BAB I PENDAHULUAN Latar Belakang dan Permasalahan

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I PENDAHULUAN Latar Belakang dan Permasalahan"

Transkripsi

1 BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan Dalam ilmu matematika, khususnya dalam bidang analisis dikenal berbagai macam ruang, salah satunya adalah ruang metrik. Ruang metrik merupakan suatu himpunan tak kosong X, yang dilengkapi dengan fungsi yang memetakan setiap anggota X X ke suatu bilangan real tak negatif dan memenuhi aksioma-aksioma tertentu. Fungsi inilah yang kemudian dikenal dengan metrik pada X. Sebagai contoh, di dalam R n dapat dilengkapi dengan metrik Euclid di bidang R n, yaitu n fungsi d : R n R n R, dengan rumus d(x, y) = (x i y i ) 2, untuk setiap x = (x 1, x 2,..., x n ), y = (y 1, y 2,..., y n ) di R n. Dalam suatu ruang metrik, dapat pula didefinisikan suatu fungsi, yang kemudian dikenal dengan jarak titik ke himpunan dan jarak himpunan ke himpunan. Hal yang dimaksud adalah, apabila (X, d) ruang metrik, x X, dan A, B X, jarak titik x ke himpunan A adalah d(x, A) = inf{d(x, a) : a A}, serta jarak himpunan A ke himpunan B adalah d(a, B) = inf{d(a, b) : a A, b B}. Pada himpunan semua fungsi dari ruang topologi X ke ruang topologi metrizable Y yang dinotasikan dengan Y X, dapat dilengkapi dengan suatu metrik d u yang dikenal dengan metrik supremum, yaitu untuk setiap f, g Y X d u (f, g) = sup d Y (f(x), g(x)). x X dengan d Y metrik terbatas pada Y. Apabila koleksi semua fungsi kontinu dari X ke Y dinotasikan dengan C(X, Y ), berdasarkan paparan sebelumnya dapat diselidiki jarak sebuah fungsi f Y X ke himpunan C(X, Y ). Hal ini telah banyak diteliti oleh matematikawan, diantaranya Benyamini dan Lindenstrauss (2000), Cascales, Marciszewski, dan Raja (2006). Dalam Benyamini dan Lindenstrauss (2000) disebutkan bahwa apabila X ruang topologi normal, maka untuk setiap fungsi f dari X i=1 1

2 2 ke R, jarak fungsi f ke C(X, R) sama dengan setengah osilasi fungsi f tersebut. Dalam hal ini, yang dimaksud dengan osilasi fungsi f, ditulis osc(f) adalah osc(f) = sup inf{diam f(u) : x U X, dengan U persekitaran titik x}, x X dengan diam f(u) menyatakan diameter f(u). Salah satu perluasan dari ruang C(X, Y ) adalah ruang B 1 (X, Y ), yaitu himpunan semua fungsi Baire kelas satu dari ruang metrik X ke ruang Banach Y. Suatu fungsi f disebut fungsi Baire kelas satu apabila terdapat barisan fungsi kontinu {f n }, sehingga barisan {f n } konvergen titik demi titik (pointwise) ke f. Banyak hal yang bisa dipelajari yang berkaitan dengan fungsi Baire kelas satu, diantaranya keterkaitannya dengan fungsi semi-kontinu atas maupun semi-kontinu bawah. Atas hasil yang diperoleh oleh Benyamini dan Lindenstrauss (2000), Angosto dkk (2008) kemudian meneliti kejadian apabila C(X, Y ) diperluas menjadi B 1 (X, Y ). Dengan kata lain, Angosto dkk (2008) meneliti estimasi jarak suatu fungsi f : X Y ke B 1 (X, Y ), dengan X ruang metrik dan Y ruang Banach. Untuk meneliti hal tersebut, salah satu alat yang digunakan adalah konsep indeks fragmentability suatu fungsi. Selain itu, untuk meneliti jarak fungsi f : X E ke B 1 (X, Y ), Angosto dkk (2008) juga menggunakan konsep osilasi fungsi. Untuk meneliti hal tersebut, telah diteliti terlebih dahulu jarak antara fungsi F : X R K dengan X ruang metrik dan K ruang kompak, ke ruang fungsi B 1 (X, C(K)) dengan menggunakan hasil Benyamini dan Lindenstrauss (2000). Dalam tugas akhir ini akan dipelajari estimasi jarak fungsi ke ruang fungsi Baire kelas satu yang telah diteliti oleh Angosto dkk (2008). Untuk menentukan estimasi jarak tersebut, akan digunakan konsep indeks fragmentability dan konsep osilasi fungsi. Selanjutnya, dengan menggunakan hasil estimasi jarak fungsi yang diperoleh sebelumnya, akan dipelajari pula hubungan antara fungsi dua variabel f dengan himpunan titik kontinuitas f.

