(MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS

Ukuran: px
Mulai penontonan dengan halaman:

Download "(MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS"

Transkripsi

1 Seminar Nasional Statistika 2 November 20 Vol 2, November 20 (MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS Euis Hartini Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM. 2 Jatinangor euis_hartini@yahoo.co.id Abstrak Di dalam persamaan A x = λ x, di mana matriks A ε M (C), diperoleh skalar λ ε C adalah nilai coneigen dari nilai A dan x ε C adalah vektor coneigen (vektor coninvarian) dari A yang berkaitan dengan λ. Tidak setiap matriks di M (C) mempunyai vektor coninvarian. Dengan demikian, didefinisikan subruang L ε C dan L subruang coninvarian dari matriks A jika A L L dengan L = {x x ε L } di mana x adalah konjugat dari vektor kolom x. Pada paper ini akan dibuktikan untuk setiap matriks A ε M (C) (n 3) mempunyai subruang coninvarian dimensi- atau 2. Sedangkan untuk A matriks normal konjugat (A ε CN ), jika setiap subruang coninvarian dari A ε CN maka berlaku juga subruang coninvarian dari A. Kata Kunci : Nilai coneigen, vektor coninvarian, subruang coninvarian, dan matriks normal konjugat.. PENDAHULUAN Sebarang vektor x yang ditransformasikan oleh matriks kuadrat A berordo n n atas lapangan F kedalam λx, sehingga Ax = λx, di mana x disebut vektor invarian atau vektor karakteristik atau vektor eigen dari A yang berkaitan dengan skalar λ (nilai eigen) dari matriks A. Untuk menentukan λ nilai eigen dari matriks A berordo n n, yaitu melalui persamaan karakteristik det(λi A) = 0 dan untuk menentukan x vektor invarian yang berkaitan dengan λ yaitu (λi A)x = 0. Menurut sifat jika λ, λ,, λ adalah nilai eigen yang berlainan dari matriks A berordo n n dan jika x, x,, x merupakan vektor-vektor invarian tak nol yang masing-masing berkaitan dengan nilai eigennya, maka {x } untuk i=, 2,, k adalah bebas linier. Jika λ nilai eigen dari A berordo n n maka rank λ I A adalah n dan dimensi ruang vektor invarian yang berkaitan dengan λ adalah. Selanjutnya untuk skalar λ C dan vektor tak nol x C masing-masing disebut nilai coneigen dan vektor coninvarian yang berkaitan dengan λ dari matriks A M (C), berlaku Jurusan Statistika-FMIPA-Unpad

2 Seminar Nasional Statistika 2 November 20 Vol 2, November 20 Ax = λx. Di dalam ruang vektor yang skalarnya bilangan real disebut ruang vektor real dan ruang vektor yang skalarnya kompleks disebut suatu ruang vektor kompleks. Dengan demikian di dalam ruang vektor yang skalarnya coneigen invarian dari matriks kuadrat kompleks disebut ruang vektor coneigen invarian matriks kuadrat kompleks. 2. PEMBAHASAN Dalam pembahasan paper ini diberikan definisi-definisi untuk menunjang pembuktian teorema berikutnya, yaitu sebagai berikut Definisi. Kenormalan suatu matriks kuadrat A adalah AA = A A () Definisi 2. Suatu matriks A M (C) dikatakan normal konjugat jika AA = A (2) Misalkan matriks A, B M (C) dikatakan consingular jika B = SAS untuk matriks S nonsingluar. Didefinisikan matriks perkalian berikut ini. berikut ini : A = A A dan A = AA = A (3) Karena tidak setiap matriks di M (C) mempunyai vektor coneigen maka didefinisikan Definisi 3. Subruang L ε C dan L subruang coninvarian dari matriks A M (C) jika A L L (4) dengan L = {x x ε L } di mana x adalah konjugat dari vektor kolom x. Hal khusus, jika dimensi L =, maka untuk setiap vektor tak nol x coneigen (vektor coninvarian) dari A. Berikut ini contoh dari Definisi 3. L disebut vektor Contoh. 2 + i A = maka i 3 det (λi A) = λ 2 i + i λ 3 = (λ 2)(λ 3) 2 = λ 5λ + 4 = (λ )(λ 4) = 0 Jadi, nilai coneigen matriks A adalah λ = dan λ = 4 Jurusan Statistika-FMIPA-Unpad

