PAM 453 KS MATEMATIKA TERAPAN I MATEMATIKA DEMOGRAFI Topik: Model Matriks. Mahdhivan Syafwan

Ukuran: px
Mulai penontonan dengan halaman:

Download "PAM 453 KS MATEMATIKA TERAPAN I MATEMATIKA DEMOGRAFI Topik: Model Matriks. Mahdhivan Syafwan"

Transkripsi

1 PAM 453 KS MATEMATIKA TERAPAN I MATEMATIKA DEMOGRAFI Topik: Model Matriks Mahdhivan Syafwan

2 Life Table vs Model Matriks? Life Table Dikotomi antara hidup dan mati Hanya memuat peluang mati Model Matriks Perbedaan dengan banyak karakteristik: umur, jenis kelamin, status pernikahan, status pekerjaan, kedewasaan, dll. Selain memuat peluang mati, juga memuat peluang pindah ke kelompok lain (contoh: orang yang tak bekerja menjadi bekerja) atau peluang menghasilkan sejumlah individu baru (karena reproduksi) -> menghitung proyeksi populasi Informasi yang dibutuhkan untuk proyeksi dapat ditulis dengan mudah dalam bentuk matriks (disebut matriks proyeksi populasi). Model populasi matriks diperkenalkan pada tahun 1940an oleh Bernardelli (1941), Lewis (1942), dan Leslie (1945, 1948). 2

3 Matriks Leslie Misalkan umur maksimum yang dicapai oleh individu dalam suatu populasi adalah L. Bagi populasi tersebut menjadi m kelas umur. Kelas Umur Interval Umur 1 [0, L/m) 2 [L/m, 2L/m) m 1 m [ m 2 L/m, m 1 L/m) [ m 1 L/m, L] 3

4 Matriks Leslie Pandang kasus populasi dengan 3 kelas umur : [0,1), 1,2, [2,3] (misalkan dalam tahun). Misalkan n i (t) menyatakan jumlah individu pada kelas umur ke-i pada waktu t. Definisikan vektor n t = n 1 (t) n 2 (t) n 3 (t) yang menyatakan keadaan populasi pada waktu t (disebut juga vektor populasi atau vektor distribusi umur). 4,

5 Matriks Leslie Perhatikan bahwa individu-individu pada kelas umur ke-2 dan 3 pada waktu t + 1 adalah mereka yang bertahan hidup dari kelas umur sebelumnya pada waktu t. Jadi, n 2 t + 1 = P 1 n 1 t, (1) n 3 t + 1 = P 2 n 2 t, (2) dimana P i menyatakan peluang individu pada kelas ke-i yang dapat bertahan hidup paling tidak selama setahun (yaitu mencapai kelas umur ke-(i + 1)). Individu baru pada kelas ke-1 muncul dari proses kelahiran. Jadi, n 1 t + 1 = F 1 n 1 t + F 2 n 2 t + F 3 n 3 t, (3) dimana F i menyatakan fertilitas per-kapita dari kelas umur ke-i, yaitu rata-rata individu yang lahir dari tiap individu pada kelas ke i pada waktu t. 5

6 Matriks Leslie Persamaan (1)-(3) dapat ditulis dalam bentuk matriks sebagai berikut: n t + 1 = Ln t, dimana F 1 F 2 F 3 L = P P 2 0 L disebut matriks proyeksi populasi atau juga dikenal dengan matriks Leslie. Matriks L adalah matriks non-negatif dengan entri positif hanya pada baris pertama (fertilitas) dan subdiagonal (peluang hidup). 6

7 Klasifikasi Model Populasi Matriks n(t + 1) = Ln(t) n(t + 1) = L n(t) n(t) n(t + 1) = L t n(t) n(t + 1) = L n t, t n(t)

8 Proyeksi: Analisis Sederhana Contoh 1. Model linier invarian waktu n t + 1 = n t, n 0 =

9 Proyeksi: Analisis Sederhana Contoh 2. Pengaruh syarat awal n 0 = n t + 1 = n t. n 0 = n 0 =

10 Proyeksi: Analisis Sederhana Contoh 3. Pengaruh perturbasi L = L =

11 Empat Pertanyaan Dasar dalam Analisis Demografik

12 Empat Pertanyaan Dasar dalam Analisis Demografik

13 Matriks Leslie dan Life Table Nilai-nilai parameter pada model matriks berdasarkan klasifikasi umur diturunkan dari life table. Dalam hal ini, populasi dibedakan atas: Birth-flow population, yaitu kelahiran terjadi terusmenerus (kontinu) selama interval proyeksi. -> lebih cocok untuk manusia Birth-pulse population, yaitu reproduksi terjadi saat musim kawin (yang singkat) dalam interval proyeksi. -> lebih cocok untuk hewan mamalia, burung, dan organisme lainnya yang dipengaruhi oleh lingkungan musiman [tidak dibahas]. 13

14 Birth-Flow Population: (i) Peluang hidup birth-flow Misalkan l(x) menyatakan peluang suatu individu dapat bertahan hidup sejak lahir sampai mencapai umur x. Peluang individu dapat bertahan hidup dari umur (secara tepat) x ke x + 1 adalah l(x + 1)/l(x). Namun dalam hal kelas umur, berlaku i+1 l(x) dx i P i = i l(x) dx. i 1 Dengan menggunakan aturan trapesium, P i dapat diaproksimasi oleh l i + l i + 1 P i l i 1 + l i. 14

