BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA"

Transkripsi

1 BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA Masalah 1.1 Sekelompok tani transmigran mendapatkan 10 hektar tanah yang dapat ditanami padi, jagung, dan palawija lain. Karena keterbatasan sumber daya petani harus menentukan berapa bagian yang harus ditanami padi dan berapa bagian yang harus ditanami jagung, sedangkan palawija lainnya ternyata tidak menguntungkan. Untuk suatu masa tanam, tenaga yang tersedia hanya 1550 jam/orang, pupuk juga terbatas, tak lebih dari 460 kilogram, sedangkan air dan sumber daya lainnya cukup tersedia. Diketahui pula bahwa untuk menghasilkan 1 kuintal padi diperlukan 10 jam-orang tenaga dan 5 kilogram pupuk, dan untuk 1 kuintal jagung diperlukan 8 jam/orang tenaga dan 3 kilogram pupuk. Kondisi tanah memungkinkan menghasilkan 50 kuintal padi per hektar atau 20 kuintal jagung per hektar. Pendapatan petani dari 1 kuintal padi adalah Rp sedang dari 1 kuintal jagung Rp , dan dianggap bahwa semua hasil tanamnya selalu habis terjual. Masalah bagi petani ialah bagaimanakah rencana produksi yang memaksimumkan pendapatan total? Artinya berapa hektar tanah harus ditanami padi dan berapa hektar tanah harus ditanami jagung. Perumusan Masalah Berdasarkan masalah di atas, diketahui bahwa setiap 1 hektar menghasilkan 50 kuintal padi. Artinya, untuk 1 kuintal padi diperlukan 0,02 hektar. Demikian juga, untuk 1 kuintal jagung diperlukan 0,05 hektar. Perhatikan tabel di bawah ini! Alternatif Penyelesaian Besarnya pendapatan kelompok petani dipengaruhi banyak padi dan jagung yang diproduksi. Tentunya, besar pendapatan tersebut merupakan tujuan kelompok tani, tetapi harus mempertimbangkan keterbatasan (luas tanah, tenaga dan pupuk). Misalkan : banyak kuintal padi yang diproduksi oleh kelompok tani banyak kuintal jagung yang diproduksi oleh kelompok tani. Untuk memperoleh pendapatan terbesar, harus dipikirkan keterbatasan berikut: a. Banyak hektar tanah yang diperlukan untuk kuintal padi dan untuk kuintal jagung tidak boleh melebihi 10 hektar. b. Untuk ketersediaan waktu (jam-orang), tiap-tiap padi dan jagung hanya tersedia waktu tidak lebih dari 1550 jam-orang. c. Jumlah pupuk yang tersedia untuk padi dan jagung tidak lebih dari 460 Kg. d. Dengan keterbatasan (a), (b), dan (c), petani ingin mengharapkan pendapatan Rp ,00 dan Rp ,00 untuk setiap kuintal padi dan jagung.

2 Masalah kelompok tani transmigran dapat diubah bentuk menjadi suatu sistem pertidaksamaan linear dua variabel. Hal ini merupakan pengembangan konsep pertidaksamaan linear satu variabel yang telah kamu pelajari pada Kelas X. Adapun sistem pertidaksamaan linear yang dimaksud adalah sebagai berikut: { { Karena luas tanah/lahan, banyak waktu, dan banyak pupuk tidak mungkin negatif, kendala ini sebagai kendala nonnegatif, yaitu: } Untuk pendapatan tentu dimaksimumkan dan sebaliknya untuk biaya tentu diminimumkan. Untuk masalah ini, Petani hendak memaksimumkan pendapatan, melalui memperbanyak kuintal padi dan jagung yang dijual berturutturut Rp dan Rp Rumusan ini disebut sebagai fungi tujuan/sasaran; sebut. Secara matematik dituliskan: Maksimumkan: (dalam satuan ribuan rupiah). Masalah 1.2 Suatu pabrik farmasi menghasilkan dua jenis kapsul obat flu yang diberi nama Fluin dan Fluon. Tiap-tiap kapsul memuat tiga unsur (ingredient) utama dengan kadar kandungannya tertera dalam Tabel di bawah ini! Unsur Banyak grain perkapsul Fluin Fluon Aspirin 2 1 Bikorbonat 5 8 Kodein 1 6 Menurut dokter, seseorang yang sakit flu akan sembuh jika dalam tiga hari (secara rata-rata) minimal menelan 12 grain aspirin, 74 grain bikarbonat dan 24 grain kodein. Jika harga Fluin Rp 500,00 dan Fluon Rp 600,00 per kapsul, bagaimana rencana (program) pembelian seorang pasien flu (artinya berapa kapsul Fluin dan berapa kapsul Fluon harus dibeli) supaya cukup untuk menyembuhkannya dan meminimumkan ongkos pembelian total. Alternatif Penyelesaian Data pada masalah di atas, dapat disajikan seperti tabel berikut ini. Unsur Banyak grain perkapsul Fluin Fluon Batas minimum Aspirin Bikorbonat Kodein Harga

3 Misalkan, : banyak kapsul Fluin yang dibeli. : banyak kapsul Fluon yang dibeli. Selanjutnya, kita mencari yang memenuhi: { Minimumkan: Masalah 1.3 Setiap enam bulan, seorang pemilik usaha tanaman hias memesan tanaman hias dari agen besar; Aglaonema (A) dan Sansevieria (S) yang berturut-turut memberi laba sebesar Rp ,00 dan Rp ,00 per unit yang terjual. Dibutuhkan waktu yang cukup lama untuk menghasilkan satu tanaman hias dengan kualitas super. Oleh karena itu agen besar memiliki aturan bahwa setiap pemesanan tanaman hias A paling sedikit 20% dari seluruh pesanan tanaman hias lain. Pemilik usaha tanaman hias memiliki lahan yang hanya cukup untuk 10 tanaman hias A saja atau 15 tanaman hias S. Dalam keadaan demikian, berapa banyak tanaman hias A dan S sebaiknya dipesan (per semester) jika diketahui bahwa pada akhir semester tanaman hias lama pasti habis terjual dan pemilik usaha tersebut ingin memaksimumkan laba total? Alternatif Penyelesaian Misalkan, : banyak tanaman hias A yang dipesan banyak tanaman hias S yang dipesan. Pernyataan Oleh karena itu agen besar memiliki aturan bahwa setiap pemesanan tanaman hias A paling sedikit 20% dari seluruh pesanan tanaman hias lain, dapat dituliskan sebagai berikut. Untuk memperoleh laba, pemilik harus mempertimbangan keterbatasan lahan sebagai daya tampung untuk tiap-tiap tanaman hias. Misal, : luas kebun tanaman hias, : luas kebun yang diperlukan untuk 1 tanaman hias A, : luas kebun yang diperlukan untuk 1 tanaman hias S. Sesuai keterangan pada masalah di atas, luas kebun hanya dapat menampung 10 tanaman hias A atau 15 tanaman hias S. Pernyataan ini, dimodelkan sebagai berikut: Tentu luas kebun yang diperlukan untuk banyak tananam hias A dan banyak tanaman hias S tidak melebihi luas kebun yang ada. Oleh karena itu, dapat dituliskan; ( ) ( )

4 Selanjutnya, pemilik kebun mengharapkan laba sebesar Rp ,00 dari 1 tanaman hias A yang terjual dan Rp ,00 dari 1 tanaman hias S yang terjual. Oleh karena itu, untuk sebanyak tanaman hias A yang terjual dan sebanyak tanaman hias S yang terjual, dapat dituliskan sebagai laba total pemilik kebun; yaitu: (dalam juta rupiah). Jadi secara lengkap, model matematika masalah program linear pemilik kebun tanaman hias dinyatakan sebagai berikut. { Maksimumkan: (dalam juta rupiah). Persamaan (1), (2) dan (3) merupakan model matematika masalah program linear, secara umum program linear dapat di definisikan sebagai berikut: Definisi 1.1 Masalah program linear adalah menentukan nilai x 1 x 2 x 3 x n yang memaksimumkan (atau meminimumkan) fungsi sasaran/tujuan, Z x 1 x 2 x 3 x n C 1 x 1 C 3 x 2 C 3 x 3 C n x n dengan kendala/keterbatasan: a 11 x 1 a 12 x 2 a 13 x 3 a 1n x n b 1 a 21 x 1 a 22 x 2 a 23 x 3 a 2n x n b 2 a m1 x 1 a m2 x 2 a m3 x 3 a mn x n b m x 1 x 2 x 3 x n 2. PROGRAM LINEAR DENGAN METODE GRAFIK Masalah program linear dua variabel dapat diselesaikan melalui grafik sistem kendala dari masalah tersebut. Oleh karena itu, langkah awal dalam menyelesaikan masalah tersebut, yaitu dengan menggambarkan sistem pertidaksamaan yang terbentuk pada keterbatasan masalah program linear. Cara menggambarkan daerah penyelesaian suatu pertidaksamaan linear sudah kita pelajari pada Kelas X. Catatan Dalam menggambar Grafik Daerah Penyelesaian sistem pertidaksamaan linear, kita bisa mengarsir daerah yang tidak memenuhi persamaan sehingga Daerah Bersih merupakan daerah penyelesaian pertidaksamaan atau sebaliknya. Contoh. 1.1 Tentukan daerah penyelesaian dari a. c. b. d.