3 Seminar Nasional Statistika 2 November 20 Vol 2, November 20 i Untuk λ = λ =, maka + i 2 x x = 0 0 diperoleh x = ( i)s dan x = s. Jadi, x = ( i)s i = s merupakan ruang eigen ( ruang solusi/ coninvarian) yang s i berdimensi satu dengan basis u =, u merupakan vektor coninvarian dari A. 2 i Untuk λ = λ = 4 maka x + i x = 0 0 diperoleh x = dan x = s. Jadi, x = s s = s merupakan ruang eigen (ruang solusi/coninvarian) yang berdimensi satu dengan basis v =, v merupakan vektor coninvarian dari A. 2 + i i Dengan demikian, A L = = + i dan L = i 3 Jadi, berlaku A L L. Sebagai dasar pada subruang coninvarian diberikan teorema berikut ini. Teorema. Untuk setiap matriks A ε M (C) (n 3) mempunyai subruang coninvarian dimensi atau 2. Bukti : Misalkan x merupakan vektor eigen A dengan A x = A Ax = λx (5) untuk suatu λ ε C. Didefinisikan y = Ax (6) Andaikan y dan x adalah bergantung linier, yaitu Ax = μx (7) Untuk suatu μ ε C, maka x adalah vektor coninvarian dari A dan L = span{x} merupakan subruang coninvarian dimensi-. Persamaan (7) akan berlaku A x = A Ax = μ x, sedangkan persamaan (5) nilai eigen λ merupakan bilangan nonnegatif. Diasumsikan bahwa y dan x adalah bebas linier. Maka persamaan (6) dapat ditulis sebagai Ax = y dan persamaan (5) dapat ditulis sebagai berikut Ay = λ x, (8) hal ini berarti L = span{x, y} adalah subruang coninvarian dimensi-2 dari A. Sehingga didapat hubungan matriks berikut ini A{x, y} = {x, y} 0 λ. (9) 0 Dengan y vektor eigen dari A dari persamaan(6) dan perkalian persamaan (8) dengan A diperoleh Jurusan Statistika-FMIPA-Unpad

4 Seminar Nasional Statistika 2 November 20 Vol 2, November 20 A y = A Ay = λax = λ y. (0) Jadi vektor x berkaitan dengan nilai eigen λ, dan vektor y berkaitan λ. Dengan demikian L subruang dimensi-2, dalam hal ini subruang invarian dari invarian A dibangun oleh dua vektor eigen yaitu pasangan nilai eigen konjugat kompleks. Jika λ 0 maka dari (9) berlaku μ = λ dan untuk (6) dapat didefinisikan Maka diperoleh dan y = Ax () Ax = μy, Ay = μx A[x y] = [x y] 0 μ. (2) μ 0 Diberikan contoh untuk matriks berordo 3 x 3 atas bilangan kompleks. Contoh 2. i A = i i untuk menentukan nilai coninvarian λ dari matriks A dengan melalui i λ + i det (λi A) = 0 yaitu i λ i = 0 i λ + (λ + )(λ )(λ + ) + i + i (λ ) i (λ + ) i (λ + ) = 0 λ + λ = 0 λ (λ + ) = 0 Jadi, nilai coninvarian dari A adalah λ = 0 dan λ = x i 0 Untuk λ = 0 maka i i x = 0 diperoleh x =, x = 0, dan x =. Jadi, i x 0 x = 0 merupakan ruang eigen (ruang solusi/coninvarian) yang berdimensi satu dengan basis u = 0, u merupakan vektor coninvarian dari A. 0 i x 0 Untuk λ = maka i 2 i x = 0 diperoleh x = i, x =, dan x = 0. Jadi, i 0 x 0 i x = merupakan ruang eigen (ruang solusi/coninvarian) yang berdimensi satu dengan 0 i basis v =, v merupakan vektor coninvarian dari A. 0 Jurusan Statistika-FMIPA-Unpad 20 26

