SOAL PENJAJAKAN UN MATEMATIKA 2012 PROVINSI DIY

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "SOAL PENJAJAKAN UN MATEMATIKA 2012 PROVINSI DIY"

Transkripsi

1 SOAL PENJAJAKAN UN MATEMATIKA 0 PROVINSI DIY. Suatu proyek akan selesai dalam waktu 0 hari oleh 0 orang pekerja. Tambahan pekerja yang dibutuhkan agar proyek tersebut selesai dalam waktu 90 hari adalah. orang A. B. 0 C. 0 D. 0 E. 0. Jarak sesungguhnya kota A dan kota B adalah 80 km, sedangkan jarak kedua kota tersebut pada peta adalah cm. Skala peta yang memuat gambar kedua kota tersebut adalah. A. :.000 B. : C. : D. : E. : Hasil perkalian dari (a) x (a) =. A. a B. a C. a D. a E. a. Bentuk sederhana dari adalah. A. 0 B. C. D. E.. Bentuk sederhana dari A. B. C. D. E. ( ( ) 0 ( ) 0 ( ) adalah

2 . Diketahui nilai log = p dan log = q, nilai dari log adalah. A. q B. q C. q p D. qp E. q p 7. Nilai dari log 8 log + 7 log adalah. A. B. 0 C. D. E. 8. Nilai x yang memenuhi persamaan A. 8 B. C. D. E. 7, x x adalah. 9. Himpunan penyelesaian dari: (x ) ( x + ) adalah. A. { x x } B. { x x } C. { x x } D. { x x } E. { x x } 0. Akar-akar dari persamaan kuadrat x x 0 untuk x R adalah A. {, } B. {, } C. {, } D. {, } E. {, }. Himpunan penyelesaian dari pertidaksamaan kuadrat x + x 0 dan x R adalah... A. {x x } B. {x x } C. {x x < atau x > } D. {x x atau x } E. {x x atau x }

3 . Jika A=, B= Maka A B adalah... A. B. C. 8 D. E.. Jika matriks A = dan B =, maka matriks AB =. A. 7 B C. 0 D. 0 E Invers dari matriks A = adalah... A. B. C. D. E.

4 . Seorang penjual buah ingin membelanjakan uangnya tidak lebih dari Rp ,00 untuk membeli jeruk dan mangga. Gerobag buahnya hanya memuat 80 kg, sedangkan harga kg jeruk Rp..000,00 dan kg mangga Rp..000,00.Jika banyaknya jeruk dan mangga yang akan dibeli berturut turut adalah x kg dan y kg, maka model matematika permasalahan tersebut adalah. A. x + y 80 ; x + y 0 ; x 0 ; y 0 B. x + y 80 ; x + y 0 ; x 0 ; y 0 C. x + y 80 ; x + y 0 ; x 0 ; y 0 D. x + y 80 ; x + y 0 ; x 0 ; y 0 E. x + y 80 ; x + y 0 ; x 0 ; y 0. Daerah penyelesaian dari sistem pertidaksamaan linear x+y ; x+y ; x 0; y 0 pada grafik dipenuhi pada daerah nomor. Y III V II A. I B. II C. III D. IV E. V IV I X 7. Nilai maksimum daerah yang diarsir untuk fungsi obyektif z = x y adalah. Y (,) (,) (0,) 0 A. B. C. D. 8 E. (,0) X 8. Seorang pengusaha mainan akan membeli beberapa mobil mainan jenis A dan jenis B, tidak lebih dari buah. Harga sebuah mobil mainan jenis A Rp.0.000,00 dan jenis B Rp ,00. Modal yang dimiliki Rp ,00. Jika laba penjualan sebuah mobil mainan jenis A Rp.0.000,00 dan jenis B Rp.0.000,00, maka laba maksimumnya adalah. A. Rp ,00 B. Rp ,00 C. Rp 0.000,00 D. Rp ,00 E. Rp ,00

5 9 cm 9. Keliling daerah yang diarsir pada gambar berikut adalah. A. 0 cm B. cm C. cm D. 8 cm E. cm cm 0. Gambar berikut ini mempunyai ukuran sebagai berikut: AB = 8 cm, dan CD = 8 cm. Luas daerah yang diarsir adalah. ( = 7 ) A. 8 cm B. cm C. 08 cm D. cm E. cm. Keliling dan panjang suatu ruangan yang berbentuk persegi panjang berturut-turut adalah 0 meter dan meter. Lantai ruangan tersebut akan ditutup ubin dengan biaya Rp ,00 per meter persegi. Biaya yang digunakan untuk pemasangan ubin secara kesleruhan adalah. A. Rp ,00 B. Rp ,00 C. Rp ,00 D. Rp ,00 E. Rp ,00. Diketahui rumus barisan bilangan Un = n n. Suku ke- barisan tersebut adalah. A. B. 0 C. 7 D. 79 E. 89 A. Suku ke- suatu barisan aritmatika adalah, dan suku ke-0 adalah 7. Maka besarnya suku ke- adalah. A. B. C. 7 D. 7 E. 77. Iuran warga suatu wilayah setiap tahun selalu naik Rp..000,00 dari tahun sebelumnya, jika iuran warga pada tahun pertama Rp.0.000,00 per bulan, maka jumlah iuran warga tersebut selama 8 tahun adalah. A. Rp ,00 B. Rp ,00 C. Rp.0.000,00 D. Rp.0.000,00 E. Rp ,00 D C B

6 . Diketahui suku ke- dan suku ke- barisan geometri berturut-turut adalah dan 9. Besarnya suku kelima dari barisan tersebut adalah.... A. B. C. 8 D. E. 0. Suatu barisan geometri mempunyai suku pertama dan suku ke- berturut-turut adalah 8 dan. Jumlah empat suku pertama deret tersebut adalah. A. 0 B. 08 C. 0 D. E Jumlah tak hingga dari: adalah.... A. 7 B. 8 C. D. E Diagram berikut ini menunjukkan cara yang digunakan oleh 800 siswa SMK untuk berangkat sekolah. Banyaknya siswa yang naik sepeda motor adalah... A. 80 B. 70 C. 0 D. 0 E. 70 0% 9. Dari 00 sampel data diketahui nilai terkecil dan nilai terbesar 90. Jika log = 0,00, maka dengan bantuan aturan Sturgess, interval (panjang kelas) yang sesuai adalah. A. B. C. 7 D. 8 E Nilai ulangan dari sejumlah siswa sebagai berikut : 9,,, 7,,, 7, p,,. Rata-rata nilai tersebut adalah, maka nilai p adalah. A. B. 7 C. 8 D. 9 E. 0

