BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I PENDAHULUAN 1.1. Latar Belakang Masalah"

Transkripsi

1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu matematika merupakan ilmu dasar yang digunakan di berbagai bidang. Teori titik tetap merupakan salah satu cabang dalam ilmu matematika, khususnya matematika analisis yang banyak digunakan dalam cabang ilmu yang lain, misalnya untuk menyelesaikan persamaan integral. Teori titik tetap mulai dikembangkan sejak dikemukakannya Prinsip Kontraksi Banach (Banach Contraction Principle) pada tahun 1922, yang menunjukkan eksistensi dan ketunggalan titik tetap dari pemetaan kontraksi (contraction mapping) yang terdefinisi pada ruang metrik lengkap. Pada tahun 1974 pemetaan kontraksi kemudian diperumum oleh iri ke dalam bentuk quasi kontraksi (quasi-contraction). iri (1974) telah membuktikan bahwa pemetaan quasi kontraksi memiliki titik tetap tunggal jika ruang metrik orbitally complete. Ruang metrik dikatakan orbitally complete apabila setiap barisan Cauchy di ( ) * + untuk suatu konvergen di. Dalam papernya, iri (1974) juga membuktikan eksistensi dan ketunggalan titik tetap dari suatu pemetaan bernilai himpunan (multi-valued mapping) ( ) dengan orbitally complete. Dalam hal ini, yang dimaksud dengan ( ) adalah koleksi semua himpunan tak kosong, tertutup dan terbatas di ruang metrik. Dengan memperhatikan bahwa setiap ruang metrik lengkap pasti -orbitally complete untuk setiap ( ), maka Fisher (1981) membuktikan bahwa pemetaan ( ) memiliki titik tetap tunggal. Teori titik tetap dari satu pemetaan dapat dikembangkan menjadi teori titik tetap dari beberapa pemetaan. Kaneko dan Sessa (1989) mendefinisikan pemetaan kompatibel (compatible) untuk pasangan pemetaan bernilai himpunan ( ) dan pemetaan bernilai tunggal (single-valued mapping) yang merupakan perluasan definisi pemetaan kompatibel dari Jungck (1986). Di dalam papernya, Kaneko dan Sessa (1989) menunjukkan eksistensi titik koinsidensi (coincidence point) 1

2 dari pasangan pemetaan kompatibel tersebut. Titik koinsidensi yang dimaksud adalah sehingga ( ) ( ). Definisi pemetaan kompatibel tersebut kemudian diperluas menjadi definisi pemetaan kompatibel lemah- ( -weakly compatible) oleh Pathak (1995). Tujuannya adalah untuk dapat membuktikan teorema titik koinsidensi dari pasangan pemetaan bernilai himpunan ( ) dan bernilai tunggal yang kompatibel lemah- dan menetapkan beberapa teorema titik tetap bersama pasangan pemetaan tersebut. Selanjutnya, definisi pemetaan kompatibel lemah- dari Pathak (1995) dimodifikasi oleh iri dkk (2006) sehingga menghasilkan definisi baru yaitu pemetaan kompatibel lemah- ( -weakly compatible). iri dan Ume (2006) juga memodifikasi definisi dari Pathak (1995) sehingga diperoleh definisi pemetaan kompatibel lemah (weakly compatible ). Dalam tesis ini dibahas eksistensi titik koinsidensi dari pasangan pemetaan bernilai himpunan ( ) dan bernilai tunggal yang kompatibel lemah- seperti pada Pathak (1995). Selain itu, dibicarakan eksistensi titik tetap bersama dari pasangan pemetaan dan dengan dan kompatibel lemah- seperti pada iri dkk (2006). Lebih lanjut, akan dibahas eksistensi titik tetap bersama dari tiga pemetaan yaitu, pemetaan non self bernilai himpunan ( ) dan pemetaan non self bernilai tunggal dengan pasangan * + dan * + kompatibel lemah Perumusan Masalah Berdasarkan latar belakang masalah di atas, diberikan rumusan masalah sebagai berikut : 1. Eksistensi titik koinsidensi dari dua pemetaan, yaitu pemetaan bernilai himpunan ( ) dan pemetaan bernilai tunggal dengan dan pasangan kompatibel lemah-. 2. Eksistensi titik tetap bersama dari pemetaan bernilai himpunan ( ) dan pemetaan bernilai tunggal dengan dan pasangan kompatibel lemah. 2

3 3. Eksistensi titik tetap bersama dari tiga pemetaan yaitu, pemetaan non self bernilai himpunan ( ) dan pemetaan non self bernilai tunggal dengan * + dan * + pasangan kompatibel lemah Tujuan dan Manfaat Penelitian Berdasarkan masalah yang telah dirumuskan, tujuan penelitian ini adalah untuk memberikan pemahaman tentang teorema titik tetap bersama, khususnya dalam menunjukkan eksistensi titik koinsidensi dari pasangan pemetaan bernilai himpunan ( ) dan bernilai tunggal yang kompatibel lemah-, menunjukkan eksistensi titik tetap bersama dari pemetaan dan dengan dan pasangan kompatibel lemah-, dan menunjukkan titik tetap bersama dari pemetaan non self bernilai himpunan ( ) dan pemetaan non self bernilai tunggal dengan * + dan * + pasangan kompatibel lemah. Penelitian ini diharapkan dapat memberikan kontribusi di dalam teori titik tetap, khususnya teorema titik tetap dari pasangan pemetaan kompatibel lemah. Lebih lanjut, penelitian ini diharapkan dapat memberi ide untuk memecahkan masalah lebih lanjut tentang teori titik tetap Tinjauan Pustaka Eksistensi dan ketunggalan titik tetap dari suatu pemetaan kontraksi bernilai tunggal dan bernilai himpunan telah dijelaskan oleh Agarwal dkk (2009). Pemetaan quasi kontraksi merupakan perumuman dari pemetaan kontraksi. Suatu pemetaan quasi kontraksi memiliki titik tetap tunggal jika -orbitally complete. Eksistensi dan ketunggalan titik tetap juga berlaku untuk pemetaan bernilai himpunan ( ) dengan ( ) adalah koleksi semua himpunan terbatas di, memenuhi kondisi kontraksi tertentu dan -ortbitally complete. Teorema-teorema tersebut telah ditunjukkan oleh iri (1974). Dengan mengganti kondisi dari orbitally complete menjadi ruang metrik lengkap, dapat ditunjukkan eksistensi dan ketunggalan titik tetap dari pemetaan bernilai himpunan ( ) yang memenuhi kondisi kontraksi tertentu. Akibatnya, suatu pemetaan quasi kontraksi yang 3