15 Perhatikan bahwa Birth-Flow Population: (ii) Fertilitas birth-flow n 1 t + 1 = F i n i (t). Misalkan B (t,t+1) menyatakan jumlah total kelahiran pada interval (t, t + 1). Misalkan n(x, t) menyatakan banyaknya individu yang berumur (x, x + dx) di waktu t. [Catat bahwa x adalah variabel kontinu] Pada waktu t, individu yang berumur x bereproduksi (melahirkan) dengan laju m x n(x, t), dimana m x dx adalah rata-rata jumlah keturunan perempuan yang lahir dari seorang perempuan yang berumur x pada interval (x, x + dx). i 15

16 Birth-Flow Population: (ii) Fertilitas birth-flow Integralkan terhadap waktu dan umur, diperoleh [jelaskan!] B (t,t+1) = 0 m(x) t+1 t n(x, z) dzdx = 1 2 m x i=1 i=1 n x, t + n x, t m i n i t + n i t + 1 m i + P i m i+1 n i t Jumlah kelahiran tidak persis sama dengan n 1 (t + 1), karena beberapa tidak akan dapat bertahan hidup sampai t + 1. Secara rata-rata, setiap individu akan dapat bertahan hidup selama setengah interval proyeksi, yaitu dengan peluang l(0,5). Jadi F i = l 0,5 m i + P i m i+1. 2 Jika nilanya tidak diketahui, l(0,5) dapat diaproksimasi dengan l 0 + l 1 l 0,5. 2. dx 16

17 Contoh Diberikan life table dan hasil kelahiran pada suatu populasi sebagai berikut: a) Hitunglah aproksimasi dari P i dan F i. b) Buatlah matriks Leslie dari populasi tersebut. 17

18 Graf Siklus Hidup Model populasi matriks yang dibahas selama ini adalah model berdasarkan klasifikasi umur (age-classified model). Sekarang akan dibahas model dengan klasifikasi yang lebih umum, dinamakan model berdasarkan klasifikasi tahapan (stageclassified model). Untuk memudahkan melihat siklus hidup suatu populasi, digunakan graf siklus hidup. 18

19 Graf Siklus Hidup Contoh 1 Graf siklus hidup untuk age-classified model, dimana lebar dari kelas umur sama dengan interval proyeksi. Matriks proyeksi: L A a = 0 F 2 P P F 3 F P

20 Graf Siklus Hidup Contoh 2 Graf siklus hidup untuk standard size-classified model Matriks proyeksi: A b =. 20

21 Graf Siklus Hidup Contoh 3 Graf siklus hidup untuk ikan paus pembunuh. Simpul (titik) menandakan tahapan: (1) yearling [umur setahun], (2) remaja, (3) betina dewasa, (4) betina pascareproduktif. Matriks proyeksi: A c =? 21

22 PAM 453 KS MATEMATIKA TERAPAN I MATEMATIKA DEMOGRAFI Topik: Kelahiran dan Pertumbuhan Populasi dari Model Matriks Mahdhivan Syafwan

23 Solusi Persamaan Proyeksi Model populasi matriks: n t + 1 = An t, dimana n t adalah vektor populasi pada waktu t dengan s buah stage dan A adalah matriks proyeksi stage-classified berukuran s s. Solusi model tersebut diberikan oleh [jelaskan!]: s n t = λ i t w i v i n 0 i=1 dimana n 0 adalah vektor populasi pada keadaan awal, λ i, w i, dan v i berturut-turut adalah nilai eigen, vektor eigen (kanan), dan kompleks konjugat dari transpos vektor eigen kiri dari matriks A. 2,

24 Pengaruh Nilai Eigen Jika semua λ i < 1, maka jumlah populasi akan menuju ke satu nilai tertentu -> stabil asimtotik. Jika ada λ i > 1, maka jumlah populasi akan meningkat -> tidak stabil. Jika semua λ i = 1, maka jumlah populasi akan konstan (untuk λ i bernilai riil) atau harmonik (untuk λ i bernilai kompleks) -> stabil 3

25 Tugas Presentasi Teorema Perron-Frobenius Laju pertumbuhan populasi Matriks imprimitif Matriks reducible 4

26 Teorema Ergodic Kuat Definisi (Populasi Ergodic) Suatu populasi dikatakan ergodic jika prilaku akhirnya tidak bergantung dari keadaan awalnya. Definisi (Matriks non-negatif dan positif) Suatu matriks dikatakan non-negatif jika semua elemennya bernilai tak-negatif. Suatu matriks dikatakan positif jika semua elemennya bernilai positif. Semua matriks proyeksi populasi adalah nonnegatif. [why?] 5

27 Pembagian Matriks Non-Negatif Untuk menjelaskan jenis-jenis matriks tersebut, kita perlu terlebih dahulu mendefinisikan beberapa istilah dalam graf siklus hidup. 6