3 Tujuan dan Manfaat Penelitian Berdasarkan masalah yang telah dirumuskan pada Subbab 1.1, tujuan penulisan tesis ini adalah untuk memberikan pemahaman yang lebih baik dalam penentuan estimasi jarak fungsi f : X E ke himpunan semua fungsi Baire kelas satu, B 1 (X, E) dengan X ruang metrik dan E ruang Banach, yang telah ditulis oleh C. Angosto dkk (2008). Penulisan kembali paper Angosto dkk (2008) diharapkan mampu untuk memberikan pemahaman yang lebih mendalam terhadap paper tersebut. Untuk menentukan estimasi tersebut, C. Angosto menggunakan dua konsep, yaitu konsep indeks fragmentability dan konsep osilasi. Penentuan estimasi tersebut diharapkan dapat membantu mengembangkan ilmu di bidang matematika analisis yang berhubungan dengan konsep jarak suatu fungsi ke himpunan dan dapat membantu memberi ide untuk memberikan alternatif untuk menentukan karakterisasi fungsi Baire kelas satu Tinjauan Pustaka Konsep mengenai fungsi Baire kelas satu merupakan salah satu konsep yang dipelajari dalam teori matematika analisis. Gordon (1994) menjelaskan bahwa suatu fungsi f : [a, b] R disebut fungsi Baire kelas satu, apabila terdapat barisan fungsi-fungsi kontinu {f n } sehingga {f n } konvergen titik demi titik ke f. Gordon (1994) juga memberikan sifat-sifat berkaitan dengan fungsi Baire kelas satu, diantaranya setiap fungsi Baire kelas satu merupakan fungsi terukur, dan koleksi semua fungsi Baire kelas satu tertutup terhadap operasi penjumlahan fungsi, perkalian fungsi, serta komposisi dengan fungsi kontinu. Oleh Kharazishvili (2006), definisi fungsi Baire kelas satu mulai diperumum dengan domain E sebagai ruang topologi. Saat diberikan fungsi dari suatu ruang ke ruang lainnya, dapat dicari nilai indeks fragmentability fungsi tersebut. Jayne dkk (1993) menjelaskan bahwa fungsi f : X Z dikatakan ε-fragmented jika untuk setiap himpunan tak kosong F X terdapat himpunan terbuka U X sehingga U F dan diam(f(u F )) ε, serta fungsi f dikatakan ε-σ-fragmented atas himpunanhimpunan tertutup jika terdapat liput tertutup yang terhitung (X n ) untuk X sehing-

4 4 ga f Xn, merupakan ε fragmented untuk setiap n N. Oleh Jayne (1993), konsep fragmentability digunakan untuk menyelidiki fragmentability fungsi bernilai himpunan. Selain mempunyai nilai indeks fragmentability, setiap fungsi juga dapat dicari nilai osilasinya. Dalam Kechris (1995), osilasi fungsi f, ditulis osc(f) adalah osc(f) = sup inf{diam f(u) : x U X, dengan U persekitaran titik x}, x X dengan diam f(u) menyatakan diameter f(u). Osilasi inilah yang digunakan Benyamini dan Lindenstrauss (2000) untuk menyelidiki jarak fungsi f ke ruang fungsi kontinu C(X) dengan X ruang topologi normal. Benyamini dan Lindenstrauss (2000) menyebutkan bahwa, untuk setiap fungsi f : X R, jarak fungsi f ke ruang C(X) sama dengan setengah osilasi fungsi f tersebut. Nilai indeks fragmentability fungsi dan nilai osilasi fungsi inilah yang kemudian digunakan C. Angosto dkk (2008) untuk mencari estimasi jarak suatu fungsi ke ruang fungsi Baire kelas satu. Untuk mencari jarak fungsi ke ruang fungsi Baire kelas satu dengan konsep fragmentability, Angosto dkk (2008) menggunakan notasi frag(f) dan σ-frag c (f). Notasi frag(f) merupakan nilai infimum dari ε sehingga f fungsi ε-fragmented, sedangkan notasi σ-frag c (f) adalah nilai infimum dari ε sehingga f fungsi ε-σ-fragmented atas himpunan-himpunan tertutup. Untuk mencari estimasi jarak fungsi ke ruang fungsi Baire kelas satu dengan konsep osilasi, akan dicari terlebih dahulu jarak fungsi F : X R K ke ruang fungsi B 1 (X, C(K)), dengan X ruang metrik dan K ruang kompak. Untuk mendapatkan hasil tersebut, akan digunakan hasil Benyamini dan Lindenstrauss (2000) serta Teorema Kuantitatif Mazur yang dijelaskan oleh Todorcevic (1997). Cascales dkk (2006) dan Royden (1989) kemudian memberikan definisi dan teorema berkaitan dengan topologi lemah pada ruang Banach untuk melengkapi akibat dari hasil yang telah diperoleh. Dalam penelitian ini akan lebih difokuskan untuk memberikan bukti lemma, proposisi dan teorema secara mendetail yang terdapat dalam paper Angosto dkk (2008). Angosto dkk (2008) banyak membahas fungsi dari ruang topologi ke ruang topologi lainnya. Munkres (2000) menjelaskan bahwa topologi pada himpunan tak

