Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR"

Transkripsi

1 Pertemuan ke-0: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR Departemen Matematika FMIPA IPB Bogor, 205 (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, 205 / 27

2 Deret Positif: Uji-uji Lainnya Theorem (Uji banding) Misalkan untuk n N berlaku 0 a n b n. Jika b n konvergen maka a n konvergen. 2 Jika a n divergen maka b n divergen. Example Periksa kekonvergenan deret berikut. 2 n 4n 2 5. n 3 n (n + 3). (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

3 Theorem (Uji banding limit) Misalkan a n 0, b n 0 dan lim n ( an b n ) = L. Jika 0 < L <, maka atau bersama-sama divergen. a n dan b n bersama-sama konvergen 2 Jika L = 0 dan b n konvergen maka a n konvergen. (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

4 Example Periksa kekonvergenan deret berikut. 2 n 4n n3 + 3n 2 5. (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

5 Theorem (Uji hasil bagi) Misalkan a n adalah deret yang suku-sukunya positif dan misalkan pula a n+ lim = ρ. n a n Jika ρ <, maka a n konvergen. 2 Jika ρ >, maka a n divergen. 3 Jika ρ =, maka uji ini tidak memberi kesimpulan (diperlukan uji lainnya). (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

6 Example Periksa kekonvergenan deret berikut n n!. 2 n n 40. n n n!. (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

7 Theorem (Uji akar) Misalkan a n adalah deret yang suku-sukunya positif dan misalkan pula lim n (a n) n = R. Jika R <, maka a n konvergen. 2 Jika R >, maka a n divergen. 3 Jika R =, maka uji ini tidak memberi kesimpulan (diperlukan uji lainnya). (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

8 Example Periksa kekonvergenan deret berikut. ( ) n. n=2 ln n ( ) n n2 n 2. + (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

9 Ringkasan: Untuk menguji apakah deret a n dengan suku-suku positif adalah konvergen atau divergen, perhatikan a n dengan seksama. Jika lim a n = 0, maka menurut uji kedivergenen suku ke-n, a n n adalah divergen. 2 Jika a n mengandung n!, c n dengan c adalah konstanta, atau n n coba gunakan uji hasil bagi. 3 Jika a n hanya mengandung pangkat n c dan konstanta c, maka gunakan uji banding limit. Khususnya jika a n merupakan fungsi rasional dari n, maka pilih b n = n p q dengan p adalah pangkat tertinggi pembilang dan q adalah pangkat tertinggi penyebut pada a n. 4 Jika a n berbentuk (f (n)) n dengan f adalah suatu fungsi, maka gunakan uji akar. 5 Sebagai usaha terakhir, cobalah uji banding, uji integral atau uji jumlah terbatas. 6 Beberapa deret mensyaratkan manipulasi bijak atau trik tertentu untuk menentukan kekonvergenan atau kedivergenannya. (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

10 Deret Ganti Tanda Definition Misalkan {a n } adalah barisan bilangan nyata tak-negatif. Yang dimaksud dengan deret ganti tanda (alternating series) adalah deret yang memiliki bentuk umum atau u n = ( ) n a n = a + a 2 a 3 + a 4 a 5 + u n = ( ) n+ a n = a a 2 + a 3 a 4 + a 5 (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

11 Theorem (Uji deret ganti tanda) Misalkan ( ) n a n atau ( ) n+ a n adalah deret ganti tanda dengan a n > a n+ 0 untuk semua bilangan asli n. Jika lim n a n = 0, maka deret ganti tanda di atas konvergen. 2 Jika jumlah S diaproksimasi dengan jumlah n suku pertama S n, maka kesalahan yang dibuat tidak akan melebihi a n+. (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, 205 / 27

12 Example Buktikan deret harmonik ganti tanda ( ) n+ n adalah konvergen, dan tentukan berapa suku yang harus diambil agar S S n Periksa kekonvergenan dari deret ( ) n+ n 3 3 n. (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

13 Konvergen Mutlak dan Konvergen Bersyarat Definition (Konvergen mutlak dan konvergen bersyarat) Suatu deret konvergen. u n disebut konvergen mutlak jika u n adalah 2 Suatu deret u n disebut konvergen bersyarat jika u n konvergen tetapi u n adalah divergen. (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

14 Theorem Jika u n konvergen maka u n adalah konvergen. Bukti: Misalkan v n = u n + u n atau u n = v n u n. Karena 0 v n 2 u n, maka berdasarkan uji banding biasa, diperoleh bahwa konvergen. v n adalah Karena u n = v n u n, serta ruas kanannya adalah konvergen, maka ruas kirinya juga konvergen atau u n adalah konvergen. (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

15 Catatan: Untuk memeriksa kekonvergenan u n, kita dapat menggunakan uji-uji kekonvergenan untuk deret positif. Jika u n konvergen, maka dapat kita simpulkan bahwa deret u n adalah konvergen mutlak. Jika u n divergen, maka gunakan uji deret ganti tanda untuk memeriksa kekonvergenan deret u n. Jika u n konvergen, maka berarti deret u n adalah konvergen bersyarat. Jika tidak, berarti u n adalah divergen. (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