4 terdefinisi pada ruang metrik lengkap juga memiliki titik tetap tunggal (Fisher, (1981)). Definisi pemetaan kompatibel dari pasangan pemetaan bernilai tunggal telah diperumum menjadi definisi pemetaan kompatibel untuk pemetaan bernilai tunggal dan bernilai himpunan. Dengan menggunakan definisi tersebut, dapat ditunjukkan bahwa pasangan kompatibel dari pemetaan bernilai tunggal dan pemetaan bernilai himpunan ( ) dengan ruang metrik lengkap dan memenuhi ketaksamaan tertentu memiliki titik koinsidensi. Eksistensi titik koinsidensi dari pasangan pemetaan tersebut, dijelaskan oleh Kaneko dan Sessa (1989). Definisi pemetaan kompatibel kemudian diperumum ke dalam definisi pemetaan kompatibel lemah- oleh Pathak (1995). Dengan definisi tersebut dapat dibuktikan eksistensi titik koinsidensi dari pasangan pemetaan bernilai himpunan ( ) dan bernilai tunggal yang kompatibel lemah-. Selain itu, dapat dibuktikan eksistensi titik tetap bersama pemetaan tersebut dengan beberapa asumsi tambahan. Selanjutnya, dengan memodifikasi definisi pemetaan kompatibel lemah-, iri dkk (2006) dan iri dan Ume (2006) masing-masing memberikan definisi kelas baru dari pemetaan kompatibel lemah untuk bisa menujukkan eksistensi titik tetap bersama dari pemetaanpemetaan tersebut. Di dalam penelitian ini dibahas paper yang ditulis oleh Pathak (1995), iri dkk (2006) dan iri dan Ume (2006). Paper yang pertama membahas tentang eksistensi titik koinsidensi dari pasangan pemetaan pemetaan kompatibel lemah- yaitu ( ) dan dengan ruang metrik lengkap dan dan memenuhi kondisi kontraksi tertentu. Selain itu, juga dibahas tentang eksistensi titik tetap bersama dari pasangan pemetaan tersebut dengan beberapa asumsi tambahan. Paper yang kedua membahas tentang eksistensi dan ketunggalan titik tetap bersama dari pasangan pemetaan kompatibel lemah- yaitu dan ( ) dengan ruang metrik lengkap dan dan memenuhi kondisi kontraksi tertentu. Paper yang ketiga membahas tentang eksistensi titik tetap bersama dari pemetaan non-self ( ) dan dengan * + dan * + masing-masing adalah 4

5 pasangan pemetaan kompatibel lemah dan himpunan tertutup di ruang metrik yang metrically convex. Ketiga paper ini banyak menggunakan konsep-konsep dalam ruang metrik dan sistem bilangan real. Konsep tentang ruang metrik dibahas dalam Royden (1989). Dan konsep tentang sistem bilangan real dibahas dalam Bartle (1992) Metodologi Penelitian Metode yang digunakan dalam penelitian tesis ini adalah studi literatur berkaitan dengan jurnal karya Pathak (1995), iri dan Ume (2006) dan iri dkk (2006). Penelitian ini menguraikan secara rinci teorema-teorema yang ada di dalam kedua referensi tersebut. Paper tersebut mempelajari teori titik tetap bersama dari pemetaan kompatibel lemah bernilai himpunan dan bernilai tunggal. Dengan menggunakan literatur pendukung, terlebih dahulu dipelajari konsep ruang metrik, ruang metrik yang metrically convex dan metrik Hausdorff. Untuk menentukan titik tetap bersama dari pasangan pemetaan kompatibel lemah bernilai himpunan dan bernilai tunggal, perlu dipelajari teorema titik tetap pemetaan kontraksi bernilai tunggal, pemetaan kontraksi bernilai himpunan, dan pemetaan quasi kontraksi. Selain itu, dipelajari tentang teorema titik tetap pemetaan non-self kontraksi bernilai himpunan. Perlu dipahami juga tentang teorema titik tetap pemetaan bernilai himpunan yang memenuhi kondisi kontraksi tertentu. Dalam hal ini, ditunjukkan oleh Fisher (1981). Teknik-teknik pembuktian dalam teorema tersebut akan digunakan pada pembahasan tesis ini. Di dalam pembahasan tesis, terbagi menjadi tiga sub bab. Pada Sub Bab I, akan ditunjukkan eksistensi titik koinsidensi dari pasangan pemetaan bernilai himpunan dan pemetaan bernilai tunggal yang kompatibel lemah-. Selain itu akan dibuktikan teorema titik tetap bersama dari pemetaan tersebut dengan beberapa asumsi tambahan. Pada Sub Bab II, terlebih dahulu akan ditunjukkan eksistensi titik koinsidensi pasangan pemetaan kompatibel lemah dari pemetaan bernilai himpunan dan pemetaan bernilai tunggal. Selanjutnya, dengan menggunakan definisi pemetaan kompatibel lemah- akan ditunjukkan eksistensi dan ketunggalan titik tetap bersama dari pasangan pemetaan kompatibel 5