5 Alternative Penyelesaian: a. mempunyai persamaan. Daerah penyelesaian adalah daerah di sebelah kanan garis karena yang diminta adalah untuk. Daerah penyelesaian ditunjukkan pada gambar 1.a. b. mempunyai persamaan x = 2 dan x = 4. Daerah penyelesaian adalah daerah di antara kedua garis tersebut. Daerah penyelesaian ditunjukkan pada gambar 1.b. c. Untuk mencari titik potong grafik dengan sumbu x dan sumbu y dicari dengan cara membuat tabel berikut ini. Dengan demikian titik potong dengan sumbu x dan y adalah (2, 0) dan (0, 4). Ambillah titik P(0, 0) sebagai titik uji pada dan diperoleh Daerah yang terdapat titik P merupakan penyelesaian (daerah terarsir) yang ditunjukkan pada gambar di samping. d. 3y = 6 Untuk mencari titik potong grafik dengan sumbu x dan sumbu y dicari dengan cara membuat tabel berikut ini: Dengan demikian titik potong dengan sumbu x dan y adalah (0, -2) dan (3, 0). Ambillah titik P(0,0) sebagai titik uji pada, & diperoleh. Daerah yang terdapat titik P bukan merupakan daerah penyelesaian yang ditunjukkan pada gambar disamping.

6 Contoh 1.2 Tentukan himpunan penyelesaian dari a. dan b. dan. c., dan d. dan Jawab: a. dan Untuk mempunyai persamaan atau pada sumbu y. Daerah penyelesaiannya di sebelah kanan garis. Untuk mempunyai persamaan atau pada sumbu x. Daerah penyelesaiannya di sebelah atas garis. Untuk mempunyai persamaan dan titik potong grafik dengan sumbu koordinat dicari seperti berikut ini. b. dan. Untuk mempunyai persamaan. Daerah penyelesaiannya di sebelah kanan garis. Untuk mempunyai persamaan. Daerah penyelesaiannya di sebelah atas garis. Untuk mempunyai persamaan dan titik potong grafik dengan sumbu koordinat dicari seperti berikut ini. Dengan cara yang sama kita dapatkan gambar daerah penyelesaian untuk : c. d.

7 Contoh 1.3 Gambarkan daerah penyelesaian sistem pertidaksamaan berikut ini. Alternatif Penyelesaian Untuk menggambarkan daerah penyelesaian setiap pertidaksamaan pada sistem di atas, dapat dimulai dengan menggambar satu per satu pertidaksamaan yg tersaji. Gambar. 1 Gambar. 2 Gambar 1 menunjukkan Daerah penyelesaian adalah Daerah Bersih, sedangkan pada gambar 2 daerah penyelesaian ditunjukkan oleh daerah terarsir. Untuk selanjutnya gambar grafik persamaan linear atau sistem pertidaksamaan linear pada modul ini akan ditunjukkan dengan Daerah Terarsir. Contoh 1.4 Tentukan system pertidaksamaan dari daerah yang diarsir pada gambar di samping! Jawab: Langkah pertama adalah mencari persamaan garis yang melalui titik-titik pada gambar dengan menggunakan rumus persamaan garis yang melalui titik (x 1, y 1 ) dan (x 2, y 2 ) yaitu: Misalkan g 1 adalah garis yang melalui titik (6, 0) dan (0, 6), maka g 1 adalah Misalkan g 2 adalah garis yang melalui titik (0, 0) dan (3, 3), maka g 2 adalah Daerah yang diarsir terletak pada sebelah kanan sumbu y, maka sebelah atas sumbu x, maka sebelah kiri bawah garis g 1 maka sebelah kanan bawah garis g 2, maka. Jadi sistem pertidaksamaan dari daerah yg diarsir :. Untuk mencari persamaan garis yang memotong sumbu x dan sumbu y di titik (a, 0) dan (0, b) dapat digunakan rumus :

8 Uji Kompetensi 1.1 Buatlah model matematika dari permasalahan di bawah ini, kemudian gambarlah Grafiknya! 1. PT Lasin adalah suatu pengembang perumahan di daerah pemukiman baru. PT tersebut memiliki tanah seluas meter persegi berencana akan membangun dua tipe rumah, yaitu tipe mawar dengan luas 130 meter persegi dan tipe melati dengan luas 90 m 2. Jumlah rumah yang akan dibangun tidak lebih 150 unit. 2. Seorang atlet diwajibkan makan dua jenis tablet setiap hari. Tablet pertama mengandung 5 unit vitamin A dan 3 unit vitamin B, sedangkan tablet kedua mengandung 10 unit vitamin A dan 1 unit vitamin B. Dalam satu hari, atlet itu memerlukan 20 unit vitamin A dan 5 unit vitamin B. 3. Dengan persediaan kain polos 20 meter dan kain bergaris 10 meter, seorang penjahit akan membuat 2 model pakaian jadi. Model I memerlukan 1 meter kain polos dan 1,5 meter kain bergaris. Model II memerlukan 2 meter kain polos dan 0.5 meter kain bergaris. 4. Sebuah toko bunga menjual 2 macam rangkaian bunga. Rangkaian I memerlukan 10 tangkai bunga mawar dan 15 tangkai bunga anyelir, Rangkaian II memerlukan 20 tankai bunga mawar dan 5 tangkai bunga anyelir. Persediaan bunga mawar dan bunga anyelir masing-masing 200 tangkai dan 100 tangkai. 5. Seorang pengusaha ingin menyewakan rumahnya kepada 640 orang mahasiswa. Pengusaha tersebut membangun rumah tidak lebih dari 120 rumah yang terdiri atas tipe I (untuk 4 orang) disewakan Rp ,00/bulan dan tipe II (untuk 6 orang) disewakan Rp ,00/bulan. 6. Tentukan himpunan penyelesaian dari sistem pertidaksamaan di bawah ini. a. b. c. d. 7. Tentukan sistem pertidaksamaan dari himpunan penyelesaian yang disajikan dalam gambar (daerah diarsir) di bawah ini.

9 3. FUNGSI OBJEKTIF DAN NILAI OPTIMUM Definisi 1.2 (Daerah Layak/Daerah Penyelesaian/Daerah Optimum) Daerah fisibel atau Daerah Penyelesaian Masalah Program Linear merupakan himpunan semua titik (x, y) yang memenuhi kendala suatu masalah program linear. Definisi 1.3 Fungsi sasaran/tujuan merupakan atau fungsi objektif suatu rumusan fungsi yang memenuhi semua keterbatasan pada suatu masalah program linear. Fungsi sasaran/tujuan merupakan fungsi linear yang terkait dengan setiap nilai variabel dalam semua kendala program linear. Definisi 1.4 Garis selidik adalah grafik persamaan fungsi sasaran/tujuan yang digunakan untuk menentukan solusi optimum (maksimum atau minimum) suatu masalah program linear. Contoh. 1.5 Perhatikan sistem pertidaksamaan yang kita peroleh dari masalah 1.1 Kita akan menentukan banyak hektar tanah yang seharusnya ditanami padi dan jagung agar pendapatan kelompok tani tersebut maksimum. { } Dengan Fungsi Tujuan, Maksimumkan: (dalam ribuan rupiah). Alternatif Penyelesaian Langkah pertama, kita menentukan daerah penyelesaian yang memenuhi sistem Mari cermati gambar di bawah ini Selanjutnya kita akan memilih dua titik yang terdapat di daerah penyelesaian untuk membantu menentukan arah pergeseran garis selidik (dalam ribuan rupiah).

10 Misal, titik (20,20), sehingga diperoleh persamaan garis. Sedangkan untuk titik (50, 100), diperoleh persamaan garis. Untuk mendapatkan nilai maksimum atau minimum dari suatu fungsi sasaran kalian dapat memilih titik yang terletak pada perpotongan dua garis yang membatasi Daerah Penyelesaian. Perhatikan gambar, titik potong yang membatasi Daerah penyelesaian adalah (92,0), (0,153.3) dan (0,0). Substitusikan kedua titik tersebut pada persamaan garis selidik Untuk (92,0) di peroleh Untuk (0,153.3) di peroleh Untuk (0,0) di peroleh (Nilai Maksimum) Contoh 1.3 Perhatikan sistem pertidaksamaan yang kita peroleh dari masalah 1.2 { Dengan Fungsi Tujuan, Minimumkan: Alternatif Penyelesaian Perhatikan gambar di bawah ini Selanjutnya, akan ditentukan nilai dan yang terdapat di daerah penyelesaian yang menjadikan nilai fungsi minimum. Perhatikan Gambar, Daerah penyelesaian dibatasi oleh titik (24,0), (0,12), Titik A dan Titik B. Untuk menentukan koordinat titik A dan titik B kita gunakan Sistem Persamaan Linear dua Variabel yang sudah kita pelajari di kelas X. Koordinat titik A merupakan titik potong antara persamaan dan dengan menggunakan eliminasi kita dapat nilai dan yang memenuhi yaitu (2,8)

