian Program Linear

Explore. Your Potency From Now. Modul Belajar Kompetensi Program Linear Oleh Syaiful Hamzah Nasution. Pengertian Program Linear Modul Belajar Kompetensi Program Linear Oleh Syaiful Hamzah Nasution Explore. Your Potency From Now. Pengertian Program Linear Fungsi Objektif dan Kendala pada Program Linear Model Matematika dan Nilai

Lebih terperinci

Bab. Program Linear. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id)

Bab. Program Linear. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id) Bab II Program Linear 51 Tujuan Pembelajaran Setelah mempelajari bab ini, diharapkan kalian dapat 1. menjelaskan sistem pertidaksamaan linear dua variabel dan penyelesaiannya; 2. menentukan fungsi tujuan

Lebih terperinci

Gambar 1.1 Mesin dan SDM perusahaan

Gambar 1.1 Mesin dan SDM perusahaan BAB I PROGRAM LINEAR Tujuan Pembelajaran Setelah mempelajari materi bab ini, Anda diharapkan dapat: 1. menyelesaikan sistem pertidaksamaan linear dua variabel, 2. merancang model matematika dari masalah

Lebih terperinci

PERTIDAKSAMAAN LINEAR DUA VARIABEL

PERTIDAKSAMAAN LINEAR DUA VARIABEL PRGRAM LINEAR Intisari Teori A. PERTIDAKSAMAAN LINEAR DUA VARIABEL (PtLDV) Suatu pernyataan yang berbentuk a by c 0 (tanda ketidaksamaan dapat diganti dengan, >, atau < ) dengan a dan b tidak semuanya

Lebih terperinci

PETA STANDAR KOPETENSI

PETA STANDAR KOPETENSI Program Linear PETA STANDAR KOPETENSI MATEMATIKA NON TEKNIK II TINGKAT II SEMESTES SEMESTER STANDAR KOPETENSI G STANDAR KOPETENSI I STANDAR KOPETENSI H STANDAR KOPETENSI J KETERANGAN : SEMESTER Standar

Lebih terperinci

K13 Revisi Antiremed Kelas 11 Matematika Wajib

K13 Revisi Antiremed Kelas 11 Matematika Wajib K13 Revisi Antiremed Kelas 11 Matematika Wajib Program Linier - Latihan Soal Doc. Name: RK13AR11MATWJB0401 Version : 2016-10 halaman 1 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan

Lebih terperinci

PROGRAM LINIER. Sumber: Art & Gallery

PROGRAM LINIER. Sumber: Art & Gallery 4 PROGRAM LINIER Sumber: Art & Gallery 114 Matematika X SMK Kelompok: Penjualan dan Akuntansi Standar kompetensi program linier terdiri atas empat kompetensi dasar. Dalam penyajian pada buku ini setiap

Lebih terperinci

Geri Achmadi Dwi Gustanti Dani Wildan Hakim Willi Sutanto

Geri Achmadi Dwi Gustanti Dani Wildan Hakim Willi Sutanto Geri Achmadi Dwi Gustanti Dani Wildan Hakim Willi Sutanto Hak Cipta pada Departemen Pendidikan Nasional Dilindungi Undang-undang Mahir Matematika untuk Kelas XII SMA/MA Program Bahasa Penulis : Geri Achmadi

Lebih terperinci

1. Fungsi Objektif z = ax + by

1. Fungsi Objektif z = ax + by Nilai Optimum Suatu Fungsi Objektif, Program Linear, Fungsi Objektif, Cara Menentukan, Contoh Soal, Rumus, Pembahasan, Metode Uji Titik Sudut, Metode Garis Selidik, Matematika Nilai Optimum Suatu Fungsi

Lebih terperinci

PROGRAM LINEAR. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII

PROGRAM LINEAR. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII LA - WB (Lembar Aktivitas Warga Belajar) PROGRAM LINEAR Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII Created By Ita Yuliana 9 Program Linear Kompetensi

Lebih terperinci

17. SOAL-SOAL PROGRAM LINEAR

17. SOAL-SOAL PROGRAM LINEAR 17. SOAL-SOAL PROGRAM LINEAR EBTANAS2000 1. Himpunan penelesaian sistem pertidaksamaan 5x + 10 2x + 8 2 x = 2 titik (2,0 titk potong dengan sumbu jika x = 0 = 10 titik (0,10 daerah 5x + 10 berada pada

