PROGRAM LINIER. x y ( x, y ) 0 1 ( 0, 1 ) 3 0 ( 3, 0 ) Titik uji (0,0): x 3y (0) 3. Benar. Sehingga titik (0,0) termasuk daerah penyelesaian.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "PROGRAM LINIER. x y ( x, y ) 0 1 ( 0, 1 ) 3 0 ( 3, 0 ) Titik uji (0,0): x 3y (0) 3. Benar. Sehingga titik (0,0) termasuk daerah penyelesaian."

Transkripsi

1 PROGRAM LINIER ). Pengertian program linier Program linier adalah suatu cara ang dapat digunakan untuk memecahkan permasalahan ang berhubungan dengan optimasi linier (nilai maksimum atau nilai minimum). ). Grafik himpunan penelesaian pertidaksamaan linier dua variabel. Contoh: Gambarlah grafik! Jawab: (, ) (, ) (, ) += Titik uji (,): + () Benar Sehingga titik (,) termasuk daerah penelesaian. Jadi, daerah penelesaianna adalah sebelah bawah garis Gambarlah grafik dari pertidaksamaan linier berikut: ). Grafik himpunan penelesaian sistem pertidaksamaan linier dua variabel (, ) (, ) (, ) Titik uji (,): + () Benar Sehingga titik (,) termasuk daerah penelesaian. Jadi, daerah penelesaianna adalah sebelah bawah garis

2 (, ) (, ) (, ) Titik uji (,): + () Benar Sehingga titik (,) termasuk daerah penelesaian. Jadi, daerah penelesaianna adalah sebelah bawah garis 4). Sistem pertidaksamaan linier dua variabel ang diketahui grafikna. Gambarlah grafik dari sistem pertidaksamaan linier berikut: Tentukan sistem pertidaksamaan linier dua variabel ang memenuhi grafik di bawah ini: = += b a b+a=ab

3 (,) 6 5). Pengertian model matematika Model matematika adalah suatu bentuk penalaran manusia dalam menterjemahkan permasalahan kehidupan sehari-hari dalam bentuk matematika (dimisalkan dengan variabel dan ) sehingga dapat diselesaikan. 6). Mengubah soal cerita menjadi model matematika. Contoh: Sebuah area parkir dengan luas.75 m, maksimal hana dapat ditempati kendaraan ang terdiri atas sedan dan bus. Jika luas sebuah sedan 5 m dan bus 5 m, tentukanlah model matematikana! Jawab: Misalkan: = banakna sedan = banakna bus kategori banak sedan banak bus daa pertidaksamaan () () tampung linier Banak kendaraan + Luas kendaraan Berdasarkan pertidaksamaan linier di atas, maka model matematikana adalah 75, merupakan bentuk sederhana dari , karena banakna sedan tidak mungkin negatif, karena banakna bus tidak mungkin negatif Tentukan model matematika dari permasalahan berikut:. Seorang pedagang buah-buahan menggunakan gerobak untuk menjual apel dan pisang. Harga beli apel Rp., per kg dan pisang Rp4., per kg. Modal ang tersedia hana Rp.5., sedangkan muatan gerobak maksimal 4 kg.. Seorang pedagang roti menjual dua jenis roti jenis I Rp75, per buah dan roti jenis II Rp., per buah. Pedagang itu mempunai modal kurang dari Rp9., sedangkan kiosna dapat menampung. buah roti.. Seorang pedagang sepatu mengeluarkan modal untuk sepatu model I sebesar Rp8.,, sedangkan untuk sepatu model II Rp6.,. Modal ang tersedia tidak lebih dari Rp4.5., sedangkan kapasitas tempat penjualan tidak lebih dari 5 pasang sepatu. 4. Sebuah kantin sekolah menediakan menu mi goreng dan nasi goreng tidak lebih dari 6 porsi per hari. Banak porsi mi goreng sedikitna porsi dan paling banak 5 porsi. Harga mi goreng Rp.5, per porsi dan nasi goreng Rp., per porsi. Pedagang ingin mendapatkan pendapatan maksimum. 5. Seorang penjahit ingin membuat dua jenis pakaian untuk dijual. Pakaian jenis I memerlukan m kain katun dan m kain wool, sedangkan pakaian jenis II memerlukan m kain katun dan m kain wool. Bahan kain katun ang tersedia adalah 8 m sedangkan kain wool adalah m. Harga jual pakaian jenis I dan II masing-masing adalah Rp., dan Rp6.,. Penjahit ingin mendapatkan pendapatan terbanak.

4 6. Seorang peternak aam setiap harina membutuhkan dua jenis pakan aam. Pakan aam A dalam kg-na mengandung 9 unit bahan P dan unit bahan Q, sedangkan pakan aam B dalam kgna mengandung unit bahan P dan 8 unit bahan Q. Setiap hari, ekor aam membutuhkan sekurang-kurangna 7 unit bahan P dan unit bahan Q. Jumlah pakan aam A dan B untuk ekor aam tersebut setiap harina minimal 5 kg. Harga tiap kg pakan aam A Rp., dan tiap kg pakan B Rp.,. Peternak ingin biaa pakan aam semurah-murahna. 7). Fungsi objektif dari soal cerita. f(,) = a + b 8). Titik pojok daerah penelesaian sistem pertidaksamaan linier dari soal cerita Untuk menentukan titik pojok daerah penelesaian sistem pertidaksamaan linier dari soal cerita dapat dilakukan dengan cara menggambar grafik sistem pertidaksamaan linier dari soal cerita kemudian menentukan titik potong antara garis-garis ang berpotongan. 9). Nilai maksimum berdasarkan fungsi objektif dari soal cerita. f(,) = a + b untuk (,) = (p,q) diperoleh nilai terbesar/terbanak/tertinggi ). Nilai minimum berdasarkan fungsi objektif dari soal cerita. f(,) = a + b untuk (,) = (r,s) diperoleh nilai terkecil/paling sedikit/terpendek. Sebuah perusahaan tekstil memproduksi dua jenis pakaian seragam, aitu pakaian pria dan pakaian wanita. Untuk seragam pria diperlukan 5 menit proses penjahitan, menit proses penetrikaan, dan menit proses pembungkusan, sedangkan seragam wanita diperlukan 8 menit proses penjahitan, menit proses penetrikaan, dan menit proses pembungkusan. Keuntungan untuk seragam pria Rp7., dan Rp., untuk seragam wanita. Jika waktu ang tersedia untuk proses penjahitan, penetrikaan, dan pembungkusan berturut-turut tidak lebih dari 48 menit, 6 menit, dan 45 menit. Tentukan: b. model matematikana c. grafik daerah penelesaian dari model matematikana d. titik-titik pojok model matematikana e. fungsi objektifna f. keuntungan maksimumna g. banakna seragam dari masing-masing jenis ang diproduksi untuk mendapatkan keuntungan maksimum. PT Rekaasa Electronics sedang melakukan pengujian dan pengembangan produk baru dan memerlukan serangkaian uji coba. Pengujian dilakukan suatu tim ang terdiri atas beberapa penguji ahli dan teknisi. Tim tersebut tidak lebih dari 8 orang dengan komposisi sedikitna penguji ahli dan tidak lebih dari 6 orang penguji ahli serta sedikitna seorang teknisi dan tidak lebih dari 5 teknisi. Dalam tim tersebut, jumlah penguji ahli lebih banak daripada teknisi. Minimum pengujian ang dijadwalkan dalam seminggu adalah 8 kali dengan komposisi penguji ahli dapat melakukan 5 kali pengujian, sedangkan teknisi sebanak kali pengujian setiap mingguna. Penguji ahli menerima upah Rp4.5., dan teknisi Rp.5., setiap mingguna. Tentukan: b. model matematikana c. grafik daerah penelesaian dari model matematikana d. titik-titik pojok model matematikana e. fungsi objektifna f. biaa minimum g. komposisi dalam tim tersebut sehingga biaa ang dikeluarkan paling murah. ). Penentuan garis selidik Garis selidik dapat disesuaikan dengan fungsi objektif. Jika fungsi objektif, f(,) = a + b, maka kita dapat menggunakan garis selidik a + b = ab ). Nilai maksimum dengan menerapkan garis selidik Sebelum kita menentukan nilai maksimum atau minimum, kita harus membuat garis selidik seperti di atas. Buatlah beberapa garis ang sejajar dengan garis selidik tersebut.