5 Seminar Nasional Statistika 2 November 20 Vol 2, November 20 Sifat. Misalkan A. i submatriks dari baris i,, i (i i i ) dari suatu matriks A M (C). Jika A C ℵ maka A = A,...,,, Selanjutnya akan diberikan matriks normal konjugat Cℵ, di mana jika A ε Cℵ maka A ε ℵ dan A ε ℵ. Sifat subruang coninvarian dari berikut ini. A ε Cℵ diberikan pada teorema Teorema 2. Jika untuk setiap subruang coninvarian dari A ε C ℵ maka berlaku juga subruang coninvarian dari A. Bukti : Misalkan L merupakan subruang coninvarian dimensi-k dari A ( k n). Misalkan basis ortonomal q,, q di L dan q,, q, q,, q merupakan elemen ruang C dan didefinisikan Q = Q Partisi B yang bersesuaian dengan Q B = B B B B dimana B adalah blok k k. Dari (3) dapat ditulis Q = [q q ], B = Q AQ (3) AQ = QB. (4) maka menurut definisi subruang coninvarian B = 0. Misalkan B ε Cℵ berlaku (3) B = 0. dari (3), diperoleh B = Q A Q dan A Q = QB (5) Persamaan (5) berarti L adalah subruang coninvarian dari A. Contoh 3. 2 i A = i 2 maka 2 i A = i 2 = A, A = A 2 + i = + i 2, A 2 i = i 2 = A, dan A 2 + i = = A + i 2 Jadi, AA 2 i = i i + i 2 A = A 2 i = i i + i 2 Jurusan Statistika-FMIPA-Unpad

6 Seminar Nasional Statistika 2 November 20 Vol 2, November 20 Dengan demikian AA =A, sehingga A merupakan matriks normal conjugate. Selanjutnya, untuk menentukan nilai coneigen λ dan vektor invariant dari matriks di atas diperoleh det (λi A) = 0 λ 2 + i + i λ 2 = (λ 2) ( + i) = 0 Jadi, nilai-nilai coneigen dari matriks A adalah λ 2 = + i λ = i + Untuk λ = i + 3 i + + i (λ 2) + ( + i)((λ 2) ( + i) = 0 + i i + x x = 0 0 maka diperoleh x = t dan x = t λ 2 = ( + i) λ = i + 3 dan Jadi, x = t = t merupakan ruang eigen (ruang solusi/coninvarian) yang t berdimensi satu dengan basis u =, u merupakan vektor coninvarian dari A. Untuk λ = i + 3 i + + i + i i + x x = 0 0 maka diperoleh x = s dan x = s Jadi, x = s = s merupakan ruang eigen (ruang solusi/coninvarian) yang s berdimensi satu dengan basis v =, v merupakan vektor coninvarian dari A. Karena A matriks normal conjugate, maka nilai coneigen dan vektor coninvarian dari matriks A sama halnya dengan nilai coneigen dan vektor coninvarian dari matriks A. 3. KESIMPULAN Untuk setiap matriks A berordo 2 x 2 atas bilangan komplek mempunyai subruang coninvarian berdimensi -. Sedangkan untuk setiap matriks A berordo n x n atas bilangan kompleks dengan n 3 mempunyai subruang coninvarian berdimensi - atau 2. Untuk A matriks normal conjugate, subruang coninvarian A sama halnya dengan subruang coninvarian A. 4. DAFTAR PUSTAKA Anton, Howard, 2000, Dasar dasar Aljabar Linear, diterjemkan pleh Ir. Hari Suminto, Interaksara, Batam Ayres, Frank,Jr.PhD, 994, Matriks, diterjemahkan oleh I Nyoman Susila, Erlangga, JakartaFaϐbender,H dan Ikramov,Kh. D.,2006, Some observation on the Youla form and conjugate-normal matrices. (diakses pada bulan Juni 20) Faϐbender, H, dan Kh. D. Ikramov, 30 November 2007, Conjugate-normal matrices A Survey. bs.de/~hfassben/papers/youla.pdf (diakses pada bulan Juni 20) Jurusan Statistika-FMIPA-Unpad

NILAI EIGEN DAN VEKTOR EIGEN disebut vektor eigen dari matriks A =

NILAI EIGEN DAN VEKTOR EIGEN disebut vektor eigen dari matriks A = NILAI EIGEN DAN VEKTOR EIGEN >> DEFINISI NILAI EIGEN DAN VEKTOR EIGEN Jika A adalah sebuah matriks n n, maka sebuah vektor taknol x pada R n disebut vektor eigen (vektor karakteristik) dari A jika Ax adalah

