BAB I PENDAHULUAN. umum ruang metrik dan memperluas pengertian klasik dari ruang Euclidean R n, sehingga

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I PENDAHULUAN. umum ruang metrik dan memperluas pengertian klasik dari ruang Euclidean R n, sehingga"

Transkripsi

1 BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Permulaan munculnya analisis fungsional didasari oleh permasalahan pada kurang memadainya metode analitik klasik pada fisika dan astronomi matematika. Sebagai contoh, Jacob Bernaulli dan Johann Bernoulli memperkenalkan kalkulus variasi yang di kemudian hari diketahui sangat berguna dalam bidang fisika. Sesungguhnya, kata "fungsional" diperkenalkan oleh Hadamard pada 1903, dan derivatif dari fungsional diperkenalkan oleh Fréchet pada Sebuah langkah penting dalam perkembangan sejarah analisis fungsional adalah kontribusi yang dibuat oleh Maurice Fréchet pada 1906 dalam merumuskan ide umum ruang metrik dan memperluas pengertian klasik dari ruang Euclidean R n, sehingga ukuran jarak dapat dikaitkan untuk semua jenis benda abstrak. Penemuan ini membuahkan teori ruang metrik dan generalisasinya, memperluas konsep topologi, kriteria konvergensi, dan sebagainya untuk ruang barisan atau struktur fungsional. Pada tahun 1907, Fréchet dan mahasiswa dari Hilbert bernama Schmidt, mempelajari ruang barisan sebzgai analogi pada teori fungsi yang jumlahan kuadratnya berhingga, dan pada tahun 1910, Riesz menemukan teori operator. Termotivasi oleh masalah pada persamaan integral yang berhubungan dengan ide-ide Fourier series dan tantangan baru dalam mekanika kuantum, Hilbert menggunakan jarak yang didefinisikan melalui inner produk. Pada tahun 1920, Banach bergerak lebih jauh dari ruang hasil kali dalam menuju ruang bernorma, membentuk apa yang disebut analisis fungsional modern. 1

2 2 Sesungguhnya, nama "ruang Banach" diperkenalkan oleh Fréchet. Penelitian Banach [Banach (1922); Banach (1932)] memperumum semua penelitian sebelumnya pada persamaan integral bersama Volterra, Fredholm dan Hilbert, yang akhirnya akan berguna pada penemuan besar seperti teorema Hahn-Banach dan teorema Banach- Steinhaus. Selama abad ke-20, banyak perhatian diberikan kepada masalah karakterisasi dari ruang Banach tertentu, yaitu ruang Hilbert. Dengan kata lain, norma dari ruang Banach tersebut dibangun dari suatu hasil kali dalam. Bersamaan dengan hal tersebut, muncul konsep semi hasil kali dalam atas dan bawah pada ruang bernorma. Permasalahan semi hasil kali dalam atas dan bawah ini ditulis oleh S.S. Dragomir dalam bukunya yang berjudul "Semi-Inner Products and Applications" dan C. Alsina, dkk., dalam bukunya yang berjudul "Norm Derivatives and Characterizations of Inner Product Spaces". Semi hasil kali dalam atas dan bawah ini merupakan konsep yang cakupannya lebih luasan dari hasil kali dalam karena dapat dibangun pada semua ruang bernorma. Menariknya, konsep ini dibangun dari norma. Jika diberikan ruang bernorma(x,. ) atas lapangan R maka semi hasil kali dalam atas, yang ditulis (.,.) r, dan semi hasil kali dalam bawah, yang ditulis(.,.) l, yang dibangun didefinisikan sebagai untuk setiap x, y X. (x,y) l = lim t 0 y +tx 2 y 2 2t (x,y) r = lim t 0 + y +tx 2 y 2 2t Hasil kali dalam semi atas dan bawah ini merupakan fungsi perluasan dari hasil kali dalam karena memiliki sifat : (i) (x,x) r = x 2 0 dan(x,x) r = 0 x = θ.

3 3 (x,x) l = x 2 0 dan (x,x) l = 0 x = θ. (ii) (αx,x) r = α(x,x) r = (x,αx) r. (αx,x) l = α(x,x) l = (x,αx) l. (iii) (x+y,z) r (x,z) r +(y,z) r. (x+y,z) l (x,z) l +(y,z) l. untuk setiap x,y,z X dan α > 0. Selanjutnya jika norma dibangun dari hasil kali dalam, maka berlaku(x,y) l = x,y = (x,y) r untuk setiapx,y,z X. Uraian di atas, khususnya sifat (iii), memberi inspirasi kepada penulis untuk menelitinya. Lebih lanjut, penelitian ini dimaksudkan untuk mempelajari apa yang dimaksud semi hasil kali dalam atas dan bawah beserta sifat-sifatnya dan hubungannya dengan beberapa hal lain sesuai yang tertulis dalam buku S.S. Dragomir. Akan tetapi ada beberapa hal yang akan ditambahkan pada penelitian ini yang akan diambil dari buku C. Alsina, dkk. 1.2 Tujuan dan Manfaat Penelitian Tujuan dari penelitian ini adalah untuk mempelajari dan memahami konsep semi hasil kali dalam atas dan bawah beserta sifat-sifatnya. Selain itu juga mempelajari beberapa hal baru seperti semi hasil kali dalam Lumer-Giles, fungsi dualitas yang ternormalisasi dari ruang bernorma, serta representasi dari hal-hal tersebut terhadap definisi semi hasil kali dalam atas dan bawah. Lebih lanjut, manfaat dari penelitian ini adalah sebagai salah satu teori dasar dalam hal pengembangan bidang analisis fungsional, khususnya semi hasil kali dalam dan diharapkan dapat mendorong penelitian lebih lanjut terkait generalisasi dari hasil kali dalam yang bernilai kompleks.