28 Lintasan Beberapa Istilah dalam Graf Siklus Hidup Loop Self-loop 7

29 Reducible vs Irreducible 8

30 Primitif vs Imprimitif 9

31 Menghitung Irreducibility dan Primitivity secara Numerik 10

32 Teorema Perron-Frobenius 11

33 Periode Osilasi Nilai eigen dari matriks proyeksi yang bernilai kompleks menghasilkan osilasi pada distribusi tahapan (stage) dengan periode yang diberikan oleh ρ i = 2π θ = 2π i tan 1 Im(λ. i) Re(λ i ) Komponen osilasi yang bertahan lama bersesuaian dengan λ 2. Contoh: 12

34 Jarak ke Distribusi Stage yang Stabil Kita ingin mengukur jarak antara n(t) dan populasi stabil w. Tanpa mengurangi keumuman, w dapat diskala sehingga i w i n(t) dapat ditransformasi menjadi x t = n(t). Ukuran Keyfitz i n i (t) = 1 dan Δ x, w = 1 2 i x i w i. Jelas bahwa 0 Δ 1. Jarak kumulatif Cohen Misalkan n 0 = n 0. Perhatikan bahwa n(t) λ t 1 c 1 w 1. Cohen mendefinisikan s A, n 0, t = t i=0 n(i) λ 1 i c 1 w 1, r A, n 0, t = t i=0 n(i) λ 1 i c 1 w 1 yang berurut-turut menyatakan akumulasi dari selisih antara n(t) λ 1 t dan c 1 w 1 dan nilai mutlaknya., 13

35 Jarak ke Distribusi Stage yang Stabil Jarak kumulatif Cohen (lanjutan) Sebagai ukuran dari jarak kumulatif antara populasi awal n 0 dan distribusi limitnya, Cohen mengajukan D 1 = D 2 = i i lim s i (A, n 0, t) t lim r i (A, n 0, t) t Selanjutnya Cohen memberikan ekpresi analitik untuk limit pada D 1. Misalkan B = w 1 v 1 dan Z = I + B A λ 1 1, maka lim s A, n 0, t = Z B n 0. t,. 14

36 Jarak ke Distribusi Stage yang Stabil 15

TERAPAN INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 22

TERAPAN INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 22 TERAPAN INTEGRAL Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 22 Topik Bahasan 1 Luas Daerah Bidang Rata 2 Nilai Rataan Fungsi (Departemen Matematika

Lebih terperinci

APLIKASI MATRIKS LESLIE UNTUK MEMPREDIKSI JUMLAH DAN LAJU PERTUMBUHAN SUATU POPULASI

APLIKASI MATRIKS LESLIE UNTUK MEMPREDIKSI JUMLAH DAN LAJU PERTUMBUHAN SUATU POPULASI Buletin Ilmiah Math Stat Dan Terapannya (Bimaster) Volume 02, No 3 (2013), hal 163-172 APLIKASI MATRIKS LESLIE UNTUK MEMPREDIKSI JUMLAH DAN LAJU PERTUMBUHAN SUATU POPULASI Yudha Pratama, Bayu Prihandono,

Lebih terperinci

Matriks Leslie dan Aplikasinya dalam Memprediksi Jumlah dan Laju pertumbuhan Penduduk di Kota Makassar

Matriks Leslie dan Aplikasinya dalam Memprediksi Jumlah dan Laju pertumbuhan Penduduk di Kota Makassar Matriks Leslie dan Aplikasinya dalam Memprediksi Jumlah dan Laju pertumbuhan Penduduk di Kota Makassar Wahidah Sanusi 1, Sukarna 1 dan Nur Ridiawati 1, a) 1 Jurusan Matematika, Fakultas Matematika dan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Dalam bab ini akan diberikan beberapa materi yang akan diperlukan di dalam pembahasan, seperti: matriks secara umum; matriks yang dipartisi; matriks tereduksi dan taktereduksi; matriks

Lebih terperinci

BAB 2 LANDASAN TEORI. Pada bab ini akan diperlihatkan teori-teori yang berhubungan dengan penelitian

BAB 2 LANDASAN TEORI. Pada bab ini akan diperlihatkan teori-teori yang berhubungan dengan penelitian BAB 2 LANDASAN TEORI Pada bab ini akan diperlihatkan teori-teori yang berhubungan dengan penelitian ini sehingga dapat dijadikan sebagai landasan berpikir dalam melakukan penelitian ini dan akan mempermudah

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Titik Tetap dan Sistem Linear Toni Bakhtiar Departemen Matematika IPB Oktober 2012 Toni Bakhtiar (m@thipb) PDB Oktober 2012 1 / 31 Titik Tetap SPD Mandiri dan Titik Tetap Tinjau

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dibahas penurunan model persamaan panas dimensi satu. Setelah itu akan ditentukan penyelesaian persamaan panas dimensi satu secara analitik dengan metode

Lebih terperinci

Pengantar Metode Perturbasi Bab 1. Pendahuluan

Pengantar Metode Perturbasi Bab 1. Pendahuluan Pengantar Metode Perturbasi Bab 1. Pendahuluan Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 454 KAPITA SELEKTA MATEMATIKA TERAPAN II Semester Ganjil 2016/2017 Review Teori Dasar Terkait

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengantar Pada bab ini akan diuraikan beberapa landasan teori untuk menunjang penulisan skripsi ini. Uraian ini terdiri dari beberapa bagian yang akan dipaparkan secara terperinci

Lebih terperinci

Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik. Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas

Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik. Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 672 Topik dalam Matematika Terapan Semester Ganjil 2016/2017 Pendahuluan Metode perturbasi

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik LANDASAN TEORI Model Mangsa Pemangsa Lotka Volterra Bagian ini membahas model mangsa pemangsa klasik Lotka Volterra. Model Lotka Volterra menggambarkan laju perubahan populasi dua spesies yang saling berinteraksi.