Lebih terperinci

Perluasan Teorema Cayley-Hamilton pada Matriks

Perluasan Teorema Cayley-Hamilton pada Matriks Vol. 8, No.1, 1-11, Juli 2011 Perluasan Teorema Cayley-Hamilton pada Matriks Nur Erawati, Azmimy Basis Panrita Abstrak Teorema Cayley-Hamilton menyatakan bahwa setiap matriks bujur sangkar memenuhi persamaan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II. A. 1 Matriks didefinisikan sebagai susunan segi empat siku- siku dari bilangan- bilangan yang diatur dalam baris dan kolom (Anton, 1987:22).

Lebih terperinci

METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS

METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS Arif Prodi Matematika, FST- UINAM Wahyuni Prodi Matematika, FST-UINAM Try Azisah Prodi Matematika, FST-UINAM

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Dalam bab ini akan diberikan beberapa materi yang akan diperlukan di dalam pembahasan, seperti: matriks secara umum; matriks yang dipartisi; matriks tereduksi dan taktereduksi; matriks

Lebih terperinci

SUMMARY ALJABAR LINEAR

SUMMARY ALJABAR LINEAR SUMMARY ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta

Lebih terperinci

KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT

KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT Nama Mahasiswa : Aprilliantiwi NRP : 1207100064 Jurusan : Matematika Dosen Pembimbing : 1 Soleha, SSi, MSi 2 Dian Winda Setyawati,

Lebih terperinci

Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift

Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift Jurnal Penelitian Sains Volume 14 Nomer 1(A) 14103 Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift Yuli Andriani Jurusan Matematika FMIPA,

Lebih terperinci

MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINIER WAKTU DISKRIT. Soleha, Dian Winda Setyawati Jurusan Matematika, FMIPA Institut Teknologi Surabaya

MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINIER WAKTU DISKRIT. Soleha, Dian Winda Setyawati Jurusan Matematika, FMIPA Institut Teknologi Surabaya MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINIER WAKTU DISKRIT Soleha, Dian Winda Setyawati Jurusan Matematika, FMIPA Institut Teknologi Surabaya Abstract. Matrix is diagonalizable (similar with matrix

Lebih terperinci

BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR

BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR A. DEFINISI DASAR 1. Definisi-1 Suatu pemetaan f dari ruang vektor V ke ruang vektor W adalah aturan perkawanan sedemikian sehingga setiap vektor v V dikawankan

Lebih terperinci

MATRIKS BENTUK KANONIK RASIONAL DENGAN MENGGUNAKAN PEMBAGI ELEMENTER INTISARI

MATRIKS BENTUK KANONIK RASIONAL DENGAN MENGGUNAKAN PEMBAGI ELEMENTER INTISARI Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 6, No. (17), hal 7 34. MATRIKS BENTUK KANONIK RASIONAL DENGAN MENGGUNAKAN PEMBAGI ELEMENTER Ardiansyah, Helmi, Fransiskus Fran INTISARI Pada

Lebih terperinci

SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR

SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 03, No. 1 (2014), hal 91 98. SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR Febrianti,

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk

Lebih terperinci

APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS

APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS Jurnal UJMC, Volume, Nomor, Hal 36-40 pissn : 460-3333 eissn : 579-907X APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS Novita Eka Chandra dan Wiwin Kusniati Universitas

Lebih terperinci

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

BAB II TEORI KODING DAN TEORI INVARIAN

BAB II TEORI KODING DAN TEORI INVARIAN BAB II TEORI KODING DAN TEORI INVARIAN Pada bab 1 ini akan dibahas definisi kode, khususnya kode linier atas dan pencacah bobot Hammingnya. Di samping itu, akan dijelaskanan invarian, ring invarian dan

Lebih terperinci

MATRIKS UNITER, SIMILARITAS UNITER DAN MATRIKS NORMAL. Anis Fitri Lestari. Mahasiswa Universitas Muhammadiyah Ponorogo ABSTRAK