6 lemah yang bernilai himpunan dan bernilai tunggal. Selain itu, akan dicari juga akibat lain apabila kondisi kontraksi pada teorema tersebut dirubah menjadi ( ) * ( ) ( ) ( ) ( ) ( )+ untuk. Pada Sub Bab III, akan ditunjukkan eksistensi titik tetap bersama untuk pemetaan bernilai himpunan ( ) dan pemetaan bernilai tunggal, dengan * + dan * + berturut-turut adalah pasangan kompatibel lemah dan memenuhi syarat-syarat tertentu Sistematika Penulisan Tesis ini terdiri dari 4 bab. Di dalam BAB I yaitu pendahuluan, memuat latar belakang permasalahan, tujuan penelitian, tinjauan pustaka, metodologi penelitian dan sistematika penulisan. Di dalam BAB II yaitu dasar teori, dibahas mengenai konsep yang akan digunakan dalam pembahasan selanjutnya, diantaranya konsep ruang metrik, metrik Hausdorff, pemetaan bernilai himpunan dan pemetaan kompatibel lemah. Dilanjutkan ke BAB III yaitu pembahasan dari hasil penelitian. Di dalam BAB III dibagi menjadi menjadi tiga Sub Bab. Sub Bab I dibahas tentang eksistensi titik koinsidensi dari pasangan pemetaan bernilai himpunan dan bernilai tunggal yang kompatibel lemah-. Selain itu dibahas juga mengenai titik tetap bersama dari pemetaan tersebut. Sub Bab II dibahas mengenai eksistensi dan ketunggalan titik tetap bersama dari pasangan pemetaan bernilai himpunan dan pemetaan bernilai tunggal yang kompatibel lemah-. Sub Bab III dibahas mengenai eksistensi titik tetap bersama dari pemetaan bernilai himpunan dan dan pemetaan bernilai tunggal yang kompatibel lemah. Selanjutnya, di dalam BAB IV yaitu kesimpulan dan saran berisi kesimpulan dari hasil penelitian dan saran untuk pengembangan lebih lanjut. 6

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Teori titik tetap merupakan salah satu landasan di dalam pengembangan matematika karena mempunyai peran yang cukup mendasar dalam aplikasi berbagai cabang

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu Matematika merupakan salah satu ilmu pengetahuan yang berperan penting dalam perkembangan teknologi. Ilmu Matematika juga merupakan ilmu dasar yang banyak

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Teori titik tetap merupakan salah satu hasil penelitian dalam bidang matematika analisis yang memiliki cukup banyak aplikasi. Salah satu aplikasi teori tersebut

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Seiring dengan perkembangan zaman, banyak sekali topik matematika khususnya dalam bidang analisis fungsional yang mengalami perluasan, seperti: ruang vektor,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Teori titik tetap merupakan teori matematika yang sering digunakan untuk menjamin eksistensi solusi masalah nilai awal dan syarat batas persamaan diferensial

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Teori titik tetap merupakan salah satu subjek yang menarik untuk dikaji karena memiliki banyak aplikasi dalam berbagai bidang. Selama kurun waktu sepuluh tahun

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Konsep ruang metrik merupakan salah satu konsep dasar dalam matematika analisis. Selama bertahun-tahun, para peneliti mencoba mengembangkan konsep ruang metrik.

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN Pada bab ini akan dibahas mengenai latar belakang masalah, perumusan masalah, batasan masalah, maksud dan tujuan penulisan, tinjauan pustaka serta sistematika penulisan skirpsi ini. 1.1.

Lebih terperinci

Ketunggalan titik Tetap Pemetaan Kondisi Tipe Kontraktif pada Ruang Banach

Ketunggalan titik Tetap Pemetaan Kondisi Tipe Kontraktif pada Ruang Banach Ketunggalan titik Tetap Pemetaan Kondisi Tipe Kontraktif pada Ruang Banach Badrulfalah 1,Khafsah Joebaedi 2 1 Departemen Matematika FMIPA Universitas Padjadjaran badrulfalah@gmail.com 2 Departemen Matematika

Lebih terperinci

PEMETAAN KONTRAKTIF LEMAH MULTIVALUED DI RUANG METRIK PARSIAL

PEMETAAN KONTRAKTIF LEMAH MULTIVALUED DI RUANG METRIK PARSIAL Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol. 9 No. 2, Desember 2017, hal. 1-10 ISSN (Cetak) : 2085-1456; ISSN (Online) : 2550-0422; https://jmpunsoed.com/ PEMETAAN KONTRAKTIF LEMAH MULTIVALUED

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu Matematika merupakan salah satu cabang ilmu yang berperan penting dalam berbagai bidang. Salah satu cabang ilmu matematika yang banyak diperbincangkan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang dan Permasalahan

BAB I PENDAHULUAN Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan Dalam ilmu matematika, khususnya dalam bidang analisis dikenal berbagai macam ruang, salah satunya adalah ruang metrik. Ruang metrik merupakan suatu

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pemetaan linear merupakan salah satu jenis pemetaan yang dikenal dalam bidang matematika, khususnya dalam bidang matematika analisis. Diberikan ruang vektor

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam matematika dikenal konsep fungsi naik monoton dan fungsi turun monoton. Jika f : R R merupakan fungsi naik monoton maka untuk setiap x, y R dengan x

Lebih terperinci

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann.

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral Lebesgue merupakan suatu perluasan dari integral Riemann. Sebagaimana telah diketahui, pengkonstruksian integral Riemann dilakukan dengan cara pemartisian

Lebih terperinci

BAB III FUNGSI UJI DAN DISTRIBUSI

BAB III FUNGSI UJI DAN DISTRIBUSI BAB III FUNGSI UJI DAN DISTRIBUSI Bab ini membahas tentang fungsi uji dan distribusi di mana ruang yang memuat keduanya secara berturut-turut dinamakan ruang fungsi uji dan ruang distribusi. Ruang fungsi

Lebih terperinci

Konvergensi Barisan dan Teorema Titik Tetap

Konvergensi Barisan dan Teorema Titik Tetap JURNAL SAINS DAN SENI ITS Vol. 5 No. (016) 337-350 (301-98X Print) A-59 Konvergensi Barisan dan Teorema Titik Tetap pada Ruang b-metrik Cahyaningrum Rahmasari, Sunarsini, dan Sadjidon Jurusan Matematika,

Lebih terperinci

BAB III KEKONVERGENAN LEMAH

BAB III KEKONVERGENAN LEMAH BAB III KEKONVERGENAN LEMAH Bab ini membahas inti kajian tugas akhir. Di dalamnya akan dibahas mengenai kekonvergenan lemah beserta sifat-sifat yang terkait dengannya. Sifatsifat yang dikaji pada bab ini

Lebih terperinci

ANALISIS TITIK TETAP SET- VALUED FUNCTION MENGGUNAKAN METRIK HAUSDORFF TESIS

ANALISIS TITIK TETAP SET- VALUED FUNCTION MENGGUNAKAN METRIK HAUSDORFF TESIS UNIVERSITAS INDONESIA ANALISIS TITIK TETAP SET- VALUED FUNCTION MENGGUNAKAN METRIK HAUSDORFF TESIS SAGITA CHAROLINA SIHOMBING 1006786266 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI MAGISTER