11 Koordinat titik B merupakan titik potong antara persamaan dan dengan menggunakan eliminasi kita dapat nilai dan yang memenuhi yaitu (11.45,2.09) dibulatkan ke (12,2) Untuk titik (0,12) diperoleh Untuk titik (2,8) diperoleh (Nilai Minimum) Untuk titik (12,2) diperoleh Untuk titik (24,0) diperoleh Uji Kompetensi Tentukan nilai x dan y yang memberikan nilai optimum serta nilai maksimum atau minimum dari bentuk objektif tersebut. a. ; bentuk objektif. b. ; bentuk objektif. c. bentuk objektif. d. ; bentuk objektif. e. ; bentuk objektif. 2. Pak Benni, seorang penjaja buah-buahan yang menggunakan gerobak menjual apel dan pisang. Harga pembelian apel Rp ,-tiap kilogram dan pisang Rp 8.000,00,-tiap kilogram. Beliau hanya memiliki modal Rp ,00, sedangkan muatan gerobak tidak lebih dari 450 kilogram. Padahal keuntungan tiap kilogram apel 2 kali keuntungan tiap kilogram pisang. 3. Pesawat penumpang mempunyai tempat duduk 48 kursi. Setiap penumpang kelas utama boleh membawa bagasi maksimum 60 kilogram sedangkan kelas ekonomi maksimum 20 kg. Pesawat hanya dapat membawa bagasi maksimum 1440 kg. Harga tiket kelas utama Rp ,00 dan kelas ekonomi Rp ,00. Supaya pendapatan dari penjualan tiket pada saat pesawat penuh mencapai maksimum, tentukan jumlah tempat duduk kelas utama. 4. Suatu jenis roti membutuhkan 150 gram tepung dan 50 gram mentega, sedangkan jenis yang lain membutuhkan 75 gram tepung dan 75 gram mentega. Bahan yang tersedia adalah 26,25 kg tepung dan 16,25 kg metega. Keuntungan yang diperoleh dari hasil penjualan roti jenis pertama dan kedua masing-masing Rp 500,00 dan Rp 600,00. Tentukan tiap-tiap jenis roti yang harus dibuat supaya didapat hasil keuntungan yang maksimum. 5. Seorang pemborong merencanakan membangun 2 tipe rumah dengan ukuran T.50 dan T.70. Untuk itu, ia meminta uang muka masing-masing 1 juta untuk rumah T.50 dan 2 juta untuk T.70 dan ia mengharapkan uang muka yang masuk paling sedikit 250 juta rupiah dari paling sedikit 150 buah rumah yang hendak dibangunnya. Biaya pembuatan tiap rumah adalah 50 juta untuk T.50 dan 75 juta untuk T.70. Tentukan biaya minimal yang harus disediakan untuk membangun rumahrumah tersebut.

12 SOAL LATIHAN 1. Harga 1 kg pupuk jenis A Rp 4.000,00, sedangkan harga 1 kg pupuk jenis B Rp 2.000,00. Seorang petani mempunyai modal Rp ,00 untuk membeli pupuk. Jika gudang beliau hanya dapat menampung 500 kg pupuk (misal pupuk A = x dan pupuk B = y), maka model matematika dari permasalahan di atas adalah. A. x y 500, y 400, x 0, y 0 B. x y 500, y 400, x 0, y 0 C. x y 500, y 400, x 0, y 0 D. x y 500, y 400, x 0, y 0 E. x y 500, y 400, x 0, y Suatu tempat parkir luasnya 400 m. Sebuah bus memerlukan tempat parkir seluas 20 m, 2 sedangkan sebuah sedan memerlukan tempat parkir seluas 10 m. Tempat parkir tersebut tidak dapat menampung lebih dari 30 kendaraan. Jika x dan y berturut-turut menyatakan banyaknya bus dan sedan yang diparkir, maka model matematika dari persoalan tersebut adalah... A. y 40, x y 30, x 0, y 0 B. y 40, x y 30, x 0, y 0 C. y 40, x y 30, x 0, y 0 D. y 40, x y 30, x 0, y 0 E. x 2y 40, x y 30, x 0, y 0 3. Daerah yang diarsir pada gambar di samping ini y merupakan penyelesaian dari pertidaksamaan. A. 12, x y 5, x 0, y 0 (0,5) B. 12, x y 5, x 0, y 0 C. 12, x y 5, x 0, y 0 D. 12, x y 5, x 0, y 0 (0,2) E. 12, x y 5, x 0, y 0 (5,0) (6,0) x y 4. Sistem pertidaksamaan yang memenuhi daerah yang diarsir pada grafik di bawah ini adalah. A. x y 10, y 12, 5y 20, x 0, y 0 B. x y 10, y 12, 5y 20, x 0, y 0 C. x y 10, y 12, 5y 20, x 0, y 0 D. x y 10, x 2y 12, 5x 2y 20, x 0, y 0 E. x y 10, x 2y 12, 5x 2y 20, x 0, y 0 5. y Sistem pertidaksamaan linier yang memenuhi daerah penyelesaian (daerah yang diarsir) pada grafik di bawah ini adalah. 5 A. 5x 30, x y 1, x 4, y 0 B. 5x 30, x y 1, x 4, y 0 C. 5x 30, x y 1, x 4, y 0 D. 5x 30, x y 1, x 4, y 0 x 1 E. 5x 30, x y 1, x 4, y x

13 6. Seorang penjahit mempunyai persediaan kain putih 10 m dan kain berwarna 15 m. Ia ingin membuat dua model pakaian, yaitu pakaian model I dan model II. Untuk pakaian model I memerlukan 1 m kain putih dan 3 m kain berwana, sedangkan pakaian model II memerlukan 2 m kain putih dan 1 m kain berwarna. Sebuah pakaian model I dijual dengan harga Rp ,00, sedangkan sebuah pakaian model II dijual dengan harga Rp ,00. Keuntungan maksimum yang dapat diperoleh penjahit tersebut apabila semua pakaian yang dibuat terjual habis adalah. A. Rp ,00 D. Rp ,00 B. Rp ,00 E. Rp ,00 C. Rp ,00 7. Seorang penjahit akan membuat dua jenis pakaian. Pakaian jenis I memerlukan 1 m kain polos dan 1,5 m kain bermotif, sedangkan pakaian jenis II memerlukan 2 m kain polos dan 0,5 m kain bermotif. Bahan yang tersedia adalah 30 m kain polos dan 15 m kain bermotif. Penjahit tersebut mendapatkan keuntungan dari sebuah pakaian jenis I sebesar Rp ,00 dan dari sebuah pakaian jenis II sebesar Rp ,00 Keuntungan maksimum yang dapat diperoleh penjahit tersebut adalah. A. Rp ,00 D. Rp ,00 B. Rp ,00 E. Rp ,00 C. Rp ,00 8. Sebuah pesawat terbang komersil memiliki tempat duduk tak lebih dari 30 orang untuk kelas utama dan kelas ekonomi. Setiap penumpang kelas utama hanya boleh membawa barang seberat 90 kg, sedangkan penumpang kelas ekonomi hanya boleh membawa barang seberat 45 kg. Kapasitas barang di bagasi pesawat hanya kg. Harga tiket penumpang kelas utama dan kelas ekonomi berturut-turut adalah Rp ,00 dan Rp ,00. Pendapatan maksimum yang dapat diperoleh perusahaan penerbangan tersebut dari penjualan tiket adalah. A. Rp ,00 D. Rp ,00 B. Rp ,00 E. Rp ,00 C. Rp ,00 9. Nilai maksimum dari fungsi objektif f ( x, y) 3y yang memenuhi sistem pertidaksamaan x 2y 10, x y 7, x 0, y 0, serta x dan y bilangan riil adalah. A. 14 D. 17 B. 15 E. 18 C Diketahui sistem pertidaksamaan 3y 24, x y 10, x 10, dan y 0. Nilai maksimum dari fungsi objektif f ( x, y) x y adalah. A D B E C Pada grafik di bawah ini, daerah yang diarsir merupakan himpunan penyelesaiaan program linier. y Nilai maksimum dari fungsi Z 5y pada x grafik di samping adalah. A. 15 B. 20 C. 25 D. 26 E. 30

14 12. Daerah yang diarsir pada grafik di bawah ini merupakan penyelesaiaan dari suatu sistem pertidaksamaan. Nilai minimum dari fungsi objektif f ( x, y) 7x pada grafik di bawah ini adalah. A. 21 B. 24 C. 26 D. 28 E y Pada grafik di bawah ini, daerah yang diarsir adalah penyelesaiaan dari program linier. Nilai maksimum f ( x, y) 8x 2y adalah. 4 A. 4 B. 8 2 y = C. 9 D x E. 16 Selesaikan permasalahan dibawah ini 1. Gambarlah grafik daerah penyelesaian dari system pertidaksamaan di bawah ini a. b. c. d. e. 2. Tentukan system pertidaksamaan dari grafik y 6 4 (2,2) 3 4 x

