UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN adalah... adalah...

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN adalah... adalah..."

Transkripsi

1 UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN 0. Bentuk sederhana dari A. B. 6 a b 6 6 a b 6 a C. 8 D. b 6 a 9 b 6 a E. 8 b Solusi: [E] a b 0 a b ab a b a a 0 a b 0 a b b b Bentuk sederhana dari A. B. C. D. E. Solusi: [E] log8 log log0. Nilai dari... log log A. B. Husein Tampomas, Latihan Soal dan Solusi Matematika IPS SMA/MA, UHAMKA, 0

2 C. D. E. 8 log log8 log log0 0 log8 log log log log log log. Diketahui log a a A. ab a B. a b a C. a a D. b a E. a b Solusi: [A] log dan log b log log log log log. Nilai log... Husein Tampomas, Latihan Soal dan Solusi Matematika IPS SMA/MA, UHAMKA, 0 log log a log log ab. Persamaan sumbu simetri grafik fungsi kuadrat y x x A. x B. x C. x D. x E. x y x x x x 6 y' x 0 x Jadi, persamaan sumbu simetrinya adalah x. 6. Titik balik grafik fungsi kuadrat y xx A., B., C., D., E., y x x x 8x

3 y' x 8 0 x y 8 Jadi, titik baliknya adalah,. 7. Koordinat titik potong fungsi kuadrat y x x dengan sumbu X dan sumbu Y berturutturut A.,0,,0, dan 0, B.,0,,0, dan 0, C.,0,,0, dan 0, D.,0,,0, dan 0, E.,0,,0, dan 0, Solusi: [B] Grafik memotong sumbu X, jika x 0, sehingga x x 0 x x 0 x x,0 dan,0 Jadi, koordinat titik potong grafik tersebut dengan sumbu X adalah Grafik memotong sumbu Y, jika y 0, sehingga y 0 0 Jadi, koordinat titik potong grafik tersebut dengan sumbu Y adalah 0,. 8. Persamaan grafik fungsi kuadrat yang mempunyai titik balik di P,8 dan melalui pusat koordinat A. y x 8x B. y x x C. y x x D. y x x E. y x x Solusi: [A] b D y ax a a y a x 8. Husein Tampomas, Latihan Soal dan Solusi Matematika IPS SMA/MA, UHAMKA, 0

4 a 0, a y x 8 x 8x 9. Persamaan grafik fungsi kuadrat gambar berikut A. y x x B. y x x C. y x x D. y x x E. y x x y ax x 0, y ax x a a 0 0 y x x x x 0. Penyelesaian dari pertidaksamaan x x x A. x B. x C. x D. x atau x E. x atau x x x x 7x 0 x x x 0 x. Jika x dan x adalah akar-akar persamaan kuadrat x x 6 0, maka nilai dari x x x x A. 8 B. C. 9 D. 9 E Y O X Husein Tampomas, Latihan Soal dan Solusi Matematika IPS SMA/MA, UHAMKA, 0

5 x x x x x x x x 9. Akar-akar persamaan kuadrat x x 0 adalah x dan x. Nilai... x x A. 9 7 B. 9 9 C. 9 7 D. 6 E. 6 x x x x x x x x x x x x. Diketahui y x y... A. 9 B. C. D. 9 E. 0 6x7y 7... () Husein Tampomas, Latihan Soal dan Solusi Matematika IPS SMA/MA, UHAMKA, x, merupakan penyelesaian dari sistem persamaan 6x 7y 7 x y Nilai 9 x y 9 6x 0y 8... () Persamaan () Persamaan () menghasilkan: 7 y 8 y 6x 7 7 x 6 Jadi, x y 9. Pak Ardi bekerja dengan perhitungan hari lembur dan hari tidak lembur serta mendapat gaji Rp ,00nsedangkan Pak Boby bekerja hari lembur dan hari tidak lembur dengan gaji Rp ,00. Jika Pak Candra bekerja dengan perhitungan lembur selama lima hari di tempat yang sama, maka gaji yang diterima Pak Candra A. Rp0.000,00 B. Rp60.000,00 C. Rp ,00 D. Rp70.000,00

6 E. Rp ,00 l t l t () lt () Persamaan () Persamaan () menghasilkan: t t l l Jika Pak Candra bekerja dengan perhitungan lembur selama lima hari di tempat yang sama, maka gaji yang diterima Pak Candra adalah l Rp0.000,00 Rp ,00. Diketahui pernyataan p dan q. Pernyataan yang setara dengan p p ~ q A. p ~ p q B. p ~ p q C. p ~ p ~ q D. ~ p q ~ p E. ~ p q ~ p Ingat teori: p q ~ q ~ p ~ p q ~ p p q p q p 6. Negasi dari pernyataan Jika Arman lulus dan mendapat nilai bagus maka ia akan kuliah di Perancis dan dibelikan motor baru A. Jika Arman tidak lulus dan tidak mendapat nilai bagus, maka ia tidak kuliah di Perancis dan tidak dibelikan motor baru B. Jika Arman tidak lulus atau tidak mendapat nilai bagus, maka ia tidak kuliah di Perancis dan tidak dibelikan motor baru C. Jika Arman tidak kuliah di Perancis atau tidak dibelikan motor baru, maka tidak lulus atau tidak mendapat nilai bagus D. Arman tidak lulus atau tidak mendapat nilai bagus tetapi ia tidak kuliah di Perancis atau tidak dibelikan motor baru E. Arman lulus dan mendapat nilai bagus tetapi ia tidak kuliah di Perancis atau tidak dibelikan motor baru Solusi: [E] Ingat sifat: ~ p q p ~ q Jadi, negasinya adalah Arman lulus dan mendapat nilai bagus tetapi ia tidak kuliah di Perancis atau tidak dibelikan motor baru 7. Pernyataan yang ekuivalen dengan pernyataan Jika semua koruptor ditangkap maka semua rakyat Indonesia hidup sejahtera A. Jika semua koruptor tidak ditangkap, maka semua rakyat Indonesia tidak hiudp sejahtera B. Jika ada koruptor tidak ditangkap, maka ada rakyat Indonesia tidak hidup sejahtera C. Jika ada rakyat Indonesia tidak hidup sejahtera maka ada koruptor yang tidak ditangkap D. Jika ada rakyat Indonesia tidak hidup sejahtera, maka semua koruptor yang tidak ditangkap E. Jika semua rakyat Indonesia tidak hidup sejahtera, maka ada koruptor yang tidak ditangkap Ingat teori: p q ~ q ~ p ~ p q Jadi, pernyataan yang tersebut ekuivalen dengan pernyataan Jika ada rakyat Indonesia tidak hidup sejahtera maka ada koruptor yang tidak ditangkap. 6 Husein Tampomas, Latihan Soal dan Solusi Matematika IPS SMA/MA, UHAMKA, 0