4 4 1.3 Tinjauan Pustaka Dalam mempelajari analisis fungsional, sesungguhnya tidak dapat dilepaskan dari konsep mengenai ruang vektor. Dengan adanya konsep ruang vektor, dikenal pula adanya konsep himpunan konveks, yang salah satu contohnya adalah ruang vektor itu sendiri. Selanjutnya, dari himpunan konveks dapat didefinisikan fungsi konveks. Pembahasan mengenai fungsi konveks ini dibicarakan oleh Niculescu (2004). Selanjutnya, dari konsep ruang vektor, dikembangkan konsep ruang bernorma, yaitu ruang vektor yang dilengkapi dengan norma. Lebih khusus lagi, terdapat konsep ruang hasil kali dalam, yaitu ruang vektor yang dilengkapi dengan hasil kali dalam. Berberian (1971) menyatakan, jika diberikan ruang vektor tak nol P atas lapangan K, yaitu R atau C, fungsi.,. : P P K disebut hasil kali dalam jika untuk setiapx,y,z P danα K berlaku : (i) x,x 0 dan x,x = 0 x = θ. (ii) x,y = y,x. (iii) αx,y = α x,y. (iv) x+y,z = x,z + y,z. Dikatakan lebih khusus dari norma karena hasil kali dalam dapat membangkitkan norma. Selanjutnya, dari norma dan hasil kali dalam dapat dipelajari konsep dual. Dalam konsep dual, dikenal adanya fungsional linear terbatas. Konsep fungsional linear terbatas ini memunculkan teorema perluasan fungsional yang dikenal dengan Teorema Hahn-Banach. Jika diberikan ruang bernorma X atas lapangan K dan f merupakan fungsional linear terbatas yang terdefinisi pada subruang dari Z X, maka terdapat fungsional linear terbatas f pada X sehingga f X = f Z dan

5 5 f(x) = f(x) untuk setiap x Z (Kreyszig, 1989). Teorema ini akan digunakan dalam penelitian pada pembuktian eksistensi dari irisan dari fungsi dualitas yang ternormalisasi. Dari konsep hasil kali dalam sebagaimanan didefinisikan di atas, muncul gagasan untuk memebangun fungsi yang sifat-sifatnya lebih lemah dari hasil kali dalam tetapi dibangkitkan dari norma. Ini mengilhami munculnya konsep semi hasil kali dalam atas dan bawah. Semi hasil kali dalam atas dan bawah dari x,y X, yang berturut-turut ditulis (x,y) r dan (x,y) l, dengan X ruang bernorma didefinisikan sebagai (Dragomir, 2004). (x,y) l = lim t 0 y +tx 2 y 2 2t (x,y) r = lim t 0 + y +tx 2 y 2 2t Eksistensi dari definisi tersebut dijamin dengan menggunakan sifat-sifat dari fungsi konveks. Untuk selanjutnya, Alsina dkk. (2010) menyatakan bahwa jika (X,.,. ) ruang hasil kali dalam real maka untuk setiapx,y X berlaku (x,y) r = x,y = (x,y) l. Dragomir (2004) juga mendefinisikan gagasan fungsi dualitas yang ternormalisasi. Gagasan tersebut digunakan oleh Dragomir (2004) untuk membuktikan beberapa teorema yang berkaitan dengan semi hasil kali dalam atas dan bawah. Beberapa teorema itu antara lain : jika J merupakan fungsi dualitas yang ternormalisasi pada ruang bernorma X, maka untuk setiap x,y X, terdapat w 1,w 2 J(x) sehingga (y,x) r = w 1 (y) dan (y,x) l = w 2 (y). Lebih lanjut, (y,x) r,(y,x) l dapat dinyatakan sebagai(y,x) r = sup{w(y) : w J(x)} dan(y,x) l = inf{w(y) : w J(x)}. Selain beberapa definisi yang telah disebutkan, Dragomir (2004) juga mendefinisikan gagasan semi hasil kali dalam Lumer-Giles. Dengan mendefinisikan fungsi tertentu, semi hasil kali dalam Lumer-Giles ini dapat membangkitkan norma. Gaga-

6 6 san ini digunakan Dragomir (2004) untuk menunjukkan bentuk lain dari semi hasil kali dalam atas dan bawah, yaitu : jika (X,. ) ruang bernorma dan [.,.] semi hasil kali dalam Lumer-Giles yang membangkitkan norma., maka untuk setiap x, y X berlaku(y,x) r = lim t 0 +[y,x+ty] dan(y,x) l = lim t 0 [y,x+ty]. Berawal dari Teorema Representasi Riesz pada ruang hasil kali dalam, dan adanya semi hasil kali dalam Lumer-Giles, Giles (1967) menyatakan bahwa untuk sebarang ruang Banach (X,. ) atas lapangan K yang konveks seragam, jika [.,.] S. maka untuk setiap f X terdapat dengan tunggal y X sehingga f(x) = [x,y] untuk setiapx X. Untuk selanjutnya teorema tersebut dikenal dengan Teorema Representasi Riesz pada semi hasil kali dalam. Semua definisi serta teorema di atas juga beberapa teorema yang terkait dengan semi hasil kali dalam atas dan bawah, akan dibahas pada penelitian ini untuk dipelajari dan dilengkapi buktinya. 1.4 Metodologi Penelitian Metode yang digunakan untuk penelitian ini adalah studi literatur. Dalam penelitian ini terlebih dahulu dipelajari tentang fungsi konveks dan norma. Dari kedua konsep tersebut, dapat dipelajari definisi dari semi hasil kali dalam atas dan bawah. Selanjutnya dipelajari tentang hasil kali dalam. Dengan menggunakan hasil kali dalam, norma, dan definisi semi hasil kali dalam atas dan bawah dihasilkan sifatsifat dari semi hasil kali dalam atas dan bawah. Kemudian dari hasil kali dalam dan norma dapat dipelajari dual dari ruang bernorma. Dari dual, dan dengan menggunakan Teorema Hahn-Banach dapat dipelajari fungsi dualitas yang ternormalisasi. Lebih lanjut, dipelajari bentuk lain definisi semi hasil kali dalam atas dan bawah dalam kaitannya dengan fungsi dualitas yang ternormalisasi. Selanjutnya dipelajari semi hasil kali dalam Lumer-Giles dan kaitannya dengan semi hasil kali dalam atas

