Mengubah kalimat verbal menjadi model matematika

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Mengubah kalimat verbal menjadi model matematika"

Transkripsi

1 LEMBAR KEGIATAN SISWA 3 Materi : Mengubah kalimat verbal menjadi model matematika Kelas Kelompok : : Nama Anggota : Kalian telah mempelajari cara membuat kalimat matematika, membuat grafik dari kalimat matematika dan menentukan daerah penyelesaian sistem pertidaksamaan linier dua variabel. Sekarang kalian akan mempelajari materi program linier yaitu mengubah kalimat verbal menjadi model matematika dalam bentuk sistem pertidaksamaan linier. Masalah yang akan kalian selesaikan pada LKS 3 ini masih ada hubungannya dengan LKS 1 dan 2. Tujuan Pembelajaran: Siswa dapat membuat model matematika dalam bentuk sistem pertidaksamaan linier. 1. Pengertian Model Matematika Hal terpenting dalam masalah program linier adalah mengubah persoalan verbal ke dalam bentuk model matematika (persamaan atau pertidaksamaan)

2 yang merupakan penyajian dari bahasa sehari-hari ke dalam bahasa matematika yang lebih sederhana dan mudah dimengerti. Jadi model matematika adalah suatu cara sederhana untuk memandang suatu masalah dengan menggunakan persamaan-persamaan atau petidaksamaanpertidaksamaan matematika. 2. Mengubah Kalimat Verbal menjadi Model Matematika Dalam Bentuk Sistem Pertidaksamaan linier ROTI KERING KEJU ROTI KERING COKLAT Menjelang hari raya-hari raya Idul Fitri yang lalu kamu telah membuat bermacammacam kue kering seperti dua macam kue pada gambar diatas yakni, kue kering keju dan kue kering coklat. MASALAH 1 Untuk membuat kedua macam kue kering tersebut tentunya dibutuhkan bahan-bahan diantaranya : Untuk membuat satu resep kue kering keju diperlukan 100 gram tepung terigu dan 50 gram mentega. Sedangkan satu resep kue kering coklat diperlukan 200 gram tepung terigu dan 25 gram mentega. Tepung yang tersedia hanya 3,6 kg dan mentega yang

3 ada 1,2 kg. Keuntungan dari satu resep kue kering keju Rp 3.500,00 dan satu resep kue kering coklat Rp 2.000, Dari permasalahan diatas, misalnya banyak kue kering keju dilambangkan dengan x dan banyak kue kering coklat dilambangkan dengan y, variabel yang lain adalah tepung terigu dan mentega. Persediaan bahan dalam kg diubah ke dalam gram. Jika mungkin, susunlah data tersebut kedalam table. Bahan x y Persediaan bahan (pertidaksamaan 1)..(Pertidaksamaan 2) Keuntungan.. 2. Pertidaksamaan (1) :.. Pertidaksamaan (2) :.. Karena x dan y menyatakan banyaknya roti, maka x dan y adalah bilangan bulat positif. Pertidaksamaan (3) :.. Pertidaksamaan (4) :.. Jadi Model matematikanya adalah : Fungsi Obyektif : Z =.

4 3. Kemudian, buatlah grafik daerah penyelesaian sistem pertidaksamaan (daerah yang tidak diarsir merupakan daerah penyelesaian): y x MASALAH 2. ROTI ABON ROTI SOSIS KEJU

5 Dalam pembuatan roti abon tentunya kamu tahu berapa gram tepung terigu dan mentega yang dibutuhkan, begitu pula untuk roti sosis keju berapa gram tepung terigu dan mentega yang dibutuhkan. Ada berapa tepung terigu dan mentega yang kamu sediakan. Tulislah masalah tersebut sesuai dengan apa yang kamu praktikan di jurusan tata boga kedalam bentuk model matematika. Kentungan yang kamu tetapkan untuk masing-masing roti. 1. Buatlah pengandaian kedalam variabel x dan y dari data yang diketahui, misanya : x =.. y =.. 2. Jika mungkin, susunlah data tersebut kedalam table. Bahan x y Persediaan bahan Jadi model matematikanya adalah : 4. Kemudian, buatlah grafik daerah penyelesaian sistem pertidaksamaan (daerah yang tidak diarsir merupakan daerah penyelesaian):

6 y x

7 Latihan Dari soal-soal verbal dibawah ini, buatlah model matematikannya, baik fungsi kendala maupun fungsi sasaran jika ada, kemudian tentukan daerah penyelesaian. 1. Suatu roti jenis I membutuhkan 150 gram tepung dan 50 gram mentega, roti jenis II membutuhkan 75 tepung dan 75 mentega. Tersedia tepung sebanyak 4,5 kg dan mentega 3 kg. 2. Seorang penjaga buah-buahan yang menggunakan gerobak menjual apel dan jeruk. Harga pembelian apel Rp ,00 tiap kg dan jeruk Rp 8.000,00 tiap kg. Pedagang tersebut hanya mempunyai modal Rp ,00 dan muatan gerobah tidak melebihi 400 kg. 3. Seorang penjahit mempunyai bahan 30 meter kain katun dan 20 meter kain satin. Ia akan membuat setelan jas dan rok untuk dijual. Satu setel jas memerlukan 3 meter kain katun dan 1 meter kain satin, sedangkan untuk rok memerlukan 1 meter kain katun dan 2 meter kain satin. Keuntungan dari 1 setel jas Rp ,00 dan 1 setel Rp , Anita membeli kue jenis A dengan harga Rp 1500,00 dan kue jenis B seharga Rp 2000,00. Modal yang dimiliki Anita tidak lebih dari Rp ,00. Anita dapat menjual kue jenis A dengan harga Rp 1.800,00 dan kue B dengan harga Rp 2.200,00. Anita hanya dapat menjual kue sebanyak 350 buah saja setiap hari.