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral merupakan salah satu konsep penting dalam matematika dan banyak aplikasinya. Dalam kehidupan sehari-hari integral dapat diaplikasikan dalam berbagai

Lebih terperinci

UNIVERSITAS PENDIDIKAN INDONESIA

UNIVERSITAS PENDIDIKAN INDONESIA Ruang Norm Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Definisi. Misalkan suatu ruang vektor atas. Norm pada didefinisikan sebagai fungsi. : yang memenuhi N1. 0 N2. 0 0 N3.,, N4.,, Kita dapat

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 3.3 Himpunan Kompak Himpunan tak terhingga lebih sulit ditangani daripada himpunan terhingga. Namun ada himpunan tak terhingga yang

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Permasalahan

BAB I PENDAHULUAN Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Pemetaan merupakan konsep yang tidak pernah terlepas dari bahasan matematika analisis. Pengaitan setiap anggota dari suatu himpunan dengan tepat satu

Lebih terperinci

KONVERGENSI DAN KELENGKAPAN PADA RUANG QUASI METRIK

KONVERGENSI DAN KELENGKAPAN PADA RUANG QUASI METRIK JURNAL SAINS DAN SENI POMITS Vol 2, No 1, (2013) 1-6 1 KONVERGENSI DAN KELENGKAPAN PADA RUANG QUASI METRIK Fikri Firdaus, Sunarsini, Sadjidon Jurusan Matematika, Fakultas Matematika Ilmu Pengetahuan Alam,

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan II. LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan penelitian ini sehingga dapat dijadikan sebagai landasan berfikir dalam melakukan penelitian dan akan mempermudah

Lebih terperinci

Kekontraktifan Pemetaan pada Ruang Metrik Kerucut

Kekontraktifan Pemetaan pada Ruang Metrik Kerucut Jurnal Matematika Integratif ISSN 1412-6184 Vol 9 No 2, Oktober 2013 pp 53-57 Kekontraktifan Pemetaan pada Ruang Metrik Kerucut Badrulfalah dan Iin Irianingsih Jurusan Matematika, Fakultas MIPA, Universitas

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Analisis merupakan salah satu cabang matematika yang mempelajari antara lain barisan, limit, deret, kekontinuan, kekonvergenan, integral, dan yang lainnya.

Lebih terperinci

PROSIDING SEMINAR NASIONAL STATISTIKA UNIVERSITAS DIPONEGORO 2013 ISBN: DUA TIPE PEMETAAN KONTRAKTIF PADA RUANG METRIK CONE

PROSIDING SEMINAR NASIONAL STATISTIKA UNIVERSITAS DIPONEGORO 2013 ISBN: DUA TIPE PEMETAAN KONTRAKTIF PADA RUANG METRIK CONE DUA TIPE PEMETAAN KONTRAKTIF PADA RUANG METRIK CONE Mohammad Mahfuzh Shiddiq 1 1) Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Abstract Meir and Keeler introduced type of contraction

Lebih terperinci

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional Ming gu ke RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 56 Nama Mata Kuliah : Analisis Fungsional T o p i k S u b T o p i k 1. Ruang Banach - Ruang metrik - Ruang vektor bernorm - Barisan di ruang

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 3. Topologi Garis Bilangan Real 3.1 Teori Limit Limit, supremum, dan infimum Titik limit 3.2 Himpunan Buka dan Himpunan Tutup 3.3

Lebih terperinci

SIFAT TITIK TETAP PADA RUANG METRIK SKRIPSI

SIFAT TITIK TETAP PADA RUANG METRIK SKRIPSI SIFAT TITIK TETAP PADA RUANG METRIK SKRIPSI Untuk memenuhi sebagian persyaratan guna mencapai derajat sarjana S-1 Program Studi Matematika diajukan oleh Dika Ardian Susanto Putra 11610017 Kepada Program

Lebih terperinci

BAB I PENDAHULUAN. Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika

BAB I PENDAHULUAN. Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika dilengkapi dengan suatu norma., maka dikenal bahwa suatu ruang vektor bernorma. Kemudian

Lebih terperinci

SIFAT KELENGKAPAN RUANG METRIK BERNILAI KOMPLEKS

SIFAT KELENGKAPAN RUANG METRIK BERNILAI KOMPLEKS Prosiding Seminar Nasional Matematika dan Pembelajarannya. Jurusan Matematika, FMIPA UM. 13 Agustus 016 SIFAT KELENGKAPAN RUANG METRIK BERNILAI KOMPLEKS Dahliatul Hasanah FMIPA Universitas Negeri Malang

Lebih terperinci

INTERVAL KEKONTRAKTIFAN PEMETAAN PADA RUANG BANACH. Badrulfalah 1, Khafsah Joebaedi. 2.

INTERVAL KEKONTRAKTIFAN PEMETAAN PADA RUANG BANACH. Badrulfalah 1, Khafsah Joebaedi. 2. Eksakta Vol.18 No.2 Oktober 2017 http://eksakta.ppj.unp.ac.id E-ISSN : 2549-7464 P-ISSN : 1411-3724 INTERVAL KEKONTRAKTIFAN PEMETAAN PADA RUANG BANACH Badrulfalah 1, Khafsah Joebaedi. 2 1) Departemen Matematika,

Lebih terperinci

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Permasalahan

BAB I PENDAHULUAN Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Ditinjau dari bidang ilmu pengetahuan, teori persamaan diferensial merupakan suatu cabang analisis matematika yang banyak dipakai dalam kehidupan nyata,

Lebih terperinci

FOURIER Oktober 2014, Vol. 3 No. 2, KONSEP DASAR RUANG METRIK CONE. Yogyakarta

FOURIER Oktober 2014, Vol. 3 No. 2, KONSEP DASAR RUANG METRIK CONE. Yogyakarta FOURIER Oktober 014, Vol. 3 No., 146 166 KONSEP DASAR RUANG METRIK CONE A. Rifqi Bahtiar 1, Muchammad Abrori, Malahayati 3 1,, 3 Program Studi Matematika, Fakultas Sains dan Teknologi, UIN Sunan Kalijaga