7 7 dan bawah, yang menghasilkan bentuk lain definisi semi hasil kali dalam atas dan bawah dengan menggunakan semi hasil kali dalam Lumer-Giles. Pada bagian akhir dipelajari Teorema Representasi Riesz pada semi hasil kali dalam Lumer-Giles. Langkah-langkah yang dilakukan dalam penelitian ini dapat disajikan dalam diagram alur sebagai berikut ini. Gambar 1.1: Diagram Alur Rencana Penelitian 1.5 Sistematika Penulisan Pada bagian ini akan diberikan sistematika penulisan sebagai gambaran secara menyeluruh dari tulisan ini yang akan disusun menjadi tesis. Tugas Akhir ini terdiri dari empat bab, dengan gambaran masing-masing bab adalah sebagai berikut. Penyusunan tesis ini akan dibagi menjadi empat bab yang dimulai dengan BAB I yang merupakan bagian pendahuluan. Dalam BAB I akan diberikan latar belakang dan permasalahan, tujuan dan manfaat penelitian, tinjauan pustaka, metodolo-

8 8 gi penelitian, serta sistematika penulisan. Penulisan dilanjutkan dengan BAB II yang berisikan landasan teori yang digunakan dalam peneltian ini. BAB II dibagi menjadi 5 bagian (subbab). Pada subbab 1 akan dibahas mengenai konsep dan sifat-sifat fungsi konveks. Pada subbab 2 akan dibahas mengenai konsep ruang bernorma, ruang hasil kali dalam beserta sifatsifatnya dan teorema representasi Riesz. Pada subbab 3 akan dibahas mengenai konsep dan sifat-sifat dual dari suatu ruang bernorma. Selanjutnya, pada subbab 4 akan dibahas mengenai konsep Teorema Hahn-Banach secara khusus. Pada bagian akhir, subbab 5, akan diberikan Teorema Hölder. Selanjutnya, hasil dari penelitian ini akan disajikan dalam BAB III. Pada BAB III akan dibagi menjadi empat bagian (subbab). Pada subbab 1 akan disajikan hasil penelitian yang meliputi semi hasil kali dalam atas dan bawah. Pada subbab 2 akan disajikan hasil penelitian yang meliputi hubungan antara semi hasil kali dalam atas dan bawah dengan dual atas norma yang terkait dan akhirnya akan ditunjukkan bentuk lain semi hasil kali dalam atas dan bawah berkaitan dengan dual atas norma yang terkait. Pada subbab 3 akan disajikan hasil penelitian terkait konsep semi hasil kali dalam Lumer-Giles dan akan ditunjukkan bentuk lain semi hasil kali dalam atas dan bawah berkaitan dengan semi hasil kali dalam Lumer-Giles. Untuk yang terakhir, subbab 4, akan disajikan hasil penelitian terkait Teorema Representasi Riesz pada semi hasil kali dalam Lumer-Giles. Sebagai bagian akhir dari tesis ini, hasil pembahasan dari BAB III akan dirumuskan dan disajikan kembali dalam beberapa kesimpulan. Kesimpulan-kesimpulan tersebut akan disajikan dalam BAB IV. Selain itu, dalam BAB IV juga akan diberikan saran-saran untuk penelitian lebih lanjut terkait dengan semi hasil kali dalam atas dan bawah.

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Analisis fungsional merupakan salah satu cabang matematika analisis yang pembahasannya cukup kompleks karena mencakup banyak konsep, diantaranya ruang vektor,

Lebih terperinci

ISSN: X 35 SEMI HASIL KALI DALAM ATAS DAN BAWAH

ISSN: X 35 SEMI HASIL KALI DALAM ATAS DAN BAWAH ISSN: 2088-687X 35 SEMI HASIL KALI DALAM ATAS DAN BAWAH Febi Sanjaya Program Studi Pendidikan Matematika FKIP USD Paingan, Maguwoharjo, Depok, Sleman, Yogyakarta, febi@usdacid ABSTRAK Konsep hasil kali

Lebih terperinci

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann.

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral Lebesgue merupakan suatu perluasan dari integral Riemann. Sebagaimana telah diketahui, pengkonstruksian integral Riemann dilakukan dengan cara pemartisian

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu Matematika merupakan salah satu cabang ilmu yang berperan penting dalam berbagai bidang. Salah satu cabang ilmu matematika yang banyak diperbincangkan

Lebih terperinci

DASAR-DASAR TEORI RUANG HILBERT

DASAR-DASAR TEORI RUANG HILBERT DASAR-DASAR TEORI RUANG HILBERT Herry P. Suryawan 1 Geometri Ruang Hilbert Definisi 1.1 Ruang vektor kompleks V disebut ruang hasilkali dalam jika ada fungsi (.,.) : V V C sehingga untuk setiap x, y, z

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Permasalahan

BAB I PENDAHULUAN Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Pemetaan merupakan konsep yang tidak pernah terlepas dari bahasan matematika analisis. Pengaitan setiap anggota dari suatu himpunan dengan tepat satu

Lebih terperinci

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional Ming gu ke RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 56 Nama Mata Kuliah : Analisis Fungsional T o p i k S u b T o p i k 1. Ruang Banach - Ruang metrik - Ruang vektor bernorm - Barisan di ruang

Lebih terperinci

Karakteristik Operator Positif Pada Ruang Hilbert

Karakteristik Operator Positif Pada Ruang Hilbert SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 05 A - 4 Karakteristik Operator Positif Pada Ruang Hilbert Gunawan Fakultas Keguruan dan Ilmu Pendidikan, Universitas Muhammadiyah Purwokerto gunoge@gmailcom

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Teori titik tetap merupakan teori matematika yang sering digunakan untuk menjamin eksistensi solusi masalah nilai awal dan syarat batas persamaan diferensial

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pemetaan linear merupakan salah satu jenis pemetaan yang dikenal dalam bidang matematika, khususnya dalam bidang matematika analisis. Diberikan ruang vektor