8 Alternatif jawaban Masalah 1 a. Bahan x Y Persediaan Tepung terigu Mentega Keuntungan b. Model matematika x + 2y 36 2x + y 48 x 0 y 0 Fungsi Obyektif : Z = 3500x y 3. Grafik penyelesaian Daerah yang tidak diarsir adalah daerah penyelesian. y x

9 Masalah 2 1. x = Roti Abon y = Roti Sosis Keju 2. Tabel berdasarkan data-data diatas. Bahan x y Persediaan Bahan Tepung Terigu Mentega Keuntungan Model matematika 100 x y x + 5 y 100 x 0 y 0 Fungsi Obyektif : Z = 500x + 750y 4. Grafik Penyelesaian Daerah penyelesaian sistem pertidaksamaan adalah daerah yang tidak diarsir. y x

10 Latihan 1. Model matematika Roti Jenis I (x) Roti Jenis II (y) Persediaan Bahan Tepung Terigu Mentega x + y 60 2x + 3y 120 x 0 y x + 2y 1250 x + y 400 x 0 y 0 3. Model matematika Jas (x) Rok (y) Persediaan Bahan Kain Katun Kain Satin Keuntungan x + y 30 x + 2y 20 x 0 y 0 Fungsi obyektif : Z = x y

11 Daerah Penyelesaian adalah daerah yang tidak diarsir. y x 4. Model matematika 3x + 4y 1200 x + y 350 x 0 y 0 Fungsi obyektif : Z = 300x + 200y Daerah Penyelesaian adalah daerah yang tidak diarsir.

12 y x

LEMBAR KEGIATAN SISWA 2

LEMBAR KEGIATAN SISWA 2 LEMBAR KEGIATAN SISWA 2 Materi : Membuat grafik himpunan penelesaian pertidaksamaan linier dua variabel. Kelompok : Nama Anggota: Kelas : Tanggal : Kalian telah mempelajari cara membuat kalimat matematika

Lebih terperinci

PROGRAM LINIER. Sumber: Art & Gallery

PROGRAM LINIER. Sumber: Art & Gallery 4 PROGRAM LINIER Sumber: Art & Gallery 114 Matematika X SMK Kelompok: Penjualan dan Akuntansi Standar kompetensi program linier terdiri atas empat kompetensi dasar. Dalam penyajian pada buku ini setiap

Lebih terperinci

Lembar Kegiatan Siswa 1

Lembar Kegiatan Siswa 1 Materi : Lembar Kegiatan Siswa 1 Pengertian program linier dan pengertian pertidaksamaan linier dua variabel Nama Kelompok: Kelas : Tanggal : Tujuan Pembelajaran: 1. Siswa dapat menyebutkan contoh kehidupan

Lebih terperinci

Model soal Ujian Matematika kelas XII AP- UPW - TB. Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e!

Model soal Ujian Matematika kelas XII AP- UPW - TB. Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e! Model soal Ujian Matematika kelas XII AP- UPW - TB Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e!. Diketahui sistem pertidaksamaan x + 2y 0 ; 3x + 2y

Lebih terperinci

Contoh : Gambarlah daerah x + y 0. Jika daerah tersebut dibatasi untuk nilai-nilai x 0, dan y 0, maka diperoleh gambar seperti berikut.

Contoh : Gambarlah daerah x + y 0. Jika daerah tersebut dibatasi untuk nilai-nilai x 0, dan y 0, maka diperoleh gambar seperti berikut. Setelah mempelajari materi pada kompetensi dasar ini, kalian diharapkan dapat: menjelaskan pengertian program linier, menggambar grafik himpunan penyelesaian pertidaksamaan linier, dan menggambar grafik

Lebih terperinci

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel.

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. NAMA : KELAS : 1 2 Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. x y PROGRAM LINEAR 2. Tentukan titik potong dengan sumbu X, yaitu saat y = 0. 3. Tentukan

Lebih terperinci

BAB III. PROGRAM LINEAR

BAB III. PROGRAM LINEAR BAB III. PROGRAM LINEAR Salah satu pokok bahasan dalam mata pelajaran matematika kelas III IPA semester gasal, menurut Kurikulum 2004 (KBK) SMA / MA, memuat : Kompetensi dasar : Siswa menggunakan dan menghargai

Lebih terperinci

PROGRAM LINEAR. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII

PROGRAM LINEAR. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII LA - WB (Lembar Aktivitas Warga Belajar) PROGRAM LINEAR Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII Created By Ita Yuliana 9 Program Linear Kompetensi

Lebih terperinci

PERTIDAKSAMAAN LINEAR DUA VARIABEL

PERTIDAKSAMAAN LINEAR DUA VARIABEL PRGRAM LINEAR Intisari Teori A. PERTIDAKSAMAAN LINEAR DUA VARIABEL (PtLDV) Suatu pernyataan yang berbentuk a by c 0 (tanda ketidaksamaan dapat diganti dengan, >, atau < ) dengan a dan b tidak semuanya

Lebih terperinci

Xpedia Matematika Dasar

Xpedia Matematika Dasar Xpedia Matematika Dasar Soal Program Linear Doc. Name: XPMATDAS0999 Doc. Version : 01-09 halaman 1 01. Nilai z = 3x + y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan

Lebih terperinci

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan Kehidupan Nyata Bisa Disajikan Bahasa Matematika Diperlukan Alat Bantu Model Matematika Menggunakan Persamaan atau pertidaksamaan Matematika Tujuan Penyelesaian masalah Kemampuan yang akan dibahas Menentukan

Lebih terperinci

h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m

h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m 1. Dalam permasalahan program linear dikenal dua istilah, yaitu : a. Fungsi Kendala/ pembatas, berupa pertidaksamaan pertidaksamaan linear ax by 0; ax by p; ax by 0; ax by 0 b. Fungsi/ bentuk objektif,

Lebih terperinci

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan: -2x + y 0 x - 2y 0 dan x + 2y 8, maka a + b =. (A) 2 (B) 1 (C) 2 (D) (E) 6 02. Nilai maksimum dari

Lebih terperinci

SOAL-SOAL LATIHAN UN A35

SOAL-SOAL LATIHAN UN A35 SAL-SAL LATIHAN 1. UN A5 01 Penjahit Hidah Pantes akan membuat pakaian wanita dan pria. Untuk membuat pakaian wanita diperlukan bahan bergaris m dan bahan polos 1 m. Untuk membuat pakaian pria diperlukan

Lebih terperinci

Menghitung nilai optimum (maksimum / minimum) dari sistem pertidaksamaan linier.