7 g. Jika 8. Diketahui fungsi x x A. x 8 B. x 7 C. x 6 D. x E. x g x x x y y x 6 9. Diketahui fungsi : R R Nilai f... 7 A. 7 B. C. D. E. 0 Solusi: [B] x 7x f x f x x7 x 7 7 f f dengan f x ; g adalah invers dari g, maka g x... x x 7 0. Nilai maksimum fungsi obyektif f x y x y 7 x 7 Husein Tampomas, Latihan Soal dan Solusi Matematika IPS SMA/MA, UHAMKA, 0 dan pertidaksamaan x y 8, x y, dan x 0; y 0 A. B. 0 C. D. 0 E. xy 8... () xy... () f adalah invers dari f., pada daerah penyelesaian sistem

8 Persamaan () Persamaan () menghasilkan: x x y 8 y Koordinat titik potong kedua grafik tersebut adalah (,). Titik f x, y x y (0,0) (,0) 0 0 (maksimum) (,) (0,) 0 nilai maksimumnya adalah 0.. Perhatikan gambar Y 8 Y 6 O xy (,) xy8 8 X O 8 Nilai minimum fungsi obyektif dari f x, y x y A. 0 B. C. D. 6 E. Solusi: [B] Persamaan garis yang melalui titik-titik potong (,0) dan (0,) adalah x y x y... () Persamaan garis yang melalui titik-titik potong (8,0) dan (0,8) adalah x y x y 8... () 8 8 Persamaan () Persamaan () menghasilkan: y y x 8 x 6 Koordinat titik potong kedua grafik tersebut adalah (6,). Titik f x, y x y (,0) 0 (minimum) (6,) 6 (0,8) 0 8 X daerah yang diarsir pada gambar nilai minimumnya adalah.. Untuk menjaga kesehatannya, setiap hari nenek diharuskan mengkonsumsi minimal 00 gram kalsium dan 0 gram vitamin A. Setiap tablet mengandung 0 gram kalsium dan 0 gram vitamin A dan setiap kapsul mengandung 00 gram kalsium dan 00 gram vitamin A. Jika 8 Husein Tampomas, Latihan Soal dan Solusi Matematika IPS SMA/MA, UHAMKA, 0

9 dimisalkan banyaknya tablet adalah x dan banyaknya kapsul adalah y, maka model matematika dari masalah tersebut A. x y 8, x y, x 0, y 0 B. x y 8, x y, x 0, y 0 C. x y 8,x y, x 0, y 0 D. x y 8,x y, x 0, y 0 E. x y 8, x y, x 0, y 0 Solusi: [A] 0x 00y 00 x y 8 0x 00y 0 x y x 0 y 0. Rombongan wisata yang terdiri dari 0 orang akan menyewa kamar-kamar hotel untuk satu malam. Kamar yang terdiri di hotel itu adalah kamar untuk orang dan untuk orang. Rombongan itu akan menyewa kamar hotel sekurang-kurangnya 00 kamar. Besar sewa kamar untuk orang dan kamar untuk orang per malam berturut-turut adalah Rp ,00 dan Rp. 0.00,00. Besar sewa kamar minimal per malam untuk seluruh rombongan A. Rp ,00 B. Rp ,00 C. Rp ,00 D. Rp ,00 E. Rp ,00 Solusi: [B] Ambillah banyak kamar untuk anak dan untuk anak adalah x dan y buah. xy0 x y00 Y x0, y0 f x, y x y xy 0... () xy () Persamaan () Persamaan () menghasilkan: y 0 x 0 00 x 60 Koordinat titik potong kedua garis tersebut adalah (60,0). Titik f x, y x y (0,0) (60,0) (0,00) besar sewa kamar minimal per malam untuk seluruh rombongan adalah Rp.000,00. O (60,0) X 9 Husein Tampomas, Latihan Soal dan Solusi Matematika IPS SMA/MA, UHAMKA, 0

10 x y 6. Diketahui. Nilai x y... 9 x y x A. B. 0 C. D. 9 E. Solusi: [A] x y x y x y 7... () x y x x y... () Persamaan () Persamaan () menghasilkan: x x y 7 y 9 Jadi, x y 9. Diketahui matriks A, B 0 0, dan C. Nilai determinan dari matriks AB C A. B. 0 C. 8 D. 8 E. 0 Solusi: [-] AB C 0 0 A B C 0 6. Diketahui matrika A dan B. Jika AB C, maka invers matriks C A. B. C. D. E. 0 Husein Tampomas, Latihan Soal dan Solusi Matematika IPS SMA/MA, UHAMKA, 0

11 AB C AB C B A C 8 9 C C 7. Martiks X berordo yang memenuhi persamaan 9 A B. 8 9 C D. 8 9 E. 6 X X X Diketahui jumlah suku ke- dan ke- dari barisan aritmatika adalah 6, sedangkan selisih suku ke-8 dan ke- adalah 9. Suku ke- dari barisan aritmatika tersebut adalah... A. 8 B. C. 8 D. E. 0 Solusi: [E] u u 6 a b 6 u8 u 9 b 9 b a 6 a 7 u a b Jumlah n suku pertama dari suatu barisan geometri yang diketahui suku pertama dan suku ke- sama dengan n A. n B. C. n Husein Tampomas, Latihan Soal dan Solusi Matematika IPS SMA/MA, UHAMKA, 0

12 D. n n E. Solusi: [B] u ar r r 8 r n a r n Sn n r 0. Jumlah suku-suku sebuah deret geometri tak hingga sama dengan 6. Jika deret geometri tersebut mempunyai suku-suku positif dengan rasio 0, maka suku ke- sama dengan... A. B., C. 0, 7 D. 0, 7 E. 0, 8 Solusi: [B] a S r a 6 a 0, u ar 0,,. Dalam suatu gedung pertunjukam, kursi-kursi disusun melingkar (setengah lingkaran). Baris pertama adalah 0 kursi, baris berikutnya bertambah 6 kursi dari baris sebelumnya, sampai pada baris terakhir yang terdiri dari 0 kursi. Banyaknya penonton yang dapat ditampung dalam gedung tersebut A. 90orang B. 900orang C. 860orang D. 8orang E. 800orang Solusi: [A] a 0, b 6, dan u 0 u a n b n 0 0 n 6 8 n 6 n n n n Sn a un S x 8. Nilai lim... x x x A. Husein Tampomas, Latihan Soal dan Solusi Matematika IPS SMA/MA, UHAMKA, 0

13 B. C. D. E. x 8 x lim lim x x x xx lim x x x 7 x. Nilai A. B. C. D. E. 6 Solusi: [E] x x x x x lim 7 6 x. Turunan pertama dari fungsi f x A. x B. x C. x D. x E. x Solusi: [E] x, untuk x x x x x 9 6x 6x f x f ' x x x x x. Turunan pertama f x x A. 0 x B. 0x x C. 0x x D. 0x x E. 0x x ' 0 0 f x x f x x x x x 6. Fungsi f x x x x, turun pada interval... Husein Tampomas, Latihan Soal dan Solusi Matematika IPS SMA/MA, UHAMKA, 0