5 5 kosong X merupakan koleksi himpunan bagian dari X yang memenuhi aksioma tertentu. Untuk memahami lebih banyak tentang ruang topologi, akan digunakan pula buku karya Engelking (1989), Jayne dkk (1993) dan Dugundji (1996). Engelking (1989) menjelaskan definisi tentang basis untuk suatu ruang topologi serta topologi yang dibangkitkan oleh suatu basis. Jayne dkk (1993) menjelaskan tentang keluarga himpunan bagian yang diskrit, terdekomposisi-σ secara diskrit, dan terpartisi dengan baik pada ruang topologi. Definisi tentang keluarga sub himpunan yang terpartisi dengan baik pada suatu ruang topologi akan membantu untuk melengkapi bukti lemma dan proposisi yang berkaitan dengan indeks fragmentability suatu fungsi untuk menentukan estimasi jarak fungi ke ruang fungsi Baire kelas satu. Di pihak lain, Dugundji (1996) memberikan definisi bilangan ordinal yang dikaitkan dengan definisi indeks fragmentability Metode Penelitian Metode yang digunakan dalam penelitian tesis ini adalah studi literatur referensi berkaitan dengan paper Angosto dkk (2008). Dalam penelitian ini akan lebih difokuskan untuk memberikan bukti lemma, proposisi dan teorema secara mendetail yang terdapat dalam paper Angosto dkk (2008). Paper tersebut mempelajari estimasi jarak fungsi ke ruang fungsi Baire kelas satu dengan menggunakan konsep indeks fragmentability dan konsep osilasi fungsi. Dalam menentukan estimasi jarak fungsi ke ruang fungsi Baire kelas satu dengan konsep indeks fragmentability, selain memerlukan konsep ruang topologi, akan dibahas mengenai konsep yang berkaitan dengan keluarga subhimpunan yang diskrit, terdekomposisi secara diskrit, dan terpartisi dengan baik pada suatu ruang topologi. Lemma dan proposisi yang berkaitan dengan konsep subhimpunan yang terpartisi dengan baik dalam ruang topologi diperlukan sebagai alat untuk menentukan estimasi jarak fungsi ke ruang fungsi Baire kelas satu dengan menggunakan konsep fragmentability fungsi. Untuk menentukan estimasi jarak fungsi ke ruang fungsi Baire kelas satu dengan konsep osilasi fungsi, diperlukan teorema yang memberikan estimasi jarak

6 6 fungsi F : X R K ke ruang fungsi B 1 (X, C(K)), dengan X ruang metrik dan K ruang kompak. Salah satu alat untuk membuktikan teorema tersebut adalah teorema yang tertuang dalam Benyamini dan Lindenstrauss (2000), yang menyebutkan bahwa apabila X ruang topologi normal, jarak fungsi f : X R ke ruang C(X) sama dengan setengah osilasi fungsi f tersebut. Setelah mendapatkan estimasi jarak fungsi F : X R K ke ruang fungsi B 1 (X, C(K)), apabila K = (B E, w ), dengan E ruang Banach, maka akan diperoleh estimasi jarak fungsi F : X E ke ruang fungsi B 1 (X, E). serta estimasi jarak fungsi F : X E ke ruang fungsi B 1 (X, E) Sistematika Penulisan Dalam tesis ini, hasil penelitian akan dibagi ke dalam lima bab. Di dalam BAB I yaitu pendahuluan, dibahas mengenai latar belakang permasalahan, tujuan penelitian, tinjauan pustaka, metode penelitian serta sistematika penulisan tesis. Dilanjutkan ke BAB II, yaitu dasar teori. Dalam bab ini, dibahas mengenai konsep yang akan digunakan dalam pembahasan selanjutnya, diantaranya konsep ruang metrik, ruang topologi, dan fungsi Baire kelas satu. Kemudian dilanjutkan ke dalam BAB III dan BAB IV, yaitu pembahasan dari hasil penelitian. Dalam BAB III, akan difokuskan untuk membahas estimasi jarak suatu fungsi f ke ruang fungsi Baire kelas satu dengan menggunakan konsep indeks fragmentability suatu fungsi, sedangkan dalam BAB IV, difokuskan untuk membahas jarak fungsi f ke ruang ruang Baire kelas satu dengan menggunakan konsep osilasi suatu fungsi. Terakhir, dalam BAB V memuat tentang kesimpulan dari hasil penelitian.

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pemetaan linear merupakan salah satu jenis pemetaan yang dikenal dalam bidang matematika, khususnya dalam bidang matematika analisis. Diberikan ruang vektor

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam ilmu matematika, banyak pembahasan di bidang analisis dan topologi yang memerlukan pengertian ruang Hilbert. Ruang Hilbert merupakan konsep abstrak yang mendasari

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu matematika merupakan ilmu dasar yang digunakan di berbagai bidang. Teori titik tetap merupakan salah satu cabang dalam ilmu matematika, khususnya matematika

Lebih terperinci

5. Sifat Kelengkapan Bilangan Real

5. Sifat Kelengkapan Bilangan Real 5. Sifat Kelengkapan Bilangan Real Sifat aljabar dan sifat urutan bilangan real telah dibahas sebelumnya. Selanjutnya, akan dijelaskan sifat kelengkapan bilangan real. Bilangan rasional ℚ juga memenuhi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Konsep ruang metrik merupakan salah satu konsep dasar dalam matematika analisis. Selama bertahun-tahun, para peneliti mencoba mengembangkan konsep ruang metrik.

Lebih terperinci

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi semua fungsi yang terintegralkan Lebesgue, 1. Sebagaimana telah dirumuskan

Lebih terperinci

BAB I PENDAHULUAN. : k N} dan A(m) menyatakan banyaknya m suku pertama (x n ) yang menjadi suku (x nk ), maka A(m)

BAB I PENDAHULUAN. : k N} dan A(m) menyatakan banyaknya m suku pertama (x n ) yang menjadi suku (x nk ), maka A(m) BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Konvergensi barisan bilangan real mempunyai banyak peranan dan aplikasi yang cukup penting pada beberapa bidang matematika, antara lain pada teori optimisasi,

Lebih terperinci

BAB I PENDAHULUAN. Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika

BAB I PENDAHULUAN. Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika dilengkapi dengan suatu norma., maka dikenal bahwa suatu ruang vektor bernorma. Kemudian