Menghitung nilai optimum (maksimum / minimum) dari sistem pertidaksamaan linier. LEMBAR KEGIATAN SISWA 4 Materi : Menghitung nilai optimum (maksimum / minimum) dari sistem pertidaksamaan linier. Kelas Kelompok : :.. Nama Anggota : Kalian telah mempelajari cara membuat grafik dari sisem

Lebih terperinci

Program Linear - IPA

Program Linear - IPA Program Linear - IPA Tahun 2005 1. Tanah seluas 10.000 m² akan dibangun rumah tipe A dan tipe B. Untuk rumah tipe A diperlukan 100 m² dan tipe B diperlukan 75 m². Jumlah rumah yang dibangun paling banyak

Lebih terperinci

K13 Revisi Antiremed Kelas 11 Matematika Wajib

K13 Revisi Antiremed Kelas 11 Matematika Wajib K13 Revisi Antiremed Kelas 11 Matematika Wajib Program Linier - Latihan Soal Doc. Name: RK13AR11MATWJB0401 Version : 2016-10 halaman 1 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan

Lebih terperinci

SOAL-SOAL LATIHAN PROGRAM LINEAR UJIAN NASIONAL

SOAL-SOAL LATIHAN PROGRAM LINEAR UJIAN NASIONAL SAL-SAL LATIHAN PRGRAM LINEAR UJIAN NASINAL Peserta didik memiliki kemampuan memahami konsep pada topik program linear. Peserta didik memilki kemampuan mengaplikan konsep kalkulus dalam masalah kontekstual

Lebih terperinci

BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA

BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA Masalah 1.1 Sekelompok tani transmigran mendapatkan 10 hektar tanah yang dapat ditanami padi, jagung, dan palawija lain. Karena keterbatasan sumber daya petani

Lebih terperinci

KELAS XII. IPA SEMESTER I

KELAS XII. IPA SEMESTER I MODUL MATEMATIKA PROGRAM LINEAR y 12.1.2 800 500 400 500 2x + y = 800 KELAS XII. IPA SEMESTER I Oleh : Drs. Pundjul Prijono ( http://vidyagata.wordpress.com ) SMA NEGERI 6 Jalan Mayjen Sungkono 58 Malang

Lebih terperinci

MODUL 1 : PROGRAM LINEAR

MODUL 1 : PROGRAM LINEAR MODUL 1 : PROGRAM LINEAR E. Kegiatan Belajar 2 PENERAPAN PROGRAM LINEAR 1. K A. Nilai Optimum Fungsi Obyektif Fungsi objektif merupakan fungsi yang menjelaskan tujuan (meminimumkan atau memaksimumkan)

Lebih terperinci

Explore. Your Potency From Now. Modul Belajar Kompetensi Program Linear Oleh Syaiful Hamzah Nasution. Pengertian Program Linear

Explore. Your Potency From Now. Modul Belajar Kompetensi Program Linear Oleh Syaiful Hamzah Nasution. Pengertian Program Linear Modul Belajar Kompetensi Program Linear Oleh Syaiful Hamzah Nasution Explore. Your Potency From Now. Pengertian Program Linear Fungsi Objektif dan Kendala pada Program Linear Model Matematika dan Nilai

Lebih terperinci

1. Bentuk sederhana dari adalah. a. 3 b. 3 3 c. 4 3 d. 5 3 e adalah. a b c d e.

1. Bentuk sederhana dari adalah. a. 3 b. 3 3 c. 4 3 d. 5 3 e adalah. a b c d e. 1. Bentuk sederhana dari 2 8 75 + 12 a. 3 b. 3 3 c. 3 d. 5 3 e. 15 3 2. Bentuk sederhana dari a. 2 6 b. 2 6 2 c. 2 6 d. 6 8 e. 6 8 3. Bentuk sederhana dari.... 2 a. b 8 b. c 8 c. a 16 d. b 16 e. a 10 b

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007 UJIAN NASIONAL TAHUN PELAJARAN 006/007 PANDUAN MATERI MATEMATIKA Kelompok Teknologi, Kesehatan, dan Pertanian PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS Hak Cipta pada Pusat Penilaian Pendidikan BALITBANG

Lebih terperinci

MAT. 04. Geometri Dimensi Dua

MAT. 04. Geometri Dimensi Dua MAT. 04. Geometri Dimensi Dua i Kode MAT.14 Program Linear BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN

Lebih terperinci

PROGRAM LINIER. x y ( x, y ) 0 1 ( 0, 1 ) 3 0 ( 3, 0 ) Titik uji (0,0): x 3y (0) 3. Benar. Sehingga titik (0,0) termasuk daerah penyelesaian.

PROGRAM LINIER. x y ( x, y ) 0 1 ( 0, 1 ) 3 0 ( 3, 0 ) Titik uji (0,0): x 3y (0) 3. Benar. Sehingga titik (0,0) termasuk daerah penyelesaian. PROGRAM LINIER ). Pengertian program linier Program linier adalah suatu cara ang dapat digunakan untuk memecahkan permasalahan ang berhubungan dengan optimasi linier (nilai maksimum atau nilai minimum).

Lebih terperinci

KELAS XII. IPA SEMESTER I

KELAS XII. IPA SEMESTER I MODUL MATEMATIKA PROGRAM LINEAR y 12.1-2 800 500 400 500 2x + y = 800 KELAS XII. IPA SEMESTER I Oleh : Drs. Pundjul Prijono ( http://vidyagata.wordpres.com ) 1 M o d u l P r o g r a m L i n e a r Standar

Lebih terperinci

PEMROGRAMAN LINIER: FORMULASI DAN PEMECAHAN GRAFIS

PEMROGRAMAN LINIER: FORMULASI DAN PEMECAHAN GRAFIS RISET OPERASIONAL Riset operasi adalah metode yang digunakan untuk memformulasikan dan merumuskan permasalahan sehari hari ke dalam pemodelan matematis untuk memperoleh solusi yang optimal. Bagian terpenting