Lebih terperinci

MODUL 1 : PROGRAM LINEAR

MODUL 1 : PROGRAM LINEAR MODUL 1 : PROGRAM LINEAR A. Pendahuluan Dalam kehidupan sehari-hari sering dijumpai aplikasi program linear, seperti pembangunan perumahan atau apartemen, pemakaian obat-obatan dalam penyembuhan pasien,

Lebih terperinci

BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA

BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA Masalah 1.1 Sekelompok tani transmigran mendapatkan 10 hektar tanah yang dapat ditanami padi, jagung, dan palawija lain. Karena keterbatasan sumber daya petani

Lebih terperinci

Menghitung nilai optimum (maksimum / minimum) dari sistem pertidaksamaan linier.

Menghitung nilai optimum (maksimum / minimum) dari sistem pertidaksamaan linier. LEMBAR KEGIATAN SISWA 4 Materi : Menghitung nilai optimum (maksimum / minimum) dari sistem pertidaksamaan linier. Kelas Kelompok : :.. Nama Anggota : Kalian telah mempelajari cara membuat grafik dari sisem

Lebih terperinci

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel.

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. NAMA : KELAS : 1 2 Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. x y PROGRAM LINEAR 2. Tentukan titik potong dengan sumbu X, yaitu saat y = 0. 3. Tentukan

Lebih terperinci

ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN MATEMATIKA XII BAHASA

ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN MATEMATIKA XII BAHASA ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN 29-21 MATEMATIKA XII BAHASA Hari / tanggal :... Desember 29 Waktu : 12 menit Pilih salah satu jawaban ang benar dengan memberi tanda silang

Lebih terperinci

Bab 1. Program Linear. Program Linear. Sumber: dianekawhy.blogspot.com

Bab 1. Program Linear. Program Linear. Sumber: dianekawhy.blogspot.com Bab 1 Pada bab ini, Anda diajak menelesaikan masalah program linear dengan cara membuat grafik himpunan penelesaian sistem pertidaksamaan linear, menentukan model matematika dari soal cerita, menentukan

Lebih terperinci

BAB III. PROGRAM LINEAR

BAB III. PROGRAM LINEAR BAB III. PROGRAM LINEAR Salah satu pokok bahasan dalam mata pelajaran matematika kelas III IPA semester gasal, menurut Kurikulum 2004 (KBK) SMA / MA, memuat : Kompetensi dasar : Siswa menggunakan dan menghargai

Lebih terperinci

Bab 4. Sistem Persamaan Linier dan Variabel. Standar Kompetensi

Bab 4. Sistem Persamaan Linier dan Variabel. Standar Kompetensi Bab 4 Sistem Persamaan Linier dan Variabel Standar Kompetensi Memahami sistem persamaan linear dua variabel, dan menggunakanna dalam pemecahan masalah Kompetensi Dasar.1 Menelesaikan sistem persamaan linear

Lebih terperinci

LEMBAR AKTIVITAS SISWA PROGRAM LINEAR

LEMBAR AKTIVITAS SISWA PROGRAM LINEAR LEMBAR AKTIVITAS SISWA PROGRAM LINEAR c) Subtitusikan titik (0,0) kedalam pertidaksamaan. Nama Siswa : Jika hasil benar, maka penyelesaiaannya adalah daerah Kelas : yang memuat titik tersebut. Jika hasil

Lebih terperinci

ISBN : (No. jil lengkap) ISBN : Harga Eceran Tertinggi: Rp10.021,-

ISBN : (No. jil lengkap) ISBN : Harga Eceran Tertinggi: Rp10.021,- ISBN : 978-979-068-858- (No. jil lengkap) ISBN : 978-979-068-863-6 PUSAT PERBUKUAN Departemen Pendidikan Nasional Harga Eceran Tertinggi: Rp0.0,- i Khazanah Matematika 3 untuk Kelas XII SMA dan MA Program

Lebih terperinci

Program Linear - IPA

Program Linear - IPA Program Linear - IPA Tahun 2005 1. Tanah seluas 10.000 m² akan dibangun rumah tipe A dan tipe B. Untuk rumah tipe A diperlukan 100 m² dan tipe B diperlukan 75 m². Jumlah rumah yang dibangun paling banyak