16 Uji hasil bagi jika digunakan untuk memeriksa kekonvergenan deret u n, sering juga disebut dengan nama uji pembanding mutlak, yang akan kita tulis kembali pada teorema berikut. Theorem (Uji pembanding mutlak) Misalkan u n adalah deret yang suku-sukunya taknol, dan misalkan pula u n+ lim = ρ. n u n Jika ρ <, maka u n konvergen. 2 Jika ρ >, maka u n divergen. 3 Jika ρ =, maka uji ini tidak memberi kesimpulan (diperlukan uji lainnya). (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

17 Catatan: Pada penggunaan uji pembanding mutlak, jika kita temukan kasus, maka berati deret u n adalah konvergen mutlak. Jika kita temukan kasus 2, maka u n mungkin konvergen bersyarat atau divergen. Untuk membedakannya, gunakanlah uji deret ganti tanda. (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

18 Example Tentukan apakah deret berikut adalah konvergen mutlak, konvergen bersyarat, atau divergen ( ) n+ n. ( ) n+ 4 n n!. ( ) n! sin n 2. ( ) n+ n. ( ) n+ n n +. (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

19 Bahan Responsi Problem Periksa kekonvergenan deret yang diberikan dan sebutkan jenis uji yang anda gunakan k= k= k= k= k k k k! (4k + 6) 4/3 k! k 00 (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

20 Problem Periksa kekonvergenan deret yang diberikan dan sebutkan jenis uji yang anda gunakan n + 5 n 2 n + n 40 n! n n (4n)! 8 n + n 8 n! n2 + 5n + n sin 2 n (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

21 Problem Periksa kekonvergenan deret yang diberikan dan sebutkan jenis uji yang anda gunakan n=2 ( n 2n + 5 ( 2n n + 5 ( n 2n + 5 ( n (ln n) 4 ( ) ln n 2 n ) n ) n ) n ) 2 (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

22 Problem Jika a n > 0 untuk semua bilangan asli n dan a n konvergen, maka buktikan a 2 n adalah konvergen. Problem Buktikan bahwa lim n! n n. n n! = 0, dengan menyelidiki kekonvergenan deret nn (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

23 Problem Buktikan bahwa tiap deret ganti tanda yang diberikan adalah konvergen. Kemudian perkirakanlah kesalahan (galat) yang dibuat oleh jumlah parsial S 9 sebagai aproksimasi dari jumlah S deret tersebut ( ) n+ ln (n + 2). ( ) n+ ln (n + 4). n ( ) n+ ln n n. ( ) n+ n n 2 0. (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

24 Problem Buktikan bahwa deret-deret berikut konvergen mutlak. ( 4 n. 5) 2 ( ) n+ 0 2n. n! (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

25 Problem Tentukan apakah deret yang diberikan adalah konvergen mutlak, konvergen bersyarat, atau divergen ( ) n+ ( ) n+ ( 4) n n 2. ( 4 n. 3) n 0n + 0. n 0n sin n n n. ( ) n+. n (n + 9) (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

26 Problem Berikan contoh dua deret a n dan b n yang keduanya konvergen, tetapi a n b n adalah divergen. Problem Buktikan bahwa lim n a n = 0 tidak cukup untuk menjamin kekonvergenan deret ganti tanda Petunjuk: ( ) n+ a n. Bentuklah deret ganti tanda yang berasal dari deret ( n ) 2. n dan (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

27 Tentang Slide Penyusun: Dosen Departemen Matematika FMIPA IPB Versi: 205 Media Presentasi: L A TEX - BEAMER (PDFL A TEX) (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, / 27

DERET TAK HINGGA. Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan. Definisi Deret tak hingga,

DERET TAK HINGGA. Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan. Definisi Deret tak hingga, DERET TAK HINGGA Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan Definisi Deret tak hingga,, konvergen dan mempunyai jumlah S, apabila barisan jumlah jumlah parsial konvergen menuju S.

Lebih terperinci

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan 4 BARISAN TAK HINGGA DAN DERET TAK HINGGA JUMLAH PERTEMUAN : 5 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan kekonvergenan

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB September 26, 2011

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB   September 26, 2011 (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 26, 2011 Diberikan sejumlah terhingga bilangan a 1,..., a N, kita dapat menghitung jumlah a 1 + + a N. Namun,

Lebih terperinci

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga Kesumawati Prodi Statistika FMIPA-UII April 29, 2015 Akar Barisan a 1, a 2, a 3, a 4,... adalah susunan bilangan-bilangan real yang teratur, satu untuk setiap bilangan bulat positif. adalah fungsi yang

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 37 Topik Bahasan 1 Limit Fungsi 2 Hukum Limit 3 Kekontinuan Fungsi (Departemen

Lebih terperinci

TEKNIK PENGINTEGRALAN

TEKNIK PENGINTEGRALAN TEKNIK PENGINTEGRALAN Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 2 Topik Bahasan Pendahuluan 2 Manipulasi Integran 3 Integral Parsial 4 Dekomposisi