MATRIKS UNITER, SIMILARITAS UNITER DAN MATRIKS NORMAL. Anis Fitri Lestari. Mahasiswa Universitas Muhammadiyah Ponorogo ABSTRAK MATRIKS UNITER, SIMILARITAS UNITER DAN MATRIKS NORMAL Anis Fitri Lestari Mahasiswa Universitas Muhammadiyah Ponorogo ABSTRAK Matriks normal merupakan matriks persegi yang entri-entrinya bilangan kompleks

Lebih terperinci

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data A. Model Matematika BAB II KAJIAN TEORI Pemodelan matematika adalah proses representasi dan penjelasan dari permasalahan dunia real yang dinyatakan dalam pernyataan matematika (Widowati dan Sutimin, 2007:

Lebih terperinci

DIAGONALISASI MATRIKS KOMPLEKS

DIAGONALISASI MATRIKS KOMPLEKS Buletin Ilmiah Mat Stat dan Terapannya (Bimaster) Volume 04, No 3 (2015), hal 337-346 DIAGONALISASI MATRIKS KOMPLEKS Heronimus Hengki, Helmi, Mariatul Kiftiah INTISARI Matriks kompleks merupakan matriks

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II.A.1 Matriks didefinisikan sebagai susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Contoh II.A.1: 9 5

Lebih terperinci

BAB 5 RUANG VEKTOR A. PENDAHULUAN

BAB 5 RUANG VEKTOR A. PENDAHULUAN BAB 5 RUANG VEKTOR A. PENDAHULUAN 1. Definisi-1. Suatu ruang vektor adalah suatu himpunan objek yang dapat dijumlahkan satu sama lain dan dikalikan dengan suatu bilangan, yang masing-masing menghasilkan

Lebih terperinci

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor,

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, II. TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, ruang Bernorm dan ruang Banach, ruang barisan, operator linear (transformasi linear) serta teorema-teorema

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN 1.1 Latar Belakang Matriks merupakan istilah yang digunakan untuk menunjukkan jajaran persegi panjang dari bilangan-bilangan dan setiap matriks akan mempunyai baris dan kolom. Salah satu

Lebih terperinci

SIFAT-SIFAT KESETARAAN PADA MATRIKS SECONDARY NORMAL ABSTRACT

SIFAT-SIFAT KESETARAAN PADA MATRIKS SECONDARY NORMAL ABSTRACT SIFAT-SIFAT KESETARAAN PADA MATRIKS SECONDARY NORMAL Nursyahlina 1, S. Gemawati, A. Sirait 1 Mahasiswa Program Studi S1 Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

BAB 2 LANDASAN TEORI. yang dibicarakan yang akan digunakan pada bab selanjutnya. Bentuk umum dari matriks bujur sangkar adalah sebagai berikut:

BAB 2 LANDASAN TEORI. yang dibicarakan yang akan digunakan pada bab selanjutnya. Bentuk umum dari matriks bujur sangkar adalah sebagai berikut: BAB 2 LANDASAN TEORI Pada bab ini dibicarakan mengenai matriks yang berbentuk bujur sangkar dengan beberapa definisi, teorema, sifat-sifat dan contoh sesuai dengan matriks tertentu yang dibicarakan yang

Lebih terperinci

Operasi perkalian skalar merupakan suatu aturan yang mengasosiasikan setiap skalar k dan setiap objek u pada v dengan suatu objek ku, yang disebut

Operasi perkalian skalar merupakan suatu aturan yang mengasosiasikan setiap skalar k dan setiap objek u pada v dengan suatu objek ku, yang disebut RUANG VEKTOR REAL Aksioma ruang vektor, dinyatakan dlam definisi beikut, dimana aksiona merupakan aturan permainan dalam ruang vektor. Definisi : Jika V merupakan suatu himpunan tidak kosong dari objek

Lebih terperinci

STABILISASI SISTEM KONTROL LINIER DENGAN PENEMPATAN NILAI EIGEN

STABILISASI SISTEM KONTROL LINIER DENGAN PENEMPATAN NILAI EIGEN Jurnal Matematika UNAND Vol 2 No 3 Hal 126 133 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND STABILISASI SISTEM KONTROL LINIER DENGAN PENEMPATAN NILAI EIGEN FAURI Program Studi Matematika, Fakultas

Lebih terperinci

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel)

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U November 2015 MZI (FIF Tel-U) Ruang Baris, Kolom,

Lebih terperinci

KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT

KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT Oleh: APRILLIANTIWI NRP. 1207100064 Dosen Pembimbing: 1. Soleha, S.Si, M.Si 2. Dian Winda S., S.Si, M.Si LATAR BELAKANG Matriks dan

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.