Lebih terperinci

A. PENGERTIAN PROGRAM LINEAR

A. PENGERTIAN PROGRAM LINEAR Pertemuan 1 Standar Kompetensi : Menyelesaikan masalah program linier Kompetensi dasar : Membuat grafik himpunan penyelesaian sistem pertidaksamaan linier Indikator : Pertidaksamaan linier ditentukan daerah

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.9 Sukoharjo Telp. 0-906 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/ Mata Pelajaran : MATEMATIKA

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.9 Sukoharjo Telp. 0-90 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran : MATEMATIKA

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.9 Sukoharjo Telp. 0-90 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran : MATEMATIKA

Lebih terperinci

h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m

h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m 1. Dalam permasalahan program linear dikenal dua istilah, yaitu : a. Fungsi Kendala/ pembatas, berupa pertidaksamaan pertidaksamaan linear ax by 0; ax by p; ax by 0; ax by 0 b. Fungsi/ bentuk objektif,

Lebih terperinci

Soal dan Pembahasannya.

Soal dan Pembahasannya. Soal dan Pembahasanna Perhatikan tabel di bawah ini! p q p q ~ q B B B S S B S S Nilai kebenaran dari pernataan majemuk p q ~ q pada tabel di atas adalah p q p q ~ q p q ~ q B B B S B B S S B B S B B S

Lebih terperinci

PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) y 2. (0, a) y 1. (x 1, y 1 ) (b, 0) X. x 1

PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) y 2. (0, a) y 1. (x 1, y 1 ) (b, 0) X. x 1 PROGRAM LINEAR A. Persamaan Garis Lurus y 1 (x 1, y 1 ) y 2 y 1 (x 1, y 1 ) (x 2, y 2 ) a (0, a) 0 x 1 x 1 0 x 2 (b, 0) 0 b a. Persamaan garis yang bergradien m dan melalui titik (x 1, y 1 ) adalah: y

Lebih terperinci

B. Fungsi Sasaran dan Kendala dalam Program Linier

B. Fungsi Sasaran dan Kendala dalam Program Linier Peta Konsep Jurnal PetaKonsep Daftar Hadir MateriB SoalLatihan2 Materi Umum PROGRAM LINIER Kelas XI, Semester 3 B. Fungsi Sasaran dan Kendala dalam Program Linier Sistem Pertidaksamaan Linier Fungsi Sasaran

Lebih terperinci

SOAL-SOAL LATIHAN PROGRAM LINEAR UJIAN NASIONAL

SOAL-SOAL LATIHAN PROGRAM LINEAR UJIAN NASIONAL SAL-SAL LATIHAN PRGRAM LINEAR UJIAN NASINAL Peserta didik memiliki kemampuan memahami konsep pada topik program linear. Peserta didik memilki kemampuan mengaplikan konsep kalkulus dalam masalah kontekstual

Lebih terperinci

Bab. Persamaan Garis Lurus. Pengertian Persamaan Garis Lurus Gradien Menentukan Persamaan Garis lurus

Bab. Persamaan Garis Lurus. Pengertian Persamaan Garis Lurus Gradien Menentukan Persamaan Garis lurus Bab Sumb er: Scien ce Enclopedia, 997 Persamaan Garis Lurus Dalam suatu perlombaan balap sepeda, seorang pembalap mengauh sepedana dengan kecepatan tetap. Setiap 5 detik, pembalap tersebut menempuh jarak

Lebih terperinci

SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS

SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS UJI KOMPETENSI 1.1 1. PT Lasin adalah suatu pengembang perumahan di daerah pemukiman baru. PT tersebut memiliki tanah seluas 12.000 meter persegi berencana

Lebih terperinci

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan Kehidupan Nyata Bisa Disajikan Bahasa Matematika Diperlukan Alat Bantu Model Matematika Menggunakan Persamaan atau pertidaksamaan Matematika Tujuan Penyelesaian masalah Kemampuan yang akan dibahas Menentukan

Lebih terperinci

10 Soal dan Pembahasan Permasalahan Program Linear

10 Soal dan Pembahasan Permasalahan Program Linear 10 Soal dan Pembahasan Permasalahan Program Linear 1. BAYU FURNITURE memproduksi 2 jenis produk yaitu meja dan kursi yang harus diproses melalui perakitan dan finishing. Proses perakitan memiliki 60 jam

Lebih terperinci

SOAL ToT MATEMATIKA BISNIS-MANAJEMEN adalah...