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Ringkasan Kalkulus 2, Untuk dipakai di ITB Deret Tak Hingga Pada bagian ini akan dibicarakan penjumlahan berbentuk a +a 2 + +a n + dengan a n R Sebelumnya akan dibahas terlebih dahulu pengertian barisan

Lebih terperinci

Definisi 1 Deret Tak Hingga adalah suatu ekspresi yang dapat dinyatakan dalam bentuk:

Definisi 1 Deret Tak Hingga adalah suatu ekspresi yang dapat dinyatakan dalam bentuk: DERET TAK HINGGA Definisi 1 Deret Tak Hingga adalah suatu ekspresi yang dapat dinyatakan dalam bentuk: u k = u 1 + u 2 + u 3 + + u k + Bilangan-bilangan u 1, u 2, u 3, disebut suku-suku dalam deret tersebut.

Lebih terperinci

TERAPAN INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 22

TERAPAN INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 22 TERAPAN INTEGRAL Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 22 Topik Bahasan 1 Luas Daerah Bidang Rata 2 Nilai Rataan Fungsi (Departemen Matematika

Lebih terperinci

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Uji Deret Positif. Ayundyah. Uji Integral. Uji Komparasi. Uji Rasio.

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Uji Deret Positif. Ayundyah. Uji Integral. Uji Komparasi. Uji Rasio. Uji Uji Deret Kesumawati Prodi Statistika FMIPA-UII April 29, 2015 Uji Deret Uji Deret yang mempunyai suku-suku positif menjadi bahasan pada uji integral ini. Uji integral ini menggunakan ide dimana suatu

Lebih terperinci

MATEMATIKA 2. DERET Series ASEP MUHAMAD SAMSUDIN, S.T.,M.T. DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO SEMARANG

MATEMATIKA 2. DERET Series ASEP MUHAMAD SAMSUDIN, S.T.,M.T. DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO SEMARANG MATEMATIKA DERET Series ASEP MUHAMAD SAMSUDIN, S.T.,M.T. DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO SEMARANG BARISAN VS DERET BARISAN (Sequences) Himpunan besaran u 1, u, u 3, yang

Lebih terperinci

FUNGSI-FUNGSI INVERS

FUNGSI-FUNGSI INVERS FUNGSI-FUNGSI INVERS Logaritma, Eksponen, Trigonometri Invers Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 49 Topik Bahasan Fungsi Satu ke Satu 2

Lebih terperinci

Barisan dan Deret Agus Yodi Gunawan

Barisan dan Deret Agus Yodi Gunawan Barisan dan Deret Agus Yodi Gunawan Barisan. Definisi. Barisan tak hingga adalah suatu fungsi dengan daerah asalnya himpunan bilangan bulat positif dan daerah kawannya himpunan bilangan real. Notasi untuk

Lebih terperinci

MODUL RESPONSI MAM 4222 KALKULUS IV

MODUL RESPONSI MAM 4222 KALKULUS IV MODUL RESPONSI MAM 4222 KALKULUS IV Mata Kuliah Wajib 2 sks untuk mahasiswa Program Studi Matematika Oleh Dr. WURYANSARI MUHARINI KUSUMAWINAHYU, M.Si. PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS

Lebih terperinci

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use INTISARI KALKULUS 2 Penyusun: Drs. Warsoma Djohan M.Si. Program Studi Matematika - FMIPA Institut Teknologi Bandung Januari 200 Pengantar Kalkulus & 2 merupakan matakuliah wajib tingkat pertama bagi semua

Lebih terperinci

Dwi Lestari, M.Sc: Konvergensi Deret 1. KONVERGENSI DERET

Dwi Lestari, M.Sc: Konvergensi Deret   1. KONVERGENSI DERET 1. KONVERGENSI DERET Suatu barisan disebut konvergen jika terdapat bilangan Z yang setiap lingkungannya memuat semua. Jika bilangan Z itu ada maka dapat ditulis: lim sehingga dapat dikatakan bahwa barisan

Lebih terperinci

MA1201 KALKULUS 2A Do maths and you see the world

MA1201 KALKULUS 2A Do maths and you see the world Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis

Lebih terperinci

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Latihan 1 1. A. NOTASI SIGMA 1. Pengertian Notasi Sigma Misalkan jumlah n suku pertama deret aritmatika adalah S n = U 1 + U 2 + U 3 + + U

Lebih terperinci

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ -LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id Konsep Limit Fungsi mendasari pembentukan kalkulus dierensial dan integral. Konsep ini

Lebih terperinci

Hendra Gunawan. 26 Februari 2014

Hendra Gunawan. 26 Februari 2014 MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 26 Februari 2014 9.6 Deret Pangkat Kuliah yang Lalu Menentukan selang kekonvergenan deret pangkat 9.7 Operasi pada Deret Pangkat Mlkk Melakukan

Lebih terperinci

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK 4. Sebaran Asimtotik,, Teorema 4. (Sebaran Normal Asimtotik,, ) Misalkan fungsi intensitas seperti (3.2) dan terintegralkan lokal. Jika kernel K adalah

Lebih terperinci

SATUAN ACARA PERKULIAHAN ( KALKULUS II ) Pengesahan. Nama Dokumen : SATUAN ACARA PERKULIAHAN KALKULUS II