Lebih terperinci

PROGRAM LINEAR. Dasar Matematis

PROGRAM LINEAR. Dasar Matematis PROGRAM LINEAR Dasar Matematis PROGRAM LINIER adalah suatu teknik optimalisasi dimana variabel-variabelnya linier. Metode ini dipakai pada saat kita dihadapkan pada beberapa pilihan dengan batasan-batasan

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) 03

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) 03 RENCANA PELAKSANAAN PEMBELAJARAN (RPP) 03 Nama Sekolah Mata Pelajaran Kelas/ Semester Materi Pokok Standar Kmpetensi Alokasi Waktu : SMK : Matematika : XI/Ganjil : Program Linier : Memecahkan Masalah Program

Lebih terperinci

Sistem Bilangan 06. UN-SMK-BIS adalah... Jika a = 4, b = 5 maka nilai dari

Sistem Bilangan 06. UN-SMK-BIS adalah... Jika a = 4, b = 5 maka nilai dari Sistem Bilangan 0. UN-SMK-PERT-0-0 Bentuk sederhana dari ( ) =... 7 8 9 8 0. UN-SMK-TEK-0-0 Hasil perkalian dari (a) - (a) =... a a a a a 0. UN-SMK-PERT-0-0 Bentuk sederhana dari 0. UN-SMK-TEK-0-0 6 6.

Lebih terperinci

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN I TU URI HANDAY AN TW DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN 2009 Program Linear Matriks GY A Y O M AT E M A T AK A R Shadiq, M.App.Sc. DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) A. Kompetensi Inti SMK kelas XI : RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Satuan Pendidikan : SMK Negeri 1 Klaten Mata Pelajaran : Matematika Kelas/Semester : XI/3 Topik : Program Linier Waktu : 10 45 menit

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) 02

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) 02 RENCANA PELAKSANAAN PEMBELAJARAN (RPP) 02 Nama Sekolah Mata Pelajaran Kelas/ Semester Materi Pokok Standar Kmpetensi Alokasi Waktu : SMK Negeri 6 Surabaya : Matematika : XI/Ganjil : Program Linier : Memecahkan

Lebih terperinci

MODUL 1 : PROGRAM LINEAR

MODUL 1 : PROGRAM LINEAR MODUL 1 : PROGRAM LINEAR A. Pendahuluan Dalam kehidupan sehari-hari sering dijumpai aplikasi program linear, seperti pembangunan perumahan atau apartemen, pemakaian obat-obatan dalam penyembuhan pasien,

Lebih terperinci

MAKSIMALISASI KEUNTUNGAN DENGAN PENDEKATAN METODE SIMPLEKS Kasus pada Pabrik Sosis SM

MAKSIMALISASI KEUNTUNGAN DENGAN PENDEKATAN METODE SIMPLEKS Kasus pada Pabrik Sosis SM Jurnal Liquidity Vol., No., Januari-Juni 3, hlm. 59-65 MAKSIMALISASI KEUNTUNGAN DENGAN PENDEKATAN METODE SIMPLEKS Kasus pada Pabrik Sosis SM Yanti Budiasih STIE Ahmad Dahlan Jakarta Jl. Ciputat Raya No.

Lebih terperinci

10 Soal dan Pembahasan Permasalahan Program Linear

10 Soal dan Pembahasan Permasalahan Program Linear 10 Soal dan Pembahasan Permasalahan Program Linear 1. BAYU FURNITURE memproduksi 2 jenis produk yaitu meja dan kursi yang harus diproses melalui perakitan dan finishing. Proses perakitan memiliki 60 jam

Lebih terperinci

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3 Pilihlah jawaban yang paling tepat!. Ordo dari matriks A = 7 A. x B. x C. x D. x x adalah.. Berikut ini yang termasuk Matriks identitas adalah... A. 7 B. 7 C. D. a b. Diketahui A = dan B = b A. B. C. D..

Lebih terperinci

CONTOH SOAL UAN PROGRAM LINIER

CONTOH SOAL UAN PROGRAM LINIER 1. Luas daerah parkir 1.760 m 2. Luas rata rata untuk mobil kecil 4 m 2 dan mobil besar 20 m 2. Daya tampung maksimum hanya 200 kendaraan, biaya parkir mobil kecil Rp 1.000,00/jam dan mobil besar Rp 2.000,00/jam.

Lebih terperinci

PETA STANDAR KOPETENSI

PETA STANDAR KOPETENSI Program Linear PETA STANDAR KOPETENSI MATEMATIKA NON TEKNIK II TINGKAT II SEMESTES SEMESTER STANDAR KOPETENSI G STANDAR KOPETENSI I STANDAR KOPETENSI H STANDAR KOPETENSI J KETERANGAN : SEMESTER Standar

Lebih terperinci

Bab. Program Linear. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id)

Bab. Program Linear. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id) Bab II Program Linear 51 Tujuan Pembelajaran Setelah mempelajari bab ini, diharapkan kalian dapat 1. menjelaskan sistem pertidaksamaan linear dua variabel dan penyelesaiannya; 2. menentukan fungsi tujuan

Lebih terperinci

PROGRAM LINEAR 2 SMA SANTA ANGELA. Contoh Soal :

PROGRAM LINEAR 2 SMA SANTA ANGELA. Contoh Soal : 1 SMA SANTA ANGELA PROGRAM LINEAR Standar kompetensi : Menyelesaikan masalah program linear Kompetensi Dasar : Menyelesaikan sistem pertidaksamaan linear dua variabel. Menyelesaikan masalah program linear.

Lebih terperinci

06. PERSAMAAN LINIER

06. PERSAMAAN LINIER 06. PERSAMAAN LINIER A Persamaan Linier dengan Satu Variabel Persamaan linier dengan satu variabel mempunyai bentuk umum: dimana:, dan adalah konstanta Persamaan tersebut penyelesaiannya adalah: Contoh

Lebih terperinci

a. 30 orang b. 25 orang c. 15 orang d. 12 orang e. 10 orang

a. 30 orang b. 25 orang c. 15 orang d. 12 orang e. 10 orang 1. Perbandingan siswa laki-laki dan siswa perempuan pada suatu kelas adalah 3 : 5. Jika jumlah siswa kelas tersebut adalah 40 orang,maka banyak perempuan kelas tersebut a. 30 orang b. 25 orang c. 15 orang

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Mata Pelajaran : Matematika Kelas : X / 2 Pertemuan ke - : ---- Alokasi Waktu : 10 jam @ 45 menit Standar Kompetensi : Menelesaikan masalah program linier. Kompetensi Dasar

Lebih terperinci

6. Perhatikan grafik berikut! Y x

6. Perhatikan grafik berikut! Y x 1. Jika Jarak sebenarnya antara kota Surakarta dan kota Semarang adalah 125 km, maka jarak kedua kota pada peta dengan skala 1 : 2.000.000 adalah. a. 62,5 cm b. 25 cm c. 6,25 cm d. 2,5 cm e. 0,625 cm 2.