Lebih terperinci

PEMETAAN KONTRAKSI CIRIC-MATKOWSKI PADA RUANG METRIK TERURUT. Mariatul Kiftiah

PEMETAAN KONTRAKSI CIRIC-MATKOWSKI PADA RUANG METRIK TERURUT. Mariatul Kiftiah PEMETAAN KONTRAKSI CIRIC-MATKOWSKI PADA RUANG METRIK TERURUT Mariatul Kiftiah Program Studi Matematika Fakultas MIPA Universitas Tanjungpura Jl. Prof. Dr. H. Hadari Nawawi, Pontianak, Kalimantan Barat

Lebih terperinci

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor,

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, II. TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, ruang Bernorm dan ruang Banach, ruang barisan, operator linear (transformasi linear) serta teorema-teorema

Lebih terperinci

BAB I PENDAHULUAN ( )

BAB I PENDAHULUAN ( ) BAB I PENDAHULUAN 1.1. Latar Belakang Persamaan diferensial merupakan persamaan yang melibatkan turunan dari satu atau lebih variabel tak bebas terhadap satu atau lebih variabel bebas dan dituliskan dengan

Lebih terperinci

TEOREMA TITIK TETAP PADA RUANG BERNORMA CONE BERNILAI-

TEOREMA TITIK TETAP PADA RUANG BERNORMA CONE BERNILAI- JURNAL SAINS DAN SENI POMITS Vol. 1, No. 1, (2013) 1-6 1 TEOREMA TITIK TETAP PADA RUANG BERNORMA CONE BERNILAI- Hajar Grestika Murti, Erna Apriliani, Sunarsini Jurusan Matematika, Fakultas Matematika dan

Lebih terperinci

Eksistensi Dan Ketunggalan Titik Tetap Untuk Pemetaan Kontraktif Pada Ruang Metrik-G Komplit

Eksistensi Dan Ketunggalan Titik Tetap Untuk Pemetaan Kontraktif Pada Ruang Metrik-G Komplit SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 Eksistensi Dan Ketunggalan Titik Tetap Untuk Pemetaan Kontraktif Pada Ruang Metrik-G Komplit Nurul Huda Matematika FMIPA Universitas Lambung

Lebih terperinci

BAB I PENDAHULUAN. umum ruang metrik dan memperluas pengertian klasik dari ruang Euclidean R n, sehingga

BAB I PENDAHULUAN. umum ruang metrik dan memperluas pengertian klasik dari ruang Euclidean R n, sehingga BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Permulaan munculnya analisis fungsional didasari oleh permasalahan pada kurang memadainya metode analitik klasik pada fisika dan astronomi matematika.

Lebih terperinci

yang Dibangun oleh Ukuran Bernilai Proyeksi

yang Dibangun oleh Ukuran Bernilai Proyeksi SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 Integral pada A - 3 yang Dibangun oleh Ukuran Bernilai Proyeksi Arta Ekayanti dan Ch. Rini Indrati. FMIPA Universitas Gadjah Mada arta_ekayanti@ymail.com

Lebih terperinci

SIFAT-SIFAT PEMETAAN OCCASIONALLY WEAKLY COMPATIBLE PADA RUANG METRIK FUZZY

SIFAT-SIFAT PEMETAAN OCCASIONALLY WEAKLY COMPATIBLE PADA RUANG METRIK FUZZY SIFAT-SIFAT PEMETAAN OCCASIONALLY WEAKLY COMPATIBLE PADA RUANG METRIK FUZZY Oleh: CITRA RIZKI NIM. 13321750 Skripsi ini ditulis untuk memenuhi sebagian persyaratan untuk mendapatkan gelar Sarjana Pendidikan

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 2.2 Sistem Bilangan Real sebagai Lapangan Terurut Operasi Aritmetika. Sifat-sifat dasar urutan dan aritmetika dari Sistem Bilangan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam ilmu matematika, banyak pembahasan di bidang analisis dan topologi yang memerlukan pengertian ruang Hilbert. Ruang Hilbert merupakan konsep abstrak yang mendasari

Lebih terperinci

BAB I PENDAHULUAN. : k N} dan A(m) menyatakan banyaknya m suku pertama (x n ) yang menjadi suku (x nk ), maka A(m)

BAB I PENDAHULUAN. : k N} dan A(m) menyatakan banyaknya m suku pertama (x n ) yang menjadi suku (x nk ), maka A(m) BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Konvergensi barisan bilangan real mempunyai banyak peranan dan aplikasi yang cukup penting pada beberapa bidang matematika, antara lain pada teori optimisasi,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Integral tipe Stieltjes merupakan salah satu topik yang banyak dipelajari dalam matematika analisis. Beberapa di antaranya adalah integral Riemann-Stieltjes,

Lebih terperinci

TITIK TETAP NADLR FUNGSI MULTI NILAI KONTRAKTIF PADA RUANG METRIK ( ) Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60111

TITIK TETAP NADLR FUNGSI MULTI NILAI KONTRAKTIF PADA RUANG METRIK ( ) Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60111 TITIK TETAP NADLR FUNGSI MULTI NILAI KONTRAKTIF PADA RUANG METRIK ( ) Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60111 Abstract. In this paper was discussed about Nadlr fixed

Lebih terperinci

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks 0. Pendahuluan Analisis Fourier mempelajari berbagai teknik menganalisis sebuah fungsi dengan menguraikannya sebagai deret atau integral fungsi tertentu (yang sifat-sifatnya telah kita kenal dengan baik,

Lebih terperinci

BEBERAPA TEOREMA TITIK TETAP UNTUK PEMETAAN NONSELF. Kata kunci : pemetaan nonexpansive, pemetaan condensing, pemetaan kompak.