5 * Nilai maksimum dapat diperoleh jika titik pada daerah penelesaian sistem pertidaksamaan linier berada di sebelah kiri/di bawah garis selidik atau garis ang sejajar dengan garis selidik. Kemudian masukkan titik tersebut ke fungsi objektif. ). Nilai minimum dengan menerapkan garis selidik * Nilai minimum dapat diperoleh jika daerah penelesaian sistem pertidaksamaan linier berada di sebelah kanan/di atas garis selidik atau garis ang sejajar dengan garis selidik. Kemudian masukkan titik tersebut ke fungsi objektif. Dengan menggunakan garis selidik, tentukan nilai maksimum dan minimum dari permasalahan berikut:. Sebuah kantin sekolah menediakan menu mi goreng dan nasi goreng tidak lebih dari 6 porsi per hari. Banak porsi mi goreng sedikitna porsi dan paling banak 5 porsi. Harga mi goreng Rp.5, per porsi dan nasi goreng Rp., per porsi. Pedagang ingin mendapatkan pendapatan maksimum.. Seorang penjahit ingin membuat dua jenis pakaian untuk dijual. Pakaian jenis I memerlukan m kain katun dan m kain wool, sedangkan pakaian jenis II memerlukan m kain katun dan m kain wool. Bahan kain katun ang tersedia adalah 8 m sedangkan kain wool adalah m. Harga jual pakaian jenis I dan II masing-masing adalah Rp., dan Rp6.,. Penjahit ingin mendapatkan pendapatan terbanak. Tugas Kelompok:. Seorang penjahit pakaian mempunai persediaan 6 m kain sutra, 5 m kain katun, dan m kain wool ang akan dibuat dua buah model pakaian dengan rincian sebaga berikut: Pakaian model A : Membutuhkan m kain sutra, m kain katun, dan m kain wool per buah Pakaian model B : Membutuhkan m kain sutra, m kain katun, dan m kain wool per buah Keuntungan pakaian model A Rp6., per buah dan model B Rp., per buah.tentukan: b. model matematikana c. grafik daerah penelesaian dari model matematikana d. titik-titik pojok model matematikana e. fungsi objektifna f. keuntungan maksimumna g. banakna pakaian dari masing-masing model ang dibuat untuk mendapatkan keuntungan maksimum. Dalam satu minggu tiap orang membutuhkan paling sedikit 6 unit protein, 4 unit karbohidrat, dan 8 unit lemak. Makanan A mengandung 4 unit protein, unit karbohidrat, dan unit lemak untuk tiap kg, sedangkan makanan B mengandung unit protein, unit karbohidrat, dan 6 unit lemak untuk tiap kg. Jika harga kg makanan A Rp.5, dan kg makanan B Rp.75,. Tentukan: b. model matematikana c. grafik daerah penelesaian dari model matematikana d. titik-titik pojok model matematikana e. fungsi objektifna f. biaa termurah g. banakna masing-masing makanan ang dibeli agar kebutuhan tetap terpenuhi dengan biaa termurah

6 Uji Kompetensi: Tipe A: Untuk membuat kue tersedia bahan terigu sebanak,75 kg dan, kg mentega. Untuk membuat kue A diperlukan 5 gram terigu dan gram mentega, sedangkan kue B memerlukan 5 gram mentega dan 4 gram terigu. Jika harga sebuah kue A Rp., dan kue B Rp.5,, tentukan: b. model matematikana c. grafik daerah penelesaian dari model matematikana d. titik-titik pojok model matematikana e. fungsi objektifna f. keuntungan maksimum g. banakna masing-masing kue ang terjual agar diperoleh keuntungan maksimum Tipe B: Seorang pemborong mendapat pesanan dua jenis meja. Harga sebuah meja jenis I Rp., dan sebuah meja jenis II Rp45.,. Tiap meja jenis I memerlukan 5 m kau jati dan m triplek, sedangkan tiap meja jenis II memerlukan m triplek dan 4 m kau jati. Jika persediaan kau jati m dan 6 m triplek, tentukan: b. model matematikana c. grafik daerah penelesaian dari model matematikana d. titik-titik pojok model matematikana e. fungsi objektifna f. keuntungan maksimum g. banakna masing-masing meja ang terjual agar diperoleh keuntungan maksimum

PROGRAM LINIER. B. Grafik Himpunan Penyelesaian Pertidaksamaan Linier Dua Variabel

PROGRAM LINIER. B. Grafik Himpunan Penyelesaian Pertidaksamaan Linier Dua Variabel PROGRAM LINIER A. Pengertian Program Linier Program linier adalah suatu cara ang dapat digunakan untuk memecahkan permasalahan ang berhubungan dengan optimasi linier (nilai maksimum atau nilai minimum).