15 3. Seorang pedagang kue mempunyai persediaan 9 kg tepung dan 6 kg mentega. Pedagang memproduksi kue jenis isi pisang dan isi keju. Untuk membuat kue jenis isi pisang memerlukan 150 gram tepung dan 50 gram mentega, sedangkan jenis isi keju memerlukan 75 gram tepung dan 75 gram mentega. Apabila harga sebuah kue jenis isi pisang Rp6.000,00 dan isi keju Rp 4.000,00. a. Buatlah model matematika dari permasalahan di atas. b. Tentukan besarnya pengeluaran minimum petani tersebut. 4. Sebuah pabrik memproduksi biskuit yang dikemas dalam bentuk kaleng dengan isi 1 kilogram dan 2 kg. Kapasitas produksi tiap hari tidak lebih dari 120 kaleng. Tiap hari biskuit dengan kemasan 1 kg tidak kurang dari 30 kaleng dan kemasan 2 kg 50 kaleng. Keuntungan dari hasil penjualan Rp5.000,00 per kaleng dengan isi 1 kg dan Rp7.000,00 untuk kemasan isi 2 kg. a. Buatlah model matematika dari permasalahan di atas. b. banyaknya produksi masing-masing jenis agar diperoleh keuntungan maksimum dan berapakah keuntungan maksimumnya? 5. Sebuah rumah sakit untuk merawat pasiennya, setiap hari membutuhkan paling sedikit unit kalori dan unit protein. Setiap kg daging sapi mengandung 500 unit kalori dan 200 unit protein, sedangkan setiap kg ikan segar mengandung 300 unit kalori dan 400 unit protein. Harga per kg daging sapi dan ikan segar masing-masing Rp ,00 dan Rp ,00. a. Buatlah model matematika dari permasalahan di atas. b. Tentukan berapa kg daging sapi dan ikan segar yang harus disediakan rumah sakit supaya mengeluarkan biaya sekecil mungkin. 6. Seorang pemborong mempunyai persediaan cat warna cokelat 100 kaleng dan abuabu 240 kaleng. Pemborong tersebut mendapat tawaran untuk mencat ruang tamu dan ruang tidur di suatu gedung. Setelah dikalkulasi ternyata 1 ruang tamu menghabiskan 1 kaleng cat warna cokelat dan 3 kaleng warna abu-abu. Sedang 1 ruang tidur menghabiskan 2 kaleng cat warna cokelat dan 2 kaleng warna abuabu. Biaya yang ditawarkan pada pemborong setiap ruang tamu Rp ,00 dan tiap ruang tidur Rp ,00. a. Buatlah model matematika dari permasalahan di atas. b. Berapakah pendapatan maksimum yang dapat diterima pemborong? 7. Seorang petani menghadapi suatu masalah sebagai berikut. Agar sehat, setiap sapi harus diberi makanan yang mengandung paling sedikit 27, 21, dan 30 satuan unsur nutrisi jenis P, Q, dan R setiap harinya. Dua jenis makanan I dan makanan II diberikan kepada sapi tersebut. Satu kg jenis makanan I mengandung unsur nutrisi jenis P, Q, dan R masing-masing sebesar 3, 1, dan 1 satuan. Sedangkan satu kg jenis makanan II mengandung unsur nutrisi jenis P, Q, dan R masing-masing sebesar 1, 1, dan 2 satuan. Harga satu kg makanan I dan makanan II adalah Rp ,00 dan Rp ,00. a. Buatlah model matematika dari permasalahan di atas. b. Tentukan besarnya pengeluaran minimum petani tersebut 8. Pengusaha logam membuat logam campuran sebagai berikut. Logam I terdiri atas baja, besi, dan aluminium dengan perbandingan 2 : 2 : 1. Logam II terdiri atas baja, besi, dan aluminium dengan perbandingan 4 : 3 : 3. Sedangkan baja, besi dan aluminium hanya tersedia 128 ton, 120 ton dan 90 ton. Logam I dijual dengan harga Rp ,00 per ton dan logam II dijual dengan harga Rp ,00 per ton. a. Buatlah model matematika dari permasalahan di atas. b. Tentukan berapa ton logam I dan logam II yang harus diproduksi supaya mendapatkan hasil maksimum dan berapakah hasil maksimum tersebut..

Contoh : Gambarlah daerah x + y 0. Jika daerah tersebut dibatasi untuk nilai-nilai x 0, dan y 0, maka diperoleh gambar seperti berikut.

Contoh : Gambarlah daerah x + y 0. Jika daerah tersebut dibatasi untuk nilai-nilai x 0, dan y 0, maka diperoleh gambar seperti berikut. Setelah mempelajari materi pada kompetensi dasar ini, kalian diharapkan dapat: menjelaskan pengertian program linier, menggambar grafik himpunan penyelesaian pertidaksamaan linier, dan menggambar grafik

Lebih terperinci

PROGRAM LINEAR. Bab. Kendala/Keterbatasan (Constraint) Optimum (Maksimum atau minimum) Daerah Layak, Daerah. Penyelesaian Garis Selidik Titik Optimum

PROGRAM LINEAR. Bab. Kendala/Keterbatasan (Constraint) Optimum (Maksimum atau minimum) Daerah Layak, Daerah. Penyelesaian Garis Selidik Titik Optimum Bab 1 PROGRAM LINEAR A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar 1. Memiliki motivasi internal, ke mampuan bekerjasama, konsisten, sikap disiplin, rasa percaya diri, dan sikap toleransi

Lebih terperinci

PROGRAM LINIER. Sumber: Art & Gallery

PROGRAM LINIER. Sumber: Art & Gallery 4 PROGRAM LINIER Sumber: Art & Gallery 114 Matematika X SMK Kelompok: Penjualan dan Akuntansi Standar kompetensi program linier terdiri atas empat kompetensi dasar. Dalam penyajian pada buku ini setiap

Lebih terperinci

SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS

SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS UJI KOMPETENSI 1.1 1. PT Lasin adalah suatu pengembang perumahan di daerah pemukiman baru. PT tersebut memiliki tanah seluas 12.000 meter persegi berencana

Lebih terperinci

Diunduh dari.

Diunduh dari. Hak Cipta 04 pada Kementerian Pendidikan dan Kebudayaan Dilindungi Undang-Undang MILIK NEGARA TIDAK DIPERDAGANGKAN Disklaimer: Buku ini merupakan buku siswa yang dipersiapkan Pemerintah dalam rangka implementasi

Lebih terperinci

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan: -2x + y 0 x - 2y 0 dan x + 2y 8, maka a + b =. (A) 2 (B) 1 (C) 2 (D) (E) 6 02. Nilai maksimum dari

Lebih terperinci

PERTIDAKSAMAAN LINEAR DUA VARIABEL

PERTIDAKSAMAAN LINEAR DUA VARIABEL PRGRAM LINEAR Intisari Teori A. PERTIDAKSAMAAN LINEAR DUA VARIABEL (PtLDV) Suatu pernyataan yang berbentuk a by c 0 (tanda ketidaksamaan dapat diganti dengan, >, atau < ) dengan a dan b tidak semuanya

Lebih terperinci

Xpedia Matematika Dasar

Xpedia Matematika Dasar Xpedia Matematika Dasar Soal Program Linear Doc. Name: XPMATDAS0999 Doc. Version : 01-09 halaman 1 01. Nilai z = 3x + y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan

Lebih terperinci

Program Linear. Bab I

Program Linear. Bab I Program Linear 1 Bab I Program Linear Sumber: Ensiklopedia Pelajar, 1999 Motivasi Setiap pedagang, pengusaha, atau orang yang berkecimpung di bidang usaha pasti menginginkan keuntungan sebanyak-banyaknya

Lebih terperinci

Gambar 1.1 Mesin dan SDM perusahaan

Gambar 1.1 Mesin dan SDM perusahaan BAB I PROGRAM LINEAR Tujuan Pembelajaran Setelah mempelajari materi bab ini, Anda diharapkan dapat: 1. menyelesaikan sistem pertidaksamaan linear dua variabel, 2. merancang model matematika dari masalah

Lebih terperinci

Bab. Program Linear. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id)

Bab. Program Linear. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id) Bab II Program Linear 51 Tujuan Pembelajaran Setelah mempelajari bab ini, diharapkan kalian dapat 1. menjelaskan sistem pertidaksamaan linear dua variabel dan penyelesaiannya; 2. menentukan fungsi tujuan

Lebih terperinci

K13 Revisi Antiremed Kelas 11 Matematika Wajib

K13 Revisi Antiremed Kelas 11 Matematika Wajib K13 Revisi Antiremed Kelas 11 Matematika Wajib Program Linier - Latihan Soal Doc. Name: RK13AR11MATWJB0401 Version : 2016-10 halaman 1 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan

Lebih terperinci

MODUL 1 : PROGRAM LINEAR

MODUL 1 : PROGRAM LINEAR MODUL 1 : PROGRAM LINEAR A. Pendahuluan Dalam kehidupan sehari-hari sering dijumpai aplikasi program linear, seperti pembangunan perumahan atau apartemen, pemakaian obat-obatan dalam penyembuhan pasien,

Lebih terperinci

KELAS XII. IPA SEMESTER I

KELAS XII. IPA SEMESTER I MODUL MATEMATIKA PROGRAM LINEAR y 12.1.2 800 500 400 500 2x + y = 800 KELAS XII. IPA SEMESTER I Oleh : Drs. Pundjul Prijono ( http://vidyagata.wordpress.com ) SMA NEGERI 6 Jalan Mayjen Sungkono 58 Malang

Lebih terperinci

1. Fungsi Objektif z = ax + by

1. Fungsi Objektif z = ax + by Nilai Optimum Suatu Fungsi Objektif, Program Linear, Fungsi Objektif, Cara Menentukan, Contoh Soal, Rumus, Pembahasan, Metode Uji Titik Sudut, Metode Garis Selidik, Matematika Nilai Optimum Suatu Fungsi

Lebih terperinci

a. 16 b. 24 c. 30 d. 36 e Nilai maksimum fungsi sasaran Z = 6x + 8y dari system pertidaksamaan 4x + 2y 60, 2x

a. 16 b. 24 c. 30 d. 36 e Nilai maksimum fungsi sasaran Z = 6x + 8y dari system pertidaksamaan 4x + 2y 60, 2x 1. Luas daerah parkir 1.760 m 2. Luas rata rata untuk mobil kecil 4 m 2 dan mobil besar 20 m 2. Daya tampung maksimum hanya 200 kendaraan, biaya parkir mobil kecil Rp. 1.000,00/jam dan mobil besar Rp.