SOAL ToT MATEMATIKA BISNIS-MANAJEMEN adalah... SOAL ToT MATEMATIKA BISNIS-MANAJEMEN 08. Bentuk sederhana dari 0 0 3 0 3 8 0 4 0 3 5 8 adalah.... Nilai dari log 6 3 log 4 log6 log 48 adalah... 7 3 3 3. Jika diketahui log 5 = a dan log 3 = b maka nilai

Lebih terperinci

Unit 2 KONSEP DASAR ALJABAR. Clara Ika Sari Pendahuluan

Unit 2 KONSEP DASAR ALJABAR. Clara Ika Sari Pendahuluan Unit KONSEP DASAR ALJABAR Clara Ika Sari Pendahuluan P ada unit ini kita akan mempelajari beberapa konsep dasar dalam aljabar seperti persamaan dan pertidaksamaan ang berbentuk linear dan kuadrat, serta

Lebih terperinci

SOAL-SOAL LATIHAN UN A35

SOAL-SOAL LATIHAN UN A35 SAL-SAL LATIHAN 1. UN A5 01 Penjahit Hidah Pantes akan membuat pakaian wanita dan pria. Untuk membuat pakaian wanita diperlukan bahan bergaris m dan bahan polos 1 m. Untuk membuat pakaian pria diperlukan

Lebih terperinci

Ujian Nasional 2008 MATEMATIKA Kelompok : Teknologi, Kesehatan dan Pertanian

Ujian Nasional 2008 MATEMATIKA Kelompok : Teknologi, Kesehatan dan Pertanian Ujian Nasional 8 MATEMATIKA Kelompok : Teknologi, Kesehatan dan Pertanian. Seorang pedagang membeli ½ lusin gelas seharga Rp 5., dan pedagang tesebut telah menjual 5 gelas seharga Rp.,. Jika semua gelas

Lebih terperinci

e. y 8. Himpunan penyelesaian dari sistem persamaan 2x - 3y = - 4 dan 3x + 4y = 11 adalah x dan y. Nilai dari 2x + y = a. 2 d. 5 b. 3 e. 6 c.

e. y 8. Himpunan penyelesaian dari sistem persamaan 2x - 3y = - 4 dan 3x + 4y = 11 adalah x dan y. Nilai dari 2x + y = a. 2 d. 5 b. 3 e. 6 c. . Agar mendapat untung %, sebuah rumah harus dijual dengan harga Rp. 0.000.000,00. Harga pembelian rumah tersebut adalah. a. Rp 7.00.000,00 d. Rp.00.000,00 b. Rp 8.00.000,00 e. Rp.000.000,00 c. Rp 0.000.000,00.

Lebih terperinci

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER X IBROHIM AJI KUSUMA Pendekatan Sainti k Buku Guru Nama Kelas No. Absen Matematika Lembar Kerja Siswa Program Linier Kurikulum

Lebih terperinci

B B S S B S S B S S B B S S S B B S B S S S S B B S B B

B B S S B S S B S S B B S S S B B S B S S S S B B S B B 1. Ingkaran pertanyaan: Petani panen beras atau harga beras murah. A. Petani panen beras dan harga beras mahal. B. Petani panen beras dan harga beras murah. C. Petani tidak panen beras dan harga beras

Lebih terperinci

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang :

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : 1. Menggambar daerah yang memenuhi 2. Menentukan system pertidaksamaan suatu daerah 3. Menentukan nilai optimum

Lebih terperinci

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3 Pilihlah jawaban yang paling tepat!. Ordo dari matriks A = 7 A. x B. x C. x D. x x adalah.. Berikut ini yang termasuk Matriks identitas adalah... A. 7 B. 7 C. D. a b. Diketahui A = dan B = b A. B. C. D..