SATUAN ACARA PERKULIAHAN ( KALKULUS II ) Pengesahan. Nama Dokumen : SATUAN ACARA PERKULIAHAN KALKULUS II Pengesahan Nama Dokumen : KALKULUS II No Dokumen : No ISO 91:28/IWA 2 1dari 6 Diajukan oleh Imelda Saluza, S.Si.,M.Sc (Dosen Pengampu) Diperiksa oleh Ir. Dedi Hermanto, MT (GPM) Disetujui oleh Lastri Widya

Lebih terperinci

TURUNAN. Bogor, Departemen Matematika FMIPA-IPB. (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, / 50

TURUNAN. Bogor, Departemen Matematika FMIPA-IPB. (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, / 50 TURUNAN Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, 2012 1 / 50 Topik Bahasan 1 Pendahuluan 2 Turunan Fungsi 3 Tafsiran Lain Turunan 4 Kaitan

Lebih terperinci

Fungsi Analitik (Bagian Pertama)

Fungsi Analitik (Bagian Pertama) Fungsi Analitik (Bagian Pertama) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu IV) Outline 1 Fungsi Variabel Kompleks 2 Pemetaan/Transformasi/Mappings

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. September 12, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. September 12, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 12, 2011 Teorema 11 pada Bab 3 memberi kita cara untuk menyelidiki kekonvergenan sebuah barisan tanpa harus mengetahui

Lebih terperinci

TERAPAN TURUNAN. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 61

TERAPAN TURUNAN. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 61 TERAPAN TURUNAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 61 Topik Bahasan 1 Nilai Maksimum dan Minimum 2 Teorema Nilai Rataan (TNR) 3 Turunan

Lebih terperinci

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66 MATRIKS Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Matriks Bogor, 2012 1 / 66 Topik Bahasan 1 Matriks 2 Operasi Matriks 3 Determinan matriks 4 Matriks Invers 5 Operasi

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Differential Equation Fungsi mendeskripsikan bahwa nilai variabel y ditentukan oleh nilai variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi

Lebih terperinci

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 19 Topik Bahasan 1 Sistem Bilangan Real 2 Interval 3

Lebih terperinci

BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR

BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 3 BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 4.. Sebaran asimtotik dari,, Teorema 4. ( Normalitas Asimtotik

Lebih terperinci

PERBANDINGAN DAN KARAKTERISTIK BEBERAPA TES KONVERGENSI PADA DERET TAK HINGGA

PERBANDINGAN DAN KARAKTERISTIK BEBERAPA TES KONVERGENSI PADA DERET TAK HINGGA Eksakta Vol 8 No Oktober 07 http://eksaktappjunpacid E-ISSN : 549-7464 P-ISSN : 4-374 PERBANDINGAN DAN KARAKTERISTIK BEBERAPA TES KONVERGENSI PADA DERET TAK HINGGA Prodi Matematika Jurusan Matematika FMIPA

Lebih terperinci

Modul KALKULUS MULTIVARIABEL II

Modul KALKULUS MULTIVARIABEL II Modul KALKULUS MULTIVARIABEL II Oleh Ayundyah Kesumawati, S.Si., M.Si. (Program Studi Statistika) FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 26 Daftar Isi Daftar Isi iv Daftar

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

5.1 Fungsi periodik, fungsi genap, fungsi ganjil

5.1 Fungsi periodik, fungsi genap, fungsi ganjil Bab 5 DERET FOURIER Pada Bab sebelumnya kita telah membahas deret Taylor. Syarat fungsi agar dapat diekspansi ke dalam deret Taylor adalah fungsi tersebut harus terdiferensial pada setiap tingkat. Untuk

Lebih terperinci

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK 3. Perumusan Penduga Misalkan N adalah proses Poisson non-homogen pada interval 0, dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas

Lebih terperinci

Jurusan Matematika FMIPA-IPB

Jurusan Matematika FMIPA-IPB Jurusan Matematika FMIPA-IPB Ujian Kedua Semester Pendek T.A 4/5 KALKULUS/KALKULUS Jum at, Agustus 4 (Waktu : jam) SETIAP SOAL BERNILAI. Tentukan (a) + (b) p 4 + 5. Periksa apakah Teorema Nilai Rata-rata

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 27 Januari 2017 Bab Sebelumnya 7. Teknik Pengintegralan 7.1 Aturan Dasar Pengintegralan 7.2 Pengintegralan Parsial 7.3 Integral Trigonometrik

Lebih terperinci

Fungsi Analitik (Bagian Kedua)

Fungsi Analitik (Bagian Kedua) Fungsi Analitik (Bagian Kedua) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 5528, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu V) Outline Limit Menuju Tak Hingga 2 Fungsi Kontinu

Lebih terperinci

LIMIT KED. Perhatikan fungsi di bawah ini:

LIMIT KED. Perhatikan fungsi di bawah ini: LIMIT Perhatikan fungsi di bawah ini: f x = x2 1 x 1 Perhatikan gambar di samping, untuk nilai x = 1 nilai f x tidak ada. Tetapi jikakita coba dekati nilai x = 1 dari sebelah kiri dan kanan maka dapat