Lebih terperinci

BAB III KEKONVERGENAN LEMAH

BAB III KEKONVERGENAN LEMAH BAB III KEKONVERGENAN LEMAH Bab ini membahas inti kajian tugas akhir. Di dalamnya akan dibahas mengenai kekonvergenan lemah beserta sifat-sifat yang terkait dengannya. Sifatsifat yang dikaji pada bab ini

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Permasalahan

BAB I PENDAHULUAN Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Ditinjau dari bidang ilmu pengetahuan, teori persamaan diferensial merupakan suatu cabang analisis matematika yang banyak dipakai dalam kehidupan nyata,

Lebih terperinci

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor,

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, II. TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, ruang Bernorm dan ruang Banach, ruang barisan, operator linear (transformasi linear) serta teorema-teorema

Lebih terperinci

BAB I PENDAHULUAN. Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika

BAB I PENDAHULUAN. Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika dilengkapi dengan suatu norma., maka dikenal bahwa suatu ruang vektor bernorma. Kemudian

Lebih terperinci

PENGANTAR ANALISIS FUNGSIONAL

PENGANTAR ANALISIS FUNGSIONAL PENGANTAR ANALISIS FUNGSIONAL SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat

Lebih terperinci

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam matematika dikenal konsep fungsi naik monoton dan fungsi turun monoton. Jika f : R R merupakan fungsi naik monoton maka untuk setiap x, y R dengan x

Lebih terperinci

OPERATOR PADA RUANG BARISAN TERBATAS

OPERATOR PADA RUANG BARISAN TERBATAS OPERATOR PADA RUANG BARISAN TERBATAS Muslim Ansori *,Tiryono 2, Suharsono S 2,Dorrah Azis 2 Jurusan Matematika FMIPA Universitas Lampung,2 Jln. Soemantri Brodjonegoro No Bandar Lampung email: ansomath@yahoo.com

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Teori titik tetap merupakan salah satu landasan di dalam pengembangan matematika karena mempunyai peran yang cukup mendasar dalam aplikasi berbagai cabang

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN Pada bab ini akan dibahas mengenai latar belakang masalah, perumusan masalah, batasan masalah, maksud dan tujuan penulisan, tinjauan pustaka serta sistematika penulisan skirpsi ini. 1.1.

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu matematika merupakan suatu ilmu dasar yang terus berkembang dan banyak digunakan dalam berbagai bidang. Salah satu cabang ilmu matematika yang mengalami

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam ilmu matematika, banyak pembahasan di bidang analisis dan topologi yang memerlukan pengertian ruang Hilbert. Ruang Hilbert merupakan konsep abstrak yang mendasari

Lebih terperinci

BAB III FUNGSI UJI DAN DISTRIBUSI

BAB III FUNGSI UJI DAN DISTRIBUSI BAB III FUNGSI UJI DAN DISTRIBUSI Bab ini membahas tentang fungsi uji dan distribusi di mana ruang yang memuat keduanya secara berturut-turut dinamakan ruang fungsi uji dan ruang distribusi. Ruang fungsi

Lebih terperinci

Teorema Titik Tetap di Ruang Norm-2 Standar

Teorema Titik Tetap di Ruang Norm-2 Standar Teorema Titik Tetap di Ruang Norm- Standar Muh. Nur Universitas Hasanuddin Abstract Pada tulisan ini, akan dipelajari ruang norm- standar, yakni ruang hasil kali dalam yang dilengkapi dengan norm- standar.

Lebih terperinci

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan II. LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan penelitian ini sehingga dapat dijadikan sebagai landasan berfikir dalam melakukan penelitian dan akan mempermudah

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Integral tipe Stieltjes merupakan salah satu topik yang banyak dipelajari dalam matematika analisis. Beberapa di antaranya adalah integral Riemann-Stieltjes,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam ilmu matematika, khususnya dalam bidang analisis dikenal berbagai macam ruang, di antaranya ruang Hilbert. Banyak hal yang dapat dikaji di dalam ruang

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu matematika merupakan ilmu dasar yang digunakan di berbagai bidang. Teori titik tetap merupakan salah satu cabang dalam ilmu matematika, khususnya matematika

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Konsep ruang metrik merupakan salah satu konsep dasar dalam matematika analisis. Selama bertahun-tahun, para peneliti mencoba mengembangkan konsep ruang metrik.

Lebih terperinci

Bab I PENDAHULUAN 1.1 Latar Belakang Masalah

Bab I PENDAHULUAN 1.1 Latar Belakang Masalah Bab I PENDAHULUAN 1.1 Latar Belakang Masalah Salah satu struktur aljabar yang harus dikuasai oleh seorang matematikawan adalah grup yaitu suatu himpunan tak kosong G yang dilengkapi dengan satu operasi

Lebih terperinci

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks 0. Pendahuluan Analisis Fourier mempelajari berbagai teknik menganalisis sebuah fungsi dengan menguraikannya sebagai deret atau integral fungsi tertentu (yang sifat-sifatnya telah kita kenal dengan baik,

Lebih terperinci

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh II. TINJAUAN PUSTAKA 2.1 Ruang Metrik Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh aksioma-aksioma tertentu. Ruang metrik merupakan hal yang fundamental dalam analisis fungsional,

Lebih terperinci

BAB I PENDAHULUAN. : k N} dan A(m) menyatakan banyaknya m suku pertama (x n ) yang menjadi suku (x nk ), maka A(m)

BAB I PENDAHULUAN. : k N} dan A(m) menyatakan banyaknya m suku pertama (x n ) yang menjadi suku (x nk ), maka A(m) BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Konvergensi barisan bilangan real mempunyai banyak peranan dan aplikasi yang cukup penting pada beberapa bidang matematika, antara lain pada teori optimisasi,

Lebih terperinci

TRANSFORMASI LINIER PADA RUANG BANACH

TRANSFORMASI LINIER PADA RUANG BANACH TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni, S.Si., M.Pd Jurusan Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmail.com ABSTRAK Info: Jurnal MSA Vol. 2 No. 1 Edisi: Januari Juni