Lebih terperinci

MATEMATIKA. Sesi MENCARI MAKSIMUM DAN MINIMUM FUNGSI A. METODE TITIK POJOK

MATEMATIKA. Sesi MENCARI MAKSIMUM DAN MINIMUM FUNGSI A. METODE TITIK POJOK MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 08 Sesi N MENCARI MAKSIMUM DAN MINIMUM FUNGSI Kita sudah belajar bagaimana menggambar daerah dari batas pertidaksamaan ang diketahui atau pun sebalikna. Suatu

Lebih terperinci

PROGRAM LINIER. Pembahasan: Jika: banyak sepatu jenis I = x banyak sepatu jenis II = y

PROGRAM LINIER. Pembahasan: Jika: banyak sepatu jenis I = x banyak sepatu jenis II = y PROGRAM LINIER A. Pengertian Program linier adalah suatu cara ang dapat digunakan untuk memecahkan permasalahan ang berhubungan dengan optimalisi linier (nilai maksimal atau nilai minimal). B. Model Matematika

Lebih terperinci

E-learning matematika, GRATIS

E-learning matematika, GRATIS 1 Penusun Editor : Rifan Nadhifi, S.Si. ; Imam Indra Gunawan, S.Si. : Drs. Keto Susanto, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Indra Gunawan, S.Si. A. Sistem Pertidaksamaan Linear Pertidaksamaan linear

Lebih terperinci

BAB II PROGRAM LINEAR

BAB II PROGRAM LINEAR BAB II PROGRAM LINEAR A RINGKASAN MATERI. Pengertian Program linear adalah suatu permasalahan dalam matematika dengan tujuan untuk mengoptimalkan fungsi obektif ang berbentuk linear dengan kendala/batasan

Lebih terperinci

PETA STANDAR KOPETENSI

PETA STANDAR KOPETENSI Program Linear PETA STANDAR KOPETENSI MATEMATIKA NON TEKNIK II TINGKAT II SEMESTES SEMESTER STANDAR KOPETENSI G STANDAR KOPETENSI I STANDAR KOPETENSI H STANDAR KOPETENSI J KETERANGAN : SEMESTER Standar

Lebih terperinci

PROGRAM LINEAR. Bukti : ax + by = a.b. Pengertian Program Linear : Gunakan persamaan 2 di atas :

PROGRAM LINEAR. Bukti : ax + by = a.b. Pengertian Program Linear : Gunakan persamaan 2 di atas : PROGRAM LINEAR Bukti : + = a + b = a.b b a Pengertian Program Linear : Program Linear adalah bagian ilmu matematika terapan ang digunakan untuk memecahkan masalah optimasi (pemaksimalan atau peminimalan

Lebih terperinci

MATEMATIKA. Sesi PROGRAM LINEAR CONTOH SOAL A. BENTUK UMUM PERTIDAKSAMAAN LINEAR B. MENGGAMBAR DAERAH PERTIDAKSAMAAN. ax + by c

MATEMATIKA. Sesi PROGRAM LINEAR CONTOH SOAL A. BENTUK UMUM PERTIDAKSAMAAN LINEAR B. MENGGAMBAR DAERAH PERTIDAKSAMAAN. ax + by c MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 07 Sesi N PROGRAM LINEAR A. BENTUK UMUM PERTIDAKSAMAAN LINEAR a + b c CONTOH SOAL 1. Ubahlah 4-4 kedalam bentuk umumna 4 - -4 B. MENGGAMBAR DAERAH PERTIDAKSAMAAN

Lebih terperinci

17. SOAL-SOAL PROGRAM LINEAR

17. SOAL-SOAL PROGRAM LINEAR 17. SOAL-SOAL PROGRAM LINEAR EBTANAS2000 1. Himpunan penelesaian sistem pertidaksamaan 5x + 10 2x + 8 2 x = 2 titik (2,0 titk potong dengan sumbu jika x = 0 = 10 titik (0,10 daerah 5x + 10 berada pada

Lebih terperinci

BAB XVII. PROGRAM LINEAR

BAB XVII. PROGRAM LINEAR BAB XVII. PROGRAM LINEAR Bukti : + a + b a.b b a Pengertian Program Linear : Program Linear adalah bagian ilmu matematika terapan ang digunakan untuk memecahkan masalah optimasi (pemaksimalan atau peminimalan

Lebih terperinci

Bab 1. Program Linear. Program Linear. Sumber: dianekawhy.blogspot.com

Bab 1. Program Linear. Program Linear. Sumber: dianekawhy.blogspot.com Bab 1 Pada bab ini, Anda diajak menelesaikan masalah program linear dengan cara membuat grafik himpunan penelesaian sistem pertidaksamaan linear, menentukan model matematika dari soal cerita, menentukan

Lebih terperinci

Contoh : Gambarlah daerah x + y 0. Jika daerah tersebut dibatasi untuk nilai-nilai x 0, dan y 0, maka diperoleh gambar seperti berikut.

Contoh : Gambarlah daerah x + y 0. Jika daerah tersebut dibatasi untuk nilai-nilai x 0, dan y 0, maka diperoleh gambar seperti berikut. Setelah mempelajari materi pada kompetensi dasar ini, kalian diharapkan dapat: menjelaskan pengertian program linier, menggambar grafik himpunan penyelesaian pertidaksamaan linier, dan menggambar grafik

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Mata Pelajaran : Matematika Kelas : X / 2 Pertemuan ke - : ---- Alokasi Waktu : 10 jam @ 45 menit Standar Kompetensi : Menelesaikan masalah program linier. Kompetensi Dasar

Lebih terperinci

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan: -2x + y 0 x - 2y 0 dan x + 2y 8, maka a + b =. (A) 2 (B) 1 (C) 2 (D) (E) 6 02. Nilai maksimum dari

Lebih terperinci

Program Linear B A B. A. Sistem Pertidaksamaan Linear Dua Variabel. B. Model Matematika. C. Nilai Optimum Suatu Fungsi Objektif

Program Linear B A B. A. Sistem Pertidaksamaan Linear Dua Variabel. B. Model Matematika. C. Nilai Optimum Suatu Fungsi Objektif Program Linear Program Linear B A B 2 A. Sistem Pertidaksamaan Linear Dua Variabel B. Model Matematika C. Nilai Optimum Suatu Fungsi Objektif Sumber: http://blontankpoer.blogsome.com Dalam dunia usaha,

Lebih terperinci

Menentukan Nilai Optimum dengan Garis Selidik

Menentukan Nilai Optimum dengan Garis Selidik D Menentukan Nilai ptimum dengan Garis Selidik Selain dengan menggunakan uji titik pojok, nilai optimum juga dapat ditentukan dengan menggunakan garis selidik. Persamaan garis selidik dibentuk dari fungsi

Lebih terperinci

CONTOH SOAL UAN PROGRAM LINIER

CONTOH SOAL UAN PROGRAM LINIER 1. Luas daerah parkir 1.760 m 2. Luas rata rata untuk mobil kecil 4 m 2 dan mobil besar 20 m 2. Daya tampung maksimum hanya 200 kendaraan, biaya parkir mobil kecil Rp 1.000,00/jam dan mobil besar Rp 2.000,00/jam.