Lebih terperinci

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( ) II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan

Lebih terperinci

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 29 BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 4.1 Perumusan Penduga Misalkan adalah proses Poisson nonhomogen

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan

Lebih terperinci

Matematika I : Limit. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 79

Matematika I : Limit. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 79 Matematika I : Limit Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 79 Outline 1 limit Introduction to Limit Rigorous Study of Limits Limit Theorem Limit Involving Trigonometric

Lebih terperinci

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I 7 INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Memahami konsep dasar integral, teorema-teorema, sifat-sifat, notasi jumlah, fungsi transenden dan teknik-teknik pengintegralan. Materi

Lebih terperinci

Program Studi Pendidikan Matematika UNTIRTA. 10 Maret 2010

Program Studi Pendidikan Matematika UNTIRTA. 10 Maret 2010 Metode Program Studi Pendidikan Matematika UNTIRTA 10 Maret 2010 (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret 2010 1 / 16 Ekspansi Taylor Misalkan f 2 C [a, b] dan x 0 2 [a, b], maka untuk

Lebih terperinci

Modul 1 : Barisan dan Deret Takhingga. Kegiatan Belajar 1 : Barisan Takhingga. Kegiatan Belajar 2 : Deret Takhingga.

Modul 1 : Barisan dan Deret Takhingga. Kegiatan Belajar 1 : Barisan Takhingga. Kegiatan Belajar 2 : Deret Takhingga. ix M Tinjauan Mata Kuliah ata kuliah Kalkulus 2 yang disajikan pada bahan ajar ini membahas materi tentang barisan, deret, dan integral. Pembahasan barisan dan deret hanya sekitar 11 persen dari dari keseluruhan

Lebih terperinci

MATEMATIKA BISNIS DERET. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen

MATEMATIKA BISNIS DERET. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen MATEMATIKA BISNIS Modul ke: DERET Fakultas Ekonomi Bisnis Muhammad Kahfi, MSM Program Studi Manajemen http://www.mercubuana.ac.id Konsep Barisan (sequence) adalah suatu susunan bilangan yang dibentuk menurut

Lebih terperinci

Fungsi Gamma. Pengantar Matematika Teknik Kimia. Muthia Elma

Fungsi Gamma. Pengantar Matematika Teknik Kimia. Muthia Elma Fungsi Gamma Pengantar Matematika Teknik Kimia Muthia Elma Fungsi Gamma Defenisi Merupakan salah satu fungsi khusus yang biasanya disajikan dalam pembahasan kalkulus tingkat lanjut Dalam aplikasinya fungsi

Lebih terperinci

BAB III SUB BARISAN DAN TEOREMA BOLZANO-WEIERSTRASS

BAB III SUB BARISAN DAN TEOREMA BOLZANO-WEIERSTRASS BAB III SUB BARISAN DAN TEOREMA BOLZANO-WEIERSTRASS Dalam bab ini akan kita bahas pengertian tentang sub barisan dari barisan bilangan real, yang lebih umum dibandingkan ekor suatu barisan, serta dapat

Lebih terperinci

BARISAN BILANGAN REAL

BARISAN BILANGAN REAL BAB 2 BARISAN BILANGAN REAL Di sekolah menengah barisan diperkenalkan sebagai kumpulan bilangan yang disusun menurut pola tertentu, misalnya barisan aritmatika dan barisan geometri. Biasanya barisan dan

Lebih terperinci

Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap

Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap BAB II TINJAUAN PUSTAKA A. Persamaan Diferensial Definisi 2.1 Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang memuat variabel bebas, variabel tak bebas, dan derivatif-derivatif

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER(RPS) PROGRAM STUDI STATISTIKA

RENCANA PEMBELAJARAN SEMESTER(RPS) PROGRAM STUDI STATISTIKA A. MATA KULIAH RENCANA PEMBELAJARAN SEMESTER(RPS) PROGRAM STUDI STATISTIKA Nama Mata Kuliah : Matematika II Kode/sks : MAS 4116/ 3 Semester : III Status (Wajib/Pilihan) : Wajib (W) Prasyarat : MAS 4215

Lebih terperinci

BARISAN DAN DERET. Matematika Dasar

BARISAN DAN DERET. Matematika Dasar BARISAN DAN DERET 8.1 BARISAN BILANGAN A. Mengenal pengertian barisan suatu bilangan Perhatikan ilustrasi berikut! Seorang karyawan pada awalnya memperoleh gaji sebesar Rp.600.000,00. Selanjutnya, setiap

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. November 19, 2007 Secara geometris, f kontinu di suatu titik berarti bahwa grafiknya tidak terputus

Lebih terperinci

Barisan Deret ANALISIS REAL (BARISAN DAN DERET) Kus Prihantoso Krisnawan. August 30, Yogyakarta. Krisnawan Pertemuan 1, 2, & 3