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

FOURIER Oktober 2014, Vol. 3, No. 2, KONSEP FUNGSI SEMIKONTINU. Malahayati 1

FOURIER Oktober 2014, Vol. 3, No. 2, KONSEP FUNGSI SEMIKONTINU. Malahayati 1 FOURIER Oktober 2014, Vol. 3, No. 2, 117 132 KONSEP FUNGSI SEMIKONTINU Malahayati 1 1 Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Jl. Marsda Adisucipto No. 1 Yogyakarta 55281

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral merupakan salah satu konsep penting dalam matematika dan banyak aplikasinya. Dalam kehidupan sehari-hari integral dapat diaplikasikan dalam berbagai

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Teori titik tetap merupakan salah satu landasan di dalam pengembangan matematika karena mempunyai peran yang cukup mendasar dalam aplikasi berbagai cabang

Lebih terperinci

BAB 1 PENDAHULUAN. 1 ; untuk k = n 0 ; untuk k n. e [n]

BAB 1 PENDAHULUAN. 1 ; untuk k = n 0 ; untuk k n. e [n] BAB 1 PENDAHULUAN 1.1. Latar Belakang Barisan bilangan real adalah suatu fungsi bernilai real yang didefinisikan pada himpunan N = 0, 1, 2,.... Dengan kata lain, barisan bilangan real adalah suatu fungsi

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Teori titik tetap merupakan teori matematika yang sering digunakan untuk menjamin eksistensi solusi masalah nilai awal dan syarat batas persamaan diferensial

Lebih terperinci

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada BAB II DASAR TEORI Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada pembahasan BAB III, mulai dari definisi sampai sifat-sifat yang merupakan konsep dasar untuk mempelajari Fungsi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Permasalahan

BAB I PENDAHULUAN Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Pemetaan merupakan konsep yang tidak pernah terlepas dari bahasan matematika analisis. Pengaitan setiap anggota dari suatu himpunan dengan tepat satu

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 4. Fungsi Kontinu 4.1 Konsep Kekontinuan Fungsi kontinu Limit fungsi dan limit barisan Prapeta himpunan buka 4.2 Sifat-Sifat Fungsi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam matematika dikenal konsep fungsi naik monoton dan fungsi turun monoton. Jika f : R R merupakan fungsi naik monoton maka untuk setiap x, y R dengan x

Lebih terperinci

Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji

Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji Hendy Fergus A. Hura 1, Nora Hariadi 2, Suarsih Utama 3 1 Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424,

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 3. Topologi Garis Bilangan Real 3.1 Teori Limit Limit, supremum, dan infimum Titik limit 3.2 Himpunan Buka dan Himpunan Tutup 3.3

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Teori titik tetap merupakan salah satu subjek yang menarik untuk dikaji karena memiliki banyak aplikasi dalam berbagai bidang. Selama kurun waktu sepuluh tahun

Lebih terperinci

BAB III FUNGSI UJI DAN DISTRIBUSI

BAB III FUNGSI UJI DAN DISTRIBUSI BAB III FUNGSI UJI DAN DISTRIBUSI Bab ini membahas tentang fungsi uji dan distribusi di mana ruang yang memuat keduanya secara berturut-turut dinamakan ruang fungsi uji dan ruang distribusi. Ruang fungsi

Lebih terperinci

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 26, 2007 Misalkan f kontinu pada interval [a, b]. Apakah masuk akal untuk membahas luas daerah

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. November 19, 2007 Secara geometris, f kontinu di suatu titik berarti bahwa grafiknya tidak terputus

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. September 12, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. September 12, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 12, 2011 Teorema 11 pada Bab 3 memberi kita cara untuk menyelidiki kekonvergenan sebuah barisan tanpa harus mengetahui

Lebih terperinci

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh II. TINJAUAN PUSTAKA 2.1 Ruang Metrik Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh aksioma-aksioma tertentu. Ruang metrik merupakan hal yang fundamental dalam analisis fungsional,

Lebih terperinci

TRANSFORMASI LINIER PADA RUANG BANACH

TRANSFORMASI LINIER PADA RUANG BANACH TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni, S.Si., M.Pd Jurusan Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmail.com ABSTRAK Info: Jurnal MSA Vol. 2 No. 1 Edisi: Januari Juni

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

BAB III KEKONVERGENAN LEMAH

BAB III KEKONVERGENAN LEMAH BAB III KEKONVERGENAN LEMAH Bab ini membahas inti kajian tugas akhir. Di dalamnya akan dibahas mengenai kekonvergenan lemah beserta sifat-sifat yang terkait dengannya. Sifatsifat yang dikaji pada bab ini

Lebih terperinci

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh BAB III INTEGRAL LEBESGUE Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh fungsi-fungsi terukur dan memenuhi sifat yang berkaitan dengan integral Lebesgue. Kajian mengenai keterukuran suatu

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL DAFTAR ISI 1 SISTEM BILANGAN REAL 1 1.1 Sifat Aljabar Bilangan Real..................... 1 1.2 Sifat Urutan Bilangan Real..................... 6 1.3 Nilai Mutlak dan Jarak Pada Bilangan Real............

Lebih terperinci

II. LANDASAN TEORI ( ) =

II. LANDASAN TEORI ( ) = II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu

Lebih terperinci

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann.