7 . Modus dari data berikut adalah. Interval Frekuensi 7 9 A.,9 B., C., D., E.,8. Median dari data berikut adalah. A. 8,00 B., C., D.,7 E.,7 Interval F Rata-rata harmonis dari data: 8, 8,,, adalah. A.,08 B., C., D., E.,00. Dari 7 anak yang mengikuti ulangan matematika diperoleh rata-rata 8,. Jika anak mengikuti susulan dan setelah digabung rata-ratanya menjadi 8,, maka rata-rata nilai kelima anak yang mengikuti ulangan susulan adalah. A.,09 B. 8,9 C. 7, D., E.,. Simpangan Kuartil dari data berikut adalah. A.,0 B.,7 C.,00 D. 9,0 E.,0 Interval F 0 0 8

8 . Persentil ke-0 (P 0 ) data berikut adalah.. A., B. 8, C. 8, D., E., Interval F Simpangan rata-rata dari data: 0,, 0, 9, 8, 7, adalah. A., B., C., D. 8,00 E. 0,00 8. Simpangan baku dari data: 9,, 7,,, 8, adalah. A.,7 B.,00 C.,00 D.,00 E.,00 9. Koefisien variasi dan simpangan baku sebuah data hasil ulangan matematika berturut-turut adalah 0, dan,9. Rata-rata data tersebut adalah. A.,90 B. 0, C. 0, D. 0, E. 8,98 0. Rata-rata dan simpangan baku dari data hasil ulangan matematika berturut-turut adalah 7 dan,. Jika Salma adalah salah satu peserta ulangan tersebut dan mempunyai nilai 7, maka angka baku dari nilai Salma adalah. A.,9 B.,9 C. 0,9 D.,9 E.,9

7. Himpunan penyelesaian dari 3x + 7 < 5x 3 adalah. a. { x x < 5 } b. { x x > 5 } c. { x x < 5 } d. { x x > 5 } e. { x x 5 } e. 3. d.

7. Himpunan penyelesaian dari 3x + 7 < 5x 3 adalah. a. { x x < 5 } b. { x x > 5 } c. { x x < 5 } d. { x x > 5 } e. { x x 5 } e. 3. d. 1. Suatu pabrik sepatu dapat memproduksi.400 sepatu dalam waktu 60 hari dengan menggunakan 10 mesin. Jika produksi itu ingin diselesaikan dalam waktu 40 hari maka pabrik harus menambah mesin sebanyak.

Lebih terperinci

a. 30 orang b. 25 orang c. 15 orang d. 12 orang e. 10 orang

a. 30 orang b. 25 orang c. 15 orang d. 12 orang e. 10 orang 1. Perbandingan siswa laki-laki dan siswa perempuan pada suatu kelas adalah 3 : 5. Jika jumlah siswa kelas tersebut adalah 40 orang,maka banyak perempuan kelas tersebut a. 30 orang b. 25 orang c. 15 orang

Lebih terperinci

7. Bentuk sederhana dari. adalah.. 4. Jika log 2 = a dan log 3 = b, maka nilai log 18 = a. a + 2b b. 2a + b c. a + b d. a 2 + b e.

7. Bentuk sederhana dari. adalah.. 4. Jika log 2 = a dan log 3 = b, maka nilai log 18 = a. a + 2b b. 2a + b c. a + b d. a 2 + b e. 1. Suatu pekerjaan jika dikerjakan 15 orang dapat diselesaikan dalam waktu 30 hari. Apabila pekerjaan tersebut ingin diselesaikan dalam waktu 25 hari, jumlah pekerja yang harus ditambah a. 3 orang b. 5

Lebih terperinci

1. Bentuk sederhana dari adalah. a. 3 b. 3 3 c. 4 3 d. 5 3 e adalah. a b c d e.

1. Bentuk sederhana dari adalah. a. 3 b. 3 3 c. 4 3 d. 5 3 e adalah. a b c d e. 1. Bentuk sederhana dari 2 8 75 + 12 a. 3 b. 3 3 c. 3 d. 5 3 e. 15 3 2. Bentuk sederhana dari a. 2 6 b. 2 6 2 c. 2 6 d. 6 8 e. 6 8 3. Bentuk sederhana dari.... 2 a. b 8 b. c 8 c. a 16 d. b 16 e. a 10 b

Lebih terperinci

PEMERINTAH KOTA MALANG DINAS PENDIDIKAN Jl. Veteran No. 19 Malang Telp. (0341) TRY OUT KOTA I. Tahun Pelajaran

PEMERINTAH KOTA MALANG DINAS PENDIDIKAN Jl. Veteran No. 19 Malang Telp. (0341) TRY OUT KOTA I. Tahun Pelajaran PEMERINTAH KOTA MALANG DINAS PENDIDIKAN Jl. Veteran No. 9 Malang 7 Telp. (0) TRY OUT KOTA I Tahun Pelajaran 0 0 Mata Pelajaran : Matematika Pariwisata B Hari, tanggal : PETUNJUK UMUM. Perhatikan dan ikuti

Lebih terperinci

UN SMK PSP 2015 Matematika

UN SMK PSP 2015 Matematika UN SMK PSP 201 Matematika Soal Doc. Name: UNSMKPSP201MAT999 Doc. Version : 2016-0 halaman 1 01. Sebuah mobil menghabiskan 8 liter bensin untuk menempuh jarak 20 km, apabila mobil tersebut menghabiskan

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 UJIAN NASIONAL TAHUN PELAJARAN 7/8 PANDUAN MATERI MATEMATIKA Kelompok Seni, Pariwisata, Teknologi Kerumahtanggan, Pekerjaan Sosial dan Administrasi Perkantoran PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS

Lebih terperinci

PAKET 05 MATEMATIKA NON TEKNIK UJI COBA UJIAN NASIONAL SMK. Tahun Pelajaran 2014 / 2015

PAKET 05 MATEMATIKA NON TEKNIK UJI COBA UJIAN NASIONAL SMK. Tahun Pelajaran 2014 / 2015 UJI COBA UJIAN NASIONAL SMK Tahun Pelajaran 01 / 015 MATEMATIKA NON TEKNIK KELOMPOKPARIWISATA, SENI DAN KERAJINAN, PEKERJAAN SOSIAL TEKNOLOGI KERUMAHTANGGAAN, DAN ADMINISTRASI PERKANTORAN (UTAMA) 1 MATA

Lebih terperinci

KISI KISI SOAL UJI COBA UJIAN NASIONAL TA MATEMATIKA SMK PROGRAM KEAHLIAN PARIWISATA MGMP MATEMATIKA SMK KABUPATEN CIANJUR

KISI KISI SOAL UJI COBA UJIAN NASIONAL TA MATEMATIKA SMK PROGRAM KEAHLIAN PARIWISATA MGMP MATEMATIKA SMK KABUPATEN CIANJUR KISI KISI SOAL UJI COBA UJIAN NASIONAL TA.008 009 MATEMATIKA SMK PROGRAM KEAHLIAN PARIWISATA MGMP MATEMATIKA SMK KABUPATEN CIANJUR A. Sub Kompetensi : PERBANDINGAN. Untuk membuat sebuah rumah dengan waktu

Lebih terperinci

5. Suku ke-7 dan suku ke-12 suatu barisan aritmetika berturut-turut 29 dan 49. Maka nilai suku ke-9 adalah. a. 35 b. 37 c. 44 d. 45 e.