Lebih terperinci

Resep Kue. Resep kue nastar

Resep Kue. Resep kue nastar Resep kue nastar Resep kue nastar memang paling banyak dicari dan dipraktekan pada hari raya idul fitri. Pada lebaran tahun 2012 ini admin masakanmama.com pun tidak ketinggalan untuk membuat kue nastar

Lebih terperinci

ISBN : (No. jil lengkap) ISBN : Harga Eceran Tertinggi: Rp10.021,-

ISBN : (No. jil lengkap) ISBN : Harga Eceran Tertinggi: Rp10.021,- ISBN : 978-979-068-858- (No. jil lengkap) ISBN : 978-979-068-863-6 PUSAT PERBUKUAN Departemen Pendidikan Nasional Harga Eceran Tertinggi: Rp0.0,- i Khazanah Matematika 3 untuk Kelas XII SMA dan MA Program

Lebih terperinci

PROGRAM LINIER. B. Grafik Himpunan Penyelesaian Pertidaksamaan Linier Dua Variabel

PROGRAM LINIER. B. Grafik Himpunan Penyelesaian Pertidaksamaan Linier Dua Variabel PROGRAM LINIER A. Pengertian Program Linier Program linier adalah suatu cara ang dapat digunakan untuk memecahkan permasalahan ang berhubungan dengan optimasi linier (nilai maksimum atau nilai minimum).

Lebih terperinci

MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi

MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN Dosen : Fitri Yulianti, SP. MSi Skema Himpunan Kompleks Real Rasional Bulat Cacah Asli Genap Ganjil Prima Komposit Nol Bulat Negatif Pecahan Irasional Imajiner Pengertian

Lebih terperinci

Ujian Akhir Nasional Tahun Pelajaran 2002/2003

Ujian Akhir Nasional Tahun Pelajaran 2002/2003 DOKUMEN NEGARA SANGAT RAHASIA Ujian Akhir Nasional Tahun Pelajaran 00/00 SMK Bidang keahlian Bisnis Manajemen Paket Utama (P) MATEMATIKA (E4-) Non Teknik SELASA, 6 MEI 00 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN RPP

RENCANA PELAKSANAAN PEMBELAJARAN RPP RENCANA PELAKSANAAN PEMBELAJARAN RPP Nama Sekolah Mata Pelajaran Kelas/Semester Alokasi waktu : SMPN 2 Sampung : Matematika : VIIB / I (ganjil) : 2x0 Tahun ajaran : 2015/2016 A. Standar kompetensi Memahami

Lebih terperinci

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK PARIWISATA PAKET II B KOTA SURABAYA

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK PARIWISATA PAKET II B KOTA SURABAYA LATIHAN UJIAN NASIONAL TAHUN PELAJARAN 00-0 SMK NEGERI DAN SWASTA KOTA SURABAYA MATEMATIKA KELOMPOK PARIWISATA PAKET II B MGMP MATEMATIKA SMK NEGERI / SWASTA KOTA SURABAYA M A T E M A T I K A S M K P A

Lebih terperinci

MUSYAWARAH GURU MATA PELAJARAN MATEMATIKA SMK KELOMPOK TEKNOLOGI INDUSTRI DAN PERTANIAN KABUPATEN KLATEN LATIHAN UJIAN NASIONAL PAKET C

MUSYAWARAH GURU MATA PELAJARAN MATEMATIKA SMK KELOMPOK TEKNOLOGI INDUSTRI DAN PERTANIAN KABUPATEN KLATEN LATIHAN UJIAN NASIONAL PAKET C MUSYAWARAH GURU MATA PELAJARAN MATEMATIKA SMK KELOMPOK TEKNOLOGI INDUSTRI DAN PERTANIAN KABUPATEN KLATEN LATIHAN UJIAN NASIONAL PAKET C Kerjakan soal-soal di bawah ini cermat!. Nilai hitung dari : a xb

Lebih terperinci

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0 BIDANG STUDI : MATEMATIKA 1. Harga 3 kg pepaya dan 5 kg jeruk adalah Rp 13.000, sedangkan harga 4 kg papaya dan 3 kg jeruk adalah Rp 10.000, maka harga 2 kg papaya dan 4 kg jeruk adalah. A. Rp 10.000 B.

Lebih terperinci

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM MATA PELAJARAN Mata Pelajaran Jenjang Kelompok : Matematika : SMK : Bisnis Managemen WAKTU PELAKSANAAN Hari : Rabu Tanggal : Maret 0 Jam : Pukul. 0.00 09.00 PETUNJUK UMUM Isikan identitas Anda ke dalam

Lebih terperinci

a). Rp ,00 b). Rp ,00 c). Rp ,00 adalah... 1 b). 3 c). 3, maka nilai dari log14 d). adalah...

a). Rp ,00 b). Rp ,00 c). Rp ,00 adalah... 1 b). 3 c). 3, maka nilai dari log14 d). adalah... MATA PELAJARAN JURUSAN : MATEMATIKA : TKJ Pilihlah Jawaban yang tepat!. Seorang pedagang menjual sepeda dengan harga Rp. 74.500,00. Jika pedagang tersebut mendapat keuntungan %, maka harga pembelian sepeda

Lebih terperinci

SOAL LATIHAN UAS 12 IPA SMT GANJIL. 1. Hasil dari. 2. Hasil dari = Hasil dari dx... dx = Hasil dari. 5. Hasil dari. dx =

SOAL LATIHAN UAS 12 IPA SMT GANJIL. 1. Hasil dari. 2. Hasil dari = Hasil dari dx... dx = Hasil dari. 5. Hasil dari. dx = SOAL LATIHAN UAS IPA SMT GANJIL. Hasil dari. Hasil dari 7 ( ) ( ) d =.... Hasil dari d.... Hasil dari. Hasil dari 6. Hasil 6 6 9 6 d =... d =... d 9 = 7. Hasil 6 d = 8. Hasil dari cos sin d = 9. Hasil

Lebih terperinci

SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS

SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS UJI KOMPETENSI 1.1 1. PT Lasin adalah suatu pengembang perumahan di daerah pemukiman baru. PT tersebut memiliki tanah seluas 12.000 meter persegi berencana

Lebih terperinci

Standar Kompetensi : Indikator : Arti Skala.