Lebih terperinci

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian

Lebih terperinci

Pertama, daftarkan kedua himpunan vektor: himpunan yang merentang diikuti dengan himpunan yang bergantung linear, perhatikan:

Pertama, daftarkan kedua himpunan vektor: himpunan yang merentang diikuti dengan himpunan yang bergantung linear, perhatikan: Dimensi dari Suatu Ruang Vektor Jika suatu ruang vektor V memiliki suatu himpunan S yang merentang V, maka ukuran dari sembarang himpunan di V yang bebas linier tidak akan melebihi ukuran dari S. Teorema

Lebih terperinci

Latihan 7 : Similaritas, Pendiagonalan Matriks, Polinom Matriks

Latihan 7 : Similaritas, Pendiagonalan Matriks, Polinom Matriks Latihan 7 : Similaritas, Pendiagonalan Matriks, Polinom Matriks 6. Tentukan polinomial karakteristik dari matriks transformasi A=. Andaikan A adalah matriks persegi berdimensi x. Polinom karakteristik

Lebih terperinci

EKSISTENSI DAN KONSTRUKSI GENERALISASI

EKSISTENSI DAN KONSTRUKSI GENERALISASI Jurnal Matematika UNAND Vol. V No. Hal. 77 85 SSN : 2303 290 c Jurusan Matematika FMPA UNAND KSSTNS DAN KONSTRUKS GNRALSAS {}-NVRS DAN {, 2}-NVRS ZAHY DL FTR, YANTA, NOVA NOLZA BAKAR Program Studi Matematika,

Lebih terperinci

MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL TUGAS AKHIR

MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL TUGAS AKHIR MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika oleh DEVI SAFITRI 10654004470 FAKULTAS

Lebih terperinci

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1 Ruang Vektor Kartika Firdausy UAD blog.uad.ac.id/kartikaf Syarat agar V disebut sebagai ruang vektor 1. Jika vektor vektor u, v V, maka vektor u + v V 2. u + v = v + u 3. u + ( v + w ) = ( u + v ) + w

Lebih terperinci

Eigen value & Eigen vektor

Eigen value & Eigen vektor Eigen value & Eigen vektor Hubungan antara vektor x (bukan nol) dengan vektor Ax yang berada di R n pada proses transformasi dapat terjadi dua kemungkinan : 1) 2) Tidak mudah untuk dibayangkan hubungan

Lebih terperinci

ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS. Dosen Pengampu: DARMADI, S.Si, M.Pd. Oleh: Kelompok III

ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS. Dosen Pengampu: DARMADI, S.Si, M.Pd. Oleh: Kelompok III ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS Dosen Pengampu: DARMADI, SSi, MPd Oleh: Kelompok III 1 Andik Dwi S (06411008) 2 Indah Kurniawati (06411090) 3 Mahfuat M (06411104)

Lebih terperinci

Yang dipelajari. 1. Masalah Nilai Eigen dan Penyelesaiannya 2. Masalah Pendiagonalan. Referensi : Kolman & Howard Anton. Ilustrasi

Yang dipelajari. 1. Masalah Nilai Eigen dan Penyelesaiannya 2. Masalah Pendiagonalan. Referensi : Kolman & Howard Anton. Ilustrasi 7// NILAI EIGEN dan VEKTOR EIGEN Yang dipelajari.. Masalah Nilai Eigen dan Penyelesaiannya. Masalah Pendiagonalan Referensi : Kolman & Howard Anton. Ilustrasi Misalkan t : R n R n dengan definisi t(x)

Lebih terperinci

MATRIKS A = ; B = ; C = ; D = ( 5 )

MATRIKS A = ; B = ; C = ; D = ( 5 ) MATRIKS A. DEFINISI MATRIKS Matriks adalah suatu susunan bilangan berbentuk segi empat dari suatu unsur-unsur pada beberapa sistem aljabar. Unsur-unsur tersebut bisa berupa bilangan dan juga suatu peubah.