Lebih terperinci

Sistem Bilangan 06. UN-SMK-BIS adalah... Jika a = 4, b = 5 maka nilai dari

Sistem Bilangan 06. UN-SMK-BIS adalah... Jika a = 4, b = 5 maka nilai dari Sistem Bilangan 0. UN-SMK-PERT-0-0 Bentuk sederhana dari ( ) =... 7 8 9 8 0. UN-SMK-TEK-0-0 Hasil perkalian dari (a) - (a) =... a a a a a 0. UN-SMK-PERT-0-0 Bentuk sederhana dari 0. UN-SMK-TEK-0-0 6 6.

Lebih terperinci

DINAS PENDIDIKAN DAN TENAGA KERJA MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA SMA KABUPATEN TANAH DATAR

DINAS PENDIDIKAN DAN TENAGA KERJA MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA SMA KABUPATEN TANAH DATAR DINAS PENDIDIKAN DAN TENAGA KERJA MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA SMA KABUPATEN TANAH DATAR NASKAH SOAL ULANGAN UMUM SEMESTER I Tahun Pelajaran / Mata Pelajaran : Matematika Kelas/Program

Lebih terperinci

diunduh dari

diunduh dari diunduh dari http://www.pustakasoal.com Hak Cipta pada Departemen Pendidikan Nasional Dilindungi Undang-undang Hak Cipta Buku ini dibeli oleh Departemen Pendidikan Nasional dari Penerbit PT Visindo Media

Lebih terperinci

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER X IBROHIM AJI KUSUMA Pendekatan Sainti k Buku Siswa Nama Kelas No. Absen Matematika Lembar Kerja Siswa Program Linier Kurikulum

Lebih terperinci

MAT. 03 Persamaan dan Ketidaksamaan

MAT. 03 Persamaan dan Ketidaksamaan MAT. 0 Persamaan dan Ketidaksamaan i Kode MAT. 0 Persamaan dan Ketidaksamaan + = - 5 6 - - + = BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) A. Kompetensi Inti SMK kelas XI : RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Satuan Pendidikan : SMK Negeri 1 Klaten Mata Pelajaran : Matematika Kelas/Semester : XI/3 Topik : Program Linier Waktu : 10 45 menit

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) I. Identitas Mata Pelajaran: 1. Nama Sekolah :SMA 6 YOGYAKARTA 2. Kelas : XII 3. Semester : 1 4. Program : IPA 5. Mata Pelajaran : Program Linier 6. Waktu : : 8 JP

Lebih terperinci

MATEMATIKA BISNIS BAB 2 FUNGSI LINIER

MATEMATIKA BISNIS BAB 2 FUNGSI LINIER MATEMATIKA BISNIS BAB FUNGSI LINIER Hikmah Agustin, S.P.,MM DEFINISI FUNGSI Fungsi adalah hubungan matematis antara suatu variabel dengan variabel lainna. Unsur-unsur pembentukan fungsi : 1. Variabel Variabel

Lebih terperinci

MAT. 04. Geometri Dimensi Dua

MAT. 04. Geometri Dimensi Dua MAT. 04. Geometri Dimensi Dua i Kode MAT.14 Program Linear BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN

Lebih terperinci

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN I TU URI HANDAY AN TW DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN 2009 Program Linear Matriks GY A Y O M AT E M A T AK A R Shadiq, M.App.Sc. DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL

Lebih terperinci

KELAS XII. IPA SEMESTER I

KELAS XII. IPA SEMESTER I MODUL MATEMATIKA PROGRAM LINEAR y 12.1.2 800 500 400 500 2x + y = 800 KELAS XII. IPA SEMESTER I Oleh : Drs. Pundjul Prijono ( http://vidyagata.wordpress.com ) SMA NEGERI 6 Jalan Mayjen Sungkono 58 Malang

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN NO: 1

RENCANA PELAKSANAAN PEMBELAJARAN NO: 1 RENCANA PELAKSANAAN PEMBELAJARAN NO: 1 Materi Pokok : Integral Pertemuan Ke- : 1 dan Alokasi Waktu : x pertemuan (4 x 45 menit) Standar Kompetensi : Menggunakan konsep integral dalam pemecahan masalah

Lebih terperinci

Model soal Ujian Matematika kelas XII AP- UPW - TB. Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e!