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral Lebesgue merupakan suatu perluasan dari integral Riemann. Sebagaimana telah diketahui, pengkonstruksian integral Riemann dilakukan dengan cara pemartisian

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL DAFTAR ISI SISTEM BILANGAN REAL. Sifat Aljabar Bilangan Real......................2 Sifat Urutan Bilangan Real..................... 6.3 Nilai Mutlak dan Jarak Pada Bilangan Real.............4 Supremum

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. August 18, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. August 18, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 18, 2011 Kita telah mencatat sebelumnya bahwa supremum dan infimum suatu himpunan tidak harus merupakan anggota himpunan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu matematika merupakan suatu ilmu dasar yang terus berkembang dan banyak digunakan dalam berbagai bidang. Salah satu cabang ilmu matematika yang mengalami

Lebih terperinci

PENGANTAR ANALISIS FUNGSIONAL

PENGANTAR ANALISIS FUNGSIONAL PENGANTAR ANALISIS FUNGSIONAL SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat

Lebih terperinci

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada BAB III FUNGSI TERUKUR LEBESGUE Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada Bab II, selanjutnya pada bab ini akan dipelajari gagasan mengenai fungsi terukur Lebesgue. Gagasan mengenai

Lebih terperinci

TITIK TETAP NADLR FUNGSI MULTI NILAI KONTRAKTIF PADA RUANG METRIK ( ) Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60111

TITIK TETAP NADLR FUNGSI MULTI NILAI KONTRAKTIF PADA RUANG METRIK ( ) Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60111 TITIK TETAP NADLR FUNGSI MULTI NILAI KONTRAKTIF PADA RUANG METRIK ( ) Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60111 Abstract. In this paper was discussed about Nadlr fixed

Lebih terperinci

DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1. Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS. Abstrak

DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1. Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS. Abstrak DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1 An-2 1. PENDAHULUAN Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS Abstrak Tujuan dari tulisan ini adalah membahas tentang integral Lebesgue

Lebih terperinci

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab BAB III PEMBAHASAN Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab C. Sub-bab A menjelaskan mengenai konsep dasar C[a, b] sebagai ruang vektor beserta contohnya. Sub-bab B

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Seiring dengan perkembangan zaman, banyak sekali topik matematika khususnya dalam bidang analisis fungsional yang mengalami perluasan, seperti: ruang vektor,

Lebih terperinci

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun MA3231 Pengantar Analisis Real Semester II, Tahun 2016-2017 Hendra Gunawan, Ph.D. Bab 1 Sifat Kelengkapan Bilangan Real 2 1.1 Paradoks Zeno ACHILLES TORTOISE 0 1 1½ Sumber: skeptic.com 1 1 1... 1 2 4 8?

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 4.2 Sifat-Sifat Fungsi Kontinu Diberikan f dan g, keduanya terdefinisi pada himpunan A, kita definisikan f + g, f g, fg, f/g secara

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN Pada bab ini akan dibahas mengenai latar belakang masalah, perumusan masalah, batasan masalah, maksud dan tujuan penulisan, tinjauan pustaka serta sistematika penulisan skirpsi ini. 1.1.

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 3.3 Himpunan Kompak Himpunan tak terhingga lebih sulit ditangani daripada himpunan terhingga. Namun ada himpunan tak terhingga yang

Lebih terperinci

Analisis Real A: Teori Ukuran dan Integral

Analisis Real A: Teori Ukuran dan Integral Analisis Real A: Teori Ukuran dan Integral Johan Matheus Tuwankotta March 5, 203 Departemen Matematika, FMIPA, Institut Teknologi Bandung, Jl. Ganesha no. 0, Bandung, Indonesia. mailto:theo@math.itb.ac.id

Lebih terperinci

FOURIER Oktober 2014, Vol. 3 No. 2, KONSEP DASAR RUANG METRIK CONE. Yogyakarta

FOURIER Oktober 2014, Vol. 3 No. 2, KONSEP DASAR RUANG METRIK CONE. Yogyakarta FOURIER Oktober 014, Vol. 3 No., 146 166 KONSEP DASAR RUANG METRIK CONE A. Rifqi Bahtiar 1, Muchammad Abrori, Malahayati 3 1,, 3 Program Studi Matematika, Fakultas Sains dan Teknologi, UIN Sunan Kalijaga

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Integral tipe Stieltjes merupakan salah satu topik yang banyak dipelajari dalam matematika analisis. Beberapa di antaranya adalah integral Riemann-Stieltjes,

Lebih terperinci

16. BARISAN FUNGSI. 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik

16. BARISAN FUNGSI. 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik 16. BARISAN FUNGSI 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik Bila pada bab-bab sebelumnya kita membahas fungsi sebagai sebuah objek individual, maka pada bab ini dan selanjutnya kita akan

Lebih terperinci

DASAR-DASAR TEORI RUANG HILBERT

DASAR-DASAR TEORI RUANG HILBERT DASAR-DASAR TEORI RUANG HILBERT Herry P. Suryawan 1 Geometri Ruang Hilbert Definisi 1.1 Ruang vektor kompleks V disebut ruang hasilkali dalam jika ada fungsi (.,.) : V V C sehingga untuk setiap x, y, z

Lebih terperinci

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Teori titik tetap merupakan salah satu hasil penelitian dalam bidang matematika analisis yang memiliki cukup banyak aplikasi. Salah satu aplikasi teori tersebut

Lebih terperinci

EKUIVALENSI INTEGRAL BOCHNER DENGAN INTEGRAL MCSHANE KUAT UNTUK FUNGSI DENGAN NILAI DI DALAM RUANG BANACH. Y.D. Sumanto Jurusan Matematika FMIPA UNDIP