Standar Kompetensi : Indikator : Arti Skala. Apa yang akan anda pelajari? Memberikan contoh masalah sehari-hari yang merupakan perbandingan seharga dan berbalik harga. Menjelaskan hubungan perbandingan dan pecahan Menyelesaikan soal yang melibatkan

Lebih terperinci

PROGRAM LINIER. SOAL LATIHAN 01 A. Sistem Pertidaksamaan Linier Dua Variabel

PROGRAM LINIER. SOAL LATIHAN 01 A. Sistem Pertidaksamaan Linier Dua Variabel PROGRAM LINIER SOAL LATIHAN 01 A. Sistem Pertidaksamaan Linier Dua Variabel 01. Lukislah daerah penyelesaian sistem pertidaksamaan : 3x + y 6 3x + 5y 15 02. Lukislah daerah penyelesaian sistem pertidaksamaan

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) 01

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) 01 RENCANA PELAKSANAAN PEMBELAJARAN (RPP) 01 Nama Sekolah Mata Pelajaran Kelas/ Semester Materi Pokok Standar Kompetensi Alokasi Waktu : SMK Negeri 6 Surabaya : Matematika : XI/Ganjil : Program Linier : Memecahkan

Lebih terperinci

Gambar 1.1 Mesin dan SDM perusahaan

Gambar 1.1 Mesin dan SDM perusahaan BAB I PROGRAM LINEAR Tujuan Pembelajaran Setelah mempelajari materi bab ini, Anda diharapkan dapat: 1. menyelesaikan sistem pertidaksamaan linear dua variabel, 2. merancang model matematika dari masalah

Lebih terperinci

PAKET 05 MATEMATIKA NON TEKNIK UJI COBA UJIAN NASIONAL SMK. Tahun Pelajaran 2014 / 2015

PAKET 05 MATEMATIKA NON TEKNIK UJI COBA UJIAN NASIONAL SMK. Tahun Pelajaran 2014 / 2015 UJI COBA UJIAN NASIONAL SMK Tahun Pelajaran 01 / 015 MATEMATIKA NON TEKNIK KELOMPOKPARIWISATA, SENI DAN KERAJINAN, PEKERJAAN SOSIAL TEKNOLOGI KERUMAHTANGGAAN, DAN ADMINISTRASI PERKANTORAN (UTAMA) 1 MATA

Lebih terperinci

ANALISIS PENENTUAN HARGA JUAL MENGGUNAKAN METODE COST PLUS PRICING PADA HOME INDUSTRI SHERINA BAKERY

ANALISIS PENENTUAN HARGA JUAL MENGGUNAKAN METODE COST PLUS PRICING PADA HOME INDUSTRI SHERINA BAKERY ANALISIS PENENTUAN HARGA JUAL MENGGUNAKAN METODE COST PLUS PRICING PADA HOME INDUSTRI SHERINA BAKERY Nama : Rindi Tri Cahyani NPM : 26212406 Jurusan : Akuntansi Pembimbing : Haryono, SE., MM. LATAR BELAKANG

Lebih terperinci

SOAL TRY OUT MATEMATIKA SMP CENDANA PEKANBARU TAHUN PELAJARAN 2016/2017

SOAL TRY OUT MATEMATIKA SMP CENDANA PEKANBARU TAHUN PELAJARAN 2016/2017 SOAL TRY OUT MATEMATIKA SMP CENDANA PEKANBARU TAHUN PELAJARAN 06/07 Petunjuk : Berilah tanda silang pada jawaban yang kamu anggap paling benar!. Hasil dari 5 : (-5) + 6 x 6 =... a. 93 b. 80 c. -80 d. -96.

Lebih terperinci

2009 ACADEMY QU IDMATHCIREBON

2009 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPS Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Diketahui:

Lebih terperinci

PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK

PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK 1. Jarak kota P dan kota R pada sebuah peta adalah 20 cm. Jika skala pada peta tersebut 1:2.500.000, maka jarak sebenarnya dua kota tersebut adalah. A.

Lebih terperinci

B. Fungsi Sasaran dan Kendala dalam Program Linier

B. Fungsi Sasaran dan Kendala dalam Program Linier Peta Konsep Jurnal PetaKonsep Daftar Hadir MateriB SoalLatihan2 Materi Umum PROGRAM LINIER Kelas XI, Semester 3 B. Fungsi Sasaran dan Kendala dalam Program Linier Sistem Pertidaksamaan Linier Fungsi Sasaran

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007 UJIAN NASIONAL TAHUN PELAJARAN 2006/2007 PANDUAN MATERI MATEMATIKA Kelompok Sosial, Administrasi Perkantoran, dan Akuntansi (Bisnis dan Manajemen) PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS Hak Cipta

Lebih terperinci

Pecahan. 6Bab. Tujuan Pembelajaran

Pecahan. 6Bab. Tujuan Pembelajaran Pecahan 6Bab Tujuan Pembelajaran. Siswa dapat mengenal bentuk pecahan.. Siswa dapat menyebutkan dan menuliskan dan bentuk pecahan.. Siswa dapat mengurutkan pecahan.. Siswa dapat menyederhanakan pecahan..