Model soal Ujian Matematika kelas XII AP- UPW - TB. Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e! Model soal Ujian Matematika kelas XII AP- UPW - TB Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e!. Diketahui sistem pertidaksamaan x + 2y 0 ; 3x + 2y

Lebih terperinci

PENDAHULUAN KALKULUS

PENDAHULUAN KALKULUS . BILANGAN REAL PENDAHULUAN KALKULUS Ada beberapa jenis bilangan ang telah kita kenal ketika di bangku sekolah. Bilangan-bilangan tersebut adalah bilangan asli, bulat, cacah, rasional, irrasional. Tahu

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL TAHUN PELAJARAN

SOAL DAN PEMBAHASAN UJIAN NASIONAL TAHUN PELAJARAN OAL DAN PEMBAHAAN UJIAN NAIONAL TAHUN PELAJARAN / MA/MA PROGRAM TUDI IP MATEMATIKA PAKET B Disusun KHAIRUL BAARI khairulfaiq.wordpress.com e-mail :muh_abas@ahoo.com OAL DAN PEMBAHAAN UN BIDANG TUDI MATEMATIKA

Lebih terperinci

>> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER 1 SMA KELAS XII IPA <<

>> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER 1 SMA KELAS XII IPA << >> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER SMA KELAS XII IPA

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 05 PAKET Pilihan Ganda: Pilihlah satu jawaban ang paling tepat.. Ingkaran dari pernataan Jika air sungai meluap, maka kota kebanjiran dan semua warga kota

Lebih terperinci

KELAS XII. IPA SEMESTER I

KELAS XII. IPA SEMESTER I MODUL MATEMATIKA PROGRAM LINEAR y 12.1-2 800 500 400 500 2x + y = 800 KELAS XII. IPA SEMESTER I Oleh : Drs. Pundjul Prijono ( http://vidyagata.wordpres.com ) 1 M o d u l P r o g r a m L i n e a r Standar

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP Nama Sekolah : SMP Negeri 3 Singaraja Mata Pelajaran : Matematika Kelas / Semester : VIII / Ganjil Alokasi Waktu : 2 40 menit A. Standar Kompetensi Memahami Sistem

Lebih terperinci

Model Optimisasi dan Pemrograman Linear

Model Optimisasi dan Pemrograman Linear Modul Model Optimisasi dan Pemrograman Linear Prof. Dr. Djati Kerami Dra. Denny Riama Silaban, M.Kom. S PENDAHULUAN ebelum membuat rancangan penyelesaian masalah dalam bentuk riset operasional, kita harus

Lebih terperinci

PROGRAM LINEAR. Dasar Matematis

PROGRAM LINEAR. Dasar Matematis PROGRAM LINEAR Dasar Matematis PROGRAM LINIER adalah suatu teknik optimalisasi dimana variabel-variabelnya linier. Metode ini dipakai pada saat kita dihadapkan pada beberapa pilihan dengan batasan-batasan

Lebih terperinci

CONTOH SOAL UAN PROGRAM LINIER

CONTOH SOAL UAN PROGRAM LINIER 1. Luas daerah parkir 1.760 m 2. Luas rata rata untuk mobil kecil 4 m 2 dan mobil besar 20 m 2. Daya tampung maksimum hanya 200 kendaraan, biaya parkir mobil kecil Rp 1.000,00/jam dan mobil besar Rp 2.000,00/jam.

Lebih terperinci

TRY OUT UJIAN NASIONAL SMA TAHUN PELAJARAN 2016/2017

TRY OUT UJIAN NASIONAL SMA TAHUN PELAJARAN 2016/2017 TRY OUT UNBK KODE SOAL : TRY OUT UJIAN NASIONAL SMA TAHUN PELAJARAN / KERJASAMA BINTANG PELAJAR Bidang Studi Hari, Tanggal Waktu LEMBAR SOAL : MATEMATIKA IPA : Oktober M / Muharram H : Menit PETUNJUK UMUM.