EKUIVALENSI INTEGRAL BOCHNER DENGAN INTEGRAL MCSHANE KUAT UNTUK FUNGSI DENGAN NILAI DI DALAM RUANG BANACH. Y.D. Sumanto Jurusan Matematika FMIPA UNDIP EKUIVALENSI INTEGRAL BOCHNER DENGAN INTEGRAL MCSHANE KUAT UNTUK FUNGSI DENGAN NILAI DI DALAM RUANG BANACH Y.D. Sumanto Jurusan Matematika FMIPA UNDIP Abstrak Integral McShane fungsi-fungsi bernilai real

Lebih terperinci

URAIAN POKOK-POKOK PERKULIAHAN

URAIAN POKOK-POKOK PERKULIAHAN Pertemuan ke-: 10, 11, dan 12 Penyusun : Kosim Rukmana Materi: Barisan Bilangan Real 7. Barisan dan Limit Barisan 6. Teorema Limit Barisan 7. Barisan Monoton URAIAN POKOK-POKOK PERKULIAHAN 7. Barisan dan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu Matematika merupakan salah satu cabang ilmu yang berperan penting dalam berbagai bidang. Salah satu cabang ilmu matematika yang banyak diperbincangkan

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR ANALISIS REAL 1 DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 1 KATA PENGANTAR

Lebih terperinci

BAB II TEOREMA NILAI RATA-RATA (TNR)

BAB II TEOREMA NILAI RATA-RATA (TNR) BAB II TEOREMA NILAI RATA-RATA (TNR) Teorema nilai rata-rata menghubungkan nilai suatu fungsi dengan nilai derivatifnya (turunannya), dimana TNR merupakan salah satu bagian penting dalam kuliah analisis

Lebih terperinci

BAB I PENDAHULUAN. umum ruang metrik dan memperluas pengertian klasik dari ruang Euclidean R n, sehingga

BAB I PENDAHULUAN. umum ruang metrik dan memperluas pengertian klasik dari ruang Euclidean R n, sehingga BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Permulaan munculnya analisis fungsional didasari oleh permasalahan pada kurang memadainya metode analitik klasik pada fisika dan astronomi matematika.

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

II. TINJAUAN PUSATAKA

II. TINJAUAN PUSATAKA 4 II. TINJAUAN PUSATAKA 2.1 Operator Definisi 2.1.1 (Kreyszig, 1989) Suatu pemetaan pada ruang vektor khususnya ruang bernorma disebut operator. Definisi 2.1.2 (Kreyszig, 1989) Diberikan ruang Bernorm

Lebih terperinci

BAB II TEORI DASAR. S, torus, topologi adalah suatu himpunan yang mempunyai topologi, yaitu koleksi dari

BAB II TEORI DASAR. S, torus, topologi adalah suatu himpunan yang mempunyai topologi, yaitu koleksi dari BAB II TEORI DASAR Pada skripsi ini, akan dipelajari perbedaan sifat grup fundamental yang dimiliki beberapa ruang topologi, yaitu 2 S, torus, 2 P dan figure eight. Ruang topologi adalah suatu himpunan

Lebih terperinci

untuk setiap x sehingga f g

untuk setiap x sehingga f g Jadi ( f ( f ) bernilai nol untuk setiap x, sehingga ( f ( f ) fungsi nol atau ( f ( f ) Aksioma 5 Ambil f, g F, R, ( f g )( f g ( g( g( ( f g)( Karena ( f g )( ( f g)( untuk setiap x sehingga f g Aksioma

Lebih terperinci

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat 1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat dan logos yang artinya ilmu merupakan cabang matematika yang bersangkutan dengan

Lebih terperinci

RUANG LIPSCHITZ. Departemen Pendidikan Matematika FPMIPA UPI. *Surel: : (, ) Ϝ

RUANG LIPSCHITZ. Departemen Pendidikan Matematika FPMIPA UPI. *Surel: : (, ) Ϝ RUANG LIPSCHITZ Muhammad Rifqi Agustian 1), Rizky Rosjanuardi 2), Endang Cahya 3) 1), 2), 3) Departemen Pendidikan Matematika FPMIPA UPI *Surel: Muhammadrifqyagustian@yahoo.co.id ABSTRAK. Diberikan ruang

Lebih terperinci

SILABUS MATAKULIAH TEORI INTEGRAL (MAA 525)

SILABUS MATAKULIAH TEORI INTEGRAL (MAA 525) SILABUS MATAKULIAH TEORI INTEGRAL (MAA 525) JURUSAN PENDIDIKAN MATEMATIKA FPMIPA UPI BANDUNG 200 A. IDENTITAS MATAKULIH. Nama Matakuliah : Teori Integral 2. Kode Matakuliah : MAA 525 3. Program : Pendidikan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini disampaian beberapa pengertian dasar yang diperluan pada bab selanutnya. Selain definisi, diberian pula lemma dan teorema dengan atau tanpa buti. Untu beberapa teorema

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Analisis merupakan salah satu cabang matematika yang mempelajari antara lain barisan, limit, deret, kekontinuan, kekonvergenan, integral, dan yang lainnya.