Lebih terperinci

K13 Revisi Antiremed Kelas 11 Matematika Wajib

K13 Revisi Antiremed Kelas 11 Matematika Wajib K13 Revisi Antiremed Kelas 11 Matematika Wajib Program Linier - Latihan Soal Doc. Name: RK13AR11MATWJB0401 Version : 2016-10 halaman 1 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan

Lebih terperinci

ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN MATEMATIKA XII BAHASA

ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN MATEMATIKA XII BAHASA ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN 29-21 MATEMATIKA XII BAHASA Hari / tanggal :... Desember 29 Waktu : 12 menit Pilih salah satu jawaban ang benar dengan memberi tanda silang

Lebih terperinci

Xpedia Matematika Dasar

Xpedia Matematika Dasar Xpedia Matematika Dasar Soal Program Linear Doc. Name: XPMATDAS0999 Doc. Version : 01-09 halaman 1 01. Nilai z = 3x + y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan

Lebih terperinci

PROGRAM LINEAR. Dasar Matematis

PROGRAM LINEAR. Dasar Matematis PROGRAM LINEAR Dasar Matematis PROGRAM LINIER adalah suatu teknik optimalisasi dimana variabel-variabelnya linier. Metode ini dipakai pada saat kita dihadapkan pada beberapa pilihan dengan batasan-batasan

Lebih terperinci

Menghitung nilai optimum (maksimum / minimum) dari sistem pertidaksamaan linier.

Menghitung nilai optimum (maksimum / minimum) dari sistem pertidaksamaan linier. LEMBAR KEGIATAN SISWA 4 Materi : Menghitung nilai optimum (maksimum / minimum) dari sistem pertidaksamaan linier. Kelas Kelompok : :.. Nama Anggota : Kalian telah mempelajari cara membuat grafik dari sisem

Lebih terperinci

LEMBAR KEGIATAN SISWA 2

LEMBAR KEGIATAN SISWA 2 LEMBAR KEGIATAN SISWA 2 Materi : Membuat grafik himpunan penelesaian pertidaksamaan linier dua variabel. Kelompok : Nama Anggota: Kelas : Tanggal : Kalian telah mempelajari cara membuat kalimat matematika

Lebih terperinci

Model soal Ujian Matematika kelas XII AP- UPW - TB. Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e!

Model soal Ujian Matematika kelas XII AP- UPW - TB. Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e! Model soal Ujian Matematika kelas XII AP- UPW - TB Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e!. Diketahui sistem pertidaksamaan x + 2y 0 ; 3x + 2y

Lebih terperinci

PROGRAM LINEAR 2 SMA SANTA ANGELA. Contoh Soal :

PROGRAM LINEAR 2 SMA SANTA ANGELA. Contoh Soal : 1 SMA SANTA ANGELA PROGRAM LINEAR Standar kompetensi : Menyelesaikan masalah program linear Kompetensi Dasar : Menyelesaikan sistem pertidaksamaan linear dua variabel. Menyelesaikan masalah program linear.

Lebih terperinci

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear Bab w. me da li.c om : er mb Su ww Program Linear Program linear merupakan salah satu bidang matematika terapan ang banak digunakan untuk memecahkan permasalahan dalam kehidupan sehari-hari. Misalna, program

Lebih terperinci

h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m

h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m 1. Dalam permasalahan program linear dikenal dua istilah, yaitu : a. Fungsi Kendala/ pembatas, berupa pertidaksamaan pertidaksamaan linear ax by 0; ax by p; ax by 0; ax by 0 b. Fungsi/ bentuk objektif,

Lebih terperinci

PERTIDAKSAMAAN LINEAR DUA VARIABEL

PERTIDAKSAMAAN LINEAR DUA VARIABEL PRGRAM LINEAR Intisari Teori A. PERTIDAKSAMAAN LINEAR DUA VARIABEL (PtLDV) Suatu pernyataan yang berbentuk a by c 0 (tanda ketidaksamaan dapat diganti dengan, >, atau < ) dengan a dan b tidak semuanya

Lebih terperinci

a. 16 b. 24 c. 30 d. 36 e Nilai maksimum fungsi sasaran Z = 6x + 8y dari system pertidaksamaan 4x + 2y 60, 2x

a. 16 b. 24 c. 30 d. 36 e Nilai maksimum fungsi sasaran Z = 6x + 8y dari system pertidaksamaan 4x + 2y 60, 2x 1. Luas daerah parkir 1.760 m 2. Luas rata rata untuk mobil kecil 4 m 2 dan mobil besar 20 m 2. Daya tampung maksimum hanya 200 kendaraan, biaya parkir mobil kecil Rp. 1.000,00/jam dan mobil besar Rp.

Lebih terperinci

diunduh dari

diunduh dari diunduh dari http://www.pustakasoal.com Hak Cipta pada Departemen Pendidikan Nasional Dilindungi Undang-undang Hak Cipta Buku ini dibeli oleh Departemen Pendidikan Nasional dari Penerbit PT Visindo Media

Lebih terperinci

Bab. Program Linear. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id)

Bab. Program Linear. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id) Bab II Program Linear 51 Tujuan Pembelajaran Setelah mempelajari bab ini, diharapkan kalian dapat 1. menjelaskan sistem pertidaksamaan linear dua variabel dan penyelesaiannya; 2. menentukan fungsi tujuan

Lebih terperinci

Soal No. 2 Daerah yang diarsir pada gambar ialah himpunan penyelesaian suatu sistem pertidaksamaan linear.

Soal No. 2 Daerah yang diarsir pada gambar ialah himpunan penyelesaian suatu sistem pertidaksamaan linear. Soal No. 1 Luas daerah parkir 1.760 m 2. Luas rata-rata untuk mobil kecil 4 m 2 dan mobil besar 20 m 2. Daya tampung maksimum hanya 200 kendaraan. Biaya parkir mobil kecil Rp 1.000,00/jam dan mobil besar

Lebih terperinci

Program Linear - IPA

Program Linear - IPA Program Linear - IPA Tahun 2005 1. Tanah seluas 10.000 m² akan dibangun rumah tipe A dan tipe B. Untuk rumah tipe A diperlukan 100 m² dan tipe B diperlukan 75 m². Jumlah rumah yang dibangun paling banyak

Lebih terperinci

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel.