14 A. x atau x B. x atau x C. x D. x E. x x x f x x f ' x x 6x Fungsi f turun jika x 6x 0 x x 0 x x 0 f ' x 0, sehingga x 7. Untuk meningkatkan penjualan x barang diperlukan biaya produksi 9 termasuk biaya pemasangan iklan sebesar x 00x dalam ribuan rupiah. Harga penjualan tiap barang dirumuskan 00 x x dalam ribuan rupiah. Jika ingin memperoleh keuntungan maksimum, maka barang yang diproduksi A. 0 B. 0 C. 0 D. 0 E. 0 Solusi: [B] u x x x x x x ux x x 600x 9 u' x x 0x 600 u" x x 0 x Nilai stasioner u dicapai jika 0x x x x 0 x 0 u' x 0, sehingga x x x x x Karena u" , maka u mecapai minimum. Karena u" , maka u mecapai maksimum. Jadi, banyak barang yang diproduksi adalah xx dx... A. x x 9x c 9 B. x x x c Husein Tampomas, Latihan Soal dan Solusi Matematika IPS SMA/MA, UHAMKA, 0

15 9 C. x x x c D. x 9x c 9 E. x x c 9 x x dx x x 6x 9 dx x 6x 9x dx x x x C 9. Jika 0 a, maka nilai a yang memenuhi x dx A. B., C. D., E. 0 x dx a x x a 0 a a a a8 0 a a 0 a a Karena a 0, maka a. Husein Tampomas, Latihan Soal dan Solusi Matematika IPS SMA/MA, UHAMKA, 0 0 a, 0. Luas daerah yang dibatasi y x x dan y x A. B. 7 C. 9 D. 0 E. 0 Solusi : [E] Batas-batas integral: x x x x 0 x L x x x dx x dx Y O y x x X y x

16 x x Solusi : [E] x x x x 0 D b ac D D L 0 6a 6 6. Luas daerah yang dibatasi oleh kurva y x 6x dan sumbu-x adalah... satuan luas A. 0 B. 0 C. 0 D. E. Solusi : [C] Batas-batas integral: 0 x 6x x 6x 0 x x 0 x x L x 6x dx x x x 7 0 Solusi : [C] x 6x 0 D D D L 0 6a 6 6. Jalan dari kota A menuju ke kota B dapat ditempuh dengan rute dan jalan dari kota B ke kota C dapat ditempuh dengan rute. Rudi melakukan perjalanan dari kota A ke kota C melalui kota B pulang pergi dan tidak menggunakan jalan yang sama. Banyak rute perjalanan yang mungkin dapat dilakukan A. B. 8 C. 6 D. 7 E. 0 Solusi: [E] Y O y x 6x X 6 Husein Tampomas, Latihan Soal dan Solusi Matematika IPS SMA/MA, UHAMKA, 0

17 A B C B A Banyak rute perjalanan yang mungkin dapat dilakukan adalah 0. Sebuah delegasi beranggotakan orang akan dipilih dari 6 pria dan 7 wanita. Disyaratkan bahwa delegasi itu harus ada orang wanita. Banyaknya cara memilih delegasi itu A..008 B. 67 C. 0 D. E. 7 6! 7! Banyaknya cara memilih delegasi itu adalah 6C 7C! 6!! 7!. Jika sebuah lemari mempunyai laci, masing-masing dapat diisi dengan sebuah bungkusan yang berbeda, maka banyaknya cara menempatkan ketiga bungkusan ke dalam laci lemari adalah... cara. A. B. C. D. E. 8 Banyaknya cara menempatkan ketiga bungkusan ke dalam laci lemari adalah! P cara.!. Dalam keranjang terdapat buah salak baik dan salak busuk. Dua buah salak diambil satu persatu secara acak tanpa pengembalian. Jika pengambilan dilakukan sebanyak 0 kali, maka frekuensi harapan yang terambil keduanya salak baik A. B. C. 0 D. E. 0 Solusi: [E] P 8 7 Salak Baik fh P N 0 0 Salak Busuk 6. Dalam sebuah kantong terdapat kelereng merah dan kelereng biru. Dari dalam kantong diambil kelereng sekaligus. Peluang terambil kelereng biru dan merah... A. B. 7 C. 7 Husein Tampomas, Latihan Soal dan Solusi Matematika IPS SMA/MA, UHAMKA, 0

18 , 0,, 0,, 60, D. E. Solusi: [E] Peluang terambil kelereng biru dan merah adalah C C C Komposisi mata pencaharian penduduk Desa Makmur terlihat pada gambar di bawah ini. Jika tercatat jumlah penduduk orang, maka perbandingan banyaknya PNS dengn petani A. : 7 Petani 68 o B. : 8 C. : Pengusaha PNS 7 o D. : 0 o E. : Pedagang 60 o Buruh Solusi: [A] Perbandingan banyaknya PNS dengn petani adalah 7 :68 :7 8. Dari tabel distribusi frekuensi berikut ini, nilai kuartil bawah (Q ) adalah... A. 0, Berat Badang (kg) Frekuensi B., 6 C., 6 0 D., 6 6 E., Solusi: [A] Banyak data n 0 dan 0 n sehingga kelas Median adalah 6 0 Q, 0, 0, 0 9. Modus dari data yang disajikan pada histogram berikut adalah... A. f B., C. 7, D. 8 9 E Solusi: [E] 7 Mo,,, Simpangan baku dari data 6, 8, 7, 7, 7 adalah... A. B. C. X M B 8 Husein Tampomas, Latihan Soal dan Solusi Matematika IPS SMA/MA, UHAMKA, 0

19 D. 0 E x 7 n i i i k S f x x 0 Essai. Diketahui akar-akar persamaan kuadrat x x 0 adalah p dan q, tentukan a. b. Solusi: p q p q q p p q p q pq a. p q pq p q p q b. 8 q p pq pq. Perhatikan data pada diagram dibawah ini: f Tentukan nilai: a. Rerata 6 b. Median c. Modus 8 7 Solusi: 7 7 a x, b. Menentukan kelas interval: p 7 x i p x xi 0 Banyak data n dan n, Kelas median: 9, Me,, Nilai Nilai tengah Frekuensi X 9 Husein Tampomas, Latihan Soal dan Solusi Matematika IPS SMA/MA, UHAMKA, 0