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN NO. 01/2

RENCANA PELAKSANAAN PEMBELAJARAN NO. 01/2 RENCANA PELAKSANAAN PEMBELAJARAN NO. 01/2 Nama Sekolah : SMK Diponegoro Lebaksiu Mata Pelajaran : Matematika Kelas / Semester : X / 2 Alokasi Waktu : 4 x 45 menit (1 x pertemuan) Standar Kompetensi Kompetensi

Lebih terperinci

MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : ALJABAR

MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : ALJABAR MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : ALJABAR STANDAR KOMPETENSI LULUSAN 2. Memahami operasi bentuk aljabar, konsep persamaan dan pertidaksamaan linear, persamaan

Lebih terperinci

PROGRAM LINEAR. tersebut. Dua macam fungsi Program Linear: tujuan perumusan masalah

PROGRAM LINEAR. tersebut. Dua macam fungsi Program Linear: tujuan perumusan masalah PROGRAM LINEAR Program linear adalah salah satu model matematika yang digunakan untuk menyelesaikan masalah optimisasi, yaitu memaksimumkan atau meminimumkan fungsi tujuan yang bergantung pada sejumlah

Lebih terperinci

UN SMK PSP 2015 Matematika

UN SMK PSP 2015 Matematika UN SMK PSP 201 Matematika Soal Doc. Name: UNSMKPSP201MAT999 Doc. Version : 2016-0 halaman 1 01. Sebuah mobil menghabiskan 8 liter bensin untuk menempuh jarak 20 km, apabila mobil tersebut menghabiskan

Lebih terperinci

DAFTAR ISI KATA PENGANTAR... DAFTAR ISI...

DAFTAR ISI KATA PENGANTAR... DAFTAR ISI... 0 DAFTAR ISI KATA PENGANTAR... DAFTAR ISI... i ii BAB I PENDAHULUAN... A. Latar Belakang... B. Tujuan Penulisan Modul... C. Sasaran... D. Ruang Lingkup... BAB II PENGEMBANGAN MATERI... KB-: Konsep Dasar

Lebih terperinci

MATEMATIKA BISNIS DAN MANAJEMEN

MATEMATIKA BISNIS DAN MANAJEMEN Bandung Arry Sanjoyo dkk MATEMATIKA BISNIS DAN MANAJEMEN SMK JILID Direktorat Pembinaan Sekolah Menengah Kejuruan Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah Departemen Pendidikan Nasional

Lebih terperinci

PAKET 3. Paket : 3. Jumlah Soal : 40 soal Kompetensi : 1. Program Linear 3. Vektor 2. Matriks 4. Logika Compile By : Syaiful Hamzah Nasution

PAKET 3. Paket : 3. Jumlah Soal : 40 soal Kompetensi : 1. Program Linear 3. Vektor 2. Matriks 4. Logika Compile By : Syaiful Hamzah Nasution PAKET 3 Jumlah Soal : 40 soal Kompetensi : 1. Program Linear 3. Vektor 2. Matriks 4. Logika Compile By : Syaiful Hamzah Nasution No Soal Jawaban 1 Nilai maksimum f(x, y) = 2x + 3y yang memenuhi system

Lebih terperinci

SMA / MA Bahasa Mata Pelajaran : Matematika

SMA / MA Bahasa Mata Pelajaran : Matematika Latihan Soal UN 0 Paket Sekolah Menengah Atas / Madrasah Aliyah SMA / MA Bahasa Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban Ujian

Lebih terperinci

Bab 5. Perbandingan. Standar Kompetensi

Bab 5. Perbandingan. Standar Kompetensi Bab 5 Perbandingan Standar Kompetensi Menggunakan bentuk aljabar, persamaan dan pertidaksamaan linier satu variabel, dan perbandingan dalam pemecahan. Kompetensi Dasar 3.4 Menggunakan perbandingan untuk

Lebih terperinci

APROKSIMASI KESALAHAN

APROKSIMASI KESALAHAN APROKSIMASI KESALAHAN 1. Sebuah rumah berbentuk persegi panjang, panjangnya 12,0 meter dan lebarnya 7,5 meter. Luas maksimumnya adalah... a. 80,50 m 2 b. 89,40 m 2 c. 90,00 m 2 d. 90,39 m 2 e. 90,98 m

Lebih terperinci

TAHUN PELAJARAN 2003/2004 SMK. Matematika Non Teknik Pariwisata (E4-2) PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul

TAHUN PELAJARAN 2003/2004 SMK. Matematika Non Teknik Pariwisata (E4-2) PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 2003/2004 SMK Matematika Non Teknik Pariwisata (E4-2) PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul 07.30 09.30 DEPARTEMEN PENDIDIKAN NASIONAL Hak

Lebih terperinci

>> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER 1 SMA KELAS XII IPA <<

>> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER 1 SMA KELAS XII IPA << >> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER SMA KELAS XII IPA

Lebih terperinci

Bab 5 KESIMPULAN DAN SARAN

Bab 5 KESIMPULAN DAN SARAN Bab 5 KESIMPULAN DAN SARAN 5.1. Kesimpulan Dari hasil penelitian Uji Kesukaan Antara Perkedel Tahu Dengan Perkedel Ampas Kedelai, peneliti dapat menarik kesimpulan sebagai berikut: 5.1.1. Organoleptik-Kesukaan

Lebih terperinci

SATUAN ACARA PERKULIAHAN (SAP)

SATUAN ACARA PERKULIAHAN (SAP) PERTEMUAN KE : 1,2,3 : 9 X 50 MENIT 1. Mengkaji kalimat matematika tertutup dan kalimat matematika terbuka 2. Mengaitkan kalimat matematika tertutup atau terbuka dengan topik lain dalam kehidupan sehari-hari.

Lebih terperinci

Latihan Semester 2. Urutan pecahan tersebut mulai dari yang terkecil adalah...