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. NAMA : KELAS : 1 2 Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. x y PROGRAM LINEAR 2. Tentukan titik potong dengan sumbu X, yaitu saat y = 0. 3. Tentukan

Lebih terperinci

BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA

BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA Masalah 1.1 Sekelompok tani transmigran mendapatkan 10 hektar tanah yang dapat ditanami padi, jagung, dan palawija lain. Karena keterbatasan sumber daya petani

Lebih terperinci

SOAL-SOAL LATIHAN UN A35

SOAL-SOAL LATIHAN UN A35 SAL-SAL LATIHAN 1. UN A5 01 Penjahit Hidah Pantes akan membuat pakaian wanita dan pria. Untuk membuat pakaian wanita diperlukan bahan bergaris m dan bahan polos 1 m. Untuk membuat pakaian pria diperlukan

Lebih terperinci

SOAL-SOAL LATIHAN PROGRAM LINEAR UJIAN NASIONAL

SOAL-SOAL LATIHAN PROGRAM LINEAR UJIAN NASIONAL SAL-SAL LATIHAN PRGRAM LINEAR UJIAN NASINAL Peserta didik memiliki kemampuan memahami konsep pada topik program linear. Peserta didik memilki kemampuan mengaplikan konsep kalkulus dalam masalah kontekstual

Lebih terperinci

PROGRAM LINIER. Sumber: Art & Gallery

PROGRAM LINIER. Sumber: Art & Gallery 4 PROGRAM LINIER Sumber: Art & Gallery 114 Matematika X SMK Kelompok: Penjualan dan Akuntansi Standar kompetensi program linier terdiri atas empat kompetensi dasar. Dalam penyajian pada buku ini setiap

Lebih terperinci

>> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER 1 SMA KELAS XII IPA <<

>> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER 1 SMA KELAS XII IPA << >> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER SMA KELAS XII IPA

Lebih terperinci

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear Bab w. me da li.c om : er mb Su ww Program Linear Program linear merupakan salah satu bidang matematika terapan ang banak digunakan untuk memecahkan permasalahan dalam kehidupan sehari-hari. Misalna, program

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) A. Kompetensi Inti SMK kelas XI : RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Satuan Pendidikan : SMK Negeri 1 Klaten Mata Pelajaran : Matematika Kelas/Semester : XI/3 Topik : Program Linier Waktu : 10 45 menit

Lebih terperinci

B. Fungsi Sasaran dan Kendala dalam Program Linier

B. Fungsi Sasaran dan Kendala dalam Program Linier Peta Konsep Jurnal PetaKonsep Daftar Hadir MateriB SoalLatihan2 Materi Umum PROGRAM LINIER Kelas XI, Semester 3 B. Fungsi Sasaran dan Kendala dalam Program Linier Sistem Pertidaksamaan Linier Fungsi Sasaran

Lebih terperinci

Gambar 1.1 Mesin dan SDM perusahaan

Gambar 1.1 Mesin dan SDM perusahaan BAB I PROGRAM LINEAR Tujuan Pembelajaran Setelah mempelajari materi bab ini, Anda diharapkan dapat: 1. menyelesaikan sistem pertidaksamaan linear dua variabel, 2. merancang model matematika dari masalah

Lebih terperinci

SOAL LATIHAN UAS 12 IPA SMT GANJIL. 1. Hasil dari. 2. Hasil dari = Hasil dari dx... dx = Hasil dari. 5. Hasil dari. dx =

SOAL LATIHAN UAS 12 IPA SMT GANJIL. 1. Hasil dari. 2. Hasil dari = Hasil dari dx... dx = Hasil dari. 5. Hasil dari. dx = SOAL LATIHAN UAS IPA SMT GANJIL. Hasil dari. Hasil dari 7 ( ) ( ) d =.... Hasil dari d.... Hasil dari. Hasil dari 6. Hasil 6 6 9 6 d =... d =... d 9 = 7. Hasil 6 d = 8. Hasil dari cos sin d = 9. Hasil

Lebih terperinci

10 Soal dan Pembahasan Permasalahan Program Linear

10 Soal dan Pembahasan Permasalahan Program Linear 10 Soal dan Pembahasan Permasalahan Program Linear 1. BAYU FURNITURE memproduksi 2 jenis produk yaitu meja dan kursi yang harus diproses melalui perakitan dan finishing. Proses perakitan memiliki 60 jam

Lebih terperinci

2009 ACADEMY QU IDMATHCIREBON

2009 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPS Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Diketahui:

Lebih terperinci

MODUL 1 : PROGRAM LINEAR

MODUL 1 : PROGRAM LINEAR MODUL 1 : PROGRAM LINEAR A. Pendahuluan Dalam kehidupan sehari-hari sering dijumpai aplikasi program linear, seperti pembangunan perumahan atau apartemen, pemakaian obat-obatan dalam penyembuhan pasien,

Lebih terperinci

PROGRAM LINEAR. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII

PROGRAM LINEAR. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII LA - WB (Lembar Aktivitas Warga Belajar) PROGRAM LINEAR Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII Created By Ita Yuliana 9 Program Linear Kompetensi

Lebih terperinci

BAB III. PROGRAM LINEAR

BAB III. PROGRAM LINEAR BAB III. PROGRAM LINEAR Salah satu pokok bahasan dalam mata pelajaran matematika kelas III IPA semester gasal, menurut Kurikulum 2004 (KBK) SMA / MA, memuat : Kompetensi dasar : Siswa menggunakan dan menghargai

Lebih terperinci

MODUL 1 : PROGRAM LINEAR

MODUL 1 : PROGRAM LINEAR MODUL 1 : PROGRAM LINEAR E. Kegiatan Belajar 2 PENERAPAN PROGRAM LINEAR 1. K A. Nilai Optimum Fungsi Obyektif Fungsi objektif merupakan fungsi yang menjelaskan tujuan (meminimumkan atau memaksimumkan)

Lebih terperinci

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang :

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : 1. Menggambar daerah yang memenuhi 2. Menentukan system pertidaksamaan suatu daerah 3. Menentukan nilai optimum

Lebih terperinci

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3 Pilihlah jawaban yang paling tepat!. Ordo dari matriks A = 7 A. x B. x C. x D. x x adalah.. Berikut ini yang termasuk Matriks identitas adalah... A. 7 B. 7 C. D. a b. Diketahui A = dan B = b A. B. C. D..