Lebih terperinci

SOAL-SOAL LATIHAN UN A35

SOAL-SOAL LATIHAN UN A35 SAL-SAL LATIHAN 1. UN A5 01 Penjahit Hidah Pantes akan membuat pakaian wanita dan pria. Untuk membuat pakaian wanita diperlukan bahan bergaris m dan bahan polos 1 m. Untuk membuat pakaian pria diperlukan

Lebih terperinci

KELAS XII. IPA SEMESTER I

KELAS XII. IPA SEMESTER I MODUL MATEMATIKA PROGRAM LINEAR y 12.1-2 800 500 400 500 2x + y = 800 KELAS XII. IPA SEMESTER I Oleh : Drs. Pundjul Prijono ( http://vidyagata.wordpres.com ) 1 M o d u l P r o g r a m L i n e a r Standar

Lebih terperinci

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan Kehidupan Nyata Bisa Disajikan Bahasa Matematika Diperlukan Alat Bantu Model Matematika Menggunakan Persamaan atau pertidaksamaan Matematika Tujuan Penyelesaian masalah Kemampuan yang akan dibahas Menentukan

Lebih terperinci

PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) y 2. (0, a) y 1. (x 1, y 1 ) (b, 0) X. x 1

PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) y 2. (0, a) y 1. (x 1, y 1 ) (b, 0) X. x 1 PROGRAM LINEAR A. Persamaan Garis Lurus y 1 (x 1, y 1 ) y 2 y 1 (x 1, y 1 ) (x 2, y 2 ) a (0, a) 0 x 1 x 1 0 x 2 (b, 0) 0 b a. Persamaan garis yang bergradien m dan melalui titik (x 1, y 1 ) adalah: y

Lebih terperinci

Program Linear - IPA

Program Linear - IPA Program Linear - IPA Tahun 2005 1. Tanah seluas 10.000 m² akan dibangun rumah tipe A dan tipe B. Untuk rumah tipe A diperlukan 100 m² dan tipe B diperlukan 75 m². Jumlah rumah yang dibangun paling banyak

Lebih terperinci

E-learning matematika, GRATIS

E-learning matematika, GRATIS 1 Penusun Editor : Rifan Nadhifi, S.Si. ; Imam Indra Gunawan, S.Si. : Drs. Keto Susanto, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Indra Gunawan, S.Si. A. Sistem Pertidaksamaan Linear Pertidaksamaan linear

Lebih terperinci

PROGRAM LINEAR. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII

PROGRAM LINEAR. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII LA - WB (Lembar Aktivitas Warga Belajar) PROGRAM LINEAR Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII Created By Ita Yuliana 9 Program Linear Kompetensi

Lebih terperinci

Sistem Bilangan 06. UN-SMK-BIS adalah... Jika a = 4, b = 5 maka nilai dari

Sistem Bilangan 06. UN-SMK-BIS adalah... Jika a = 4, b = 5 maka nilai dari Sistem Bilangan 0. UN-SMK-PERT-0-0 Bentuk sederhana dari ( ) =... 7 8 9 8 0. UN-SMK-TEK-0-0 Hasil perkalian dari (a) - (a) =... a a a a a 0. UN-SMK-PERT-0-0 Bentuk sederhana dari 0. UN-SMK-TEK-0-0 6 6.

Lebih terperinci

Soal No. 2 Daerah yang diarsir pada gambar ialah himpunan penyelesaian suatu sistem pertidaksamaan linear.

Soal No. 2 Daerah yang diarsir pada gambar ialah himpunan penyelesaian suatu sistem pertidaksamaan linear. Soal No. 1 Luas daerah parkir 1.760 m 2. Luas rata-rata untuk mobil kecil 4 m 2 dan mobil besar 20 m 2. Daya tampung maksimum hanya 200 kendaraan. Biaya parkir mobil kecil Rp 1.000,00/jam dan mobil besar

Lebih terperinci

SOAL-SOAL LATIHAN PROGRAM LINEAR UJIAN NASIONAL

SOAL-SOAL LATIHAN PROGRAM LINEAR UJIAN NASIONAL SAL-SAL LATIHAN PRGRAM LINEAR UJIAN NASINAL Peserta didik memiliki kemampuan memahami konsep pada topik program linear. Peserta didik memilki kemampuan mengaplikan konsep kalkulus dalam masalah kontekstual

Lebih terperinci

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN I TU URI HANDAY AN TW DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN 2009 Program Linear Matriks GY A Y O M AT E M A T AK A R Shadiq, M.App.Sc. DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL

Lebih terperinci

MODUL 1 : PROGRAM LINEAR

MODUL 1 : PROGRAM LINEAR MODUL 1 : PROGRAM LINEAR E. Kegiatan Belajar 2 PENERAPAN PROGRAM LINEAR 1. K A. Nilai Optimum Fungsi Obyektif Fungsi objektif merupakan fungsi yang menjelaskan tujuan (meminimumkan atau memaksimumkan)

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) A. Kompetensi Inti SMK kelas XI : RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Satuan Pendidikan : SMK Negeri 1 Klaten Mata Pelajaran : Matematika Kelas/Semester : XI/3 Topik : Program Linier Waktu : 10 45 menit

Lebih terperinci

h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m

h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m 1. Dalam permasalahan program linear dikenal dua istilah, yaitu : a. Fungsi Kendala/ pembatas, berupa pertidaksamaan pertidaksamaan linear ax by 0; ax by p; ax by 0; ax by 0 b. Fungsi/ bentuk objektif,

Lebih terperinci

10 Soal dan Pembahasan Permasalahan Program Linear

10 Soal dan Pembahasan Permasalahan Program Linear 10 Soal dan Pembahasan Permasalahan Program Linear 1. BAYU FURNITURE memproduksi 2 jenis produk yaitu meja dan kursi yang harus diproses melalui perakitan dan finishing. Proses perakitan memiliki 60 jam

Lebih terperinci

PROGRAM LINIER PROGRAM LINIER DENGAN GRAFIK PERTEMUAN 2 DEFINISI PROGRAM LINIER (1)

PROGRAM LINIER PROGRAM LINIER DENGAN GRAFIK PERTEMUAN 2 DEFINISI PROGRAM LINIER (1) PROGRAM LINIER PROGRAM LINIER DENGAN GRAFIK PERTEMUAN 2 DEFINISI PROGRAM LINIER (1) Program tidak ada hubungannya dengan program komputer. Program berarti memilih serangkaian tindakan/ perencanaan untuk

Lebih terperinci

B. Fungsi Sasaran dan Kendala dalam Program Linier

B. Fungsi Sasaran dan Kendala dalam Program Linier Peta Konsep Jurnal PetaKonsep Daftar Hadir MateriB SoalLatihan2 Materi Umum PROGRAM LINIER Kelas XI, Semester 3 B. Fungsi Sasaran dan Kendala dalam Program Linier Sistem Pertidaksamaan Linier Fungsi Sasaran

Lebih terperinci

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel.

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. NAMA : KELAS : 1 2 Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. x y PROGRAM LINEAR 2. Tentukan titik potong dengan sumbu X, yaitu saat y = 0. 3. Tentukan

Lebih terperinci

PROGRAM LINIER. Pembahasan: Jika: banyak sepatu jenis I = x banyak sepatu jenis II = y

PROGRAM LINIER. Pembahasan: Jika: banyak sepatu jenis I = x banyak sepatu jenis II = y PROGRAM LINIER A. Pengertian Program linier adalah suatu cara ang dapat digunakan untuk memecahkan permasalahan ang berhubungan dengan optimalisi linier (nilai maksimal atau nilai minimal). B. Model Matematika

Lebih terperinci

Model Program Linear dan Daerah Penyelesaian Masalah

Model Program Linear dan Daerah Penyelesaian Masalah MATA4230/MODUL 1 1.1 Modul 1 Model Program Linear dan Daerah Penyelesaian Masalah D PENDAHULUAN Prof. Dr. Djati Kerami i dalam modul pertama ini Anda akan mempelajari penurunan model program linear dari

Lebih terperinci

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang :

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : 1. Menggambar daerah yang memenuhi 2. Menentukan system pertidaksamaan suatu daerah 3. Menentukan nilai optimum

Lebih terperinci

PROGRAM LINIER. B. Grafik Himpunan Penyelesaian Pertidaksamaan Linier Dua Variabel

PROGRAM LINIER. B. Grafik Himpunan Penyelesaian Pertidaksamaan Linier Dua Variabel PROGRAM LINIER A. Pengertian Program Linier Program linier adalah suatu cara ang dapat digunakan untuk memecahkan permasalahan ang berhubungan dengan optimasi linier (nilai maksimum atau nilai minimum).