5. Suku ke-7 dan suku ke-12 suatu barisan aritmetika berturut-turut 29 dan 49. Maka nilai suku ke-9 adalah. a. 35 b. 37 c. 44 d. 45 e. 1 Keliling daerah yang diarsir pada gambar di bawah 14 cm 26 cm 28 cm 14 cm a 76 cm b 82 cm c 96 cm 102 cm 108 cm 2 Luas bangunan yang diarsir pada gambar di bawah 14 cm 14 cm 6 cm 14 cm 6 cm a 44 cm 2

Lebih terperinci

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK PARIWISATA PAKET I B KOTA SURABAYA

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK PARIWISATA PAKET I B KOTA SURABAYA LATIHAN UJIAN NASIONAL TAHUN PELAJARAN 00-0 SMK NEGERI DAN SWASTA KOTA SURABAYA MATEMATIKA KELOMPOK PARIWISATA PAKET I B MGMP MATEMATIKA SMK NEGERI / SWASTA KOTA SURABAYA M A T E M A T I K A S M K P A

Lebih terperinci

UN SMK PSP 2014 Matematika

UN SMK PSP 2014 Matematika UN SMK PSP 014 Matematika Soal Doc. Name: UNSMKPSP014MAT999 Doc. Version : 016-03 halaman 1 01. Nilai dari -50-5 5 5 (E) 50 1 3 3 6 4 15 64 81... ab c 0. Bentuk sederhana dari 3 adalah... a bc 10 a b c

Lebih terperinci

6. Perhatikan grafik berikut! Y x

6. Perhatikan grafik berikut! Y x 1. Jika Jarak sebenarnya antara kota Surakarta dan kota Semarang adalah 125 km, maka jarak kedua kota pada peta dengan skala 1 : 2.000.000 adalah. a. 62,5 cm b. 25 cm c. 6,25 cm d. 2,5 cm e. 0,625 cm 2.

Lebih terperinci

1. Nilai dari log 3 2 log 6 =. a. 3 b. 1 c. 0 d. 1 e. 3

1. Nilai dari log 3 2 log 6 =. a. 3 b. 1 c. 0 d. 1 e. 3 1. Nilai dari 2 + 2 log 3 2 log 6 =. a. 3 b. 1 c. 0 d. 1 e. 3 2. Nilai x yang memenuhi persamaan 1 = (4) 2 ( 2x 4 ) 4 a. 2 b. 3 c. 4 d. 6 e. 12 3. Persamaan kuadrat 9x 2 3x 1 = 0 memliki akar akar x 1

Lebih terperinci

adalah. 1. Bentuk sederhana dari A. 5 B. 5 C. 25 D. 20 E Bentuk sederhana dari ToT MATEMATIKA PARIWISATA

adalah. 1. Bentuk sederhana dari A. 5 B. 5 C. 25 D. 20 E Bentuk sederhana dari ToT MATEMATIKA PARIWISATA 1. Bentuk sederhana dari 10 a c b A. 0 a b 2 a b 2 c c 6 2 adalah. 20 a c b B. 10 a c b C. 2 0 0 20 a b c D. 20 10 a b c E. 0 0 2 2. Bentuk sederhana dari 6 12 2 27 7 adalah... A. 12 B. C. 2 D. 8 E.. Bentuk

Lebih terperinci

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK PARIWISATA PAKET II A KOTA SURABAYA

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK PARIWISATA PAKET II A KOTA SURABAYA LATIHAN UJIAN NASIONAL TAHUN PELAJARAN - SMK NEGERI DAN SWASTA KOTA SURABAYA MATEMATIKA KELOMPOK PARIWISATA PAKET II A MGMP MATEMATIKA SMK NEGERI / SWASTA KOTA SURABAYA M A T E M A T I K A S M K P A R

Lebih terperinci

SOAL PREDIKSI VI. I. Pilihlah jawaban yang paling benar!

SOAL PREDIKSI VI. I. Pilihlah jawaban yang paling benar! SOAL PREDIKSI VI I. Pilihlah jawaban yang paling benar! 1. Kiki melakukan perjalanan Surabaya Solo mengendarai sepeda motor dengan kecepatan rata-rata 80 km/jam dalam waktu 2 jam. Jika kecepatannya menjadi

Lebih terperinci

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK PARIWISATA PAKET II B KOTA SURABAYA

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK PARIWISATA PAKET II B KOTA SURABAYA LATIHAN UJIAN NASIONAL TAHUN PELAJARAN 00-0 SMK NEGERI DAN SWASTA KOTA SURABAYA MATEMATIKA KELOMPOK PARIWISATA PAKET II B MGMP MATEMATIKA SMK NEGERI / SWASTA KOTA SURABAYA M A T E M A T I K A S M K P A

Lebih terperinci

UN SMK AKP 2014 Matematika

UN SMK AKP 2014 Matematika UN SMK AKP 204 Matematika Soal Doc. Name: UNSMKAKP204MAT999 Doc. Version : 206-03 halaman 0. Seorang pedagang menjual salah satu jenis mesin cuci seharga Rp637.500,00. Jika harga beli mesin cuci itu Rp750.000,00,

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI SIDAYU Jl. Pahlawan No.0 Telp./Fax. 0-0 Sidayu Gresik UJIAN SEKOLAH TAHUN PELAJARAN 00/0 Mata Pelajaran : Matematika Satuan Pendidikan : SMA Program

Lebih terperinci

ISTIYANTO.COM PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPS. Kemampuan yang diuji UN 2009 = UN Materi. Soal UN 2009 Prediksi UN 2010

ISTIYANTO.COM PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPS. Kemampuan yang diuji UN 2009 = UN Materi. Soal UN 2009 Prediksi UN 2010 PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPS Materi Logika Matematika Kemampuan yang diuji UN 009 = UN 00 Menentukan nilai kebenaran suatu pernyataan majemuk Menentukan ingkaran suatu pernyataan Perhatikan

Lebih terperinci

SMA / MA Bahasa Mata Pelajaran : Matematika

SMA / MA Bahasa Mata Pelajaran : Matematika Latihan Soal UN Paket Sekolah Menengah Atas / Madrasah Aliyah SMA / MA Bahasa Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban Ujian