20 c. Mo,, 8. Misalkan x dan x adalah akar-akar persamaan kuadrat x 6x 7 0 a. Tentukan nilai x x. b. Tentukan nilai x x. x x c. Tentukan nilai. x x d. Tentukan nilai x x x x e. Tentukan persamaan kuadrat baru yang akar-akarnya x dan x Solusi: 6 a. x x 7 b. xx 7 x x x x x x x x 8 c. x 7 x x x x x d. x x x x xx x x x 6x 7 0 e. y x x y x 6x 7 0 y y y 8y 8 6y 7 0 y y 7 0 atau x x 7 0. Dari kawat yang panjangnya 00 meter akan dibuat kerangka balok yang salah satu rusuknya meter. Jika volume baloknya maksimum, maka hitung panjang dua rusuk yang lain! Solusi: x y 00 x y 00 y y00 x Volume kotak adalah V xy x 00 x 00x x V ' 00 0x 0 x 0 y Jadi, pajang dua rusuk lainnya masing-masing adalah 0. x f x dan g x x, tentukan: x. Diketahui fungsi a. Fungsi f o gx b. Nilai dan fungsi go f c. Invers dari f x x 0 Husein Tampomas, Latihan Soal dan Solusi Matematika IPS SMA/MA, UHAMKA, 0

21 d. Fungsi h x sehingga ho gx f x Solusi: a.. x 0x f o g x f g x f x x 7 x b. x x 0x x x g o f x g f x g x x x x 0 Nilai dan fungsi go f 8 x x x f x f x, x x x x c. d. ho gx f x h g x f x x hx x x 7 x x h x x 0 x 7 x Husein Tampomas, Latihan Soal dan Solusi Matematika IPS SMA/MA, UHAMKA, 0

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN adalah... adalah...

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN adalah... adalah... UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN 0. Bentuk sederhana dari 6 A. a b B. 6 6 a b 6 a 8 b 6 9 a b 6 a E. b 8. Bentuk sederhana dari

Lebih terperinci

Solusi: [Jawaban C] Solusi: [Jawaban ]

Solusi: [Jawaban C] Solusi: [Jawaban ] SOLUSI SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPS MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPS MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPS PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPS MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPS MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPS MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPS PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPS MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

SMK Non Teknik Mata Pelajaran : Matematika

SMK Non Teknik Mata Pelajaran : Matematika Latihan Soal UN 0 Paket Sekolah Menengah Kejuruan SMK Non Teknik Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban Ujian Nasional (LJUN)

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN PAKET Pilihan Ganda: Pilihlah satu jawaban yang paling tepat.. Ingkaran dari pernyataan Mathman tidak belajar atau dia dapat mengerjakan soal UN matematika

Lebih terperinci

Pilihlah jawaban yang paling tepat. 1. Ingkaran dari pernyataan: (~ q r) adalah... A. ~ ~ (~ q r) B. ( q ~ r ) C. ( ~ q) ~ r D. ~ (~ q r) E.

Pilihlah jawaban yang paling tepat. 1. Ingkaran dari pernyataan: (~ q r) adalah... A. ~ ~ (~ q r) B. ( q ~ r ) C. ( ~ q) ~ r D. ~ (~ q r) E. Pilihlah jawaban yang paling tepat. Ingkaran dari pernyataan: (~ q r) adalah... A. ~ ~ (~ q r) B. ( q ~ r ) C. ( ~ q) ~ r D. ~ (~ q r) E. ( q ~ r) Jawaban : B Ingkaran p ( q r ) adalah (p ( q r )) p (q

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPS MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPS MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPS PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPS MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

UN SMA 2014 Matematika IPS

UN SMA 2014 Matematika IPS UN SMA 04 Matematika IPS Kode Soal Doc. Name: UNSMA04MATIPS999 Doc. Version : 0-0 halaman 0. Negasi dari pernyataan Semua bilangan rasional adalah bilangan real dan prima adalah... Tidak ada bilangan rasional

Lebih terperinci

SOAL TRY OUT UN MATEMATIKA 2013 PROGRAM IPS. Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!

SOAL TRY OUT UN MATEMATIKA 2013 PROGRAM IPS. Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar! SOAL TRY OUT UN MATEMATIKA 0 PROGRAM IPS Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Ingkaran dari pernyataan Diana lulus ujian nasional dan kuliah di luar negeri

Lebih terperinci

PREDIKSI UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPS TAHUN PELAJARAN

PREDIKSI UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPS TAHUN PELAJARAN PREDIKSI UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPS TAHUN PELAJARAN 0-0. Negasi dari pernyataan, Jika Harmelia lulus ujian maka ia akan melanjutkan kuliah di luar negeri adalah... Harmelia lulus ujian

Lebih terperinci

Pilihla jawaban yang paling tepat!

Pilihla jawaban yang paling tepat! Pilihla jawaban yang paling tepat!. Ingkaran dari pernyataan: ( ~ q) r adalah.... A. ( ~ q) ~ r B. (~ ( q) ~ r C. ( ~ q) ~ r D. ( ~ q) ~ r E. (~ q) ~ r Jawaban : A Ingkaran { p ~ q r} (p ~ q) ~ r. Pernyataan

Lebih terperinci

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA SMA/MA IPA, KELOMPOK 2, TEBO

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA SMA/MA IPA, KELOMPOK 2, TEBO SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA SMA/MA IPA, KELOMPOK, TEBO. Perhatikan premis-premis berikut. Premis : Jika bilangan genap maka 7 tidak habis dibagi Premis : Jika 7 tidak habis dibagi maka bilangan

Lebih terperinci

Matematika Ebtanas IPS Tahun 1997

Matematika Ebtanas IPS Tahun 1997 Matematika Ebtanas IPS Tahun 99 EBTANAS-IPS-9-0 Bentuk sederhana dari 86 6 + 8 6 9 6 0 6 6 6 EBTANAS-IPS-9-0 Bentuk sederhana dari 8 + 6 + + 6 6 + + EBTANAS-IPS-9-0 x+ Nilai x yang memenuhi persamaan =

Lebih terperinci

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA A TROUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 0/05 MATEMATIKA IPS Hasil Kerja Sama dengan Mata Pelajaran : Matematika IPS Jenjang : SMA/MA MATA PELAJARAN Hari, tanggal : Selasa,

Lebih terperinci

UNIVERSITAS GUNADARMA

UNIVERSITAS GUNADARMA SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA B TROUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 04/05 MATEMATIKA IPS Hasil Kerja Sama dengan Mata Pelajaran : Matematika IPS Jenjang : SMA/MA MATA PELAJARAN Hari, tanggal : Selasa,

Lebih terperinci

SMA / MA PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 2015 / 2016 MATEMATIKA. (Paket Soal A) SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON

SMA / MA PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 2015 / 2016 MATEMATIKA. (Paket Soal A) SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 05 / 06 SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON SMA / MA MATEMATIKA Program Studi IPA Kerjasama dengan Dinas Pendidikan Provinsi DKI Jakarta,

Lebih terperinci

PREDIKSI UN SMA IPS MATEMATIKA 2012

PREDIKSI UN SMA IPS MATEMATIKA 2012 Prediksi Matematika UN SMA IPS 01 PREDIKSI UN SMA IPS MATEMATIKA 01 1. Diketahui dua pernyataan p dan q p : bernilai besar q : bernilai salah Pernyataan majemuk di bawah ini bernilai benar, kecuali. A.