Lebih terperinci

ISBN : (No. jil lengkap) ISBN : Harga Eceran Tertinggi: Rp10.021,-

ISBN : (No. jil lengkap) ISBN : Harga Eceran Tertinggi: Rp10.021,- ISBN : 978-979-068-858- (No. jil lengkap) ISBN : 978-979-068-863-6 PUSAT PERBUKUAN Departemen Pendidikan Nasional Harga Eceran Tertinggi: Rp0.0,- i Khazanah Matematika 3 untuk Kelas XII SMA dan MA Program

Lebih terperinci

SOAL LATIHAN UAS 12 IPA SMT GANJIL. 1. Hasil dari. 2. Hasil dari = Hasil dari dx... dx = Hasil dari. 5. Hasil dari. dx =

SOAL LATIHAN UAS 12 IPA SMT GANJIL. 1. Hasil dari. 2. Hasil dari = Hasil dari dx... dx = Hasil dari. 5. Hasil dari. dx = SOAL LATIHAN UAS IPA SMT GANJIL. Hasil dari. Hasil dari 7 ( ) ( ) d =.... Hasil dari d.... Hasil dari. Hasil dari 6. Hasil 6 6 9 6 d =... d =... d 9 = 7. Hasil 6 d = 8. Hasil dari cos sin d = 9. Hasil

Lebih terperinci

Explore. Your Potency From Now. Modul Belajar Kompetensi Program Linear Oleh Syaiful Hamzah Nasution. Pengertian Program Linear

Explore. Your Potency From Now. Modul Belajar Kompetensi Program Linear Oleh Syaiful Hamzah Nasution. Pengertian Program Linear Modul Belajar Kompetensi Program Linear Oleh Syaiful Hamzah Nasution Explore. Your Potency From Now. Pengertian Program Linear Fungsi Objektif dan Kendala pada Program Linear Model Matematika dan Nilai

Lebih terperinci

PROGRAM LINEAR. Fattaku Rohman, S.Pd. Kelas XII SMA Titian Teras Jambi

PROGRAM LINEAR. Fattaku Rohman, S.Pd. Kelas XII SMA Titian Teras Jambi PROGRAM LINEAR Fattaku Rohman, S.Pd Kelas XII SMA Titian Teras Jambi Apersepsi Standar Kompetensi & Kompetensi Dasar Materi Uji Kompetensi Apersepsi Setiap orang atau perusahaan pasti menginginkan keuntungan

Lebih terperinci

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER X IBROHIM AJI KUSUMA Pendekatan Sainti k Buku Siswa Nama Kelas No. Absen Matematika Lembar Kerja Siswa Program Linier Kurikulum

Lebih terperinci

CONTOH SOAL UAN PROGRAM LINIER

CONTOH SOAL UAN PROGRAM LINIER 1. Luas daerah parkir 1.760 m 2. Luas rata rata untuk mobil kecil 4 m 2 dan mobil besar 20 m 2. Daya tampung maksimum hanya 200 kendaraan, biaya parkir mobil kecil Rp 1.000,00/jam dan mobil besar Rp 2.000,00/jam.

Lebih terperinci

Program Linear B A B. A. Sistem Pertidaksamaan Linear Dua Variabel. B. Model Matematika. C. Nilai Optimum Suatu Fungsi Objektif

Program Linear B A B. A. Sistem Pertidaksamaan Linear Dua Variabel. B. Model Matematika. C. Nilai Optimum Suatu Fungsi Objektif Program Linear Program Linear B A B 2 A. Sistem Pertidaksamaan Linear Dua Variabel B. Model Matematika C. Nilai Optimum Suatu Fungsi Objektif Sumber: http://blontankpoer.blogsome.com Dalam dunia usaha,

Lebih terperinci

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER X IBROHIM AJI KUSUMA Pendekatan Sainti k Buku Guru Nama Kelas No. Absen Matematika Lembar Kerja Siswa Program Linier Kurikulum

Lebih terperinci

PROGRAM LINEAR. Dasar Matematis

PROGRAM LINEAR. Dasar Matematis PROGRAM LINEAR Dasar Matematis PROGRAM LINIER adalah suatu teknik optimalisasi dimana variabel-variabelnya linier. Metode ini dipakai pada saat kita dihadapkan pada beberapa pilihan dengan batasan-batasan

Lebih terperinci

BAB III. PROGRAM LINEAR

BAB III. PROGRAM LINEAR BAB III. PROGRAM LINEAR Salah satu pokok bahasan dalam mata pelajaran matematika kelas III IPA semester gasal, menurut Kurikulum 2004 (KBK) SMA / MA, memuat : Kompetensi dasar : Siswa menggunakan dan menghargai

Lebih terperinci

ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN MATEMATIKA XII BAHASA

ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN MATEMATIKA XII BAHASA ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN 29-21 MATEMATIKA XII BAHASA Hari / tanggal :... Desember 29 Waktu : 12 menit Pilih salah satu jawaban ang benar dengan memberi tanda silang

Lebih terperinci

Bahan A: 6x + 4x 24. Bahan B Harga jual ($1000) 5 4. Identifikasi fungsi tujuan Pendapatan total yang harus dimaksimumkan adalah

Bahan A: 6x + 4x 24. Bahan B Harga jual ($1000) 5 4. Identifikasi fungsi tujuan Pendapatan total yang harus dimaksimumkan adalah Lecture 2: Graphical Method Khusus untuk masalah Program Linear dengan 2 peubah dapat diselesaikan melalui grafik, meskipun dalam praktek masalah Program Linear jarang sekali yang hanya memuat 2 peubah.

Lebih terperinci

Model soal Ujian Matematika kelas XII AP- UPW - TB. Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e!

Model soal Ujian Matematika kelas XII AP- UPW - TB. Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e! Model soal Ujian Matematika kelas XII AP- UPW - TB Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e!. Diketahui sistem pertidaksamaan x + 2y 0 ; 3x + 2y

Lebih terperinci

( sman 4 yogyakarta) Page 1

( sman 4 yogyakarta) Page 1 PENYELESAIAN MASALAH PROGRAM LINIER Contoh : 1. Sekelompok tani transmigran mendapatkan 10 hektar tanah ang dapat di tanami padi, jagung, dan palawija lain. Karena keterbatasan sumber daa petani harus

Lebih terperinci

PROGRAM LINIER. x y ( x, y ) 0 1 ( 0, 1 ) 3 0 ( 3, 0 ) Titik uji (0,0): x 3y (0) 3. Benar. Sehingga titik (0,0) termasuk daerah penyelesaian.

PROGRAM LINIER. x y ( x, y ) 0 1 ( 0, 1 ) 3 0 ( 3, 0 ) Titik uji (0,0): x 3y (0) 3. Benar. Sehingga titik (0,0) termasuk daerah penyelesaian. PROGRAM LINIER ). Pengertian program linier Program linier adalah suatu cara ang dapat digunakan untuk memecahkan permasalahan ang berhubungan dengan optimasi linier (nilai maksimum atau nilai minimum).

Lebih terperinci

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear Bab w. me da li.c om : er mb Su ww Program Linear Program linear merupakan salah satu bidang matematika terapan ang banak digunakan untuk memecahkan permasalahan dalam kehidupan sehari-hari. Misalna, program

Lebih terperinci

MAT. 04. Geometri Dimensi Dua

MAT. 04. Geometri Dimensi Dua MAT. 04. Geometri Dimensi Dua i Kode MAT.14 Program Linear BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN

Lebih terperinci

LEMBAR AKTIVITAS SISWA PROGRAM LINEAR

LEMBAR AKTIVITAS SISWA PROGRAM LINEAR LEMBAR AKTIVITAS SISWA PROGRAM LINEAR c) Subtitusikan titik (0,0) kedalam pertidaksamaan. Nama Siswa : Jika hasil benar, maka penyelesaiaannya adalah daerah Kelas : yang memuat titik tersebut. Jika hasil

Lebih terperinci

PROGRAM LINIER. SOAL LATIHAN 01 A. Sistem Pertidaksamaan Linier Dua Variabel

PROGRAM LINIER. SOAL LATIHAN 01 A. Sistem Pertidaksamaan Linier Dua Variabel PROGRAM LINIER SOAL LATIHAN 01 A. Sistem Pertidaksamaan Linier Dua Variabel 01. Lukislah daerah penyelesaian sistem pertidaksamaan : 3x + y 6 3x + 5y 15 02. Lukislah daerah penyelesaian sistem pertidaksamaan