Lebih terperinci

A. 100 B. 25 C. 20 D. 10 E Bentuk sederhana dari pecahan bentuk akar. adalah. A B C D

A. 100 B. 25 C. 20 D. 10 E Bentuk sederhana dari pecahan bentuk akar. adalah. A B C D , PEMERINTAH KABUPATEN KENDAL DINAS PENDIDIKAN PEMUDA DAN OLAH RAGA SMK NEGERI KENDAL Alamat : Jl. Boja - Limbangan KM Salamsari, Boja, Kendal Telp.(9) 88 Fax. (9) e-mail : smktelukendal@yahoo.com. Pak

Lebih terperinci

Ujian Akhir Nasional Tahun Pelajaran 2002/2003

Ujian Akhir Nasional Tahun Pelajaran 2002/2003 DOKUMEN NEGARA SANGAT RAHASIA Ujian Akhir Nasional Tahun Pelajaran 00/00 SMK Kelompok Teknologi Industri Paket Utama (P) MATEMATIKA (E-) TEKNIK SELASA, MEI 00 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL

Lebih terperinci

Solusi: [Jawaban C] Solusi: [Jawaban ]

Solusi: [Jawaban C] Solusi: [Jawaban ] SOLUSI SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

UN SMA IPS 2009 Matematika

UN SMA IPS 2009 Matematika UN SMA IPS 009 Matematika Kode Soal P88 Doc. Name: UNSMAIPS009MATP88 Doc. Version : 011-06 halaman 1 01. Diberikan beberapa pernyataan: Premis 1: Jika Santi sakit maka ia pergi ke dokter Premis : Jika

Lebih terperinci

SOAL LATIHAN UN MATEMATIKA IPS 00. Negasi dari pernyataan Matematika tidak mengasyikkan dan membosankan adalah. Matematika mengasyikkan atau membosankan Matematika mengasyikkan atau tidak membosankan Matematika

Lebih terperinci

Matematika Ebtanas IPS Tahun 1997

Matematika Ebtanas IPS Tahun 1997 Matematika Ebtanas IPS Tahun 99 EBTANAS-IPS-9-0 Bentuk sederhana dari 86 6 + 8 6 9 6 0 6 6 6 EBTANAS-IPS-9-0 Bentuk sederhana dari 8 + 6 + + 6 6 + + EBTANAS-IPS-9-0 x+ Nilai x yang memenuhi persamaan =

Lebih terperinci

B. x = C. x = 2 3, x = 2 7, y = 21 dan P (1, 25) D. x = 2 3, x = 2 7, y = 21 dan P (1, 25) E. x = 2 3, x = 2 7, y = 21 dan P ( 1, 25) Diketahui A = 1

B. x = C. x = 2 3, x = 2 7, y = 21 dan P (1, 25) D. x = 2 3, x = 2 7, y = 21 dan P (1, 25) E. x = 2 3, x = 2 7, y = 21 dan P ( 1, 25) Diketahui A = 1 UN-SMK-PERT-0-0 Skala suatu peta : 00.000. Jika jarak kota A dan kota B pada peta, cm, maka jarak kota A dan kota B sebenarnya adalah... 0, km, km, km km.0 km UN-SMK-PERT-0-0 Pada suatu sensus pertanian

Lebih terperinci

SOAL PREDIKSI XIV. I. Pilihlah jawaban yang paling benar!

SOAL PREDIKSI XIV. I. Pilihlah jawaban yang paling benar! SOAL PREDIKSI XIV I. Pilihlah jawaban yang paling benar! 1. Kiki melakukan perjalanan Surabaya Solo mengendarai sepeda motor dengan kecepatan rata-rata 85 km/jam dalam waktu 7 jam. Jika Dika menempuh jarak

Lebih terperinci

B. y = 1 x 2 1 UN-SMK-TEK Jika A = 2 0

B. y = 1 x 2 1 UN-SMK-TEK Jika A = 2 0 UN-SMK-TEK-04-0 Jarak kota A ke kota B pada peta 0 cm. Jika skala peta : 0.000, maka jarak kedua kota sebenarnya adalah..., km km 0 km.00 km.000 km UN-SMK-TEK-04-0 Hasil perkalian dari (4a) - (a) =...

Lebih terperinci

SMK3 Bogor

SMK3 Bogor 45. MATEMATIKA SMK (KELOMPOK PARIWISATA, SENI, DAN KERAJINAN, TEKNOLOGI KERUMAHTANGGAAN, PEKERJAAN SOSIAL, DAN ADM. PERKANTORAN) SKL 2011 STANDAR KOMPETENSI NO. LULUSAN 1. Memecahkan masalah yang berkaitan

Lebih terperinci

UN SMA IPS 2011 Matematika

UN SMA IPS 2011 Matematika UN SMA IPS 0 Matematika Kode Soal Doc. Name: UNSMAIPS0MAT999 Version: 0- halaman 0. Koordinat titik potong grafik fungsi kuadrat y = - - dengan sumbu X dan sumbu Y (A) (-,0),(,0), dan (0,) (B) (-,0),(,0),dan

Lebih terperinci

DEPARTEMEN PENDIDIKAN NASIONAL UJI COBA UJIAN NASIONAL TAHUN PELAJARAN LEMBAR SOAL

DEPARTEMEN PENDIDIKAN NASIONAL UJI COBA UJIAN NASIONAL TAHUN PELAJARAN LEMBAR SOAL DEPARTEMEN PENDIDIKAN NASIONAL UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 00 008 LEMBAR SOAL Mata Pelajaran Kelompok Keahlian Waktu : MATEMATIKA : PARIWISATA : 0 MENIT Petunjuk Umum :. Isikan identitas anda

Lebih terperinci

SOAL PREDIKSI XV. I. Pilihlah jawaban yang paling benar!

SOAL PREDIKSI XV. I. Pilihlah jawaban yang paling benar! SOAL PREDIKSI XV I. Pilihlah jawaban yang paling benar! 1. Kiki melakukan perjalanan Surabaya Solo mengendarai sepeda motor dengan kecepatan rata-rata 70 km/jam dalam waktu 2 jam. Jika kecepatannya menjadi

Lebih terperinci

DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 LEMBAR SOAL

DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 LEMBAR SOAL DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 03/0 LEMBAR SOAL Mata Pelajaran : Matematika Jenjang : SMA/MA Program Studi

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik PMRINTAH KABUPATN GRSIK DINAS PNDIDIKAN SMA NGRI SIDAYU Jl. Pahlawan No.0 Telp./Fax. 0-40 Sidayu Gresik UJIAN SKOLAH TAHUN PLAJARAN 00/0 Mata Pelajaran : Matematika Satuan Pendidikan : SMA Program : IPS

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik PEMERINTAH KAUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI SIDAYU Jl. Pahlawan No.0 Telp./Fax. 0-0 Sidayu Gresik UJIAN SEKOLAH TAHUN PELAJARAN 00/0 Mata Pelajaran : Matematika Satuan Pendidikan : SMA Program

Lebih terperinci

SOAL ToT MATEMATIKA BISNIS-MANAJEMEN adalah...