Lebih terperinci

Materi UN 2013 Prog. IPA SISTEM PERSAMAAN LINEAR

Materi UN 2013 Prog. IPA  SISTEM PERSAMAAN LINEAR Materi UN Prog. IPA http://vidagata.wordpress.com SISTEM PERSAMAAN LINEAR Bab Skl. Menelesaikan masalah sehari hari ang berkaitan dengan sistem persamaan linear Bentuk Umum Dua Peubah : a + b = c dimana

Lebih terperinci

SOAL DAN PEMBAHASAN UN SMK 2011 teknologi

SOAL DAN PEMBAHASAN UN SMK 2011 teknologi 1. Himpunan penelesaian pertidaksamaan adalah. A. * * * D. * E. * x = 0 ( x ( x 2. Persamaan grafik fungsi kuadrat ang memotong sumbu X di titik (-2,0 dan (2,0 serta melalui titik (0,-4 A. D. E. ( x =

Lebih terperinci

( sman 4 yogyakarta) Page 1

( sman 4 yogyakarta) Page 1 PENYELESAIAN MASALAH PROGRAM LINIER Contoh : 1. Sekelompok tani transmigran mendapatkan 10 hektar tanah ang dapat di tanami padi, jagung, dan palawija lain. Karena keterbatasan sumber daa petani harus

Lebih terperinci

MATEMATIKA. Matematika kelas XII Bahasa Untuk SMA & MA Pangarso Yuliatmoko Dewi Retno Sari S. Untuk Sekolah Menengah Atas & Madrasah Aliyah

MATEMATIKA. Matematika kelas XII Bahasa Untuk SMA & MA Pangarso Yuliatmoko Dewi Retno Sari S. Untuk Sekolah Menengah Atas & Madrasah Aliyah Pangarso Yuliatmoko - Dewi Retno Sari S Matematika kelas XII Bahasa Untuk SMA & MA Pangarso Yuliatmoko Dewi Retno Sari S MATEMATIKA Untuk Sekolah Menengah Atas & Madrasah Aliyah XII Bahasa PUSAT PERBUKUAN

Lebih terperinci

BOCORAN UJIAN NASIONAL TAHUN PELAJARAN 2015/2016 UTAMA. SMA/MA PROGRAM STUDI Bahasa. MATEMATIKA Selasa, 5 April 2016 ( )

BOCORAN UJIAN NASIONAL TAHUN PELAJARAN 2015/2016 UTAMA. SMA/MA PROGRAM STUDI Bahasa. MATEMATIKA Selasa, 5 April 2016 ( ) BOCORAN UJIAN NASIONAL TAHUN PELAJARAN 0/06 UTAMA SMA/MA PROGRAM STUDI Bahasa MATEMATIKA Selasa, April 06 (0.0 09.0) BALITBANG PAK ANANG KEMENTARIAN PAK ANANG DAN KEBUDAYAAN Mata Pelajaran Jenjang Program

Lebih terperinci

A. Persamaan Kuadrat dan Fungsi Kuadrat. Salah satu akar persamaan kuadrat ( a ) (3a ) 3a 0 adalah, maka akar lainna adalah. Nilai m ang memenuhi agar persamaan kuadrat ( m ) (m ) ( m ) 0 mempunai dua

Lebih terperinci

BAB I PRA KALKULUS. Nol. Gambar 1.1

BAB I PRA KALKULUS. Nol. Gambar 1.1 BAB I PRA KALKULUS. Sistem bilangan ril.. Bilangan ril Sistem bilangan ril adalah himpunan bilangan ril dan operasi aljabar aitu operasi penjumlahan, pengurangan, perkalian dan pembagian. Biasana bilangan

Lebih terperinci

LEMBAR KEGIATAN SISWA 2

LEMBAR KEGIATAN SISWA 2 LEMBAR KEGIATAN SISWA 2 Materi : Membuat grafik himpunan penelesaian pertidaksamaan linier dua variabel. Kelompok : Nama Anggota: Kelas : Tanggal : Kalian telah mempelajari cara membuat kalimat matematika

Lebih terperinci

PENERAPAN FUNGSI LINIER A. FUNGSI PERMINTAAN, FUNGSI PENAWARAN DAN KESEIMBANGAN PASAR

PENERAPAN FUNGSI LINIER A. FUNGSI PERMINTAAN, FUNGSI PENAWARAN DAN KESEIMBANGAN PASAR ENERAAN FUNGSI LINIER Fungsi linier adalah suatu fungsi ang sangat sering digunakan oleh para ahli elonomi dan bisnis dalam menganalisa dan memecahkan masalah-masalah ekonomi. Hal ini dikarenakan bahwa

Lebih terperinci

SOAL LATIHAN UAS 12 IPA SMT GANJIL. 1. Hasil dari. 2. Hasil dari = Hasil dari dx... dx = Hasil dari. 5. Hasil dari. dx =