Lebih terperinci

EKSISTENSI SELEKTOR TERUKUR PADA FUNGSI BERNILAI HIMPUNAN DI DALAM RUANG BANACH TAK SEPARABEL

EKSISTENSI SELEKTOR TERUKUR PADA FUNGSI BERNILAI HIMPUNAN DI DALAM RUANG BANACH TAK SEPARABEL JMP : Volume 4 Nomor 1, Juni 2012, hal. 51-58 EKSISTENSI SELEKTOR TERUKUR PADA FUNGSI BERNILAI HIMPUNAN DI DALAM RUANG BANACH TAK SEPARABEL Mohamad Muslikh Jurusan Matematika F.MIPA Universitas Brawijaya

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL 1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu Matematika merupakan salah satu ilmu pengetahuan yang berperan penting dalam perkembangan teknologi. Ilmu Matematika juga merupakan ilmu dasar yang banyak

Lebih terperinci

Bab I PENDAHULUAN 1.1 Latar Belakang Masalah

Bab I PENDAHULUAN 1.1 Latar Belakang Masalah Bab I PENDAHULUAN 1.1 Latar Belakang Masalah Salah satu struktur aljabar yang harus dikuasai oleh seorang matematikawan adalah grup yaitu suatu himpunan tak kosong G yang dilengkapi dengan satu operasi

Lebih terperinci

KONSTRUKSI SISTEM BILANGAN

KONSTRUKSI SISTEM BILANGAN KONSTRUKSI SISTEM BILANGAN KEVIN MANDIRA LIMANTA 1. Konstruksi Aljabar 1.1. Bilangan Natural. Himpunan bilangan paling primitif adalah bilangan natural N, yang dicacah dengan aturan sebagai berikut: (1)

Lebih terperinci

Pengantar : Induksi Matematika

Pengantar : Induksi Matematika Pengantar : Induksi Matematika Analisis Real /2 SKS/ Ega Gradini, M.Sc Induksi Matematika adalah cara standar dalam membuktikan bahwa sebuah pernyataan tertentu berlaku untuk setiap bilangan asli. Pembuktian

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 1. SIFAT KELENGKAPAN BILANGAN REAL

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 1. SIFAT KELENGKAPAN BILANGAN REAL Pertemuan 4. BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 1.1 Paradoks 1. SIFAT KELENGKAPAN BILANGAN REAL Bila kita menjumlahkan 1 2 + 1 4 + 1 8 +... Apabila kita ambil contoh

Lebih terperinci

SIFAT-SIFAT TOPOLOGI RUANG LINEAR. Nila Kurniasih Program Studi Pendidikan Matematika Jalan KHA Dahlan 3 Purworejo. Abstrak

SIFAT-SIFAT TOPOLOGI RUANG LINEAR. Nila Kurniasih Program Studi Pendidikan Matematika Jalan KHA Dahlan 3 Purworejo. Abstrak SIFAT-SIFAT TOPOLOGI RUANG LINEAR Nila Kurniasih Program Studi Pendidikan Matematika Jalan KHA Dahlan 3 Purworejo Abstrak Penulisan ini bertujuan menyelidiki sifat-sifat yang berlaku di dalam topologi

Lebih terperinci

II. TINJAUAN PUSTAKA. dan Integral Bawah Darboux, Integral Darboux, Teorema Bolzano Weierstrass,

II. TINJAUAN PUSTAKA. dan Integral Bawah Darboux, Integral Darboux, Teorema Bolzano Weierstrass, II. TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa konsep mendasar meliputi Integral Atas dan Integral Bawah Darboux, Integral Darboux, Teorema Bolzano Weierstrass, serta teorema-teorema yang mendukung

Lebih terperinci

BEBERAPA TEOREMA TITIK TETAP UNTUK PEMETAAN NONSELF. Kata kunci : pemetaan nonexpansive, pemetaan condensing, pemetaan kompak.

BEBERAPA TEOREMA TITIK TETAP UNTUK PEMETAAN NONSELF. Kata kunci : pemetaan nonexpansive, pemetaan condensing, pemetaan kompak. BEBERAPA TEOREMA TITIK TETAP UNTUK PEMETAAN NONSELF Oleh: Rindang Kasih Program Studi Pendidikan Matematika FKIP UNIVET Sukoharjo Jl. Letjend Sujono Humardani No.1 Kampus Jombor Sukoharjo, e-mail: Rindang_k@yahoo.com

Lebih terperinci

Ruang Linear Metrik: Sifat Sifat Dasar Dan Struktur Ruang Dalam Ruang Linear Metrik

Ruang Linear Metrik: Sifat Sifat Dasar Dan Struktur Ruang Dalam Ruang Linear Metrik Ruang Linear Metrik: Sifat Sifat Dasar Dan Struktur Ruang Dalam Ruang Linear Metrik Oleh : Iswanti 1, Soeparna Darmawijaya 2 Iswanti, Jurusan Teknik Elektro, Politeknik Negeri Semarang, Semarang, Jawa

Lebih terperinci

BAB 3 KONDISI SPECTRUM. Pada bab ini akan diperlihatkan hasil utama dari penelitian ini. Hasil utama yang

BAB 3 KONDISI SPECTRUM. Pada bab ini akan diperlihatkan hasil utama dari penelitian ini. Hasil utama yang BAB 3 KONDISI SPECTRUM Pada bab ini akan diperlihatkan hasil utama dari penelitian ini. Hasil utama yang diperoleh berdasarkan penjelasan - penjelasan yang telah dipaparkan pada bab - bab sebelumnya. Hasil

Lebih terperinci

5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION

5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION 5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION Rekursif Ada kalanya kita mengalami kesulitan untuk mendefinisikan suatu obyek secara eksplisit. Mungkin lebih mudah untuk mendefinisikan obyek tersebut

Lebih terperinci

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks 0. Pendahuluan Analisis Fourier mempelajari berbagai teknik menganalisis sebuah fungsi dengan menguraikannya sebagai deret atau integral fungsi tertentu (yang sifat-sifatnya telah kita kenal dengan baik,