Lebih terperinci

SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 2012

SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 2012 SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 0. Negasi dari semua siswa rajin belajar untuk menghadapi UN, adalah... A. tidak semua siswa rajin belajar untuk menghadapi UN B. semua siswa

Lebih terperinci

BANK SOAL MATEMATIKA IPS

BANK SOAL MATEMATIKA IPS BANK SOAL MATEMATIKA IPS Tim Guru Matematika SMAN 1 Kendari KENDARI 2013 1. Bentuk sederhana dari adalah... A. B. E. Jawaban : E Bentuk sederhana dari : 2. Nilai x yang memenuhi persamaan adalah... A.

Lebih terperinci

SOLUSI DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 2013/2014

SOLUSI DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 SOLUSI DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 0/0 TES UJI COBA UJIAN NASIONAL SMA/MA MATEMATIKA IPS 7 7.... SOAL B6

Lebih terperinci

SMA / MA PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 2015 / 2016 MATEMATIKA. (Paket Soal A) SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON

SMA / MA PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 2015 / 2016 MATEMATIKA. (Paket Soal A) SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 05 / 06 SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON SMA / MA MATEMATIKA Program Studi IPS Kerjasama dengan Dinas Pendidikan Provinsi DKI Jakarta,

Lebih terperinci

TRY OUT UJIAN NASIONAL

TRY OUT UJIAN NASIONAL PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN MUSYAWARAH KERJA KEPALA SEKOLAH SMA Sekretariat : SMA Negeri 70 Jakarta Jalan Bulungan No. 1C, Jakarta Selatan - Telepon (01) 7667, Fax

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI SIDAYU Jl. Pahlawan No.0 Telp./Fax. 0-0 Sidayu Gresik UJIAN SEKOLAH TAHUN PELAJARAN 00/0 Mata Pelajaran : Matematika Satuan Pendidikan : SMA Program

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 05 PAKET Pilihan Ganda: Pilihlah satu jawaban ang paling tepat.. Ingkaran dari pernataan Jika air sungai meluap, maka kota kebanjiran dan semua warga kota

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPS MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPS MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPS PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPS MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPS MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPS MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPS PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPS MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

UN SMA IPS 2011 Matematika

UN SMA IPS 2011 Matematika UN SMA IPS 0 Matematika Kode Soal Doc. Name: UNSMAIPS0MAT999 Version: 0- halaman 0. Koordinat titik potong grafik fungsi kuadrat y = - - dengan sumbu X dan sumbu Y (A) (-,0),(,0), dan (0,) (B) (-,0),(,0),dan

Lebih terperinci

SANGGAR 16 SMA JAKARTA TIMUR

SANGGAR 16 SMA JAKARTA TIMUR SANGGAR 6 SMA JAKARTA TIMUR SOAL DAN SOLUSI TRY OUT BERSAMA Senin, 6 Pebruari 5. Ingkaran dari pernyataan : Jika semua sampah dibuang pada tempatnya maka Jakarta tidak banjir adalah A. Jika semua sampah

Lebih terperinci

Solusi: [Jawaban E] Solusi: [Jawaban D]

Solusi: [Jawaban E] Solusi: [Jawaban D] SOLUSI SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

UNIVERSITAS GUNADARMA

UNIVERSITAS GUNADARMA SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

SMA / MA IPS/KEAGAMAAN Mata Pelajaran : Matematika

SMA / MA IPS/KEAGAMAAN Mata Pelajaran : Matematika Latihan Soal UN 0 Paket Sekolah Menengah Atas / Madrasah Aliyah SMA / MA IPS/KEAGAMAAN Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN

SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN SOLUSI PREDIKSI SOAL MATEMATIKA UN 0 TUGAS KELOMPOK SATUAN PENDIDIKAN MATA PELAJARAN PROGRAM BANYAK SOAL WAKTU : SMA : MATEMATIKA : IPA : 0 BUTIR : 0 MENIT. Diketahui premis-prmis berikut: Premis : Jika

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik PEMERINTAH KAUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI SIDAYU Jl. Pahlawan No.0 Telp./Fax. 0-0 Sidayu Gresik UJIAN SEKOLAH TAHUN PELAJARAN 00/0 Mata Pelajaran : Matematika Satuan Pendidikan : SMA Program

Lebih terperinci

UN SMA IPS 2009 Matematika

UN SMA IPS 2009 Matematika UN SMA IPS 009 Matematika Kode Soal P88 Doc. Name: UNSMAIPS009MATP88 Doc. Version : 011-06 halaman 1 01. Diberikan beberapa pernyataan: Premis 1: Jika Santi sakit maka ia pergi ke dokter Premis : Jika

Lebih terperinci

SOAL PENJAJAKAN UN MATEMATIKA 2012 PROVINSI DIY

SOAL PENJAJAKAN UN MATEMATIKA 2012 PROVINSI DIY SOAL PENJAJAKAN UN MATEMATIKA 0 PROVINSI DIY. Suatu proyek akan selesai dalam waktu 0 hari oleh 0 orang pekerja. Tambahan pekerja yang dibutuhkan agar proyek tersebut selesai dalam waktu 90 hari adalah.

Lebih terperinci

TRY OUT UJIAN NASIONAL

TRY OUT UJIAN NASIONAL PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN MUSYAWARAH KERJA KEPALA SEKOLAH SMA Sekretariat : SMA Negeri 70 Jakarta Jalan Bulungan No. 1C, Jakarta Selatan - Telepon (01) 7667, Fax

Lebih terperinci

DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 LEMBAR SOAL

DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 LEMBAR SOAL DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 03/0 LEMBAR SOAL Mata Pelajaran : Matematika Jenjang : SMA/MA Program Studi

Lebih terperinci

Ujian Nasional. Tahun Pelajaran 2010/2011 IPS MATEMATIKA (D10) UTAMA. SMA / MA Program Studi

Ujian Nasional. Tahun Pelajaran 2010/2011 IPS MATEMATIKA (D10) UTAMA. SMA / MA Program Studi Ujian Nasional Tahun Pelajaran 2010/2011 UTAMA SMA / MA Program Studi IPS MATEMATIKA (D10 c Fendi Alfi Fauzi alfysta@yahoo.com Ujian Nasional Tahun Pelajaran 2010/2011 (Pelajaran Matematika Tulisan ini

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik PMRINTAH KABUPATN GRSIK DINAS PNDIDIKAN SMA NGRI SIDAYU Jl. Pahlawan No.0 Telp./Fax. 0-40 Sidayu Gresik UJIAN SKOLAH TAHUN PLAJARAN 00/0 Mata Pelajaran : Matematika Satuan Pendidikan : SMA Program : IPS

Lebih terperinci

1. Dari suatu barisan aritmetika diketahui suku ke-15 adalah 222 dan suku ke-12 adalah 57. Suku ke-15 barisan ini adalah. A. 62 B. 68 C. 72 D. 74 E.