Barisan Deret ANALISIS REAL (BARISAN DAN DERET) Kus Prihantoso Krisnawan. August 30, Yogyakarta. Krisnawan Pertemuan 1, 2, & 3 ANALISIS REAL (BARISAN DAN DERET) Kus Prihantoso Krisnawan August 30, 0 Yogyakarta Limit Monoton Pada bagian ini kita akan mencoba menebak bentuk umum dari suatu barisan. Limit Monoton Pada bagian ini

Lebih terperinci

Deret Binomial. Ayundyah Kesumawati. June 25, Prodi Statistika FMIPA-UII. Ayundyah (UII) Deret Binomial June 25, / 14

Deret Binomial. Ayundyah Kesumawati. June 25, Prodi Statistika FMIPA-UII. Ayundyah (UII) Deret Binomial June 25, / 14 Deret Binomial Ayundyah Kesumawati Prodi Statistika FMIPA-UII June 25, 2015 Ayundyah (UII) Deret Binomial June 25, 2015 1 / 14 Pendahuluan Deret Binomial Kita telah mengenal Rumus Binomial. Untuk bilangan

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN

GARIS-GARIS BESAR PROGRAM PENGAJARAN Nama Mata Kuliah Kode Mata Kuliah : MAT 101 Bobot SKS : 3 (2-2) : Landasan Matematika GARIS-GARIS BESAR PROGRAM PENGAJARAN Deskripsi : Mata kuliah ini membahas konsep-konsep dasar matematika yang meliputi

Lebih terperinci

PENGANTAR ANALISIS REAL

PENGANTAR ANALISIS REAL Seri Analisis dan Geometri No. 1 (2009), -15 158 (173 hlm.) PENGANTAR ANALISIS REAL Oleh Hendra Gunawan Edisi Pertama Bandung, Januari 2009 2000 Dewey Classification: 515-xx. Kata Kunci: Analisis matematika,

Lebih terperinci

METODE GARIS SINGGUNG DALAM MENENTUKAN HAMPIRAN INTEGRAL TENTU SUATU FUNGSI PADA SELANG TERTUTUP [, ]

METODE GARIS SINGGUNG DALAM MENENTUKAN HAMPIRAN INTEGRAL TENTU SUATU FUNGSI PADA SELANG TERTUTUP [, ] METODE GARIS SINGGUNG DALAM MENENTUKAN HAMPIRAN INTEGRAL TENTU SUATU FUNGSI PADA SELANG TERTUTUP [, ] Zulfaneti dan Rahimullaily* Program Studi Pendidikan Matematika STKIP PGRI Sumbar Abstract: There is

Lebih terperinci

Daftar Isi 3. BARISAN ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB

Daftar Isi 3. BARISAN ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 29, 2011 Dalam kisah Zeno tentang perlombaan lari antara Achilles dan seekor kura-kura, ketika Achilles mencapai

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Deret Taylor Deret Taylor dinamai berdasarkan seorang matematikawan Inggris, Brook Taylor (1685-1731) dan deret Maclaurin dinamai berdasarkan matematikawan Skotlandia, Colin

Lebih terperinci

Hendra Gunawan. 13 September 2013

Hendra Gunawan. 13 September 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 13 September 2013 Latihan (Kuliah yang Lalu) sin t 1. Menggunakan fakta bahwa lim 1, t0 hitunglah: t 2 sin( 2 ) a. limsin t.cot 2t b. lim t 0 0

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

Sub Pokok Bahasan Metode Media Waktu Bacaan Bahasan Mahasiswa dapat 1 Mengenal dan menggunakan maple untuk operasi-operasi sederhana

Sub Pokok Bahasan Metode Media Waktu Bacaan Bahasan Mahasiswa dapat 1 Mengenal dan menggunakan maple untuk operasi-operasi sederhana GARIS-GARIS BESAR PROGRAM PERKULIAHAN A. IDENTITAS MATA KULIAH 1. Mata Kuliah : Praktikum Kalkulus 2. Kode Mata Kuliah : MAA107 3. Beban Studi : 2 SKS 4. Semester : 2 (dua) 5. Deskripsi Mata Kuliah : Mata

Lebih terperinci

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4)

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4) LIMIT FUNGSI A. Menentukan Limit Fungsi Aljabar A.. Limit a Contoh A.:. ( ) 3 Contoh A. : 4 ( )( ) ( ) 4 Latihan. Hitunglah nilai it fungsi-fungsi berikut ini. a. (3 ) b. ( 4) c. ( 4) d. 0 . Hitunglah

Lebih terperinci

Pengantar Metode Perturbasi Bab 1. Pendahuluan

Pengantar Metode Perturbasi Bab 1. Pendahuluan Pengantar Metode Perturbasi Bab 1. Pendahuluan Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 454 KAPITA SELEKTA MATEMATIKA TERAPAN II Semester Ganjil 2016/2017 Review Teori Dasar Terkait

Lebih terperinci

Teknik pengintegralan: Integral fungsi pecah rasional (bagian 1)

Teknik pengintegralan: Integral fungsi pecah rasional (bagian 1) Teknik pengintegralan: Integral fungsi pecah rasional (bagian 1) Kalkulus 2 Nanang Susyanto Departemen Matematika FMIPA UGM 07 Februari 2017 NS (FMIPA UGM) Teknik pengintegralan 07/02/2017 1 / 8 Pemeran-pemeran