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional Ming gu ke RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 56 Nama Mata Kuliah : Analisis Fungsional T o p i k S u b T o p i k 1. Ruang Banach - Ruang metrik - Ruang vektor bernorm - Barisan di ruang

Lebih terperinci

SIFAT P-KONVEKS PADA RUANG FUNGSI MUSIELAK-ORLICZ TYPE BOCHNER. Yulia Romadiastri

SIFAT P-KONVEKS PADA RUANG FUNGSI MUSIELAK-ORLICZ TYPE BOCHNER. Yulia Romadiastri Jurnal Matematika Murni dan Terapan εpsilon Vol. 07, No.01, 013, Hal. 1 1 SIFAT P-KONVEKS PADA RUANG FUNGSI MUSIELAK-ORLICZ TYPE BOCHNER Yulia Romadiastri Program Studi Tadris Matematika Fakultas Tarbiyah

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 11, 2007 Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila

Lebih terperinci

CARA LAIN PEMBUKTIAN TEOEMA ARZELA-ASCOLI DAN HUBUNGANNYA DENGAN EKSISTENSI PENYELESAIAN PERSAMAAN DIFERENSIAL (SUATU KAJIAN TEORITIS)

CARA LAIN PEMBUKTIAN TEOEMA ARZELA-ASCOLI DAN HUBUNGANNYA DENGAN EKSISTENSI PENYELESAIAN PERSAMAAN DIFERENSIAL (SUATU KAJIAN TEORITIS) CARA LAIN PEMBUKTIAN TEOEMA ARZELA-ASCOLI DAN HUBUNGANNYA DENGAN EKSISTENSI PENYELESAIAN PERSAMAAN DIFERENSIAL SUATU KAJIAN TEORITIS) Sufri Program Studi Pendidikan Matematika FKIP Universitas Jambi Kampus

Lebih terperinci

BARISAN BILANGAN REAL

BARISAN BILANGAN REAL BAB 2 BARISAN BILANGAN REAL Di sekolah menengah barisan diperkenalkan sebagai kumpulan bilangan yang disusun menurut pola tertentu, misalnya barisan aritmatika dan barisan geometri. Biasanya barisan dan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Permasalahan

BAB I PENDAHULUAN Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Ditinjau dari bidang ilmu pengetahuan, teori persamaan diferensial merupakan suatu cabang analisis matematika yang banyak dipakai dalam kehidupan nyata,

Lebih terperinci

MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA

MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA VARIABEL RANDOM Misalkan (Ω, A, P) ruang probabilitas dan R = {x < x < } dan B : Borel field pada R. Andaikan X : Ω R dan untuk setiap A R, kita definisikan

Lebih terperinci

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga Kesumawati Prodi Statistika FMIPA-UII April 29, 2015 Akar Barisan a 1, a 2, a 3, a 4,... adalah susunan bilangan-bilangan real yang teratur, satu untuk setiap bilangan bulat positif. adalah fungsi yang

Lebih terperinci

Analisis Real A: Teori Ukuran dan Integral

Analisis Real A: Teori Ukuran dan Integral Analisis Real A: Teori Ukuran dan Integral Johan Matheus Tuwankotta 1 February 2, 2012 1 Departemen Matematika, FMIPA, Institut Teknologi Bandung, jl. Ganesha no. 10, Bandung, Indonesia. mailto:theo@math.itb.ac.id

Lebih terperinci

BAB II TINJAUAN PUSTAKA. jelas. Ada tiga cara untuk menyatakan himpunan, yaitu: a. dengan mendaftar anggota-anggotanya;

BAB II TINJAUAN PUSTAKA. jelas. Ada tiga cara untuk menyatakan himpunan, yaitu: a. dengan mendaftar anggota-anggotanya; BAB II TINJAUAN PUSTAKA A. Himpunan 1. Pengertian Himpunan Himpunan merupakan konsep mendasar yang terdapat dalam ilmu matematika. Himpunan adalah kumpulan obyek yang didefinisikan secara jelas. Ada tiga

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Aplikasi geometri fraktal tersebar di berbagai bidang, beberapa di antaranya adalah pada teori bilangan (number theory), pertumbuhan fraktal (fractal growth),

Lebih terperinci

BAB 1 PENDAHULUAN 1.1. Latar Belakang Permasalahan

BAB 1 PENDAHULUAN 1.1. Latar Belakang Permasalahan BAB 1 PENDAHULUAN 1.1. Latar Belakang Permasalahan Ilmu pengetahuan merupakan hal yang mengalami perkembangan secara terus-menerus. Diantaranya teori integral yaitu ilmu bidang matematika analisis yang

Lebih terperinci

BAB I PENDAHULUAN ( )

BAB I PENDAHULUAN ( ) BAB I PENDAHULUAN 1.1. Latar Belakang Persamaan diferensial merupakan persamaan yang melibatkan turunan dari satu atau lebih variabel tak bebas terhadap satu atau lebih variabel bebas dan dituliskan dengan

Lebih terperinci

BAGIAN PERTAMA. Bilangan Real, Barisan, Deret

BAGIAN PERTAMA. Bilangan Real, Barisan, Deret BAGIAN PERTAMA Bilangan Real, Barisan, Deret 2 Hendra Gunawan Pengantar Analisis Real 3 0. BILANGAN REAL 0. Bilangan Real sebagai Bentuk Desimal Dalam buku ini pembaca diasumsikan telah mengenal dengan

Lebih terperinci