Lebih terperinci

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER X IBROHIM AJI KUSUMA Pendekatan Sainti k Buku Guru Nama Kelas No. Absen Matematika Lembar Kerja Siswa Program Linier Kurikulum

Lebih terperinci

Bab 4. Sistem Persamaan Linier dan Variabel. Standar Kompetensi

Bab 4. Sistem Persamaan Linier dan Variabel. Standar Kompetensi Bab 4 Sistem Persamaan Linier dan Variabel Standar Kompetensi Memahami sistem persamaan linear dua variabel, dan menggunakanna dalam pemecahan masalah Kompetensi Dasar.1 Menelesaikan sistem persamaan linear

Lebih terperinci

DINAS PENDIDIKAN DAN TENAGA KERJA MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA SMA KABUPATEN TANAH DATAR

DINAS PENDIDIKAN DAN TENAGA KERJA MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA SMA KABUPATEN TANAH DATAR DINAS PENDIDIKAN DAN TENAGA KERJA MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA SMA KABUPATEN TANAH DATAR NASKAH SOAL ULANGAN UMUM SEMESTER I Tahun Pelajaran / Mata Pelajaran : Matematika Kelas/Program

Lebih terperinci

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER X IBROHIM AJI KUSUMA Pendekatan Sainti k Buku Siswa Nama Kelas No. Absen Matematika Lembar Kerja Siswa Program Linier Kurikulum

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.9 Sukoharjo Telp. 0-906 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/ Mata Pelajaran : MATEMATIKA

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.9 Sukoharjo Telp. 0-90 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran : MATEMATIKA

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.9 Sukoharjo Telp. 0-90 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran : MATEMATIKA

Lebih terperinci

Soal Linear Programming. By: Rita Wiryasaputra, ST., M. Cs.

Soal Linear Programming. By: Rita Wiryasaputra, ST., M. Cs. Soal Linear Programming By: Rita Wiryasaputra, ST., M. Cs. Soal 1 Sebuah perusahaan mebel akan membuat meja dan kursi. Setiap meja membutuhkan 5 m 2 kayu jati dan 2 m 2 kayu pinus, serta membutuhkan waktu

Lebih terperinci

1. Fungsi Objektif z = ax + by

1. Fungsi Objektif z = ax + by Nilai Optimum Suatu Fungsi Objektif, Program Linear, Fungsi Objektif, Cara Menentukan, Contoh Soal, Rumus, Pembahasan, Metode Uji Titik Sudut, Metode Garis Selidik, Matematika Nilai Optimum Suatu Fungsi

Lebih terperinci

Mengubah kalimat verbal menjadi model matematika

Mengubah kalimat verbal menjadi model matematika LEMBAR KEGIATAN SISWA 3 Materi : Mengubah kalimat verbal menjadi model matematika Kelas Kelompok : : Nama Anggota : Kalian telah mempelajari cara membuat kalimat matematika, membuat grafik dari kalimat

Lebih terperinci

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan Kehidupan Nyata Bisa Disajikan Bahasa Matematika Diperlukan Alat Bantu Model Matematika Menggunakan Persamaan atau pertidaksamaan Matematika Tujuan Penyelesaian masalah Kemampuan yang akan dibahas Menentukan

Lebih terperinci

LEMBAR AKTIVITAS SISWA PROGRAM LINEAR

LEMBAR AKTIVITAS SISWA PROGRAM LINEAR LEMBAR AKTIVITAS SISWA PROGRAM LINEAR c) Subtitusikan titik (0,0) kedalam pertidaksamaan. Nama Siswa : Jika hasil benar, maka penyelesaiaannya adalah daerah Kelas : yang memuat titik tersebut. Jika hasil

Lebih terperinci

PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) y 2. (0, a) y 1. (x 1, y 1 ) (b, 0) X. x 1

PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) y 2. (0, a) y 1. (x 1, y 1 ) (b, 0) X. x 1 PROGRAM LINEAR A. Persamaan Garis Lurus y 1 (x 1, y 1 ) y 2 y 1 (x 1, y 1 ) (x 2, y 2 ) a (0, a) 0 x 1 x 1 0 x 2 (b, 0) 0 b a. Persamaan garis yang bergradien m dan melalui titik (x 1, y 1 ) adalah: y

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP Nama Sekolah : SMP Negeri 3 Singaraja Mata Pelajaran : Matematika Kelas / Semester : VIII / Ganjil Alokasi Waktu : 2 40 menit A. Standar Kompetensi Memahami Sistem

Lebih terperinci

skala = 550 mm = 55 cm 2. Nilai dari 8 81 A. 0 B. 1 C. 3 KUNCI D. 5 E. 7 Pembahasan: = = 3 3. Bentuk sederhana dari A. 74 C.

skala = 550 mm = 55 cm 2. Nilai dari 8 81 A. 0 B. 1 C. 3 KUNCI D. 5 E. 7 Pembahasan: = = 3 3. Bentuk sederhana dari A. 74 C. Andri Nurhidaat, S.Pd http://www.asiknabelajar.wrdpress.cm PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMK KELOMPOK TEKNOLOGI, KESEHATAN, DAN PERTANIAN /. Sebuah benda kerja jika digambar dengan skala

Lebih terperinci

( sman 4 yogyakarta) Page 1

( sman 4 yogyakarta) Page 1 PENYELESAIAN MASALAH PROGRAM LINIER Contoh : 1. Sekelompok tani transmigran mendapatkan 10 hektar tanah ang dapat di tanami padi, jagung, dan palawija lain. Karena keterbatasan sumber daa petani harus

Lebih terperinci

Explore. Your Potency From Now. Modul Belajar Kompetensi Program Linear Oleh Syaiful Hamzah Nasution. Pengertian Program Linear

Explore. Your Potency From Now. Modul Belajar Kompetensi Program Linear Oleh Syaiful Hamzah Nasution. Pengertian Program Linear Modul Belajar Kompetensi Program Linear Oleh Syaiful Hamzah Nasution Explore. Your Potency From Now. Pengertian Program Linear Fungsi Objektif dan Kendala pada Program Linear Model Matematika dan Nilai

Lebih terperinci

Siswa dapat menggambar grafik himpunan penyelesaikan sistim pertidaksamaan linier dengan 2 varabel

Siswa dapat menggambar grafik himpunan penyelesaikan sistim pertidaksamaan linier dengan 2 varabel RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah :... Mata Pelajaran : Matematika Kelas/Semester : XI/3 Pertemuan ke : 1,2, dan 3 Alokasi Waktu : 6 x 45 menit Standar Kompetensi : Menyelesaikan program

Lebih terperinci

SOLUSI SOAL-SOAL LATIHAN NASKAH F

SOLUSI SOAL-SOAL LATIHAN NASKAH F URAIAN SLUSI SAL-SAL LATIHAN NASKAH F 1. Tentukan sistem pertidaksamaan linear dua variabel (SPtLDV) dari daerah penyelesaian (DP) berikut ini., 5,,0 dan 0, 2 2xy 8 PtLDV: x2y, dan 5, y x 5 y x x y 9 PtLDV:

Lebih terperinci

SOAL ToT MATEMATIKA BISNIS-MANAJEMEN adalah...