SOAL ToT MATEMATIKA BISNIS-MANAJEMEN adalah... SOAL ToT MATEMATIKA BISNIS-MANAJEMEN 08. Bentuk sederhana dari 0 0 3 0 3 8 0 4 0 3 5 8 adalah.... Nilai dari log 6 3 log 4 log6 log 48 adalah... 7 3 3 3. Jika diketahui log 5 = a dan log 3 = b maka nilai

Lebih terperinci

TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2016/2017 LEMBAR SOAL. Mata Pelajaran : MATEMATIKA. Satuan Pendidikan : SMA/MA

TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2016/2017 LEMBAR SOAL. Mata Pelajaran : MATEMATIKA. Satuan Pendidikan : SMA/MA TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 201/2017 LEMBAR SOAL Mata Pelajaran : MATEMATIKA Satuan Pendidikan : SMA/MA Program : IPS Hari, Tanggal : Sabtu, 18 Februari 2017 Waktu : 120 Menit PETUNJUK UMUM

Lebih terperinci

DEPARTEMEN PENDIDIKAN NASIONAL UJI COBA UJIAN NASIONAL TAHUN PELAJARAN LEMBAR SOAL

DEPARTEMEN PENDIDIKAN NASIONAL UJI COBA UJIAN NASIONAL TAHUN PELAJARAN LEMBAR SOAL DEPARTEMEN PENDIDIKAN NASIONAL UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 007 008 LEMBAR SOAL Mata Pelajaran Kelompok Keahlian Waktu : MATEMATIKA : PARIWISATA : 0 MENIT Petunjuk Umum :. Isikan identitas anda

Lebih terperinci

UJI COBA UJIAN NASIONAL 2011

UJI COBA UJIAN NASIONAL 2011 UJI COA UJIAN NASIONAL 2011 Mata Pelajaran Alokasi Waktu Jumlah Soal entuk Soal : Matematika Teknik : 120 menit : 40 item : Pilihan Ganda 1. Seorang pedagang sparepart sepeda motor membeli dua lusin busi

Lebih terperinci

UJI COBA UJIAN NASIONAL SMK

UJI COBA UJIAN NASIONAL SMK UJI COBA UJIAN NASIONAL SMK Tahun Pelajaran 014 / 015 MATEMATIKA NON TEKNIK KELOMPOKPARIWISATA, SENI DAN KERAJINAN, PEKERJAAN SOSIAL TEKNOLOGI KERUMAHTANGGAAN, DAN ADMINISTRASI PERKANTORAN (UTAMA) 1 MATA

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN PAKET Pilihan Ganda: Pilihlah satu jawaban yang paling tepat.. Ingkaran dari pernyataan Mathman tidak belajar atau dia dapat mengerjakan soal UN matematika

Lebih terperinci

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK PARIWISATA PAKET I A KOTA SURABAYA

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK PARIWISATA PAKET I A KOTA SURABAYA LATIHAN UJIAN NASIONAL TAHUN PELAJARAN 00-0 SMK NEGERI DAN SWASTA KOTA SURABAYA MATEMATIKA KELOMPOK PARIWISATA PAKET I A MGMP MATEMATIKA SMK NEGERI / SWASTA KOTA SURABAYA M A T E M A T I K A S M K P A

Lebih terperinci

2. Hasil dari =. a. 4 3 b. 2 3 c. 3 d. 3 2 e adalah. 3. Bentuk sederhana pecahan. a. 4 ( ) b. d. ( ) c.

2. Hasil dari =. a. 4 3 b. 2 3 c. 3 d. 3 2 e adalah. 3. Bentuk sederhana pecahan. a. 4 ( ) b. d. ( ) c. 1. Untuk menempuh jarak 80 km diperlukan 16 liter bensin. Jika bensin yang diperlukan 12 liter, maka jarak yang dapat ditempuh adalah. a. 171 km b. 300 km c. 360 km 00 km e. 60 km 2. Hasil dari 8 3 12

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik OKUMEN NEGARA PEMERINTAH KABUPATEN GRESIK INAS PENIIKAN SMA NEGERI SIAYU Jl. Pahlawan No. Telp./Fax. - Sidayu Gresik UJIAN SEKOLAH TAHUN PELAJARAN / Mata Pelajaran : Matematika Satuan Pendidikan : SMA

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 PANDUAN MATERI SMA DAN MA M A T E M A T I K A PROGRAM STUDI IPS PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS KATA PENGANTAR Dalam rangka sosialisasi kebijakan

Lebih terperinci

3. Diberikan sistem persamaan linier: . Nilai dari x 4y dari sistem. persamaan tersebut adalah... A. 6 B. 5 C. 2 D. -2 E adalah...

3. Diberikan sistem persamaan linier: . Nilai dari x 4y dari sistem. persamaan tersebut adalah... A. 6 B. 5 C. 2 D. -2 E adalah... . Sebuah perkebunan seluas 7 Ha memperkejakan 0 orang untuk memetik buah dalam waktu 8 jam. Jika pihak perkebunan ingin mempercepat pemetikan menjadi 7 jam, maka diperlukan tambahan tenaga sebanyak....

Lebih terperinci

TAHUN PELAJARAN 2009 / 2010 MATEMATIKA SMA PROGRAM STUDI IPS. Rabu, 3 Februari Menit

TAHUN PELAJARAN 2009 / 2010 MATEMATIKA SMA PROGRAM STUDI IPS. Rabu, 3 Februari Menit Try Out TAHUN PELAJARAN 009 / 00 MATEMATIKA SMA PROGRAM STUDI IPS Rabu, Februari 00 0 Menit PETUNJUK :. Isikan identitas Anda ke dalam Lembar Jawaban Komputer (LJK) yang tersedia dengan menggunakan pensil

Lebih terperinci

1. Dari suatu barisan aritmetika diketahui suku ke-15 adalah 222 dan suku ke-12 adalah 57. Suku ke-15 barisan ini adalah. A. 62 B. 68 C. 72 D. 74 E.

1. Dari suatu barisan aritmetika diketahui suku ke-15 adalah 222 dan suku ke-12 adalah 57. Suku ke-15 barisan ini adalah. A. 62 B. 68 C. 72 D. 74 E. . Dari suatu barisan aritmetika diketahui suku ke-5 adalah dan suku ke- adalah 57. Suku ke-5 barisan ini adalah. A. 6 B. 68 7 D. 74 E. 76. Suku ketiga dan suku keenam barisan geometri berturut-turut adalah

Lebih terperinci

UNIVERSITAS GUNADARMA

UNIVERSITAS GUNADARMA SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

SOAL PREDIKSI XIII. I. Pilihlah jawaban yang paling benar!