BEBERAPA TEOREMA TITIK TETAP UNTUK PEMETAAN NONSELF. Kata kunci : pemetaan nonexpansive, pemetaan condensing, pemetaan kompak. BEBERAPA TEOREMA TITIK TETAP UNTUK PEMETAAN NONSELF Oleh: Rindang Kasih Program Studi Pendidikan Matematika FKIP UNIVET Sukoharjo Jl. Letjend Sujono Humardani No.1 Kampus Jombor Sukoharjo, e-mail: Rindang_k@yahoo.com

Lebih terperinci

KAJIAN TEOREMA TITIK TETAP PEMETAAN KONTRAKTIF PADA RUANG METRIK CONE LENGKAP DENGAN JARAK-W

KAJIAN TEOREMA TITIK TETAP PEMETAAN KONTRAKTIF PADA RUANG METRIK CONE LENGKAP DENGAN JARAK-W J. Math. and Its Appl. ISSN: 1829-605X Vol. 8, No. 2, November 2011, 43 49 KAJIAN TEOREMA TITIK TETAP PEMETAAN KONTRAKTIF PADA RUANG METRIK CONE LENGKAP DENGAN JARAK-W Sunarsini. 1, Sadjidon 2 Jurusan

Lebih terperinci

BAB 1 PENDAHULUAN. 1 ; untuk k = n 0 ; untuk k n. e [n]

BAB 1 PENDAHULUAN. 1 ; untuk k = n 0 ; untuk k n. e [n] BAB 1 PENDAHULUAN 1.1. Latar Belakang Barisan bilangan real adalah suatu fungsi bernilai real yang didefinisikan pada himpunan N = 0, 1, 2,.... Dengan kata lain, barisan bilangan real adalah suatu fungsi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Permasalahan

BAB I PENDAHULUAN Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Dalam matematika analisis dikenal teori ukuran. Salah satunya ukuran Lebesgue. Royden (1968) menjelaskan bahwa ukuran Lebesgue merupakan perumuman dari

Lebih terperinci

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh II. TINJAUAN PUSTAKA 2.1 Ruang Metrik Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh aksioma-aksioma tertentu. Ruang metrik merupakan hal yang fundamental dalam analisis fungsional,

Lebih terperinci

ANALISA KETUNGGALAN TITIK TETAP PADA PEMETAAN KONTRAKTIF DI RUANG METRIK LENGKAP DENGAN MEMANFAATKAN JARAK-W

ANALISA KETUNGGALAN TITIK TETAP PADA PEMETAAN KONTRAKTIF DI RUANG METRIK LENGKAP DENGAN MEMANFAATKAN JARAK-W ANALISA KETUNGGALAN TITIK TETAP PADA PEMETAAN KONTRAKTIF DI RUANG METRIK LENGKAP DENGAN MEMANFAATKAN JARAK-W Malahayati Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Lebih terperinci

Sifat-sifat Ruang Banach

Sifat-sifat Ruang Banach Vol. 11, No. 2, 115-121, Januari 2015 Sifat-sifat Ruang Banach Muhammad Zakir Abstrak Tulisan ini membahas tentang himpunan operator (pemetaan) linier dari ruang vektor ke ruang vektor yang dilambangkan

Lebih terperinci

ITERASI TIGA LANGKAH PADA PEMETAAN ASIMTOTIK NON- EKSPANSIF

ITERASI TIGA LANGKAH PADA PEMETAAN ASIMTOTIK NON- EKSPANSIF ITERASI TIGA LANGKAH PADA PEMETAAN ASIMTOTIK NON- EKSPANSIF Agung Anggoro, Siti Fatimah 1, Encum Sumiaty 2 Departemen Pendidikan Matematika FPMIPA UPI *Surel: agung.anggoro@student.upi.edu ABSTRAK. Misalkan

Lebih terperinci

Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji

Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji Hendy Fergus A. Hura 1, Nora Hariadi 2, Suarsih Utama 3 1 Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424,

Lebih terperinci

TEOREMA TITIK TETAP DI RUANG BANACH CONE

TEOREMA TITIK TETAP DI RUANG BANACH CONE TEOREMA TITIK TETAP DI RUANG BANACH CONE Skripsi Untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-1 Program Studi Matematika BAYU ADHI PRATAMA 08610031 PROGRAM STUDI MATEMATIKA FAKULTAS SAINS

Lebih terperinci

BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert

BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert BAB 2 RUANG HILBERT Pokok pembicaraan kita dalam tugas akhir ini berpangkal pada teori ruang Hilbert. Untuk itu di bab ini akan diberikan definisi ruang Hilbert dan ciri-cirinya, separabilitas ruang Hilbert,

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. September 12, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. September 12, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 12, 2011 Teorema 11 pada Bab 3 memberi kita cara untuk menyelidiki kekonvergenan sebuah barisan tanpa harus mengetahui

Lebih terperinci

Ruang Linear Metrik: Sifat Sifat Dasar Dan Struktur Ruang Dalam Ruang Linear Metrik

Ruang Linear Metrik: Sifat Sifat Dasar Dan Struktur Ruang Dalam Ruang Linear Metrik Ruang Linear Metrik: Sifat Sifat Dasar Dan Struktur Ruang Dalam Ruang Linear Metrik Oleh : Iswanti 1, Soeparna Darmawijaya 2 Iswanti, Jurusan Teknik Elektro, Politeknik Negeri Semarang, Semarang, Jawa

Lebih terperinci

BAB II KAJIAN TEORI. memahami sifat-sifat dari barisan fungsi. Pada bab ini akan diuraikan materimateri

BAB II KAJIAN TEORI. memahami sifat-sifat dari barisan fungsi. Pada bab ini akan diuraikan materimateri BAB II KAJIAN TEORI Analisis kekonvergenan pada barisan fungsi, apakah barisan fungsi itu? Apakah berbeda dengan barisan pada umumnya? Tentunya sebelum membahas mengenai barisan fungsi, apa saja jenis

Lebih terperinci

TEOREMA TITIK TETAP DALAM RUANG 2-METRIK SEMI QUASI

TEOREMA TITIK TETAP DALAM RUANG 2-METRIK SEMI QUASI TEOREMA TITIK TETAP DALAM RUANG 2-METRIK SEMI QUASI Oleh : SHOFWATUR ROHMAN J2A 006 049 Skripsi Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains pada Jurusan Matematika Fakultas

Lebih terperinci

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert

Lebih terperinci

Kelengkapan Ruang l pada Ruang Norm-n

Kelengkapan Ruang l pada Ruang Norm-n Jurnal Matematika, Statistika,& Komputasi Vol.... No... 20... Kelengkapan Ruang l pada Ruang Norm-n Meriam, Naimah Aris 2, Muh Nur 3 Abstrak Rumusan norm-n pada l merupakan perumuman dari rumusan norm-n

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Derivatif memegang peranan penting dalam syarat optimalitas fungsi, yaitu untuk mencapai ekstrim, derivatif order satu fungsi tersebut harus bernilai nol.