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2016/2017 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

BARISAN SIMBOL DAN UKURAN INVARIAN FUNGSI MONOTON SEPOTONG-SEPOTONG KONTINU

BARISAN SIMBOL DAN UKURAN INVARIAN FUNGSI MONOTON SEPOTONG-SEPOTONG KONTINU BARISAN SIMBOL DAN UKURAN INVARIAN FUNGSI MONOTON SEPOTONG-SEPOTONG KONTINU Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60 Abstract. Let g [0 ] [0] is piecewise continuous monotone

Lebih terperinci

Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR

Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR Pertemuan ke-0: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR Departemen Matematika FMIPA IPB Bogor, 205 (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, 205

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

IV. BAHAN DAN METODE

IV. BAHAN DAN METODE IV. BAHAN DAN METODE 4.1 Lokasi dan Waktu Penelitian dilaksanakan di TN Alas Purwo, Kabupaten Banyuwangi, Provinsi Jawa Timur. Penelitian dan pengolahan data dilaksanakan selama 6 bulan yaitu pada bulan

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. October 3, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. October 3, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. October 3, 2011 6.3 Limit Sepihak, Limit di Tak Hingga, dan Limit Tak Hingga Bila sebelumnya kita mempelajari limit barisan,

Lebih terperinci

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data A. Model Matematika BAB II KAJIAN TEORI Pemodelan matematika adalah proses representasi dan penjelasan dari permasalahan dunia real yang dinyatakan dalam pernyataan matematika (Widowati dan Sutimin, 2007:

Lebih terperinci

METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI

METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 9 17 ISSN : 233 291 c Jurusan Matematika FMIPA UNAND METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI RAHIMA

Lebih terperinci

Sifat Strong Perron-Frobenius Pada Solusi Positif Eventual Sistem Persamaan Differensial Linier Orde Satu

Sifat Strong Perron-Frobenius Pada Solusi Positif Eventual Sistem Persamaan Differensial Linier Orde Satu Sifat Strong Perron-Frobenius Pada Solusi Positif Eventual Sistem Persamaan Differensial Linier Orde Satu Yulian Sari FKIP Pendidikan Matematika Universitas Riau Kepulauan e-mail: yuliansari17@gmail.com

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 11, 2007 Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 7 BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa poin tentang sistem dinamik, kestabilan sistem dinamik, serta konsep bifurkasi. A. Sistem Dinamik Secara umum Sistem dinamik didefinisikan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Analisis merupakan salah satu cabang matematika yang mempelajari antara lain barisan, limit, deret, kekontinuan, kekonvergenan, integral, dan yang lainnya.

Lebih terperinci

TURUNAN, EKSTRIM, BELOK, MINIMUM DAN MAKSIMUM

TURUNAN, EKSTRIM, BELOK, MINIMUM DAN MAKSIMUM TURUNAN, EKSTRIM, BELOK, MINIMUM DAN MAKSIMUM Fungsi f dikatakan mencapai maksimum mutlak di c jika f c f x untuk setiap x I. Di sini f c dinamakan nilai maksimum mutlak. Dan c, f c dinamakan titik maksimum

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Ringkasan Kalkulus 2, Untuk dipakai di ITB Deret Tak Hingga Pada bagian ini akan dibicarakan penjumlahan berbentuk a +a 2 + +a n + dengan a n R Sebelumnya akan dibahas terlebih dahulu pengertian barisan

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

Bagian 2 Matriks dan Determinan

Bagian 2 Matriks dan Determinan Bagian Matriks dan Determinan Materi mengenai fungsi, limit, dan kontinuitas akan kita pelajari dalam Bagian Fungsi dan Limit. Pada bagian Fungsi akan mempelajari tentang jenis-jenis fungsi dalam matematika

Lebih terperinci

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva PAM 252 Metode Numerik Bab 4 Pencocokan Kurva Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Pencocokan Kurva Permasalahan dan

Lebih terperinci

BAB I VEKTOR DALAM BIDANG

BAB I VEKTOR DALAM BIDANG BAB I VEKTOR DALAM BIDANG I. KURVA BIDANG : Penyajian secara parameter Suatu kurva bidang ditentukan oleh sepasang persamaan parameter. ; dalam I dan kontinue pada selang I, yang pada umumnya sebuah selang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang di dalamnya terdapat turunan-turunan. Jika terdapat variabel bebas tunggal, turunannya merupakan

Lebih terperinci

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI TIPE A Olimpiade Sains Nasional Pertamina 2012 Petunjuk : 1. Tuliskan secara lengkap Nama, Nomor Ujian dan data lainnya pada Lembar Jawab Komputer

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

PAM 252 Metode Numerik Bab 5 Turunan Numerik

PAM 252 Metode Numerik Bab 5 Turunan Numerik Pendahuluan PAM 252 Metode Numerik Bab 5 Turunan Numerik Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Turunan Numerik Permasalahan