SOAL PREDIKSI XIII. I. Pilihlah jawaban yang paling benar! SOAL PREDIKSI XIII I. Pilihlah jawaban yang paling benar! 1. Kiki melakukan perjalanan Surabaya Solo mengendarai sepeda motor dengan kecepatan rata-rata 80 km/jam dalam waktu 2 jam. Jika kecepatannya menjadi

Lebih terperinci

PREDIKSI UN SMA IPS MATEMATIKA 2012

PREDIKSI UN SMA IPS MATEMATIKA 2012 Prediksi Matematika UN SMA IPS 01 PREDIKSI UN SMA IPS MATEMATIKA 01 1. Diketahui dua pernyataan p dan q p : bernilai besar q : bernilai salah Pernyataan majemuk di bawah ini bernilai benar, kecuali. A.

Lebih terperinci

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN adalah... adalah...

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN adalah... adalah... UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN 0. Bentuk sederhana dari A. B. 6 a b 6 6 a b 6 a C. 8 D. b 6 a 9 b 6 a E. 8 b Solusi: [E] a b 0

Lebih terperinci

B. x = C. x = 2 3, x = 2 7, y = 21 dan P (1, 25) D. x = 2 3, x = 2 7, y = 21 dan P (1, 25) E. x = 2 3, x = 2 7, y = 21 dan P ( 1, 25) UN-SMK-TEK-03-09

B. x = C. x = 2 3, x = 2 7, y = 21 dan P (1, 25) D. x = 2 3, x = 2 7, y = 21 dan P (1, 25) E. x = 2 3, x = 2 7, y = 21 dan P ( 1, 25) UN-SMK-TEK-03-09 UN-SMK-TEK-0-0 Skala suatu peta : 00.000. Jika jarak kota A dan kota B pada peta, cm, maka jarak kota A dan kota B sebenarnya 0, km, km, km km.0 km UN-SMK-TEK-0-0 Pada sensus pertanian di suatu desa, dari

Lebih terperinci

TRY OUT KE 1 UJIAN NASIONAL SEKOLAH MENENGAH KEJURUAN (SMK) TAHUN PELAJARAN 2016/2017

TRY OUT KE 1 UJIAN NASIONAL SEKOLAH MENENGAH KEJURUAN (SMK) TAHUN PELAJARAN 2016/2017 TRY OUT KE UJIAN NASIONAL SEKOLAH MENENGAH KEJURUAN (SMK) TAHUN PELAJARAN 6/7 Hari/Tanggal : Kelas Waktu : XII (duabelas) : Menit Petunjuk Umum :. Isikan identitas Anda ke dalam lembar jawaban komputer

Lebih terperinci

UJIAN NASIONAL TAHUN 2009/2010 MATEMATIKA (E-4.2) SMK

UJIAN NASIONAL TAHUN 2009/2010 MATEMATIKA (E-4.2) SMK UJIAN NASIONAL TAHUN 009/00 MATEMATIKA (E-.) SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran (P UTAMA). Konveksi milik Bu Nina mengerjakan

Lebih terperinci

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN adalah... adalah...

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN adalah... adalah... UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN 0. Bentuk sederhana dari 6 A. a b B. 6 6 a b 6 a 8 b 6 9 a b 6 a E. b 8. Bentuk sederhana dari

Lebih terperinci

PEMBAHASAN SOAL UN MATEMATIKA SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran

PEMBAHASAN SOAL UN MATEMATIKA SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran PEMBAHASAN SOAL UN MATEMATIKA SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran TAHUN PELAJARAN 9/ MATEMATIKA PEMBAHAS: UJIAN NASIONAL

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM 2 GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 2010/2011

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM 2 GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 2010/2011 PEMERINTAH KAUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 00/0 Mata Pelajaran : Matematika Satuan Pendidikan : SMA/MA Program : ahasa Hari/ Tanggal

Lebih terperinci

Ujian Nasional Tahun 2003 Matematika

Ujian Nasional Tahun 2003 Matematika Ujian Nasional Tahun 00 Matematika MK-TEK-0-0 Skala suatu peta : 00.000. Jika jarak kota A dan kota B pada peta,5 cm, maka jarak kota A dan kota B sebenarnya 0,5 km,5 km,5 km 5 km.50 km MK-TEK-0-0 Pada

Lebih terperinci

SOLUSI DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 2013/2014

SOLUSI DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 SOLUSI DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 0/0 TES UJI COBA UJIAN NASIONAL SMA/MA MATEMATIKA IPS 7 7.... SOAL B6

Lebih terperinci

adalah. a. 4( ) b. ( ) c. (3 2 6 ) d. ( e. (3 2 6 ) 3. Bentuk sederhana pecahan

adalah. a. 4( ) b. ( ) c. (3 2 6 ) d. ( e. (3 2 6 ) 3. Bentuk sederhana pecahan 1. Himpunan penyelesaian dari pertidaksamaan kuadrat 2x 2-5x + 2 0 adalah. a. { x 2 x 5 } b. { x x atau x 5 } c. { x x 5 } d. { x x atau 5 } e. { x x 2 } 2. Fungsi penawaran dan fungsi permintaan suatu

Lebih terperinci

SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 2012

SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 2012 SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 0. Negasi dari semua siswa rajin belajar untuk menghadapi UN, adalah... A. tidak semua siswa rajin belajar untuk menghadapi UN B. semua siswa

Lebih terperinci

UN SMA IPS 2012 Matematika

UN SMA IPS 2012 Matematika UN SMA IPS 01 Matematika Kode Soal A Doc. Name: UNSMAIPS01MATA Doc. Version : 01-1 halaman 1 01. Ingkaran pernyataan Pada hari Senin siswa SMAN memakai sepatu hitam dan atribut lengkap adalah. Pada hari

Lebih terperinci

Pilihlah salah satu jawaban yang paling tepat, dengan tanda silang ( X ) pada huruf A, B, C, D atau E pada lembar jawaban yang tersedia!

Pilihlah salah satu jawaban yang paling tepat, dengan tanda silang ( X ) pada huruf A, B, C, D atau E pada lembar jawaban yang tersedia! - - Nama : No. Peserta : Pilihlah salah satu jawaban yang paling tepat, dengan tanda silang ( X ) pada huruf A, B, C, D atau E pada lembar jawaban yang tersedia!. Seorang mengendarai mobil dari Solo jam.0

Lebih terperinci

SOAL PREDIKSI XII. I. Pilihlah jawaban yang paling benar!