Lebih terperinci

UNIVERSITAS INDONESIA PEMETAAN KOMPATIBEL DI RUANG METRIK Q-FUZZY TESIS SITI JULAEHA

UNIVERSITAS INDONESIA PEMETAAN KOMPATIBEL DI RUANG METRIK Q-FUZZY TESIS SITI JULAEHA UNIVERSITAS INDONESIA PEMETAAN KOMPATIBEL DI RUANG METRIK Q-FUZZY TESIS SITI JULAEHA 1006734621 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI MAGISTER MATEMATIKA DEPOK JULI 2012 UNIVERSITAS

Lebih terperinci

Teorema Titik Tetap Pada Ruang Ultrametrik Diskrit

Teorema Titik Tetap Pada Ruang Ultrametrik Diskrit JURNAL SAINS DAN SENI POMITS Vol 3, No2, (2014) 2337-3520 (2301-928X Print) A-58 Teorema Titik Tetap Pada Ruang Ultrametrik Diskrit Wihdatul Ummah, Sunarsini dan Sadjidon Jurusan Matematika, Fakultas Matematika

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Aplikasi geometri fraktal tersebar di berbagai bidang, beberapa di antaranya adalah pada teori bilangan (number theory), pertumbuhan fraktal (fractal growth),

Lebih terperinci

EKSISTENSI SELEKTOR TERUKUR PADA FUNGSI BERNILAI HIMPUNAN DI DALAM RUANG BANACH TAK SEPARABEL

EKSISTENSI SELEKTOR TERUKUR PADA FUNGSI BERNILAI HIMPUNAN DI DALAM RUANG BANACH TAK SEPARABEL JMP : Volume 4 Nomor 1, Juni 2012, hal. 51-58 EKSISTENSI SELEKTOR TERUKUR PADA FUNGSI BERNILAI HIMPUNAN DI DALAM RUANG BANACH TAK SEPARABEL Mohamad Muslikh Jurusan Matematika F.MIPA Universitas Brawijaya

Lebih terperinci

TEORI DILASI DALAM RUANG HILBERT DAN RUANG BANACH

TEORI DILASI DALAM RUANG HILBERT DAN RUANG BANACH TEORI DILASI DALAM RUANG HILBERT DAN RUANG BANACH Annisanti Surachman, Rizky Rosjanuardi 1, Isnie Yusnitha 2 Departemen Pendidikan Matematika FPMIPA UPI *Surel: annisanti.surachman@student.upi.edu ABSTRAK.

Lebih terperinci

TEOREMA TITIK TETAP PADA RUANG ULTRAMETRIK DISKRIT

TEOREMA TITIK TETAP PADA RUANG ULTRAMETRIK DISKRIT JURNAL SAINS DAN SENI POMITS Vol 2, No1, (2014) 2337-3520 (2301-928X Print) 1 TEOREMA TITIK TETAP PADA RUANG ULTRAMETRIK DISKRIT Wihdatul Ummah, Sunarsini dan Sadjidon Jurusan Matematika, Fakultas Matematika

Lebih terperinci

BAB I PENDAHULUAN. Salah satu kajian menarik dalam analisis adalah teori himpunan.

BAB I PENDAHULUAN. Salah satu kajian menarik dalam analisis adalah teori himpunan. BAB I PENDAHULUAN 1.1 Latar Belakang Salah satu kajian menarik dalam analisis adalah teori himpunan. Himpunan merupakan konsep dasar dari semua cabang matematika bahkan sudah diperkenalkan dalam pendidikan

Lebih terperinci

SIFAT-SIFAT HIMPUNAN PROXIMINAL

SIFAT-SIFAT HIMPUNAN PROXIMINAL Prima: Jurnal Pendidikan Matematika Vol. 2, No. 1, Januari 2018, hal. 49-56 P-ISSN: 2579-9827, E-ISSN: 2580-2216 SIFAT-SIFAT HIMPUNAN PROXIMINAL Arta Ekayanti Universitas Muhammadiyah Ponorogo, Jl. Budi

Lebih terperinci

TANPA MENGGUNAKAN SIFAT KEKONTINUAN FUNGSI. Skripsi. Untuk memenuhi sebagian persyaratan. mencapai derajat Sarjana S-1. Program Studi Matematika

TANPA MENGGUNAKAN SIFAT KEKONTINUAN FUNGSI. Skripsi. Untuk memenuhi sebagian persyaratan. mencapai derajat Sarjana S-1. Program Studi Matematika TEOREMA TITIK TETAP PADA RUANG DISLOCATED QUASI METRIC TANPA MENGGUNAKAN SIFAT KEKONTINUAN FUNGSI Skripsi Untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-1 Program Studi Matematika MUTIA

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu matematika merupakan suatu ilmu dasar yang terus berkembang dan banyak digunakan dalam berbagai bidang. Salah satu cabang ilmu matematika yang mengalami

Lebih terperinci

VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS

VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2009 2 DAFTAR ISI DAFTAR ISI 2 1 Sistem Bilangan Kompleks (C) 1 1 Pendahuluan...............................

Lebih terperinci

Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert

Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert Vol 12, No 2, 153-159, Januari 2016 Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert Firman Abstrak Misalkan adalah operator linier dengan adalah ruang Hilbert Pada operator linier dikenal istilah

Lebih terperinci

KEKUATAN KONVERGENSI DALAM PROBABILITAS DAN KONVERGENSI ALMOST SURELY

KEKUATAN KONVERGENSI DALAM PROBABILITAS DAN KONVERGENSI ALMOST SURELY KEKUATAN KONVERGENSI DALAM PROBABILITAS DAN KONVERGENSI ALMOST SURELY Joko Sungkono* Abstrak : Tujuan yang ingin dicapai pada tulisan ini adalah mengetahui kekuatan konvergensi dalam probabilitas dan konvergensi

Lebih terperinci

TEOREMA TITIK TETAP DI RUANG BARISAN p-summable DALAM NORM-n

TEOREMA TITIK TETAP DI RUANG BARISAN p-summable DALAM NORM-n TEOREMA TITIK TETAP DI RUANG BARISAN p-summable DALAM NORM-n Anwar Mutaqin dan Indiana Marethi Program Studi Pendidikan Matematika Fakultas Keguruan dan Ilmu Pendidikan Universitas Sultan Ageng Tirtayasa