Lebih terperinci

Analisis Komponen Utama (Principal component analysis)

Analisis Komponen Utama (Principal component analysis) Analisis Komponen Utama (Principal component analysis) A. LANDASAN TEORI Misalkan χ merupakan matriks berukuran nxp, dengan baris-baris yang berisi observasi sebanyak n dari p-variat variabel acak X. Analisis

Lebih terperinci

1.1 Latar Belakang Masalah Adanya kebutuhan akan pemahaman keadaan kependudukan di suatu wilayah mengakibatkan berkembangnya pembelajaran tentang

1.1 Latar Belakang Masalah Adanya kebutuhan akan pemahaman keadaan kependudukan di suatu wilayah mengakibatkan berkembangnya pembelajaran tentang BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Adanya kebutuhan akan pemahaman keadaan kependudukan di suatu wilayah mengakibatkan berkembangnya pembelajaran tentang populasi. Kata populasi diartikan sebagai

Lebih terperinci

TERAPAN TURUNAN. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 61

TERAPAN TURUNAN. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 61 TERAPAN TURUNAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 61 Topik Bahasan 1 Nilai Maksimum dan Minimum 2 Teorema Nilai Rataan (TNR) 3 Turunan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peluang Peluang mempunyai banyak persamaan arti, seperti kemungkinan, kesempatan dan kecenderungan. Peluang menunjukkan kemungkinan terjadinya suatu kejadian yang bersifat acak.

Lebih terperinci

: D C adalah fungsi kompleks dengan domain riil

: D C adalah fungsi kompleks dengan domain riil BAB 4. INTEGRAL OMPLES 4. Integral Garis ompleks Misalkan ( : D adalah fungsi kompleks dengan domain riil b D [ a, b], maka integral (, dimana ( x( + iy( dapat dengan mudah a b dihitung, yaitu a i contoh

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teori Pendukung II.1 Sistem Autonomous Tinjau sistem persamaan differensial berikut, = dy = f(x, y), g(x, y), (2.1) dengan asumsi f dan g adalah fungsi kontinu yang mempunyai turunan yang kontinu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan berikutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 1, 2007 Diberikan sebuah fungsi yang terdefinisi pada interval (a, b) kecuali mungkin di

Lebih terperinci

Pengantar Metode Perturbasi Bab 4. Ekspansi Asimtotik pada Persamaan Diferensial Biasa

Pengantar Metode Perturbasi Bab 4. Ekspansi Asimtotik pada Persamaan Diferensial Biasa Pengantar Metode Perturbasi Bab 4. Ekspansi Asimtotik pada Persamaan Diferensial Biasa Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 454 KAPITA SELEKTA MATEMATIKA TERAPAN II Semester

Lebih terperinci

PENENTUAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL MENGGUNAKAN METODE PANGKAT

PENENTUAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL MENGGUNAKAN METODE PANGKAT Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 6, No. 0 (017), hal 17 6. PENENTUAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL MENGGUNAKAN METODE PANGKAT Yuyun Eka Pratiwi, Mariatul Kiftiah,

Lebih terperinci

BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR

BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 3 BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 4.. Sebaran asimtotik dari,, Teorema 4. ( Normalitas Asimtotik

Lebih terperinci

THE EFFECT OF DELAYED TIME OF OSCILLATION IN THE LOGISTIC EQUATION

THE EFFECT OF DELAYED TIME OF OSCILLATION IN THE LOGISTIC EQUATION Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 72 77 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND THE EFFECT OF DELAYED TIME OF OSCILLATION IN THE LOGISTIC EQUATION IVONE LAWRITA ERWANSA, EFENDI, AHMAD

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab II ini dibahas teori-teori pendukung yang digunakan untuk pembahasan selanjutnya yaitu tentang Persamaan Nonlinier, Metode Newton, Aturan Trapesium, Rata-rata Aritmatik dan

Lebih terperinci

Sistem Hasil Kali Persamaan Diferensial Otonomus pada Bidang

Sistem Hasil Kali Persamaan Diferensial Otonomus pada Bidang Sistem Hasil Kali Persamaan Diferensial Otonomus pada Bidang SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan Guna

Lebih terperinci

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk BAB I PENDAHULUAN 1.1 Latar Belakang Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk memeriksa kelakuan sistem dinamik kompleks, biasanya dengan menggunakan persamaan diferensial

Lebih terperinci

Teori kendali. Oleh: Ari suparwanto

Teori kendali. Oleh: Ari suparwanto Teori kendali Oleh: Ari suparwanto Minggu Ke-1 Permasalahan oleh : Ari Suparwanto Permasalahan Diberikan sistem dan sinyal referensi. Masalah kendali adalah menentukan sinyal kendali sehingga output sistem

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun dari berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

SISTEM DINAMIK KONTINU LINEAR. Oleh: 1. Meirdania Fitri T 2. Siti Khairun Nisa 3. Grahani Ayu Deca F. 4. Fira Fitriah 5.