SOAL PREDIKSI XII. I. Pilihlah jawaban yang paling benar! SOAL PREDIKSI XII I. Pilihlah jawaban yang paling benar! 1. Kiki melakukan perjalanan Surabaya Solo mengendarai sepeda motor dengan kecepatan rata-rata 85 km/jam dalam waktu 7 jam. Jika Dika menempuh jarak

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik DOKUMEN NEGR PEMERINTH KBUPTEN GRESIK DINS PENDIDIKN SM NEGERI SIDYU Jl. Pahlawan No. Telp./Fax. - Sidayu Gresik UJIN SEKOLH THUN PELJRN / Mata Pelajaran : Matematika Satuan Pendidikan : SM Program : IPS

Lebih terperinci

UTAMA SMA/MA PROGRAM STUDI IPS MATEMATIKA. Soal ini merupakan hasil ketik ulang tanpa merubah isi konten

UTAMA SMA/MA PROGRAM STUDI IPS MATEMATIKA. Soal ini merupakan hasil ketik ulang  tanpa merubah isi konten DOKUMEN NEGARA SANGAT RAHASIA Matematika SMA/MA IPS UJIAN NASIONAL TAHUN PELAJARAN 016/017 UTAMA SMA/MA PROGRAM STUDI IPS MATEMATIKA Selasa, 11 April 017 (10.0-1.0) X - m + - : M4TH-LAB BALITBANG Badan

Lebih terperinci

Matematika EBTANAS Tahun 1995

Matematika EBTANAS Tahun 1995 Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Grafik fungsi kuadrat di samping (,) persamaannya y = + + y = + y = + (0,) y = + y = + EBT-SMA-9-0 Akar-akar persamaan kuadrat = 0 adalah dan. Persamaan kuadrat

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.9 Sukoharjo Telp. 0-590 55 TR OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran : MATEMATIKA

Lebih terperinci

Evaluasi Belajar Tahap Akhir Nasional TAHUN 1990 Matematika

Evaluasi Belajar Tahap Akhir Nasional TAHUN 1990 Matematika Evaluasi Belajar Tahap Akhir Nasional TAHUN 0 Matematika EBTANAS-IPS-0-0 x Nilai x R yang memenuhi ( ) = 8 EBTANAS-IPS-0-0 Bentuk sederhana dari + ( + ) 5 ( + 7 + EBTANAS-IPS-0-0 Ordinat titik balik grafik

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM 2 GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 2010/2011

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM 2 GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 2010/2011 PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 00/0 Mata Pelajaran : Matematika Satuan Pendidikan : SMA/MA Program : Bahasa Hari/ Tanggal

Lebih terperinci

6. Jika 2 log 3 = a dan 3 log 5 = b, maka 15 log 20 = a. 2. c. a. e

6. Jika 2 log 3 = a dan 3 log 5 = b, maka 15 log 20 = a. 2. c. a. e Page of. Negasi dari pernyataan Matematika tidak mengasyikkan atau adalah a. Matematika mengasyikkan atau Matematika mengasikkan atau tidak c. Matematika mengasikkan dan tidak Matematika tidak mengasikkan

Lebih terperinci

UN SMA IPS 2010 Matematika

UN SMA IPS 2010 Matematika UN SMA IPS 00 Matematika Kode Soal Doc. Name: UNSMAIPS00MAT999 Doc. Version : 04-0 halaman 0. Nilai kebenaran yang tepat untuk pernyataan ( p q) ~ p, Pada table berikut adalah... p q (p q) ~ p B B... B

Lebih terperinci

SOAL TRY OUT UN MATEMATIKA 2013 PROGRAM IPS. Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!

SOAL TRY OUT UN MATEMATIKA 2013 PROGRAM IPS. Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar! SOAL TRY OUT UN MATEMATIKA 0 PROGRAM IPS Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Ingkaran dari pernyataan Diana lulus ujian nasional dan kuliah di luar negeri

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM 2 GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 2010/2011

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM 2 GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 2010/2011 PMRINTAH KABUPATN GRSIK DINAS PNDIDIKAN JL. ARIF RAHMAN HAKIM GRSIK TRY OUT UJIAN NASIONAL Tahun Pelajaran / Mata Pelajaran : Matematika Satuan Pendidikan : SMA/MA Program : Bahasa Hari/ Tanggal : Selasa,

Lebih terperinci

UN SMA 2015 Matematika IPS

UN SMA 2015 Matematika IPS UN SMA 05 Matematika IPS Kode Soal Doc. Name: UNSMA05MATIPS999 Doc. Version : 05- halaman 0. Negasi dari pernyataan Matematika tidak mengasyikkan atau membosankan Matematika mengasyikkan atau membosankan.

Lebih terperinci

Pilihlah jawaban yang paling tepat. 1. Ingkaran dari pernyataan: (~ q r) adalah... A. ~ ~ (~ q r) B. ( q ~ r ) C. ( ~ q) ~ r D. ~ (~ q r) E.

Pilihlah jawaban yang paling tepat. 1. Ingkaran dari pernyataan: (~ q r) adalah... A. ~ ~ (~ q r) B. ( q ~ r ) C. ( ~ q) ~ r D. ~ (~ q r) E. Pilihlah jawaban yang paling tepat. Ingkaran dari pernyataan: (~ q r) adalah... A. ~ ~ (~ q r) B. ( q ~ r ) C. ( ~ q) ~ r D. ~ (~ q r) E. ( q ~ r) Jawaban : B Ingkaran p ( q r ) adalah (p ( q r )) p (q

Lebih terperinci

UN SMA 2016 Matematika IPS

UN SMA 2016 Matematika IPS UN SMA 06 Matematika IPS Soal Doc. Name: UNSMA06MATIPS999 Doc. Version : 06-0 halaman 0. Diketahui a 0, b 0, dan c 0. Bentuk 3 4 8a b c sederhana dari 5 6 adalah... 4a b c a b c 4 3 8 6 4 4a b c 4 c 4a

Lebih terperinci

Antiremed Kelas 10 Matematika

Antiremed Kelas 10 Matematika Antiremed Kelas 10 Matematika Persiapan UAS -1 Doc. Name: K1AR10MATWJB01UAS doc. Version : 015-04 halaman 1 01. Nilai dari a 1 a 6 adalah. a 8 a 9 a 10 a 11 a 1 0. 8 60. ( B) 6 5 6 5 5 A, B, C, dan D salah

Lebih terperinci

UTAMA SMA/MA PROGRAM STUDI IPS MATEMATIKA. Soal ini merupakan hasil ketik ulang tanpa merubah isi konten

UTAMA SMA/MA PROGRAM STUDI IPS MATEMATIKA. Soal ini merupakan hasil ketik ulang  tanpa merubah isi konten DOKUMEN M4THLAB www.m4th-lab.net UJIAN NASIONAL TAHUN PELAJARAN 016/017 UTAMA SMA/MA PROGRAM STUDI IPS MATEMATIKA Selasa, 11 April 017 (10.0-1.0) X - m + - : M4TH-LAB BALITBANG Badan Standar Nasional Pendidikan

Lebih terperinci

BANK SOAL UN SMK KELOMPOK TEKNOLOGI Jika maka adalah... A. B. C. D. E.