Lebih terperinci

EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH

EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni Prodi Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmailcom Info: Jurnal MSA Vol 3 No 1 Edisi: Januari

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu Matematika merupakan salah satu ilmu pengetahuan yang berperan penting dalam perkembangan teknologi. Ilmu Matematika juga merupakan ilmu dasar yang banyak

Lebih terperinci

BAB I PENDAHULUAN ( )

BAB I PENDAHULUAN ( ) BAB I PENDAHULUAN 1.1. Latar Belakang Persamaan diferensial merupakan persamaan yang melibatkan turunan dari satu atau lebih variabel tak bebas terhadap satu atau lebih variabel bebas dan dituliskan dengan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Setiap manusia memiliki kebutuhan yang harus dipenuhi. Kebutuhan manusia untuk setiap orangnya berbeda-beda, baik dari kuantitas maupun dari kualitas. Di zaman

Lebih terperinci

BAB 1 PENDAHULUAN. 1 ; untuk k = n 0 ; untuk k n. e [n]

BAB 1 PENDAHULUAN. 1 ; untuk k = n 0 ; untuk k n. e [n] BAB 1 PENDAHULUAN 1.1. Latar Belakang Barisan bilangan real adalah suatu fungsi bernilai real yang didefinisikan pada himpunan N = 0, 1, 2,.... Dengan kata lain, barisan bilangan real adalah suatu fungsi

Lebih terperinci

Konvergensi Barisan dan Teorema Titik Tetap

Konvergensi Barisan dan Teorema Titik Tetap JURNAL SAINS DAN SENI ITS Vol. 5 No. (016) 337-350 (301-98X Print) A-59 Konvergensi Barisan dan Teorema Titik Tetap pada Ruang b-metrik Cahyaningrum Rahmasari, Sunarsini, dan Sadjidon Jurusan Matematika,

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Pada awalnya deret Fourier diperkenalkan oleh Joseph Fourier pada tahun 1807 untuk memecahkan model masalah persamaan panas pada suatu lempeng logam (Fourier, 1878).

Lebih terperinci

REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA

REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA Mila Apriliani Utari, Encum Sumiaty, Sumanang Muchtar Departemen Pendidikan Matematika FPMIPA Universitas Pendidikan Indonesia *Coresponding

Lebih terperinci

Ruang Metrik dan Ruang Metrik-n

Ruang Metrik dan Ruang Metrik-n 5 BAB II Ruang Metrik dan Ruang Metrik-n Pada Bahagian ini akan dixiraikan beberapa konsep dasar tentang ruang, ruang bemonna-2 beserta hubungannya dengan ruang hasil kali dalam-2 dan ruang bemorma-2 serta

Lebih terperinci

UNIVERSITAS PENDIDIKAN INDONESIA

UNIVERSITAS PENDIDIKAN INDONESIA Ruang Norm Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Definisi. Misalkan suatu ruang vektor atas. Norm pada didefinisikan sebagai fungsi. : yang memenuhi N1. 0 N2. 0 0 N3.,, N4.,, Kita dapat

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Teori titik tetap merupakan salah satu subjek yang menarik untuk dikaji karena memiliki banyak aplikasi dalam berbagai bidang. Selama kurun waktu sepuluh tahun

Lebih terperinci

BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert

BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert BAB 2 RUANG HILBERT Pokok pembicaraan kita dalam tugas akhir ini berpangkal pada teori ruang Hilbert. Untuk itu di bab ini akan diberikan definisi ruang Hilbert dan ciri-cirinya, separabilitas ruang Hilbert,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Seiring dengan perkembangan zaman, banyak sekali topik matematika khususnya dalam bidang analisis fungsional yang mengalami perluasan, seperti: ruang vektor,

Lebih terperinci

ABSTRAK 1 PENDAHULUAN

ABSTRAK 1 PENDAHULUAN EKSISTENSI SOLUSI LOKAL DAN KETUNGGALAN SOLUSI MASALAH NILAI AWAL PERSAMAAN DIFERENSIAL TUNDAAN Muhammad Abdulloh Mahin Manuharawati Matematika, Fakultas Ilmu Pengetahuan Alam Matematika, Universitas Negeri

Lebih terperinci

Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji

Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji Hendy Fergus A. Hura 1, Nora Hariadi 2, Suarsih Utama 3 1 Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424,

Lebih terperinci

TEOREMA TITIK TETAP PADA RUANG NORM-n STANDAR. Shelvi Ekariani KK Analisis dan Geometri FMIPA ITB

TEOREMA TITIK TETAP PADA RUANG NORM-n STANDAR. Shelvi Ekariani KK Analisis dan Geometri FMIPA ITB JMP : Volume 4 Nomor, Juni 0, hal. 69-77 TEOREMA TITIK TETAP PADA RUANG NORM-n STANDAR Shelvi Ekariani KK Analisis dan Geometri FMIPA ITB shelvi_ekariani@students.itb.ac.id Hendra Gunawan KK Analisis dan

Lebih terperinci

Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert

Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert Vol 12, No 2, 153-159, Januari 2016 Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert Firman Abstrak Misalkan adalah operator linier dengan adalah ruang Hilbert Pada operator linier dikenal istilah

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral merupakan salah satu konsep penting dalam matematika dan banyak aplikasinya. Dalam kehidupan sehari-hari integral dapat diaplikasikan dalam berbagai

Lebih terperinci

Kelengkapan Ruang l pada Ruang Norm-n

Kelengkapan Ruang l pada Ruang Norm-n Jurnal Matematika, Statistika,& Komputasi Vol.... No... 20... Kelengkapan Ruang l pada Ruang Norm-n Meriam, Naimah Aris 2, Muh Nur 3 Abstrak Rumusan norm-n pada l merupakan perumuman dari rumusan norm-n

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang dan Permasalahan

BAB I PENDAHULUAN Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan Dalam ilmu matematika, khususnya dalam bidang analisis dikenal berbagai macam ruang, salah satunya adalah ruang metrik. Ruang metrik merupakan suatu

Lebih terperinci

PENGEMBANGAN RUANG FUNGSI KLASIK Oleh: Encum Sumiaty FPMIPA Universitas Pendidikan Indonesia Bandung