1. Dari suatu barisan aritmetika diketahui suku ke-15 adalah 222 dan suku ke-12 adalah 57. Suku ke-15 barisan ini adalah. A. 62 B. 68 C. 72 D. 74 E. . Dari suatu barisan aritmetika diketahui suku ke-5 adalah dan suku ke- adalah 57. Suku ke-5 barisan ini adalah. A. 6 B. 68 7 D. 74 E. 76. Suku ketiga dan suku keenam barisan geometri berturut-turut adalah

Lebih terperinci

1. Jika diketahui pernyataan p benar dan q salah, maka pernyataan di bawah ini yang benar adalah.

1. Jika diketahui pernyataan p benar dan q salah, maka pernyataan di bawah ini yang benar adalah. MAT IPS PAKET B PETUNJUK KHUSUS : Pilihlah satu jawaban yang benar untuk soal nomor sampai dengan 40 dengan menghitamkan huruf A, B, C, D, atau E pada lembar LJK!. Jika diketahui pernyataan p benar dan

Lebih terperinci

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 0/0. Akar-akar persamaan kuadrat x +ax - 40 adalah p dan q. Jika p - pq + q 8a, maka nilai a... A. -8 B. -4 C. 4 D. 6 E. 8 BAB III Persamaan

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik OKUMEN NEGARA PEMERINTAH KABUPATEN GRESIK INAS PENIIKAN SMA NEGERI SIAYU Jl. Pahlawan No. Telp./Fax. - Sidayu Gresik UJIAN SEKOLAH TAHUN PELAJARAN / Mata Pelajaran : Matematika Satuan Pendidikan : SMA

Lebih terperinci

TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2016/2017

TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2016/2017 TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2016/2017 LEMBAR SOAL Mata Pelajaran : MATEMATIKA Satuan Pendidikan : SMA/MA Program : BAHASA Hari, Tanggal : Sabtu, 18 Februari 2017 Waktu : 120 Menit PETUNJUK UMUM

Lebih terperinci

SOLUSI. p q r p q r p q r Jadi, pernyataannya adalah Hujan tidak deras atau angin tidak kencang atau semua pohon tumbang.

SOLUSI. p q r p q r p q r Jadi, pernyataannya adalah Hujan tidak deras atau angin tidak kencang atau semua pohon tumbang. SOLUSI SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

TRY OUT UJIAN NASIONAL

TRY OUT UJIAN NASIONAL PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN MUSYAWARAH KERJA KEPALA SEKOLAH SMA Sekretariat : SMA Negeri 70 Jakarta Jalan Bulungan No. C, Jakarta Selatan Telepon (0) 7667, Fax (0)

Lebih terperinci

UNIVERSITAS GUNADARMA

UNIVERSITAS GUNADARMA SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

Dengan merasionalkan penyebut, hasil dari. 1. Diketahui premis-premis: I Jika cuaca cerah, maka Andi pergi sekolah

Dengan merasionalkan penyebut, hasil dari. 1. Diketahui premis-premis: I Jika cuaca cerah, maka Andi pergi sekolah 00-008-00- . Diketahui premis-premis: I Jika cuaca cerah, maka Andi pergi sekolah II Andi tidak pergi sekolah atau Andi bermain bola Kesimpulan yang sah dari premis-premis tersebut adalah.... cuaca cerah

Lebih terperinci

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =...

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =... 1 1. Diketahui: Premis 1 : Jika hari hujan maka tanah basah. Premis : Tanah tidak basah. Ingkaran dari penarikan kesimpulan yang sah dari premis-premis di atas adalah.... Agar F(x) = (p - ) x² - (p - 3)

Lebih terperinci

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3 Nama : Ximple Education No. Peserta : 08-6600-77. Nilai dari A. B. C. D. E. 6 0 0 7. Bentuk sederhana 6 =. A. 9 B. 9 + C. 9 D. 9 E. + 9. Nilai dari ( A. B. 7 8 C. 9 6 log log log 6 6 log 0 log 6 + log

Lebih terperinci

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPS/Keagamaan

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPS/Keagamaan Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 00/0 Program Studi IPS/Keagamaan. Himpunan penyelesaian pertidaksamaan -x +x 5 0 adalah... A. { x x -5 atau x -, x R } D. { x x - atau

Lebih terperinci

SOAL LATIHAN UN MATEMATIKA IPS 00. Negasi dari pernyataan Matematika tidak mengasyikkan dan membosankan adalah. Matematika mengasyikkan atau membosankan Matematika mengasyikkan atau tidak membosankan Matematika

Lebih terperinci

ISTIYANTO.COM PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPS. Kemampuan yang diuji UN 2009 = UN Materi. Soal UN 2009 Prediksi UN 2010

ISTIYANTO.COM PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPS. Kemampuan yang diuji UN 2009 = UN Materi. Soal UN 2009 Prediksi UN 2010 PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPS Materi Logika Matematika Kemampuan yang diuji UN 009 = UN 00 Menentukan nilai kebenaran suatu pernyataan majemuk Menentukan ingkaran suatu pernyataan Perhatikan

Lebih terperinci

SANGGAR 16 SMA JAKARTA TIMUR

SANGGAR 16 SMA JAKARTA TIMUR SANGGAR 6 SMA JAKARTA TIMUR SOAL TRY OUT BERSAMA Senin, 6 Pebruari 05. Ingkaran dari pernyataan : Jika semua sampah dibuang pada tempatnya maka Jakarta tidak banjir adalah Jika semua sampah tidak dibuang

Lebih terperinci

UN SMA IPS 2012 Matematika

UN SMA IPS 2012 Matematika UN SMA IPS 01 Matematika Kode Soal A Doc. Name: UNSMAIPS01MATA Doc. Version : 01-1 halaman 1 01. Ingkaran pernyataan Pada hari Senin siswa SMAN memakai sepatu hitam dan atribut lengkap adalah. Pada hari

Lebih terperinci

SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012

SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 1. Akar-akar persamaan kuadrat x 2 +ax - 4=0 adalah p dan q. Jika p 2-2pq + q 2 =8a, maka nilai a =... A. -8 B. -4 C. 4 D. 6 E. 8 2. Persamaan

Lebih terperinci

Matematika EBTANAS Tahun 1995

Matematika EBTANAS Tahun 1995 Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Grafik fungsi kuadrat di samping (,) persamaannya y = + + y = + y = + (0,) y = + y = + EBT-SMA-9-0 Akar-akar persamaan kuadrat = 0 adalah dan. Persamaan kuadrat

Lebih terperinci

SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/ a 16. definit positif adalah...

SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/ a 16. definit positif adalah... SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN /. Nilai a yang menyebabkan fungsi kuadrat f x a x ax a a a a a a Solusi: [Jawaban D] a a a. () D a a a a a

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.97 Sukoharjo Telp. 07-90 7 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran :

Lebih terperinci

PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA

PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 49 PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut

Lebih terperinci

Prediksi 2 UN SMA IPS Matematika Kode Soal: 302

Prediksi 2 UN SMA IPS Matematika Kode Soal: 302 Prediksi UN SMA IPS Matematika Kode Soal: Doc. Version : -6 halaman. Negasi dari pernyataan Jika saya belajar dengan zenius maka saya lulus UN Jika saya lulus UN maka saya belajar dengan zenius Saya tidak

Lebih terperinci

PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09)

PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09) PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09) 1. Luas daerah yang dibatasi oleh kurva y = x + x + 5, sumbu x, dan 0 x 1... satuan luas (A) (C) (E) 5 (B) 0 (D) 5 1. Diketahui segitiga ABC, siku-siku di

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 00/009. BAB VI Logika Matematika p q Konjungsi Bernilai salah jika ada yang salah (jika salah satu dari p dan q salah atau kedua-duanya

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik DOKUMEN NEGR PEMERINTH KBUPTEN GRESIK DINS PENDIDIKN SM NEGERI SIDYU Jl. Pahlawan No. Telp./Fax. - Sidayu Gresik UJIN SEKOLH THUN PELJRN / Mata Pelajaran : Matematika Satuan Pendidikan : SM Program : IPS

Lebih terperinci

= 3 x maka (f g)(x) =.. Mata Pelajaran : MATEMATIKA. Petunjuk: A

= 3 x maka (f g)(x) =.. Mata Pelajaran : MATEMATIKA. Petunjuk: A Mata Pelajaran : MATEMATIKA Kelas/ Program : XII IPS Waktu : 0 menit Petunjuk: Pilih satu jawaban yang benar. Pernyataan yang senilai dengan Jika guru tidak datang maka semua siswa sedih. Adalah... Jika

Lebih terperinci

UN SMA 2013 PRE Matematika IPS

UN SMA 2013 PRE Matematika IPS UN SMA 201 PRE Matematika IPS Kode Soal Doc. Name: UNSMA2014PREMATIPS999 Doc. Version : 2014-01 halaman 1 01. (1) Jika jalan basah maka hari hujan (2) Jika hari tidak hujan maka jalan tidak basah () Jika

Lebih terperinci

2009 ACADEMY QU IDMATHCIREBON

2009 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPS Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Diketahui:

Lebih terperinci

SOAL DAN PEMBAHASAN UN MATEMATIKA SMK TEKNOLOGI, KESEHATAN DAN PERTANIAN TAHUN 2013 (Paket 13)

SOAL DAN PEMBAHASAN UN MATEMATIKA SMK TEKNOLOGI, KESEHATAN DAN PERTANIAN TAHUN 2013 (Paket 13) SOAL DAN PEMBAHASAN UN MATEMATIKA SMK TEKNOLOGI, KESEHATAN DAN PERTANIAN TAHUN 2013 (Paket 13) Jawab: Perbandingan/Skala Jarak sebenarnya : 4.000.000 x 15 cm 60.000.000 cm 600.000 m 600 km ( 1 km 1000

Lebih terperinci

UN SMA 2016 Matematika IPS

UN SMA 2016 Matematika IPS UN SMA 06 Matematika IPS Soal Doc. Name: UNSMA06MATIPS999 Doc. Version : 06-0 halaman 0. Diketahui a 0, b 0, dan c 0. Bentuk 3 4 8a b c sederhana dari 5 6 adalah... 4a b c a b c 4 3 8 6 4 4a b c 4 c 4a

Lebih terperinci

Soal dan Pembahasan UN Matematika Program IPS tahun 2008

Soal dan Pembahasan UN Matematika Program IPS tahun 2008 Soal dan Pembahasan UN Matematika Program IPS tahun 008. Negasi dari pernyataan Matematika tidak mengasyikan atau membosankan adalah A. Matematika mengasyikan atau membosankan. B. Matematika mengasyikan

Lebih terperinci

TRY OUT UJIAN NASIONAL SMA/MA MATEMATIKA IPS 02 MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA DINAS PENDIDIKAN DAN KEBUDAYAAN PEMERINTAH KOTA BATAM

TRY OUT UJIAN NASIONAL SMA/MA MATEMATIKA IPS 02 MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA DINAS PENDIDIKAN DAN KEBUDAYAAN PEMERINTAH KOTA BATAM TRY OUT UJIAN NASIONAL SMA/MA 01 MATEMATIKA IPS 0 MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA DINAS PENDIDIKAN DAN KEBUDAYAAN PEMERINTAH KOTA BATAM 01 hakcipta MGMP Matematika Kota Batam paket 0 MATA

Lebih terperinci

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPA UJIAN AKHIR TAHUN 2015

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPA UJIAN AKHIR TAHUN 2015 UHMK (UNIVERSITS MUHMMDYH FROF. DR. HMK) LTIHN SOL DN SOLUSI MTEMTIK IP UJIN KHIR THUN 0 I. Pilihlah jawaban yang paling benar!. Diberikan premis-premis seperti berikut. ) Dia bukan pujaan hatiku atau

Lebih terperinci

Mata Pelajaran : Matematika

Mata Pelajaran : Matematika Pembahasan Pra Ujian Nasional Tahun Pelajaran 01/01 Mata Pelajaran : Matematika Program IPS Kode Paket A 6 Oleh : Fendi Al Fauzi 1 1. Nilai kebenaran yang tepat untuk pernyataan ( p q) p pada tabel berikut

Lebih terperinci

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C.

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C. 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 Kunci : C Persamaan fungsi : F(x)

Lebih terperinci

SOAL-SOAL TO UN MATEMATIKA IPA PAKET A ... A B. x 3 C. 2 5 D E. 3 x Bentuk sederhana dari ... A. B. C. D. E. 3. Nilai dari =...

SOAL-SOAL TO UN MATEMATIKA IPA PAKET A ... A B. x 3 C. 2 5 D E. 3 x Bentuk sederhana dari ... A. B. C. D. E. 3. Nilai dari =... SOAL-SOAL TO UN MATEMATIKA IPA PAKET A 5. 4 4 Nilai dari 4 ( )4 5 4.0..... 4 5 4 5. Bentuk sederhana dari 5... 0 8 5 8 5 5 8 8 5 8 5 5 log 4. log log8. Nilai dari log 4 log 8 4 4 8 4 =.... 4. Nilai x yang

Lebih terperinci

Matematika SMA/MA IPA. No. Peserta : Bentuk sederhana dari 1 A. 36 B. 6 C. 1 D Bentuk sederhana dari (2 2 6)( )

Matematika SMA/MA IPA. No. Peserta : Bentuk sederhana dari 1 A. 36 B. 6 C. 1 D Bentuk sederhana dari (2 2 6)( ) Nama : Ximple Education No. Peserta : 08-6600-747. Bentuk sederhana dari 6 6 3 3 5 64 7 000 3 A. 36 B. 6 C. D. 6 E. 36 =.. Bentuk sederhana dari ( 6)(6 +3 6) 3 4 A. 3 ( 3 + 4) B. 3 ( 3 + 4) C. ( 3 + 4)