SISTEM DINAMIK KONTINU LINEAR. Oleh: 1. Meirdania Fitri T 2. Siti Khairun Nisa 3. Grahani Ayu Deca F. 4. Fira Fitriah 5. SISTEM DINAMIK KONTINU LINEAR Oleh: 1. Meirdania Fitri T 2. Siti Khairun Nisa 3. Grahani Ayu Deca F. 4. Fira Fitriah 5. Lisa Risfana Sari Sistem Dinamik D Sistem dinamik adalah sistem yang dapat diketahui

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Banyak ditemukan masalah nyata di alam ini yang dapat dibuat model matematikanya. Persamaan integral merupakan salah satu model matematika yang banyak digunakan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN Pada bab ini akan dijelaskan mengenai latar belakang yang mendasari penelitian yang kemudian dirumuskan dalam rumusan masalah. Berdasarkan latar belakang dan rumusan masalah yang telah

Lebih terperinci

PERHITUNGAN NUMERIK DALAM MENENTUKAN KESTABILAN SOLITON CERAH ONSITE PADA PERSAMAAN SCHRÖDINGER NONLINIER DISKRIT DENGAN PENAMBAHAN POTENSIAL LINIER

PERHITUNGAN NUMERIK DALAM MENENTUKAN KESTABILAN SOLITON CERAH ONSITE PADA PERSAMAAN SCHRÖDINGER NONLINIER DISKRIT DENGAN PENAMBAHAN POTENSIAL LINIER Jurnal Matematika UNAND Vol 3 No 3 Hal 68 75 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERHITUNGAN NUMERIK DALAM MENENTUKAN KESTABILAN SOLITON CERAH ONSITE PADA PERSAMAAN SCHRÖDINGER NONLINIER

Lebih terperinci

METODE PENELITIAN Sumber Data

METODE PENELITIAN Sumber Data 13 METODE PENELITIAN Sumber Data Data yang digunakan dalam penelitian ini merupakan hasil simulasi melalui pembangkitan dari komputer. Untuk membangkitkan data, digunakan desain model persamaan struktural

Lebih terperinci

MODEL PEMANENAN POPULASI HEWAN MENGGUNAKAN MATRIKS LESLIE

MODEL PEMANENAN POPULASI HEWAN MENGGUNAKAN MATRIKS LESLIE MODEL PEMANENAN POPULASI HEWAN MENGGUNAKAN MATRIKS LESLIE Skripsi Disusun dan Diajukan Untuk Memenuhi Syarat Meraih Gelar Sarjana S1 Pada Program Studi Pendidikan Matematika Oleh: PURWANINGSIH 0601060022

Lebih terperinci

BAB 2 PDB Linier Order Satu 2

BAB 2 PDB Linier Order Satu 2 BAB Konsep Dasar BAB 2 PDB Linier Order Satu 2 BAB 3 Aplikasi PDB Order Satu 3 BAB 4 PDB Linier Order Dua 4 BAB 5 Aplikasi PDB Order Dua 5 BAB 6 Sistem PDB 6 BAB 7 PDB Nonlinier dan Kesetimbangan Dalam

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

Aplikasi Metode Reduksi Graf pada Model Pertumbuhan Populasi Kutu Daun (Pea Afid)

Aplikasi Metode Reduksi Graf pada Model Pertumbuhan Populasi Kutu Daun (Pea Afid) Aplikasi Metode Reduksi Graf pada Model Pertumbuhan Populasi Kutu Daun (Pea Afid) Efendi, Ika Nurhayati 2,2) Jurusan Matematika, Universitas Andalas, Padang, Indonesia ) efendi@fmipa.unand.ac.id Abstrak

Lebih terperinci

Analisis Riil II: Diferensiasi

Analisis Riil II: Diferensiasi Definisi Turunan Definisi dan Teorema Aturan Rantai Fungsi Invers Definisi (Turunan) Misalkan I R sebuah interval, f : I R, dan c I. Bilangan riil L dikatakan turunan dari f di c jika diberikan sebarang

Lebih terperinci

BIFURKASI TRANSKRITIKAL PADA SISTEM DINAMIK SKRIPSI

BIFURKASI TRANSKRITIKAL PADA SISTEM DINAMIK SKRIPSI BIFURKASI TRANSKRITIKAL PADA SISTEM DINAMIK SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk memenuhi sebagian persyaratan guna memperoleh gelar

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN disebut vektor eigen dari matriks A =

NILAI EIGEN DAN VEKTOR EIGEN disebut vektor eigen dari matriks A = NILAI EIGEN DAN VEKTOR EIGEN >> DEFINISI NILAI EIGEN DAN VEKTOR EIGEN Jika A adalah sebuah matriks n n, maka sebuah vektor taknol x pada R n disebut vektor eigen (vektor karakteristik) dari A jika Ax adalah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial merupakan persamaan yang melibatkan turunanturunan dari fungsi yang tidak diketahui (Waluya, 2006). Contoh 2.1 : Diberikan persamaan

Lebih terperinci

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Sistem Persamaan Linier

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL TUGAS AKHIR

MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL TUGAS AKHIR MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika oleh DEVI SAFITRI 10654004470 FAKULTAS

Lebih terperinci

Persamaan Difusi. Penurunan, Solusi Analitik, Solusi Numerik (Beda Hingga, RBF) M. Jamhuri. April 7, UIN Malang. M. Jamhuri Persamaan Difusi