Lebih terperinci

Wahana. Wahana UNTUK SEKOLAH MENENGAH ATAS DAN MADRASAH ALIYAH KELAS XII PROGRAM ILMU BAHASA

Wahana. Wahana UNTUK SEKOLAH MENENGAH ATAS DAN MADRASAH ALIYAH KELAS XII PROGRAM ILMU BAHASA Budi Usodo Sutrima Sutrima Budi Usodo Wahana MATEMATIKA Wahana UNTUK SEKOLAH MENENGAH ATAS DAN MADRASAH ALIYAH KELAS XII PROGRAM ILMU BAHASA MATEMATIKA 3 UNTUK SEKOLAH MENENGAH ATAS DAN MADRASAH ALIYAH

Lebih terperinci

BAB II PROGRAM LINEAR

BAB II PROGRAM LINEAR BAB II PROGRAM LINEAR A RINGKASAN MATERI. Pengertian Program linear adalah suatu permasalahan dalam matematika dengan tujuan untuk mengoptimalkan fungsi obektif ang berbentuk linear dengan kendala/batasan

Lebih terperinci

BAB 2. PROGRAM LINEAR

BAB 2. PROGRAM LINEAR BAB 2. PROGRAM LINEAR 2.1. Pengertian Program Linear Pemrograman Linier disingkat PL merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan

Lebih terperinci

Model Optimisasi dan Pemrograman Linear

Model Optimisasi dan Pemrograman Linear Modul Model Optimisasi dan Pemrograman Linear Prof. Dr. Djati Kerami Dra. Denny Riama Silaban, M.Kom. S PENDAHULUAN ebelum membuat rancangan penyelesaian masalah dalam bentuk riset operasional, kita harus

Lebih terperinci

Contoh 1. Seorang ahli gizi ingin menentukan jenis makanan yang harus diberikan pada pasien dengan biaya minimum, akan tetapi sudah mencukupi

Contoh 1. Seorang ahli gizi ingin menentukan jenis makanan yang harus diberikan pada pasien dengan biaya minimum, akan tetapi sudah mencukupi PEMROGRAMAN LINEAR Digunakan dalam pengalokasian sumber daya organisasi (sumber daya : tenaga, bahan mentah, waktu, dana ) Pengalokasian sumber daya bertujuan Memaksimumkan keuntungan Meminimumkan biaya

Lebih terperinci

PROGRAM LINEAR. Bukti : ax + by = a.b. Pengertian Program Linear : Gunakan persamaan 2 di atas :

PROGRAM LINEAR. Bukti : ax + by = a.b. Pengertian Program Linear : Gunakan persamaan 2 di atas : PROGRAM LINEAR Bukti : + = a + b = a.b b a Pengertian Program Linear : Program Linear adalah bagian ilmu matematika terapan ang digunakan untuk memecahkan masalah optimasi (pemaksimalan atau peminimalan

Lebih terperinci

PROGRAM LINEAR. sudir15mks

PROGRAM LINEAR. sudir15mks PROGRAM LINEAR A. Sistem Pertidaksamaan Linear Dua Variabel Suatu garis dalam bidang koordinat dapat dinyatakan dengan persamaan yang berbentuk: x a x b a1 1 2 2 Persamaan semacam ini dinamakan persamaan

Lebih terperinci

LATIHAN SOAL MENJELANG UJIAN SEMESTER GANJIL KELAS 12 ( IPA DAN IPS )

LATIHAN SOAL MENJELANG UJIAN SEMESTER GANJIL KELAS 12 ( IPA DAN IPS ) LATIHAN SOAL MENJELANG UJIAN SEMESTER GANJIL KELAS ( IPA DAN IPS ). Hasil dari ( + + ) d =... A. + + C B. + + C C. + + + C D. + + + C E. + + + C. Hasil pengintegralan dari ( + ) d adalah... A. ( + ) +

Lebih terperinci

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3 Pilihlah jawaban yang paling tepat!. Ordo dari matriks A = 7 A. x B. x C. x D. x x adalah.. Berikut ini yang termasuk Matriks identitas adalah... A. 7 B. 7 C. D. a b. Diketahui A = dan B = b A. B. C. D..

Lebih terperinci

2.Jika log 3 = 0,477 dan log 5 = 0,699, maka log 45 adalah.

2.Jika log 3 = 0,477 dan log 5 = 0,699, maka log 45 adalah. 1. Bentuk Sederhana dari ( 2 3 ) 4 x ( 2 3 ) -5 adalah. a. 16 b. 8 c. 6 d. 1/6 e. 1/8 2.Jika log 3 = 0,477 dan log 5 = 0,699, maka log 45 adalah. a. 0,253 b. 0,653 c. 0,667 d. 1,176 e. 1,653 3. Sebuah

Lebih terperinci

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear Bab w. me da li.c om : er mb Su ww Program Linear Program linear merupakan salah satu bidang matematika terapan ang banak digunakan untuk memecahkan permasalahan dalam kehidupan sehari-hari. Misalna, program

Lebih terperinci

: METODE GRAFIK. Metode grafik hanya bisa digunakan untuk menyelesaikan permasalahan dimana hanya

: METODE GRAFIK. Metode grafik hanya bisa digunakan untuk menyelesaikan permasalahan dimana hanya LINEAR PROGRAMMING : METODE GRAFIK Metode grafik hanya bisa digunakan untuk menyelesaikan permasalahan dimana hanya terdapat dua variabel keputusan. Untuk menyelesaikan permasalahan tersebut, langkah pertama

Lebih terperinci

PROGRAM LINEAR 2 SMA SANTA ANGELA. Contoh Soal :

PROGRAM LINEAR 2 SMA SANTA ANGELA. Contoh Soal : 1 SMA SANTA ANGELA PROGRAM LINEAR Standar kompetensi : Menyelesaikan masalah program linear Kompetensi Dasar : Menyelesaikan sistem pertidaksamaan linear dua variabel. Menyelesaikan masalah program linear.

Lebih terperinci

3. Diberikan sistem persamaan linier: . Nilai dari x 4y dari sistem. persamaan tersebut adalah... A. 6 B. 5 C. 2 D. -2 E adalah...

3. Diberikan sistem persamaan linier: . Nilai dari x 4y dari sistem. persamaan tersebut adalah... A. 6 B. 5 C. 2 D. -2 E adalah... . Sebuah perkebunan seluas 7 Ha memperkejakan 0 orang untuk memetik buah dalam waktu 8 jam. Jika pihak perkebunan ingin mempercepat pemetikan menjadi 7 jam, maka diperlukan tambahan tenaga sebanyak....

Lebih terperinci

Mengubah kalimat verbal menjadi model matematika

Mengubah kalimat verbal menjadi model matematika LEMBAR KEGIATAN SISWA 3 Materi : Mengubah kalimat verbal menjadi model matematika Kelas Kelompok : : Nama Anggota : Kalian telah mempelajari cara membuat kalimat matematika, membuat grafik dari kalimat

Lebih terperinci

muhammadamien.wordpress.com

muhammadamien.wordpress.com 1. 2. Gradien garis singgung di setiap titik dapat dinyatakan sebagai 34 maka nilai minimumnya 1 3 5 7 9. Jika nilai maksimum 3. Jika maka 4. 5. 1 3 4 5 6 1 6. 7. Luas daerah yang dibatasi oleh parabola

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Mata Pelajaran : Matematika Kelas : X / 2 Pertemuan ke - : ---- Alokasi Waktu : 10 jam @ 45 menit Standar Kompetensi : Menelesaikan masalah program linier. Kompetensi Dasar

Lebih terperinci

w r/ I. Pilihlah Salah Satu Jawaban yang Paling Tepat.

w r/ I. Pilihlah Salah Satu Jawaban yang Paling Tepat. V ilan...han 100 satu rsahaan i srtas adalah l'uk I. Pilihlah Salah Satu Jawaban yang Paling Tepat. 1. Himpunan penyelesaian sistem pertidaksamaan 4x * y > 8, x r y < 5, 2x + 9y > 18, r ) 0, y 2 0 adalah....

Lebih terperinci

MATEMATIKA. Sesi MENCARI MAKSIMUM DAN MINIMUM FUNGSI A. METODE TITIK POJOK

MATEMATIKA. Sesi MENCARI MAKSIMUM DAN MINIMUM FUNGSI A. METODE TITIK POJOK MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 08 Sesi N MENCARI MAKSIMUM DAN MINIMUM FUNGSI Kita sudah belajar bagaimana menggambar daerah dari batas pertidaksamaan ang diketahui atau pun sebalikna. Suatu

Lebih terperinci

Tablet I x Tablet II y Batasan Vitamin A 5 10 Minimal 20 Vitamin B 3 1 Minimal 5 Harga/Biji 4 8

Tablet I x Tablet II y Batasan Vitamin A 5 10 Minimal 20 Vitamin B 3 1 Minimal 5 Harga/Biji 4 8 2. Program Linier a. Defenisi Program linier adalah metode untuk mendapatkan penyelesaian optimum dari suatu fungsi sasaran yang mengandung kendala atau batasan yang dapat dibuat dalam bentuk sistem pertidaksamaan

Lebih terperinci

Antiremed Kelas 10 Matematika

Antiremed Kelas 10 Matematika Antiremed Kelas 10 Matematika pertidaksamaan-linear-dua-variabel-soal Doc. Name: K13AR10MATWJB0401 Version : 2015-04 halaman 1 01. Daerah yang diarsir pada gambar di bawah ini memenuhi sistem pertidaksamaan...