BANK SOAL UN SMK KELOMPOK TEKNOLOGI Jika maka adalah... A. B. C. D. E. 1 1. Jika maka 2. Jika maka 3. Jika maka 4. Bentuk sederhana dari 5. Bentuk sederhana dari 6. Bentuk sederhana dari 2 7. Bentuk sederhana dari 8. Bentuk sederhana dari ( ) ( ) ( ) ( ) 9. Bentuk sederhana

Lebih terperinci

TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2016/2017

TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2016/2017 TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2016/2017 LEMBAR SOAL Mata Pelajaran : MATEMATIKA Satuan Pendidikan : SMA/MA Program : BAHASA Hari, Tanggal : Sabtu, 18 Februari 2017 Waktu : 120 Menit PETUNJUK UMUM

Lebih terperinci

PREDIKSI UN MATEMATIKA PAKET - 3

PREDIKSI UN MATEMATIKA PAKET - 3 01. Dalam sederhana dari (p2 q r 2 ) 2 A. p10 r q B. p10 r q C. p 10 r q D. p10 r 2 q E. p 10 r q (p 2 q r) 02. Nilai dari ( 1 ) 2. (2 2 + 2 2 )=... A. 1.02 B. 2.1 C. 2.2 D..2 E..6 0. Bentuk sederhana

Lebih terperinci

2 sama dengan... 5, x R adalah.

2 sama dengan... 5, x R adalah. . Menjelang hari raya, sebuah toko M memberikan diskon % untuk setiap pembelian barang. Jika Rini membayar pada kasir sebesar Rp 7.00,00, maka harga barang yang dibeli Rini sebelum dikenakan diskon adalah...

Lebih terperinci

UN SMA 2014 Matematika IPS

UN SMA 2014 Matematika IPS UN SMA 04 Matematika IPS Kode Soal Doc. Name: UNSMA04MATIPS999 Doc. Version : 0-0 halaman 0. Negasi dari pernyataan Semua bilangan rasional adalah bilangan real dan prima adalah... Tidak ada bilangan rasional

Lebih terperinci

4. Jika dari 100 data diperoleh data terendah 15 dan data tertinggi 84, maka banyaknya kelas adalah. A. 5 B. 6 C. 7 D. 8 E. 9

4. Jika dari 100 data diperoleh data terendah 15 dan data tertinggi 84, maka banyaknya kelas adalah. A. 5 B. 6 C. 7 D. 8 E. 9 1. Data yang berupa kumpulan angka disebut dengan data. A. Kelompok B. Tunggal C. Kuantitatif D. Kualitatif E. Acak 2. Di bawah ini yang bukan merupakan data kuantitatif adalah A. Suhu badan pasien B.

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM 2 GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 2010/2011

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM 2 GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 2010/2011 PEMERINTAH KABUPATEN GRESIK INAS PENIIKAN JL. ARIF RAHMAN HAKIM GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 00/0 Mata Pelajaran : Matematika Satuan Pendidikan : SMA/MA Program : Bahasa Hari/ Tanggal

Lebih terperinci

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK BISNIS MANAGEMEN PAKET II B KOTA SURABAYA

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK BISNIS MANAGEMEN PAKET II B KOTA SURABAYA LATIHAN UJIAN NASIONAL TAHUN PELAJARAN 00900 SMK NEGERI DAN SWASTA KOTA SURABAYA MATEMATIKA KELOMPOK BISNIS MANAGEMEN PAKET II B MGMP MATEMATIKA SMK NEGERI / SWASTA KOTA SURABAYA M A T E M A T I K A S

Lebih terperinci

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPS/Keagamaan

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPS/Keagamaan Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 00/0 Program Studi IPS/Keagamaan. Himpunan penyelesaian pertidaksamaan -x +x 5 0 adalah... A. { x x -5 atau x -, x R } D. { x x - atau

Lebih terperinci

B B S S B S S B S S B B S S S B B S B S S S S B B S B B

B B S S B S S B S S B B S S S B B S B S S S S B B S B B 1. Ingkaran pertanyaan: Petani panen beras atau harga beras murah. A. Petani panen beras dan harga beras mahal. B. Petani panen beras dan harga beras murah. C. Petani tidak panen beras dan harga beras

Lebih terperinci

Matematika EBTANAS Tahun 2003

Matematika EBTANAS Tahun 2003 Matematika EBTANAS Tahun EBT-SMA-- Persamaan kuadrat (k + )x (k ) x + k = mempunyai akar-akar nyata dan sama. Jumlah kedua akar persamaan tersebut adalah EBT-SMA-- Jika akar-akar persamaan kuadrat x +

Lebih terperinci

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM MATA PELAJARAN Mata Pelajaran Jenjang Kelompok : Matematika : SMK : Teknologi, Kesehatan dan Pertanian WAKTU PELAKSANAAN Hari : Sabtu Tanggal : 9 Januari 0 Jam : 07.00 09.00 PETUNJUK UMUM Isikan identitas

Lebih terperinci

UN SMA 2017 Matematika IPS

UN SMA 2017 Matematika IPS UN SMA 017 Matematika IPS Soal UN SMA 017 - Matematika IPS Doc. Name: UNSMA017MATIPS999 Version: 017-10 Halaman 1 01. Persamaan grafik fungsi kuadrat pada gambar berikut adalah... X 8 0 4 Y (A) y = x -

Lebih terperinci

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3 Pilihlah jawaban yang paling tepat!. Ordo dari matriks A = 7 A. x B. x C. x D. x x adalah.. Berikut ini yang termasuk Matriks identitas adalah... A. 7 B. 7 C. D. a b. Diketahui A = dan B = b A. B. C. D..

Lebih terperinci

TAHUN PELAJARAN 2003/2004 SMK. Matematika Teknik Pertanian (E3-2) PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul

TAHUN PELAJARAN 2003/2004 SMK. Matematika Teknik Pertanian (E3-2) PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul 0-04 E--P0-0-4 DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/004 SMK Matematika Teknik Pertanian (E-) PAKET (UTAMA) SELASA, MEI 004 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hak

Lebih terperinci

Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Akt, Pjl Hari/Tanggal : S Prog. Keahlian : Akt, Pjl W a k t u : S

Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Akt, Pjl Hari/Tanggal : S Prog. Keahlian : Akt, Pjl W a k t u : S Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Akt, Pjl Hari/Tanggal : S Prog. Keahlian : Akt, Pjl W a k t u : S PETUNJUK UMUM :. Isikan identitas Anda ke dalam Lembar Jawaban Komputer yang

Lebih terperinci