SOAL LATIHAN UAS 12 IPA SMT GANJIL. 1. Hasil dari. 2. Hasil dari = Hasil dari dx... dx = Hasil dari. 5. Hasil dari. dx = SOAL LATIHAN UAS IPA SMT GANJIL. Hasil dari. Hasil dari 7 ( ) ( ) d =.... Hasil dari d.... Hasil dari. Hasil dari 6. Hasil 6 6 9 6 d =... d =... d 9 = 7. Hasil 6 d = 8. Hasil dari cos sin d = 9. Hasil

Lebih terperinci

M. PRAHASTOMI M. S. SISTEM PERSAMAAN LINEAR. A. a = 2 dan b = 4 B. a = 2 dan b = 4 C. a = 2 dan b = 4 D. E. a = 2

M. PRAHASTOMI M. S. SISTEM PERSAMAAN LINEAR. A. a = 2 dan b = 4 B. a = 2 dan b = 4 C. a = 2 dan b = 4 D. E. a = 2 SISTEM PERSAMAAN LINEAR M. PRAHASTOMI M. S. 0. MD-8-8 B C G E F A D H 6 7 8 6 Jika gradien garis AB = m, gradien garis CD = m, gradien garis EF = m dan gradien garis GH = m, maka... () m = () m = 0 ()

Lebih terperinci

Model Program Linear dan Daerah Penyelesaian Masalah

Model Program Linear dan Daerah Penyelesaian Masalah MATA4230/MODUL 1 1.1 Modul 1 Model Program Linear dan Daerah Penyelesaian Masalah D PENDAHULUAN Prof. Dr. Djati Kerami i dalam modul pertama ini Anda akan mempelajari penurunan model program linear dari

Lebih terperinci

A. Persamaan Linier Dua

A. Persamaan Linier Dua Apa yang akan Anda Pelajari? Mengenal PLDV dalam berbagai bentuk dan variabel Menentukan himpunan penyelesaian PLDV dan grafiknya Mengenal SPLDV dalam berbagai bentuk dan variabel Menentukan penyelesaian

Lebih terperinci

PROGRAM LINEAR 2 SMA SANTA ANGELA. Contoh Soal :

PROGRAM LINEAR 2 SMA SANTA ANGELA. Contoh Soal : 1 SMA SANTA ANGELA PROGRAM LINEAR Standar kompetensi : Menyelesaikan masalah program linear Kompetensi Dasar : Menyelesaikan sistem pertidaksamaan linear dua variabel. Menyelesaikan masalah program linear.

Lebih terperinci

Bibliografi : hlm. 115 Indeks ISBN (No. Jilid Lengkap) ISBN

Bibliografi : hlm. 115 Indeks ISBN (No. Jilid Lengkap) ISBN Hak cipta pada Departemen Pendidikan Nasional dilindungi oleh Undang-undang MATEMATIKA untuk SMA/ MA Kelas XI Program Bahasa Diah Ayu Kurniasih Sri Lestari Editor : Dwi Susanti Penata letak : Ria Nita

Lebih terperinci

PETUNJUK UMUM TRY OUT UJIAN NASIONAL MATEMATIKA 2 5 0, 20; ;15%; ; ;25%;0, %; ;0, 20; ;0, 20;15%; 6 3

PETUNJUK UMUM TRY OUT UJIAN NASIONAL MATEMATIKA 2 5 0, 20; ;15%; ; ;25%;0, %; ;0, 20; ;0, 20;15%; 6 3 TRY OUT UJIAN NASIONAL MATEMATIKA SEKOLAH DASAR/MADRASAH IBTIDAIYAH TAHUN AJARAN 2012/2013 (Paket 1) PETUNJUK UMUM 1. Isikan nomor ujian, nama peserta, dan tanggal lahir pada Lembar Jawaban, sesuai petunjuk.

Lebih terperinci

UN SMA IPS 2012 Matematika

UN SMA IPS 2012 Matematika UN SMA IPS 01 Matematika Kode Soal A Doc. Name: UNSMAIPS01MATA Doc. Version : 01-1 halaman 1 01. Ingkaran pernyataan Pada hari Senin siswa SMAN memakai sepatu hitam dan atribut lengkap adalah. Pada hari

Lebih terperinci