Lebih terperinci

PETA STANDAR KOPETENSI

PETA STANDAR KOPETENSI Program Linear PETA STANDAR KOPETENSI MATEMATIKA NON TEKNIK II TINGKAT II SEMESTES SEMESTER STANDAR KOPETENSI G STANDAR KOPETENSI I STANDAR KOPETENSI H STANDAR KOPETENSI J KETERANGAN : SEMESTER Standar

Lebih terperinci

PENYELESAIAN MODEL LINEAR PROGRAMMING SECARA GRAFIK

PENYELESAIAN MODEL LINEAR PROGRAMMING SECARA GRAFIK Maximize or Minimize 2X 1 = 8 X 2 Z = f (x,y) Subject to: 5 D C g (x,y) = c 3X 2 = 15 0 Daerah feasible A 4 B 6X 1 + 5X 2 = 30 X 1 PENYELESAIAN MODEL LINEAR PROGRAMMING SECARA GRAFIK Prof. Dr. Ir. ZULKIFLI

Lebih terperinci

BAB XVII. PROGRAM LINEAR

BAB XVII. PROGRAM LINEAR BAB XVII. PROGRAM LINEAR Bukti : + a + b a.b b a Pengertian Program Linear : Program Linear adalah bagian ilmu matematika terapan ang digunakan untuk memecahkan masalah optimasi (pemaksimalan atau peminimalan

Lebih terperinci

Silabus. Tugas individu, tugas kelompok, kuis.

Silabus. Tugas individu, tugas kelompok, kuis. Silabus Nama Sekolah : SMK Mata Pelajaran : MATEMATIKA Kelas / Program : X / TEKNOLOGI, KESEHATAN, DAN PERTANIAN Semester : GANJIL Sandar Kompetensi: 1. Memecahkan masalah berkaitan dengan konsep operasi

Lebih terperinci

Soal Linear Programming. By: Rita Wiryasaputra, ST., M. Cs.

Soal Linear Programming. By: Rita Wiryasaputra, ST., M. Cs. Soal Linear Programming By: Rita Wiryasaputra, ST., M. Cs. Soal 1 Sebuah perusahaan mebel akan membuat meja dan kursi. Setiap meja membutuhkan 5 m 2 kayu jati dan 2 m 2 kayu pinus, serta membutuhkan waktu

Lebih terperinci

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA A TROUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 0/05 MATEMATIKA IPS Hasil Kerja Sama dengan Mata Pelajaran : Matematika IPS Jenjang : SMA/MA MATA PELAJARAN Hari, tanggal : Selasa,

Lebih terperinci

MATEMATIKA SISTEM INFORMASI 2 [KODE/SKS : IT / 2 SKS]

MATEMATIKA SISTEM INFORMASI 2 [KODE/SKS : IT / 2 SKS] MATA KULIAH MATEMATIKA SISTEM INFORMASI 2 [KODE/SKS : IT011215 / 2 SKS] LINIER PROGRAMMING Formulasi Masalah dan Pemodelan Pengertian Linear Programming Linear Programming (LP) adalah salah satu teknik

Lebih terperinci

PROGRAM LINEAR. tersebut. Dua macam fungsi Program Linear: tujuan perumusan masalah

PROGRAM LINEAR. tersebut. Dua macam fungsi Program Linear: tujuan perumusan masalah PROGRAM LINEAR Program linear adalah salah satu model matematika yang digunakan untuk menyelesaikan masalah optimisasi, yaitu memaksimumkan atau meminimumkan fungsi tujuan yang bergantung pada sejumlah

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kelas Matematika Persiapan UTS Doc. Name: KARMATWJB0UTS Version: 04-0 halaman 0. Nilai maksimum dari 0 + 8 untuk dan y yang memenuhi + y 0, + y 48, 0 0 dan 0 y 48 adalah. (A) 408 (B) 456 (C)

Lebih terperinci

1. Tentukan nilai-nilai x yang memenuhi pertidaksamaan

1. Tentukan nilai-nilai x yang memenuhi pertidaksamaan OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA NON TEKNOLOGI SESI III (ISIAN SINGKAT DAN ESSAY) WAKTU : 180 MENIT ============================================================

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB VII PROGRAM LINEAR

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB VII PROGRAM LINEAR SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB VII PROGRAM LINEAR Dr. Djadir, M.Pd. Dr. Ilham Minggi, M.Pd. Ja faruddin, S.Pd.,M.Pd. Ahmad Zaki, S.Si, M.Si. Sahlan Sidjara,

Lebih terperinci

M. PRAHASTOMI M. S. SISTEM PERSAMAAN LINEAR. A. a = 2 dan b = 4 B. a = 2 dan b = 4 C. a = 2 dan b = 4 D. E. a = 2

M. PRAHASTOMI M. S. SISTEM PERSAMAAN LINEAR. A. a = 2 dan b = 4 B. a = 2 dan b = 4 C. a = 2 dan b = 4 D. E. a = 2 SISTEM PERSAMAAN LINEAR M. PRAHASTOMI M. S. 0. MD-8-8 B C G E F A D H 6 7 8 6 Jika gradien garis AB = m, gradien garis CD = m, gradien garis EF = m dan gradien garis GH = m, maka... () m = () m = 0 ()

Lebih terperinci

1. Dari suatu barisan aritmetika diketahui suku ke-15 adalah 222 dan suku ke-12 adalah 57. Suku ke-15 barisan ini adalah. A. 62 B. 68 C. 72 D. 74 E.

1. Dari suatu barisan aritmetika diketahui suku ke-15 adalah 222 dan suku ke-12 adalah 57. Suku ke-15 barisan ini adalah. A. 62 B. 68 C. 72 D. 74 E. . Dari suatu barisan aritmetika diketahui suku ke-5 adalah dan suku ke- adalah 57. Suku ke-5 barisan ini adalah. A. 6 B. 68 7 D. 74 E. 76. Suku ketiga dan suku keenam barisan geometri berturut-turut adalah

Lebih terperinci

UN SMA IPS 2011 Matematika

UN SMA IPS 2011 Matematika UN SMA IPS 0 Matematika Kode Soal Doc. Name: UNSMAIPS0MAT999 Version: 0- halaman 0. Koordinat titik potong grafik fungsi kuadrat y = - - dengan sumbu X dan sumbu Y (A) (-,0),(,0), dan (0,) (B) (-,0),(,0),dan

Lebih terperinci

BAB 2 PROGRAM LINEAR

BAB 2 PROGRAM LINEAR BAB 2 PROGRAM LINEAR 2.1. Pengertian Program Linear Pemrograman Linier disingkat PL merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan

Lebih terperinci

Dosen Pengampu : Dwi Sulistyaningsih

Dosen Pengampu : Dwi Sulistyaningsih Dosen Pengampu : Dwi Sulistyaningsih Secara Umum : Pendahuluan Program linier merupakan salah satu teknik penyelesaian riset operasi dalam hal ini adalah khusus menyelesaikan masalah-masalah optimasi (memaksimalkan

Lebih terperinci

MATEMATIKA BISNIS DAN MANAJEMEN

MATEMATIKA BISNIS DAN MANAJEMEN Bandung Arry Sanjoyo dkk MATEMATIKA BISNIS DAN MANAJEMEN SMK JILID Direktorat Pembinaan Sekolah Menengah Kejuruan Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah Departemen Pendidikan Nasional

Lebih terperinci

Pendahuluan. Secara Umum :

Pendahuluan. Secara Umum : Program Linier Secara Umum : Pendahuluan Program linier merupakan salah satu teknik penyelesaian riset operasi dalam hal ini adalah khusus menyelesaikan masalah-masalah optimasi (memaksimalkan atau meminimumkan)

Lebih terperinci

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0 BIDANG STUDI : MATEMATIKA 1. Harga 3 kg pepaya dan 5 kg jeruk adalah Rp 13.000, sedangkan harga 4 kg papaya dan 3 kg jeruk adalah Rp 10.000, maka harga 2 kg papaya dan 4 kg jeruk adalah. A. Rp 10.000 B.

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) I. Identitas Mata Pelajaran: 1. Nama Sekolah :SMA 6 YOGYAKARTA 2. Kelas : XII 3. Semester : 1 4. Program : IPA 5. Mata Pelajaran : Program Linier 6. Waktu : : 8 JP

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN DAN KEBUDAYAAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp. / Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN DAN KEBUDAYAAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp. / Fax Sidayu Gresik PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN DAN KEBUDAYAAN SMA NEGERI SIDAYU Jl. Pahlawan No.6 Telp. / Fa. -99 Sidayu Gresik ULANGAN TENGAH SEMESTER GASAL TAHUN PELAJARAN 8/9 L E M B A R S O A L Mata

Lebih terperinci

SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 2012

SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 2012 SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 0. Negasi dari semua siswa rajin belajar untuk menghadapi UN, adalah... A. tidak semua siswa rajin belajar untuk menghadapi UN B. semua siswa

Lebih terperinci