SOAL ToT MATEMATIKA BISNIS-MANAJEMEN adalah... SOAL ToT MATEMATIKA BISNIS-MANAJEMEN 08. Bentuk sederhana dari 0 0 3 0 3 8 0 4 0 3 5 8 adalah.... Nilai dari log 6 3 log 4 log6 log 48 adalah... 7 3 3 3. Jika diketahui log 5 = a dan log 3 = b maka nilai

Lebih terperinci

Ujian Nasional 2008 MATEMATIKA Kelompok : Teknologi, Kesehatan dan Pertanian

Ujian Nasional 2008 MATEMATIKA Kelompok : Teknologi, Kesehatan dan Pertanian Ujian Nasional 8 MATEMATIKA Kelompok : Teknologi, Kesehatan dan Pertanian. Seorang pedagang membeli ½ lusin gelas seharga Rp 5., dan pedagang tesebut telah menjual 5 gelas seharga Rp.,. Jika semua gelas

Lebih terperinci

SOAL DAN PEMBAHASAN UN SMK 2011 teknologi

SOAL DAN PEMBAHASAN UN SMK 2011 teknologi 1. Himpunan penelesaian pertidaksamaan adalah. A. * * * D. * E. * x = 0 ( x ( x 2. Persamaan grafik fungsi kuadrat ang memotong sumbu X di titik (-2,0 dan (2,0 serta melalui titik (0,-4 A. D. E. ( x =

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 05 PAKET Pilihan Ganda: Pilihlah satu jawaban ang paling tepat.. Ingkaran dari pernataan Jika air sungai meluap, maka kota kebanjiran dan semua warga kota

Lebih terperinci

A. PENGERTIAN PROGRAM LINEAR

A. PENGERTIAN PROGRAM LINEAR Pertemuan 1 Standar Kompetensi : Menyelesaikan masalah program linier Kompetensi dasar : Membuat grafik himpunan penyelesaian sistem pertidaksamaan linier Indikator : Pertidaksamaan linier ditentukan daerah

Lebih terperinci

Program Linear. Bab I

Program Linear. Bab I Program Linear 1 Bab I Program Linear Sumber: Ensiklopedia Pelajar, 1999 Motivasi Setiap pedagang, pengusaha, atau orang yang berkecimpung di bidang usaha pasti menginginkan keuntungan sebanyak-banyaknya

Lebih terperinci

ISBN : (No. jil lengkap) ISBN : Harga Eceran Tertinggi: Rp10.021,-

ISBN : (No. jil lengkap) ISBN : Harga Eceran Tertinggi: Rp10.021,- ISBN : 978-979-068-858- (No. jil lengkap) ISBN : 978-979-068-863-6 PUSAT PERBUKUAN Departemen Pendidikan Nasional Harga Eceran Tertinggi: Rp0.0,- i Khazanah Matematika 3 untuk Kelas XII SMA dan MA Program

Lebih terperinci

Geri Achmadi Dwi Gustanti Dani Wildan Hakim Willi Sutanto

Geri Achmadi Dwi Gustanti Dani Wildan Hakim Willi Sutanto Geri Achmadi Dwi Gustanti Dani Wildan Hakim Willi Sutanto Hak Cipta pada Departemen Pendidikan Nasional Dilindungi Undang-undang Mahir Matematika untuk Kelas XII SMA/MA Program Bahasa Penulis : Geri Achmadi

Lebih terperinci

Sistem Bilangan 06. UN-SMK-BIS adalah... Jika a = 4, b = 5 maka nilai dari

Sistem Bilangan 06. UN-SMK-BIS adalah... Jika a = 4, b = 5 maka nilai dari Sistem Bilangan 0. UN-SMK-PERT-0-0 Bentuk sederhana dari ( ) =... 7 8 9 8 0. UN-SMK-TEK-0-0 Hasil perkalian dari (a) - (a) =... a a a a a 0. UN-SMK-PERT-0-0 Bentuk sederhana dari 0. UN-SMK-TEK-0-0 6 6.

Lebih terperinci

kkkk EKSPONEN 1. SIMAK UI Matematika Dasar 911, 2009 A. 4 2 B. 3 2 C. 2 D. 1 E. 0 Solusi: [B] 2. SIMAK UI Matematika Dasar 911, 2009 Jika x1

kkkk EKSPONEN 1. SIMAK UI Matematika Dasar 911, 2009 A. 4 2 B. 3 2 C. 2 D. 1 E. 0 Solusi: [B] 2. SIMAK UI Matematika Dasar 911, 2009 Jika x1 kkkk. SIMAK UI Matematika Dasar 9, 009... EKSPONEN A. 4 B. C. D. E. 0 Solusi: [B]. SIMAK UI Matematika Dasar 9, 009 Jika dan merupakan akar-akar persamaan 6, maka... A. B. C. D. E. Solusi: [C] 6 6 0. SIMAK

Lebih terperinci

PROGRAM LINIER. SOAL LATIHAN 01 A. Sistem Pertidaksamaan Linier Dua Variabel

PROGRAM LINIER. SOAL LATIHAN 01 A. Sistem Pertidaksamaan Linier Dua Variabel PROGRAM LINIER SOAL LATIHAN 01 A. Sistem Pertidaksamaan Linier Dua Variabel 01. Lukislah daerah penyelesaian sistem pertidaksamaan : 3x + y 6 3x + 5y 15 02. Lukislah daerah penyelesaian sistem pertidaksamaan

Lebih terperinci

Soal dan Pembahasannya.

Soal dan Pembahasannya. Soal dan Pembahasanna Perhatikan tabel di bawah ini! p q p q ~ q B B B S S B S S Nilai kebenaran dari pernataan majemuk p q ~ q pada tabel di atas adalah p q p q ~ q p q ~ q B B B S B B S S B B S B B S

Lebih terperinci

TRY OUT UJIAN NASIONAL SMA TAHUN PELAJARAN 2016/2017

TRY OUT UJIAN NASIONAL SMA TAHUN PELAJARAN 2016/2017 TRY OUT UNBK KODE SOAL : TRY OUT UJIAN NASIONAL SMA TAHUN PELAJARAN / KERJASAMA BINTANG PELAJAR Bidang Studi Hari, Tanggal Waktu LEMBAR SOAL : MATEMATIKA IPA : Oktober M / Muharram H : Menit PETUNJUK UMUM.