Lebih terperinci

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 29 BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 4.1 Perumusan Penduga Misalkan adalah proses Poisson nonhomogen

Lebih terperinci

RUANG-RUANG METRIK BERNILAI KOMPLEKS

RUANG-RUANG METRIK BERNILAI KOMPLEKS RUANG-RUANG METRIK BERNILAI KOMPLEKS Dahliatul Hasanah FMIPA Universitas Negeri Malang dahliatul.hasanah.fmipa@um.ac.id Abstrak: Ruang metrik bernilai kompleks merupakan pengembangan dari ruang metrik

Lebih terperinci

BAB 3 REVIEW PENDUGAAN FUNGSI INTENSITAS LOKAL DAN GLOBAL DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 3 REVIEW PENDUGAAN FUNGSI INTENSITAS LOKAL DAN GLOBAL DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 9 BAB 3 REVIEW PENDUGAAN FUNGSI INTENSITAS LOKAL DAN GLOBAL DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT Misalkan adalah proses Poisson nonhomogen pada interval dengan fungsi intensitas yang

Lebih terperinci

DASAR-DASAR TEORI RUANG HILBERT

DASAR-DASAR TEORI RUANG HILBERT DASAR-DASAR TEORI RUANG HILBERT Herry P. Suryawan 1 Geometri Ruang Hilbert Definisi 1.1 Ruang vektor kompleks V disebut ruang hasilkali dalam jika ada fungsi (.,.) : V V C sehingga untuk setiap x, y, z

Lebih terperinci

Ruang Norm-n Berdimensi Hingga

Ruang Norm-n Berdimensi Hingga Jurnal Matematika Integratif. Vol. 3, No. 2 (207), pp. 95 04. p-issn:42-684, e-issn:2549-903 doi:0.2498/jmi.v3.n2.986.95-04 Ruang Norm-n Berdimensi Hingga Moh. Januar Ismail Burhan Jurusan Matematika dan

Lebih terperinci

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB September 26, 2011

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB   September 26, 2011 (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 26, 2011 Diberikan sejumlah terhingga bilangan a 1,..., a N, kita dapat menghitung jumlah a 1 + + a N. Namun,

Lebih terperinci

EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH

EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni Prodi Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmailcom Info: Jurnal MSA Vol 3 No 1 Edisi: Januari

Lebih terperinci

TEOREMA TITIK TETAP PADA RUANG NORM-n STANDAR. Shelvi Ekariani KK Analisis dan Geometri FMIPA ITB

TEOREMA TITIK TETAP PADA RUANG NORM-n STANDAR. Shelvi Ekariani KK Analisis dan Geometri FMIPA ITB JMP : Volume 4 Nomor, Juni 0, hal. 69-77 TEOREMA TITIK TETAP PADA RUANG NORM-n STANDAR Shelvi Ekariani KK Analisis dan Geometri FMIPA ITB shelvi_ekariani@students.itb.ac.id Hendra Gunawan KK Analisis dan

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 4. Fungsi Kontinu 4.1 Konsep Kekontinuan Fungsi kontinu Limit fungsi dan limit barisan Prapeta himpunan buka 4.2 Sifat-Sifat Fungsi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Analisis fungsional merupakan salah satu cabang matematika analisis yang pembahasannya cukup kompleks karena mencakup banyak konsep, diantaranya ruang vektor,

Lebih terperinci

HOMOMORFISMA DARI LEVEL SUBNEAR-RING FUZZY

HOMOMORFISMA DARI LEVEL SUBNEAR-RING FUZZY ISSN : 1978-4422 HOMOMORFISMA DARI LEVEL SUBNEAR-RING FUZZY Saman Adurrahman Hal. 1-5 PEMETAAN KONTRAKSI CIRIC-MATKOWSKI PADA RUANG METRIK TERURUT Mariatul Kiftiah Hal. 6-14 PEMBENTUKAN FUNGSI PELUANG

Lebih terperinci

TRANSFORMASI LINIER PADA RUANG BANACH

TRANSFORMASI LINIER PADA RUANG BANACH TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni, S.Si., M.Pd Jurusan Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmail.com ABSTRAK Info: Jurnal MSA Vol. 2 No. 1 Edisi: Januari Juni

Lebih terperinci

URAIAN POKOK-POKOK PERKULIAHAN

URAIAN POKOK-POKOK PERKULIAHAN Pertemuan ke-: 10, 11, dan 12 Penyusun : Kosim Rukmana Materi: Barisan Bilangan Real 7. Barisan dan Limit Barisan 6. Teorema Limit Barisan 7. Barisan Monoton URAIAN POKOK-POKOK PERKULIAHAN 7. Barisan dan

Lebih terperinci

KEKONVERGENAN LEMAH PADA RUANG HILBERT

KEKONVERGENAN LEMAH PADA RUANG HILBERT KEKONVERGENAN LEMAH PADA RUANG HILBERT Moch. Ramadhan Mubarak 1), Encum Sumiaty 2), Cece Kustiawan 3) 1), 2), 3) Departemen Pendidikan Matematika FPMIPA UPI *Surel: ramadhan.101110176@gmail.com ABSTRAK.

Lebih terperinci

PENGANTAR ANALISIS REAL

PENGANTAR ANALISIS REAL Seri Analisis dan Geometri No. 1 (2009), -15 158 (173 hlm.) PENGANTAR ANALISIS REAL Oleh Hendra Gunawan Edisi Pertama Bandung, Januari 2009 2000 Dewey Classification: 515-xx. Kata Kunci: Analisis matematika,

Lebih terperinci

II. TINJAUAN PUSATAKA

II. TINJAUAN PUSATAKA 4 II. TINJAUAN PUSATAKA 2.1 Operator Definisi 2.1.1 (Kreyszig, 1989) Suatu pemetaan pada ruang vektor khususnya ruang bernorma disebut operator. Definisi 2.1.2 (Kreyszig, 1989) Diberikan ruang Bernorm

Lebih terperinci

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi semua fungsi yang terintegralkan Lebesgue, 1. Sebagaimana telah dirumuskan

Lebih terperinci