PENGEMBANGAN RUANG FUNGSI KLASIK Oleh: Encum Sumiaty FPMIPA Universitas Pendidikan Indonesia Bandung PENGEMBANGAN RUANG FUNGSI KLASIK Oleh: Encum Sumiaty FPMIPA Universitas Pendidikan Indonesia Bandung e-mail: e.sumiaty@yahoo.com Abstrak Diketahui ruang fungsi klasik L (, ). Melalui oerator T ada ruang

Lebih terperinci

URAIAN POKOK-POKOK PERKULIAHAN

URAIAN POKOK-POKOK PERKULIAHAN Pertemuan ke-: 10, 11, dan 12 Penyusun : Kosim Rukmana Materi: Barisan Bilangan Real 7. Barisan dan Limit Barisan 6. Teorema Limit Barisan 7. Barisan Monoton URAIAN POKOK-POKOK PERKULIAHAN 7. Barisan dan

Lebih terperinci

BAB III PEMETAAN TAK MENGEMBANG PADA RUANG BANACH. Konsep dari Ruang Banach-2 pada ruang linear bemonn-2

BAB III PEMETAAN TAK MENGEMBANG PADA RUANG BANACH. Konsep dari Ruang Banach-2 pada ruang linear bemonn-2 BAB III PEMETAAN TAK MENGEMBANG PADA RUANG BANACH. Konsep dari Ruang Banach-2 pada ruang linear bemonn-2 pertama sekali dikemukan oleh Gahler [1963/65], beberapa konsep Iain pada ruang banach-2 ini telah

Lebih terperinci

BEBERAPA TEOREMA TITIK TETAP UNTUK PEMETAAN NONSELF. Kata kunci : pemetaan nonexpansive, pemetaan condensing, pemetaan kompak.

BEBERAPA TEOREMA TITIK TETAP UNTUK PEMETAAN NONSELF. Kata kunci : pemetaan nonexpansive, pemetaan condensing, pemetaan kompak. BEBERAPA TEOREMA TITIK TETAP UNTUK PEMETAAN NONSELF Oleh: Rindang Kasih Program Studi Pendidikan Matematika FKIP UNIVET Sukoharjo Jl. Letjend Sujono Humardani No.1 Kampus Jombor Sukoharjo, e-mail: Rindang_k@yahoo.com

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Analisis merupakan salah satu cabang matematika yang mempelajari antara lain barisan, limit, deret, kekontinuan, kekonvergenan, integral, dan yang lainnya.

Lebih terperinci

KEKONVERGENAN LEMAH PADA RUANG HILBERT

KEKONVERGENAN LEMAH PADA RUANG HILBERT KEKONVERGENAN LEMAH PADA RUANG HILBERT Moch. Ramadhan Mubarak 1), Encum Sumiaty 2), Cece Kustiawan 3) 1), 2), 3) Departemen Pendidikan Matematika FPMIPA UPI *Surel: ramadhan.101110176@gmail.com ABSTRAK.

Lebih terperinci

SIFAT-SIFAT HIMPUNAN PROXIMINAL

SIFAT-SIFAT HIMPUNAN PROXIMINAL Prima: Jurnal Pendidikan Matematika Vol. 2, No. 1, Januari 2018, hal. 49-56 P-ISSN: 2579-9827, E-ISSN: 2580-2216 SIFAT-SIFAT HIMPUNAN PROXIMINAL Arta Ekayanti Universitas Muhammadiyah Ponorogo, Jl. Budi

Lebih terperinci

ANALISIS NUMERIK LANJUT. Hendra Gunawan, Ph.D. 2006/2007

ANALISIS NUMERIK LANJUT. Hendra Gunawan, Ph.D. 2006/2007 ANALISIS NUMERIK LANJUT Hendra Gunawan, Ph.D. 2006/2007 BAB I. RUANG LINEAR Pelajari definisi dan contoh: ruang linear (hal. 1-3); subruang (hal. 3); kombinasi linear (hal. 4); bebas/bergantung linear

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Derivatif memegang peranan penting dalam syarat optimalitas fungsi, yaitu untuk mencapai ekstrim, derivatif order satu fungsi tersebut harus bernilai nol.

Lebih terperinci

4.1 Algoritma Ortogonalisasi Gram-Schmidt yang Diperumum

4.1 Algoritma Ortogonalisasi Gram-Schmidt yang Diperumum BAB 4 ORTOGONALISASI GRAM-SCHMIDT YANG DIPERUMUM Diberikan sebarang barisan hingga vektor di ruang Hilbert berdimensi hingga. Pada bab ini akan diberikan algoritma untuk menghitung frame Parseval pada

Lebih terperinci

II. TINJAUAN PUSATAKA

II. TINJAUAN PUSATAKA 4 II. TINJAUAN PUSATAKA 2.1 Operator Definisi 2.1.1 (Kreyszig, 1989) Suatu pemetaan pada ruang vektor khususnya ruang bernorma disebut operator. Definisi 2.1.2 (Kreyszig, 1989) Diberikan ruang Bernorm

Lebih terperinci

9. Teori Aproksimasi

9. Teori Aproksimasi 44 Hendra Gunawan 9 Teori Aproksimasi Mulai bab ini tema kita adalah aproksimasi fungsi dan interpolasi Diberikan sebuah fungsi f, baik secara utuh ataupun hanya beberapilai di titik-titik tertentu saja,

Lebih terperinci

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab BAB III PEMBAHASAN Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab C. Sub-bab A menjelaskan mengenai konsep dasar C[a, b] sebagai ruang vektor beserta contohnya. Sub-bab B

Lebih terperinci

MA5032 ANALISIS REAL

MA5032 ANALISIS REAL (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 16, 2011 Pada bab ini anda diasumsikan telah mengenal dengan cukup baik bilangan asli, bilangan bulat, dan bilangan

Lebih terperinci

Keterbatasan Lokal Suatu Operator Superposisi Pada Ruang Barisan Real. Lina Nurhayati, Universitas Sanggabuana