Persamaan Difusi. Penurunan, Solusi Analitik, Solusi Numerik (Beda Hingga, RBF) M. Jamhuri. April 7, UIN Malang. M. Jamhuri Persamaan Difusi Persamaan Difusi Penurunan, Solusi Analitik, Solusi Numerik (Beda Hingga, RBF) M Jamhuri UIN Malang April 7, 2013 Penurunan Persamaan Difusi Misalkan u(x, t) menyatakan konsentrasi dari zat pada posisi

Lebih terperinci

BAB I PENDAHULUAN. himpunan vektor riil dengan n komponen. Didefinisikan R + := {x R x 0}

BAB I PENDAHULUAN. himpunan vektor riil dengan n komponen. Didefinisikan R + := {x R x 0} BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Misalkan R menyatakan himpunan bilangan riil. Notasi R n menyatakan himpunan vektor riil dengan n komponen. Didefinisikan R + := {x R x } dan R n + := {x= (x

Lebih terperinci

Kuliah 2: FUNGSI MULTIVARIABEL. Indah Yanti

Kuliah 2: FUNGSI MULTIVARIABEL. Indah Yanti Kuliah 2: FUNGSI MULTIVARIABEL Indah Yanti Definisi Dasar Perhatikan fungsi f: A R n R m : x f x n = m = 1 fungsi bernilai riil satu variabel n = 1, m > 1 fungsi bernilai vektor satu variabel n > 1, m

Lebih terperinci

Ujian Tengah Semester

Ujian Tengah Semester Ujian Tengah Semester Mata Kuliah : PAM 252 Metode Numerik Jurusan : Matematika FMIPA Unand Hari/Tanggal : Selasa/31 Maret 2015 Waktu : 10.00 11.40 (100 menit) Dosen : Dr. Susila Bahri (Kelas A dan C)

Lebih terperinci

BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II

BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan

Lebih terperinci

BAB 1 PENDAHULUAN. Siklus kehidupan adalah suatu rangkaian aktivitas secara alami yang dialami oleh

BAB 1 PENDAHULUAN. Siklus kehidupan adalah suatu rangkaian aktivitas secara alami yang dialami oleh BAB 1 PENDAHULUAN 1.1 Latar Belakang Siklus kehidupan adalah suatu rangkaian aktivitas secara alami yang dialami oleh individu-individu dalam populasi berkaitan dengan perubahan tahap-tahap dalam kehidupan.

Lebih terperinci

PENGHITUNGAN VEKTOR-KHARAKTERISTIK SECARA ITERATIF MENGGUNAKAN TITIK TETAP BROUWER

PENGHITUNGAN VEKTOR-KHARAKTERISTIK SECARA ITERATIF MENGGUNAKAN TITIK TETAP BROUWER J. Math. and Its Appl. ISSN: 829-65X Vol. 8, No. 2, November 2, 8 PENGHITUNGAN VEKTOR-KHARAKTERISTIK SECARA ITERATIF MENGGUNAKAN TITIK TETAP BROUWER Subiono Jurusan Matematika FMIPA Institut Teknologi

Lebih terperinci

Kode, GSR, dan Operasi Pada

Kode, GSR, dan Operasi Pada BAB 2 Kode, GSR, dan Operasi Pada Graf 2.1 Ruang Vektor Atas F 2 Ruang vektor V atas lapangan hingga F 2 = {0, 1} adalah suatu himpunan V yang berisi vektor-vektor, termasuk vektor nol, bersama dengan

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

BAB III MODEL ANTRIAN MULTISERVER DENGAN VACATION

BAB III MODEL ANTRIAN MULTISERVER DENGAN VACATION BAB III MODEL ANTRIAN MULTISERVER DENGAN VACATION Dalam sebuah sistem antrian akan terdapat individu yang datang untuk mendapatkan pelayanan yang disebut dengan customer, juga individu yang akan memberikan

Lebih terperinci

Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35

Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35 Bab 16 Grafik LIMIT dan TURUNAN Matematika SMK, Bab 16: Limit dan 1/35 Grafik Pada dasarnya, konsep limit dikembangkan untuk mengerjakan perhitungan matematis yang melibatkan: nilai sangat kecil; Matematika

Lebih terperinci

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR A V PERAMATAN GELOMANG OPTIK PADA MEDIUM NONLINIER KERR 5.. Pendahuluan erkas (beam) optik yang merambat pada medium linier mempunyai kecenderungan untuk menyebar karena adanya efek difraksi; lihat Gambar

Lebih terperinci

PERBANDINGAN MODEL MALTHUS DAN MODEL VERHULST UNTUK ESTIMASI JUMLAH PENDUDUK INDONESIA TAHUN

PERBANDINGAN MODEL MALTHUS DAN MODEL VERHULST UNTUK ESTIMASI JUMLAH PENDUDUK INDONESIA TAHUN Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 1 11 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERBANDINGAN MODEL MALTHUS DAN MODEL VERHULST UNTUK ESTIMASI JUMLAH PENDUDUK INDONESIA TAHUN 2000 2014 WIDYA

Lebih terperinci

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI LAMPIRAN 5 BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI Laporan 2 Pelaksanaan OSN-PERTAMINA 2012 69 Olimpiade Sains Nasional Pertamina 2012 Petunjuk : 1. Tuliskan secara lengkap Nama, Nomor