Lebih terperinci

6. Jika 2 log 3 = a dan 3 log 5 = b, maka 15 log 20 = a. 2. c. a. e

6. Jika 2 log 3 = a dan 3 log 5 = b, maka 15 log 20 = a. 2. c. a. e Page of. Negasi dari pernyataan Matematika tidak mengasyikkan atau adalah a. Matematika mengasyikkan atau Matematika mengasikkan atau tidak c. Matematika mengasikkan dan tidak Matematika tidak mengasikkan

Lebih terperinci

Hak Cipta 2014 Penerbit Erlangga

Hak Cipta 2014 Penerbit Erlangga 00-00-008-0 Hak Cipta 0 Penerbit Erlangga Berilah tanda silang (X) pada huruf A, B, C, D, atau E pada jawaban yang benar!. Diketahui premis-premis: () Jika beberapa daerah dilanda banjir, maka beberapa

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.97 Sukoharjo Telp. 07-90 7 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran :

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. 9 PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.97 Sukoharjo Telp. 07-90 7 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. 0 PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.97 Sukoharjo Telp. 07-90 7 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2007

SOAL UN DAN PENYELESAIANNYA 2007 1. Bentuk sederhana dari (1 + 3 ) - (4 - ) adalah... A. -2-3 B. -2 + 5 C. 8-3 D. 8 + 3 8 + 5 (1 + 3 ) - (4 - ) = (1 + 3 ) - (4-5 ) = 1 + 3-4 + 5 = 8-3 2. Jika 2 log 3 = a dan 3 log 5 = b, maka 15 log 20

Lebih terperinci

SOAL PERSIAPAN UJIAN NASIONAL TAHUN PELAJARAN 2016 / 2017

SOAL PERSIAPAN UJIAN NASIONAL TAHUN PELAJARAN 2016 / 2017 SOAL PERSIAPAN UJIAN NASIONAL TAHUN PELAJARAN 06 / 07 MATA PELAJARAN : Matematika KELOMPOK : TEKNIK (RPL, TKJ). Bentuk sederhana dari p q r 0 0 0 0 p q r 8 0 p q r 8 pqr 6 5 5 p q r p q r p q r 5 adalah....

Lebih terperinci

UNIVERSITAS GUNADARMA

UNIVERSITAS GUNADARMA SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

UN SMA IPS 2010 Matematika

UN SMA IPS 2010 Matematika UN SMA IPS 00 Matematika Kode Soal Doc. Name: UNSMAIPS00MAT999 Doc. Version : 04-0 halaman 0. Nilai kebenaran yang tepat untuk pernyataan ( p q) ~ p, Pada table berikut adalah... p q (p q) ~ p B B... B

Lebih terperinci

TRY OUT UJIAN NASIONAL

TRY OUT UJIAN NASIONAL PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN MUSYAWARAH KERJA KEPALA SEKOLAH SMA Sekretariat : SMA Negeri 70 Jakarta Jalan Bulungan No. C, Jakarta Selatan Telepon (0) 7667, Fax (0)

Lebih terperinci

UN SMA 2015 Matematika IPS

UN SMA 2015 Matematika IPS UN SMA 05 Matematika IPS Kode Soal Doc. Name: UNSMA05MATIPS999 Doc. Version : 05- halaman 0. Negasi dari pernyataan Matematika tidak mengasyikkan atau membosankan Matematika mengasyikkan atau membosankan.

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.9 Sukoharjo Telp. 0-590 55 TR OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran : MATEMATIKA

Lebih terperinci

8. Nilai x yang memenuhi 2 log 2 (4x -

8. Nilai x yang memenuhi 2 log 2 (4x - 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 2. Fungsi kuadrat yang mempunyai nilai maksimum

Lebih terperinci

1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah.

1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah. 1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah. Luas maksimum daerah yang dibatasi oleh kawat tersebut adalah... 3,00

Lebih terperinci

SOAL- SOAL MATEMATIKA KELAS XII IPB. 26. Nilai dari 2 log log 12 2 log 6 =. 27. Nilai dari 3 log log 6 3 log 10 =.

SOAL- SOAL MATEMATIKA KELAS XII IPB. 26. Nilai dari 2 log log 12 2 log 6 =. 27. Nilai dari 3 log log 6 3 log 10 =. A. LOGIKA MATEMATIKA. lngkaran dari pernyataan "Semua siswi SMA Tarakanita bertempat tinggal di Jakarta" adalah.... Negasi dari pernyataan Disa cantik tetapi sombong adalah... (kata lain dari tetapi adalah

Lebih terperinci

SOAL DAN SOLUSI PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SANGGAR 14 SMA

SOAL DAN SOLUSI PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SANGGAR 14 SMA SOAL DAN SOLUSI PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SANGGAR SMA Sekretariat : SMA Negeri 8, Jl. Pinang Ranti II No. TMII Kec. Makasar Telp. 80097 80060 / Fax. (0) 80097 Kode

Lebih terperinci

SOAL ToT MATEMATIKA TEKNIK 2018

SOAL ToT MATEMATIKA TEKNIK 2018 1. Nilai dari =... A. 4 B. 6 C. 1 D. 12 E. 18 2. Bentuk sederhana dari ( ) =... A. a 5. b 8. c 4 B. a 5. b 2. c 4 C. a 6. b 8. c 4 D. a 6. b 8. c 4 E. a 6. b 2. c 4 3. Bentuk sederhana dari A. B. C. D.

Lebih terperinci

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Jika a = 1 A. 6 B. 4 C. 1 6 D. 1 4 E

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Jika a = 1 A. 6 B. 4 C. 1 6 D. 1 4 E 1 Nama : Ximple Education No. Peserta : 08-6600-747 1 1. Jika a = 1, b = 6, maka nilai dari 6 a b 1 4 =. a b A. 6 B. 4 C. 1 6 D. 1 4 E.. Nilai dari ( log + log log log ) log 7+ log =. A. B. C. 4 D. 4 8

Lebih terperinci

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPA

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPA Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 010/011 Program Studi IPA 1. Akar-akar persamaan 3x -1x + = 0 adalah α dan β. Persamaan Kuadrat baru yang akar-akarnya (α +) dan (β +)

Lebih terperinci

4. Bentuk sederhana dari : a b

4. Bentuk sederhana dari : a b PAKET A. Pernyataan yang setara dengan Jika cuaca buruk, maka semua penerbangan ditunda adalah. A. Jika beberapa penerbangan tidak ditunda, maka cuaca baik. B. Jika semua penerbangan ditunda, maka cuaca

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPS

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPS PEMBAHASAN UN SMA TAHUN PELAJARAN 009/010 MATEMATIKA PROGRAM STUDI IPS PEMBAHAS : 1. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. EDITOR : Dra. Puji Iryanti, M.Sc.

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM 2 GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 2010/2011

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM 2 GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 2010/2011 PEMERINTAH KAUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 00/0 Mata Pelajaran : Matematika Satuan Pendidikan : SMA/MA Program : ahasa Hari/ Tanggal

Lebih terperinci