Latihan Semester 2. Urutan pecahan tersebut mulai dari yang terkecil adalah... Latihan Semester 2 Kerjakanlah di buku latihanmu. A. Ayo, isilah titik-titik berikut.. Bentuk sederhana dari pecahan 2 adalah... 6 Diketahui pecahan 2, 2 5, 7, 0. Urutan pecahan tersebut mulai dari yang

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007 UJIAN NASIONAL TAHUN PELAJARAN 006/007 PANDUAN MATERI MATEMATIKA Kelompok Seni, Pariwisata, dan Teknologi Kerumahtanggaan PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS Hak Cipta pada Pusat Penilaian Pendidikan

Lebih terperinci

SOAL PENJAJAKAN UN MATEMATIKA 2012 PROVINSI DIY

SOAL PENJAJAKAN UN MATEMATIKA 2012 PROVINSI DIY SOAL PENJAJAKAN UN MATEMATIKA 0 PROVINSI DIY. Suatu proyek akan selesai dalam waktu 0 hari oleh 0 orang pekerja. Tambahan pekerja yang dibutuhkan agar proyek tersebut selesai dalam waktu 90 hari adalah.

Lebih terperinci

LEMBAR AKTIVITAS SISWA PROGRAM LINEAR

LEMBAR AKTIVITAS SISWA PROGRAM LINEAR LEMBAR AKTIVITAS SISWA PROGRAM LINEAR c) Subtitusikan titik (0,0) kedalam pertidaksamaan. Nama Siswa : Jika hasil benar, maka penyelesaiaannya adalah daerah Kelas : yang memuat titik tersebut. Jika hasil

Lebih terperinci

BAB I PENDAHULUAN. kehidupan sehari-hari selalu berhubungan dengan matematika. Sebagai ilmu

BAB I PENDAHULUAN. kehidupan sehari-hari selalu berhubungan dengan matematika. Sebagai ilmu 1.1 Latar Belakang Masalah BAB I PENDAHULUAN Matematika merupakan hal yang penting bagi kehidupan manusia yang mempunyai fungsi sebagai alat bantu komunikasi, karena interaksi manusia dalam kehidupan sehari-hari

Lebih terperinci

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK PARIWISATA PAKET II A KOTA SURABAYA

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK PARIWISATA PAKET II A KOTA SURABAYA LATIHAN UJIAN NASIONAL TAHUN PELAJARAN - SMK NEGERI DAN SWASTA KOTA SURABAYA MATEMATIKA KELOMPOK PARIWISATA PAKET II A MGMP MATEMATIKA SMK NEGERI / SWASTA KOTA SURABAYA M A T E M A T I K A S M K P A R

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) 04

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) 04 RENCANA PELAKSANAAN PEMBELAJARAN (RPP) 04 Nama Sekolah Mata Pelajaran Kelas/ Semester Materi Pokok Standar Kmpetensi Alokasi Waktu : SMK Negeri 6 Surabaya : Matematika : XI/Ganjil : Program Linier : Memecahkan

Lebih terperinci

BILANGAN PECAHAN. Ringkasan Materi

BILANGAN PECAHAN. Ringkasan Materi BILANGAN PECAHAN Ketika membeli suatu barang,tidak selamanya kita harus membeli dalam bentuk satu satuan. Misal, membeli buah semangka bagian, membeli tepung kg, dan sebagainya. Itu menunjukan bahwa kebutuhan

Lebih terperinci

a. Rp b. Rp c. Rp d. Rp e. Rp a. Rp b. Rp c. Rp d. Rp e. Rp 203.

a. Rp b. Rp c. Rp d. Rp e. Rp a. Rp b. Rp c. Rp d. Rp e. Rp 203. 1. Toko MERDEKA memberikan potongan harga 20% pada setiap penjualan barang. Untuk pembelian sepasang sepatu,ibu Asmaniar membayar kepada kasir sebesar Rp 40.000. Harga sepatu tersebut sebelum mendapat

Lebih terperinci

PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) y 2. (0, a) y 1. (x 1, y 1 ) (b, 0) X. x 1

PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) y 2. (0, a) y 1. (x 1, y 1 ) (b, 0) X. x 1 PROGRAM LINEAR A. Persamaan Garis Lurus y 1 (x 1, y 1 ) y 2 y 1 (x 1, y 1 ) (x 2, y 2 ) a (0, a) 0 x 1 x 1 0 x 2 (b, 0) 0 b a. Persamaan garis yang bergradien m dan melalui titik (x 1, y 1 ) adalah: y

Lebih terperinci

LAMPIRAN A LEMBAR KEGIATAN SISWA DAN EVALUASI A.

LAMPIRAN A LEMBAR KEGIATAN SISWA DAN EVALUASI A. LAMPIRAN A LEMBAR KEGIATAN SISWA DAN EVALUASI A. Sistem Persamaan Linier 2 variabel atau 2 Peubah 1. Pengertian Sistem persamaan linear adalah persamaan yang variabel atau peubahnya memiliki pangkat tertinggi

Lebih terperinci

LEMBAR KERJA SISWA. Semester Ganjil STANDAR ISI KTSP. Nama :... Kelas :... Sekolah :...

LEMBAR KERJA SISWA. Semester Ganjil STANDAR ISI KTSP. Nama :... Kelas :... Sekolah :... LEMBAR KERJA SISWA Semester Ganjil Nama :... Kelas :... Sekolah :... STANDAR ISI KTSP Standar kompetensi : Memahami bentuk aljabar, persamaan dan pertidaksamaan linier dan satu variabel. Kompetensi dasar

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM 2 GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 2010/2011

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM 2 GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 2010/2011 PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 00/0 Mata Pelajaran : Matematika Satuan Pendidikan : SMA/MA Program : Bahasa Hari/ Tanggal

Lebih terperinci

PAKET TO UJIAN NASIONAL PAKET A Pelajaran : MATEMATIKA IPS Waktu : 120 Menit

PAKET TO UJIAN NASIONAL PAKET A Pelajaran : MATEMATIKA IPS Waktu : 120 Menit PAKET TO UJIAN NASIONAL PAKET A Pelajaran : MATEMATIKA IPS Waktu : 0 Menit Pilihlah salah satu jawaban yang tepat! Jangan lupa Berdoa dan memulai dari yang mudah.. Bentuk sederhana dari y y z 6 adalah...

Lebih terperinci

E-learning matematika, GRATIS

E-learning matematika, GRATIS 1 Penusun Editor : Rifan Nadhifi, S.Si. ; Imam Indra Gunawan, S.Si. : Drs. Keto Susanto, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Indra Gunawan, S.Si. A. Sistem Pertidaksamaan Linear Pertidaksamaan linear

Lebih terperinci