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL TAHUN PELAJARAN

SOAL DAN PEMBAHASAN UJIAN NASIONAL TAHUN PELAJARAN SOAL DAN PEMBAHASAN JIAN NASIONAL TAHN PELAJARAN / SMA/MA PROGRAM STDI IPA MATEMATIKA PAKET A Disusun KHAIRL BASARI khairulfaiq.wordpress.com e-mail :muh_abas@ahoo.com SOAL DAN PEMBAHASAN SOAL N PAKET

Lebih terperinci

a. Y= x 2-3x + 8 b. Y= x 2-6x + 8 c. Y= x 2-6x - 8 d. Y= -x 2 + 6x + 8 e. Y= x 2-3x + 8

a. Y= x 2-3x + 8 b. Y= x 2-6x + 8 c. Y= x 2-6x - 8 d. Y= -x 2 + 6x + 8 e. Y= x 2-3x + 8 1. Sebuah baju setelah dikenakan potongan harga dijual dengan harga Rp 0.000,00. Diskon baju tersebut 0 %. Maka harga baju sebelum didiskon adalah Rp 1.000,00 Rp 15.000,00 Rp.000,00 Rp 7.000,00 e. Rp 75.000,00.

Lebih terperinci

e. y 8. Himpunan penyelesaian dari sistem persamaan 2x - 3y = - 4 dan 3x + 4y = 11 adalah x dan y. Nilai dari 2x + y = a. 2 d. 5 b. 3 e. 6 c.

e. y 8. Himpunan penyelesaian dari sistem persamaan 2x - 3y = - 4 dan 3x + 4y = 11 adalah x dan y. Nilai dari 2x + y = a. 2 d. 5 b. 3 e. 6 c. . Agar mendapat untung %, sebuah rumah harus dijual dengan harga Rp. 0.000.000,00. Harga pembelian rumah tersebut adalah. a. Rp 7.00.000,00 d. Rp.00.000,00 b. Rp 8.00.000,00 e. Rp.000.000,00 c. Rp 0.000.000,00.

Lebih terperinci

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0 BIDANG STUDI : MATEMATIKA 1. Harga 3 kg pepaya dan 5 kg jeruk adalah Rp 13.000, sedangkan harga 4 kg papaya dan 3 kg jeruk adalah Rp 10.000, maka harga 2 kg papaya dan 4 kg jeruk adalah. A. Rp 10.000 B.

Lebih terperinci

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN I TU URI HANDAY AN TW DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN 2009 Program Linear Matriks GY A Y O M AT E M A T AK A R Shadiq, M.App.Sc. DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL

Lebih terperinci

PENDAHULUAN KALKULUS

PENDAHULUAN KALKULUS . BILANGAN REAL PENDAHULUAN KALKULUS Ada beberapa jenis bilangan ang telah kita kenal ketika di bangku sekolah. Bilangan-bilangan tersebut adalah bilangan asli, bulat, cacah, rasional, irrasional. Tahu

Lebih terperinci

SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS

SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS UJI KOMPETENSI 1.1 1. PT Lasin adalah suatu pengembang perumahan di daerah pemukiman baru. PT tersebut memiliki tanah seluas 12.000 meter persegi berencana

Lebih terperinci

Tablet I x Tablet II y Batasan Vitamin A 5 10 Minimal 20 Vitamin B 3 1 Minimal 5 Harga/Biji 4 8

Tablet I x Tablet II y Batasan Vitamin A 5 10 Minimal 20 Vitamin B 3 1 Minimal 5 Harga/Biji 4 8 2. Program Linier a. Defenisi Program linier adalah metode untuk mendapatkan penyelesaian optimum dari suatu fungsi sasaran yang mengandung kendala atau batasan yang dapat dibuat dalam bentuk sistem pertidaksamaan

Lebih terperinci

w r/ I. Pilihlah Salah Satu Jawaban yang Paling Tepat.

w r/ I. Pilihlah Salah Satu Jawaban yang Paling Tepat. V ilan...han 100 satu rsahaan i srtas adalah l'uk I. Pilihlah Salah Satu Jawaban yang Paling Tepat. 1. Himpunan penyelesaian sistem pertidaksamaan 4x * y > 8, x r y < 5, 2x + 9y > 18, r ) 0, y 2 0 adalah....

Lebih terperinci

UN SMA IPA 2008 Matematika

UN SMA IPA 2008 Matematika UN SMA IPA 008 Matematika Kode Soal D0 Doc. Version : 0-06 halaman 0. Ingkaran dari pernataan "Ada bilangan prima adalah bilangan genap." Semua bilangan prima adalah bilangan genap. Semua bilangan prima

Lebih terperinci

MAT. 04. Geometri Dimensi Dua

MAT. 04. Geometri Dimensi Dua MAT. 04. Geometri Dimensi Dua i Kode MAT.14 Program Linear BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 00/009. BAB VI Logika Matematika p q Konjungsi Bernilai salah jika ada yang salah (jika salah satu dari p dan q salah atau kedua-duanya

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB VII PROGRAM LINEAR

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB VII PROGRAM LINEAR SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB VII PROGRAM LINEAR Dr. Djadir, M.Pd. Dr. Ilham Minggi, M.Pd. Ja faruddin, S.Pd.,M.Pd. Ahmad Zaki, S.Si, M.Si. Sahlan Sidjara,

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) I. Identitas Mata Pelajaran: 1. Nama Sekolah :SMA 6 YOGYAKARTA 2. Kelas : XII 3. Semester : 1 4. Program : IPA 5. Mata Pelajaran : Program Linier 6. Waktu : : 8 JP

Lebih terperinci

Rencana Pelaksanaan Pembelajaran

Rencana Pelaksanaan Pembelajaran Rencana Pelaksanaan Pembelajaran I. Identitas Nama Sekolah : SMK N 1 Bonjol Mata Pelajaran : Matematika Kelas / Semester : x /2 Standar Kompetensi : 5. Memecahkan masalah program linear Kompetensi Dasar

Lebih terperinci

A. Persamaan Kuadrat dan Fungsi Kuadrat. Salah satu akar persamaan kuadrat ( a ) (3a ) 3a 0 adalah, maka akar lainna adalah. Nilai m ang memenuhi agar persamaan kuadrat ( m ) (m ) ( m ) 0 mempunai dua

Lebih terperinci