Lebih terperinci

II. TINJAUAN PUSTAKA. iterasi Picard di dalam persamaan diferensial orde pertama, perlu diketahui

II. TINJAUAN PUSTAKA. iterasi Picard di dalam persamaan diferensial orde pertama, perlu diketahui II. TINJAUAN PUSTAKA Untuk menuju ketahap pembahasan mengenai keberadaan dan ketunggalan dari iterasi Picard di dalam persamaan diferensial orde pertama, perlu diketahui beberapa bagian dari persamaaan

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 1, 2007 Diberikan sebuah fungsi yang terdefinisi pada interval (a, b) kecuali mungkin di

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Dasar 1 Kode / SKS : IT012314 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi 1 & 2 HIMPUNAN BILANGAN Mahasiswa memahami konsep himpunan

Lebih terperinci

MATRIKS SATUAN ACARA PERKULIAHAN

MATRIKS SATUAN ACARA PERKULIAHAN MATRIKS SATUAN ACARA PERKULIAHAN Mata Kuliah Jurusan SKS Kode M. Kuliah : Kalkulus IA : Teknik Elektro : 2 SKS : KD-0420 Minggu ke Pokok Bahasan dan TIU Sub Pokok Bahasan dan Sasaran Belajar Cara Pengajaran

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah menengah barisan diperkenalkan sebagai kumpulan bilangan yang disusun menurut "pola" tertentu, misalnya barisan aritmatika dan barisan geometri. Biasanya barisan dan

Lebih terperinci

Pembuktian dengan Induksi Matematik

Pembuktian dengan Induksi Matematik Pembuktian dengan Induksi Matematik Contoh Soal Toni Bakhtiar Departemen Matematika IPB September 2012 Toni Bakhtiar (m@thipb) PIM September 2012 1 / 24 Example Dengan induksi matematik, buktikan bahwa

Lebih terperinci

SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH : Kalkulus 2 (2 SKS) JENJANG/JURUSAN : S1-Teknik Elektro/Mesin/Industri

SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH : Kalkulus 2 (2 SKS) JENJANG/JURUSAN : S1-Teknik Elektro/Mesin/Industri SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH : Kalkulus ( SKS) JENJANG/JURUSAN : S1-Teknik Elektro/Mesin/Industri Referensi : [1] Yusuf Yahya, D. Suryadi H.S., Agus S., Matematika Dasar untuk Perguruan Tinggi,

Lebih terperinci

Penerapan Aproksimasi Fejer dalam Membuktikan Teorema Weierstrass

Penerapan Aproksimasi Fejer dalam Membuktikan Teorema Weierstrass Vol. 11, No. 2, 139-148, Januari 2015 Penerapan Aproksimasi Fejer dalam Membuktikan Teorema Weierstrass NaimahAris 1, Jusmawati M 2,Islamiyah Abbas 3, Abstrak Dalam tulisan ini dibahas pembuktian teorema

Lebih terperinci

TURUNAN. Ide awal turunan: Garis singgung. Kemiringan garis singgung di titik P: lim. Definisi

TURUNAN. Ide awal turunan: Garis singgung. Kemiringan garis singgung di titik P: lim. Definisi TURUNAN Ide awal turunan: Garis singgung Tali busur c +, f c + Garis singgung c, f c c P h c+h f c + f c Kemiringan garis singgung di titik P: f c + f c lim Definisi Turunan fungsi f adalah fungsi lain

Lebih terperinci

BAB 3 LIMIT DAN KEKONTINUAN FUNGSI

BAB 3 LIMIT DAN KEKONTINUAN FUNGSI Diktat Kuliah TK Matematika BAB LIMIT DAN KEKONTINUAN FUNGSI Limit Fungsi Pengantar Limit Tinjau fungsi yang didefinisikan oleh f ( ) Perhatikan bahwa fungsi ini tidak terdefinisi pada = karena memiliki

Lebih terperinci

48. Mata Pelajaran Matematika untuk Sekolah Menengah Atas Luar Biasa Tunalaras (SMALB E) A. Latar Belakang

48. Mata Pelajaran Matematika untuk Sekolah Menengah Atas Luar Biasa Tunalaras (SMALB E) A. Latar Belakang 48. Mata Pelajaran Matematika untuk Sekolah Menengah Atas Luar Biasa Tunalaras (SMALB E) A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai peran

Lebih terperinci

SATUAN ACARA PERKULIAHAN ( SAP ) MATA KULIAH ANALISIS REAL I ( MT403) / 3 SKS KOSIM RUKMANA

SATUAN ACARA PERKULIAHAN ( SAP ) MATA KULIAH ANALISIS REAL I ( MT403) / 3 SKS KOSIM RUKMANA SATUAN ACARA PERKULIAHAN ( SAP ) MATA KULIAH ANALISIS REAL I ( MT403) / 3 SKS KOSIM RUKMANA JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN IPA UNIVERSITAS PENDIDIKAN INDONESIA 2008 0