Keterbatasan Lokal Suatu Operator Superposisi Pada Ruang Barisan Real. Lina Nurhayati, Universitas Sanggabuana Keterbatasan Lokal Suatu Operator Superposisi Pada Ruang Barisan Real Lina urhayati, Universitas Sanggabuana nurhayati_lina@yahoo.co.id Abstrak Misalkan P suatu operator superposisi terbatas dan T adalah

Lebih terperinci

BAB V DUALITAS RUANG ORLICZ

BAB V DUALITAS RUANG ORLICZ BAB V DUALITAS RUANG ORLICZ Karena ketaksamaan Holder yang telah dipelajari pada bab sebelumnya, Untuk sembarang h L θ, kita dapat mendefinisikan suatu fungsional linear kontinu l h yang memetakan L θ

Lebih terperinci

Aljabar Boole. Meliputi : Boole. Boole. 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar

Aljabar Boole. Meliputi : Boole. Boole. 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar Aljabar Boole Meliputi : 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar Boole 3. Teorema Dasar Aljabar Boole 4. Orde dalam sebuah Aljabar Boole Definisi Aljabar Boole Misalkan B adalah himpunan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Orde integral dan derivatif (turunan) dari suatu fungsi yang telah dikenal selama ini senantiasa dihubungkan dengan bilangan bulat. Artinya turunan ke (orde)

Lebih terperinci

EKUIVALENSI INTEGRAL BOCHNER DENGAN INTEGRAL MCSHANE KUAT UNTUK FUNGSI DENGAN NILAI DI DALAM RUANG BANACH. Y.D. Sumanto Jurusan Matematika FMIPA UNDIP

EKUIVALENSI INTEGRAL BOCHNER DENGAN INTEGRAL MCSHANE KUAT UNTUK FUNGSI DENGAN NILAI DI DALAM RUANG BANACH. Y.D. Sumanto Jurusan Matematika FMIPA UNDIP EKUIVALENSI INTEGRAL BOCHNER DENGAN INTEGRAL MCSHANE KUAT UNTUK FUNGSI DENGAN NILAI DI DALAM RUANG BANACH Y.D. Sumanto Jurusan Matematika FMIPA UNDIP Abstrak Integral McShane fungsi-fungsi bernilai real

Lebih terperinci

Ruang Vektor Euclid R n

Ruang Vektor Euclid R n Ruang Vektor Euclid R n Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Oktober 2015 MZI (FIF Tel-U) Ruang Vektor R n Oktober 2015 1 / 38 Acknowledgements

Lebih terperinci

PROYEKSI ORTHOGONAL PADA RUANG HILBERT. ROSMAN SIREGAR Fakultas Matematika Dan Ilmu Pengetahuan Jurusan Matematika Universitas Sumatera Utara

PROYEKSI ORTHOGONAL PADA RUANG HILBERT. ROSMAN SIREGAR Fakultas Matematika Dan Ilmu Pengetahuan Jurusan Matematika Universitas Sumatera Utara PROYEKSI ORTHOGONAL PADA RUANG HILBERT ROSMAN SIREGAR Fakultas Matematika Dan Ilmu Pengetahuan Jurusan Matematika Universitas Sumatera Utara Pendahuluan Pada umumnya suatu teorema mempunyai ruang lingkup

Lebih terperinci

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada BAB III FUNGSI TERUKUR LEBESGUE Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada Bab II, selanjutnya pada bab ini akan dipelajari gagasan mengenai fungsi terukur Lebesgue. Gagasan mengenai

Lebih terperinci

BEBERAPA KONSEP ORTOGONALITAS DI RUANG NORM

BEBERAPA KONSEP ORTOGONALITAS DI RUANG NORM Final Draft 1 Desember 2005 BEBERAPA KONSEP ORTOGONALITAS DI RUANG NORM Hendra Gunawan, Nursupiamin, dan Eder Kikianty Ortogonalitas merupakan salah satu konsep penting di ruang hasilkali dalam. Dalam

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Teori titik tetap merupakan salah satu hasil penelitian dalam bidang matematika analisis yang memiliki cukup banyak aplikasi. Salah satu aplikasi teori tersebut

Lebih terperinci

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh BAB III INTEGRAL LEBESGUE Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh fungsi-fungsi terukur dan memenuhi sifat yang berkaitan dengan integral Lebesgue. Kajian mengenai keterukuran suatu

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Banyak ditemukan masalah nyata di alam ini yang dapat dibuat model matematikanya. Persamaan integral merupakan salah satu model matematika yang banyak digunakan

Lebih terperinci

yang Dibangun oleh Ukuran Bernilai Proyeksi

yang Dibangun oleh Ukuran Bernilai Proyeksi SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 Integral pada A - 3 yang Dibangun oleh Ukuran Bernilai Proyeksi Arta Ekayanti dan Ch. Rini Indrati. FMIPA Universitas Gadjah Mada arta_ekayanti@ymail.com

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Graf berarah (quiver) yang selanjutnya hanya dikatakan graf saja, dapat dipandang secara aljabar sebagai 4-tupel, E = (E 0, E 1, s, r) yang terdiri dari himpunan

Lebih terperinci

BAB II RUANG LINEAR BERNORM

BAB II RUANG LINEAR BERNORM BAB II RUANG LINEAR BERNORM Sebcliiin kita meinbahas permasalahan yang sesunggiihnya, sebelumnya akan dijelasakan beberapa teori pendukung yang mendasari penelitian ini. Adapun hal-hal yang - kan dibahas

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

TEOREMA TITIK TETAP PADA RUANG BERNORMA CONE BERNILAI-

TEOREMA TITIK TETAP PADA RUANG BERNORMA CONE BERNILAI- JURNAL SAINS DAN SENI POMITS Vol. 1, No. 1, (2013) 1-6 1 TEOREMA TITIK TETAP PADA RUANG BERNORMA CONE BERNILAI- Hajar Grestika Murti, Erna Apriliani, Sunarsini Jurusan Matematika, Fakultas Matematika dan

Lebih terperinci

BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan.

BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan. BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan. Kriteria apa saa yang dapat digunakan untuk menentukan properti

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 4. Fungsi Kontinu 4.1 Konsep Kekontinuan Fungsi kontinu Limit fungsi dan limit barisan Prapeta himpunan buka 4.2 Sifat-Sifat Fungsi

Lebih terperinci

Bab 2 Fungsi Analitik

Bab 2 Fungsi Analitik Bab 2 Fungsi Analitik Bab 2 ini direncanakan akan disampaikan dalam 4 kali pertemuan, dengan perincian sebagai berikut: () Pertemuan I: Fungsi Kompleks dan Pemetaan. (2) Pertemuan II: Limit Fungsi, Kekontiuan,

Lebih terperinci

II. LANDASAN TEORI ( ) =

II. LANDASAN TEORI ( ) = II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu

Lebih terperinci

BAB I Sekilas tentang Teori-teori sebagai Dasar Program Linear

BAB I Sekilas tentang Teori-teori sebagai Dasar Program Linear BAB I Sekilas tentang Teori-teori sebagai Dasar Program Linear. Himpunan konveks Sebuah himpunan X dalam R n disebut himpunan konveks apabila memenuhi sifat berikut: jika diberikan sebarang dua titik x

Lebih terperinci

BAB 2 RUANG BERNORM. 2.1 Norm dan Ruang `p. De nisi 2.1 Misalkan V ruang vektor atas R, Sebuah fungsi k:k : V! R yang memenuhi sifat-sifat berikut :

BAB 2 RUANG BERNORM. 2.1 Norm dan Ruang `p. De nisi 2.1 Misalkan V ruang vektor atas R, Sebuah fungsi k:k : V! R yang memenuhi sifat-sifat berikut : BAB 2 RUANG BERNORM 2. Norm dan Ruang ` De nisi 2. Misalkan V ruang vektor atas R, Sebuah fungsi kk V! R yang memenuhi sifat-sifat berikut [N] kxk 0 jika dan hanya jika x 0 [N2] kxk jj kxk untuk setia

Lebih terperinci

Matematika Logika Aljabar Boolean

Matematika Logika Aljabar Boolean Pertemuan ke-3 Matematika Logika Aljabar Boolean Oleh : Mellia Liyanthy TEKNIK INFORMATIKA UNIVERSITAS PASUNDAN TAHUN AJARAN 2011/2012 Definisi Aljabar Boolean merupakan aljabar yang terdiri atas : suatu

Lebih terperinci

BAB I PENDAHULUAN. Y dikatakan linear jika untuk setiap x, Diberikan ruang Hilbert X atas lapangan F dan T B( X ), operator T

BAB I PENDAHULUAN. Y dikatakan linear jika untuk setiap x, Diberikan ruang Hilbert X atas lapangan F dan T B( X ), operator T BAB I PENDAHULUAN. Latar Belakang dan Permasalahan Bidang ilmu analisis meruakan salah satu cabang ilmu matematika yang di dalamnya banyak membicarakan konse, aksioma, teorema, lemma disertai embuktian

Lebih terperinci

SIFAT KELENGKAPAN RUANG METRIK BERNILAI KOMPLEKS

SIFAT KELENGKAPAN RUANG METRIK BERNILAI KOMPLEKS Prosiding Seminar Nasional Matematika dan Pembelajarannya. Jurusan Matematika, FMIPA UM. 13 Agustus 016 SIFAT KELENGKAPAN RUANG METRIK BERNILAI KOMPLEKS Dahliatul Hasanah FMIPA Universitas Negeri Malang

Lebih terperinci

Edisi Juni 2011 Volume V No. 1-2 ISSN SIFAT-SIFAT RUANG HASIL KALI DALAM-n KOMPLEKS

Edisi Juni 2011 Volume V No. 1-2 ISSN SIFAT-SIFAT RUANG HASIL KALI DALAM-n KOMPLEKS SIFAT-SIFAT RUANG HASIL KALI DALAM-n KOMPLEKS Sri Maryani Program Studi Matematika, Fakultas Sains dan Teknik Universitas Jenderal Soedirman, Purwokerto Email : sri.maryani@unsoed.ac.id Abstract Inner

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Definisi KALKULUS MULTIVARIABEL II (Minggu ke-7) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Definisi 1 Definisi 2 ontoh Soal Definisi Integral Garis Fungsi f K R 2 R di Sepanjang Kurva

Lebih terperinci

BAB III TRANSFORMASI MATRIKS DERET DIRICHLET HOLOMORFIK. A. Transformasi Matriks Mengawetkan Kekonvergenan

BAB III TRANSFORMASI MATRIKS DERET DIRICHLET HOLOMORFIK. A. Transformasi Matriks Mengawetkan Kekonvergenan BAB III TRANSFORMASI MATRIKS DERET DIRICHLET HOLOMORFIK A. Transformasi Matriks Mengawetkan Kekonvergenan Pada bagian A ini pembahasan dibagi menjadi dua bagian, yang pertama membahas mengenai transformasi

Lebih terperinci

FOURIER Oktober 2014, Vol. 3 No. 2, KONSEP DASAR RUANG METRIK CONE. Yogyakarta

FOURIER Oktober 2014, Vol. 3 No. 2, KONSEP DASAR RUANG METRIK CONE. Yogyakarta FOURIER Oktober 014, Vol. 3 No., 146 166 KONSEP DASAR RUANG METRIK CONE A. Rifqi Bahtiar 1, Muchammad Abrori, Malahayati 3 1,, 3 Program Studi Matematika, Fakultas Sains dan Teknologi, UIN Sunan Kalijaga

Lebih terperinci

OPERATOR SELF ADJOINT PADA RUANG HILBERT

OPERATOR SELF ADJOINT PADA RUANG HILBERT OPERATOR SELF ADJOINT PADA RUANG HILBERT Gunawan Universitas Muhammadiah Purwokerto, gun.oge@gmail.om Abstrat. In this artile, will disuss definition, examples, algebra properties, and some harateristi

Lebih terperinci