Lebih terperinci

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert

Lebih terperinci

I. Sistem Persamaan Diferensial Linier Orde 1 (Review)

I. Sistem Persamaan Diferensial Linier Orde 1 (Review) I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 () I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 / 6 Teori Umum Bentuk umum sistem persamaan diferensial linier orde satu

Lebih terperinci

KETERCAPAIAN DARI RUANG EIGEN MATRIKS ATAS ALJABAR MAKS-PLUS. 1. Pendahuluan

KETERCAPAIAN DARI RUANG EIGEN MATRIKS ATAS ALJABAR MAKS-PLUS. 1. Pendahuluan KETERCAPAIAN DARI RUANG EIGEN MATRIKS ATAS ALJABAR MAKS-PLUS Tri Anggoro Putro, Siswanto, Supriyadi Wibowo Program Studi Matematika FMIPA UNS Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas

Lebih terperinci

10. Transformasi Fourier

10. Transformasi Fourier 10. Transformasi Fourier Dalam beberapa bab ke depan, kita akan membahas transformasi Fourier, sifatsifatnya, dan aplikasinya. Seperti halnya pada pembahasan deret Fourier, pendekatan yang diambil dalam

Lebih terperinci

MINGGU KE-9 MACAM-MACAM KONVERGENSI

MINGGU KE-9 MACAM-MACAM KONVERGENSI MINGGU KE-9 MACAM-MACAM KONVERGENSI Kita telah mengetahui bahwa untuk n besar dan θ kecil sedemikian hingga nθ = λ, distribusi binomial bisa dihampiri oleh distribusi Poisson. Mencari hampiran distribusi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI. Sistem Pendulum Terbalik Dalam penelitian ini diperhatikan sistem pendulum terbalik seperti pada Gambar di mana sebuah pendulum terbalik dimuat dalam motor yang bisa digerakkan.

Lebih terperinci

MODEL DINAMIKA CINTA DENGAN MEMPERHATIKAN DAYA TARIK PASANGAN

MODEL DINAMIKA CINTA DENGAN MEMPERHATIKAN DAYA TARIK PASANGAN Jurnal Matematika UNAND Vol. 3 No. 4 Hal. 96 103 ISSN : 303 910 c Jurusan Matematika FMIPA UNAND MODEL DINAMIKA CINTA DENGAN MEMPERHATIKAN DAYA TARIK PASANGAN SUCI RAHMA NURA, MAHDHIVAN SYAFWAN Program

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan, kekonvergenan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan.

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas mengenai dasar teori untuk menganalisis simulasi kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. 2.1 Persamaan Diferensial Biasa

Lebih terperinci

Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a) Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II. A. 1 Matriks didefinisikan sebagai susunan segi empat siku- siku dari bilangan- bilangan yang diatur dalam baris dan kolom (Anton, 1987:22).

Lebih terperinci

Aplikasi Matriks Leslie Untuk Memprediksi Jumlah Dan Laju Pertumbuhan Perempuan Di Provinsi Riau Pada Tahun 2017

Aplikasi Matriks Leslie Untuk Memprediksi Jumlah Dan Laju Pertumbuhan Perempuan Di Provinsi Riau Pada Tahun 2017 Jurnal Sains Matematika dan Statistika, Vol. 2, No. I, Januari 216 ISSN 246-4542 Aplikasi Matriks Leslie Untuk Memprediksi Jumlah Dan Laju Pertumbuhan Perempuan Di Provinsi Riau Pada Tahun 217 1 C. M.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Banyak sekali masalah terapan dalam ilmu teknik, ilmu fisika, biologi, dan lain-lain yang telah dirumuskan dengan model matematika dalam bentuk pesamaan

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

Bab 3 MODEL DAN ANALISIS MATEMATIKA

Bab 3 MODEL DAN ANALISIS MATEMATIKA Bab 3 MODEL DAN ANALISIS MATEMATIKA Pada bab ini akan dimodelkan permasalahan penyebaran virus flu burung yang bergantung pada ruang dan waktu. Pada bab ini akan dibahas pula analisis dari model hingga

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA101 MATEMATIKA A Hendra Gunawan Semester II, 016/017 1 Maret 017 Bab Sebelumnya 9.1 Barisan Tak Terhingga 9. Deret Tak Terhingga 9.3 Deret Positif: Uji Integral 9.4 Deret Positif: Uji Lainnya 9.5 Deret

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 37 Topik Bahasan 1 Limit Fungsi 2 Hukum Limit 3 Kekontinuan Fungsi (Departemen

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Sistem kejadian diskrit (SKD) adalah nama klasifikasi masalah tentang sistem dengan sumber daya berhingga yang digunakan oleh beberapa pengguna untuk mencapai

Lebih terperinci

Peubah Acak dan Distribusi Kontinu

Peubah Acak dan Distribusi Kontinu BAB 1 Peubah Acak dan Distribusi Kontinu 1.1 Fungsi distribusi Definisi: Misalkan X peubah acak. Fungsi distribusi (kumulatif) dari X adalah F X (x) = P (X x) Contoh: 1. Misalkan X Bin(3, 0.5), maka fungsi

Lebih terperinci