Lebih terperinci

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan KALKULUS 1 HADI SUTRISNO 1 Pendidikan Matematika STKIP PGRI Bangkalan BAB I PENDAHULUAN A. Sistem Bilangan Real Untuk mempelajari kalkulus kita terlebih dahulu perlu memahami bahasan tentang sistem bilangan

Lebih terperinci

F. RANCANGAN KEGIATAN BELAJAR MENGAJAR

F. RANCANGAN KEGIATAN BELAJAR MENGAJAR F. RANCANGAN KEGIATAN BELAJAR MENGAJAR No. (TIU) 1. Limit Fungsi Mahasiswa dapar memahami secara mendalam (deduktif) pengertian limit fungsi, definisi dan te-orema-teorema serta mampu menga-plikasikannya

Lebih terperinci

Persamaan dan Pertidaksamaan Linear

Persamaan dan Pertidaksamaan Linear MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai

Lebih terperinci

3. Kekonvergenan Deret Fourier

3. Kekonvergenan Deret Fourier 3. Kekonvergenan Deret Fourier Sekarang kita akan membahas kekonvergenan deret Fourier, khususnya kekonvergenan titik demi titik. Melalui Contoh 2 yang dibahas pada bab sebelumnya kita mengetahui bahwa

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 3. Topologi Garis Bilangan Real 3.1 Teori Limit Limit, supremum, dan infimum Titik limit 3.2 Himpunan Buka dan Himpunan Tutup 3.3

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA PERKULIAHAN Mata Kuliah : Kalkulus Lanjut Kode Mata Kulih : Bobot : 3 sks Semester : 2 Tujuan Instruksi Umum Media / Alat yang digunakan Daftar Referensi : Mahasiswa dapat memahami konsep-konsep

Lebih terperinci

BAB I TEOREMA TEOREMA LIMIT BARISAN

BAB I TEOREMA TEOREMA LIMIT BARISAN BAB I TEOREMA TEOREMA LIMIT BARISAN Definisi : Barisan bilangan real X = (x n ) dikatakan terbatas jika ada bilangan real M > 0 sedemikian sehingga x n M untuk semua n N. Catatan : X = (x n ) terbatas

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 26, 2007 Misalkan f kontinu pada interval [a, b]. Apakah masuk akal untuk membahas luas daerah

Lebih terperinci

BAGIAN PERTAMA. Bilangan Real, Barisan, Deret

BAGIAN PERTAMA. Bilangan Real, Barisan, Deret BAGIAN PERTAMA Bilangan Real, Barisan, Deret 2 Hendra Gunawan Pengantar Analisis Real 3 0. BILANGAN REAL 0. Bilangan Real sebagai Bentuk Desimal Dalam buku ini pembaca diasumsikan telah mengenal dengan

Lebih terperinci

, ω, L dan C adalah riil, tunjukkanlah

, ω, L dan C adalah riil, tunjukkanlah . Jika z j j PROBLEM SE# Sistem Bilangan Kompleks, tentukanlah bagian riil dan bagian imajiner dari bilangan kompleks z z. Carilah harga dan y yang memenuhi persamaan : y j y, j, ( ) ( ). Carilah bentuk

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah menengah barisan diperkenalkan sebagai kumpulan bilangan yang disusun menurut "pola" tertentu, misalnya barisan aritmatika dan barisan geometri. Biasanya barisan dan

Lebih terperinci

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka Contoh 5 Buktikan jika c 0 maka c c Analisis Pendahuluan Akan dicari bilangan 0 sedemikian sehingga apabila c untuk setiap 0. 0 c berlaku Perhatikan: c ( c)( c) c c c c Dapat dipilih c Bukti: c c c Ambil

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun dari berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

Penerapan Aproksimasi Fejer dalam Membuktikan Teorema Weierstrass

Penerapan Aproksimasi Fejer dalam Membuktikan Teorema Weierstrass Jurnal Matematika, Statistika & Komputasi 1 Penerapan Aproksimasi Fejer dalam Membuktikan Teorema Weierstrass Islamiyah Abbas 1, Naimah Aris 2, Jusmawati M 3. Abstrak Dalam skripsi ini dibahas pembuktian

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik. Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas

Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik. Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 672 Topik dalam Matematika Terapan Semester Ganjil 2016/2017 Pendahuluan Metode perturbasi

Lebih terperinci

16. BARISAN FUNGSI. 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik

16. BARISAN FUNGSI. 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik 16. BARISAN FUNGSI 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik Bila pada bab-bab sebelumnya kita membahas fungsi sebagai sebuah objek individual, maka pada bab ini dan selanjutnya kita akan

Lebih terperinci

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, Lecture 4. Limit B A. Continuity Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, (2) lim f(x) ada, (3) lim f(x) =

Lebih terperinci

Hendra Gunawan. 5 Februari 2014

Hendra Gunawan. 5 Februari 2014 MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 5 Februari 2014 Bab Sebelumnya 7. Teknik Pengintegralan 7.1 Aturan Dasar Pengintegralan 7.2 Pengintegralan Parsial il 7.3 Integral Trigonometrik

Lebih terperinci