Lebih terperinci

SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd

SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd SUBRUANG VEKTOR Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd Disusun Oleh : Kelompok 6/ III A4 1. Nina Octaviani Nugraheni 14144100115 2. Emi Suryani 14144100126

Lebih terperinci

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: = BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam

Lebih terperinci

DIAGONALISASI MATRIKS HILBERT

DIAGONALISASI MATRIKS HILBERT Jurnal UJMC, Volume 3, Nomor 2, Hal 7-24 pissn : 2460-3333 eissn : 2579-907X DIAGONALISASI MATRIKS HILBERT Randhi N Darmawan Universitas PGRI Banyuwangi, randhinumeric@gmailcom Abstract The Hilbert matrix

Lebih terperinci

TRANSFORMASI LINIER PADA RUANG BANACH

TRANSFORMASI LINIER PADA RUANG BANACH TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni, S.Si., M.Pd Jurusan Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmail.com ABSTRAK Info: Jurnal MSA Vol. 2 No. 1 Edisi: Januari Juni

Lebih terperinci

PENENTUAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL MENGGUNAKAN METODE PANGKAT

PENENTUAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL MENGGUNAKAN METODE PANGKAT Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 6, No. 0 (017), hal 17 6. PENENTUAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL MENGGUNAKAN METODE PANGKAT Yuyun Eka Pratiwi, Mariatul Kiftiah,

Lebih terperinci

EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH

EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni Prodi Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmailcom Info: Jurnal MSA Vol 3 No 1 Edisi: Januari

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Matriks Tujuan Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Pengertian Matriks Adalah kumpulan bilangan yang disajikan secara teratur dalam

Lebih terperinci

PENGHITUNGAN VEKTOR-KHARAKTERISTIK SECARA ITERATIF MENGGUNAKAN TITIK TETAP BROUWER

PENGHITUNGAN VEKTOR-KHARAKTERISTIK SECARA ITERATIF MENGGUNAKAN TITIK TETAP BROUWER J. Math. and Its Appl. ISSN: 829-65X Vol. 8, No. 2, November 2, 8 PENGHITUNGAN VEKTOR-KHARAKTERISTIK SECARA ITERATIF MENGGUNAKAN TITIK TETAP BROUWER Subiono Jurusan Matematika FMIPA Institut Teknologi

Lebih terperinci

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk BAB I PENDAHULUAN 1.1 Latar Belakang Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk memeriksa kelakuan sistem dinamik kompleks, biasanya dengan menggunakan persamaan diferensial

Lebih terperinci

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 467 Teknik Numerik Sistem Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF 2 3 CONTOH 4 SIMPULAN

Lebih terperinci

Aljabar Linier Elementer. Kuliah 26

Aljabar Linier Elementer. Kuliah 26 Aljabar Linier Elementer Kuliah 26 Materi Kuliah Transformasi Linier Umum Kernel dan Range 10/11/2014 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Umum Definisi Misalkan V dan W adalah ruang vektor

Lebih terperinci

SPECTRUM PADA GRAF STAR ( ) DAN GRAF BIPARTISI KOMPLIT ( ) DENGAN

SPECTRUM PADA GRAF STAR ( ) DAN GRAF BIPARTISI KOMPLIT ( ) DENGAN PROSIDING ISBN : 978 979 6353 3 SPECTRUM PADA GRAF STAR ( ) DAN GRAF BIPARTISI OMPLIT ( ) A. DENGAN Oleh Imam Fahcruddin Mahasiswa Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri

Lebih terperinci

APLIKASI MATRIKS LESLIE UNTUK MEMPREDIKSI JUMLAH DAN LAJU PERTUMBUHAN SUATU POPULASI

APLIKASI MATRIKS LESLIE UNTUK MEMPREDIKSI JUMLAH DAN LAJU PERTUMBUHAN SUATU POPULASI Buletin Ilmiah Math Stat Dan Terapannya (Bimaster) Volume 02, No 3 (2013), hal 163-172 APLIKASI MATRIKS LESLIE UNTUK MEMPREDIKSI JUMLAH DAN LAJU PERTUMBUHAN SUATU POPULASI Yudha Pratama, Bayu Prihandono,

Lebih terperinci

A 10 Diagonalisasi Matriks Atas Ring Komutatif

A 10 Diagonalisasi Matriks Atas Ring Komutatif A 10 Diagonalisasi Matriks Atas Ring Komutatif Joko Harianto 1, Puguh Wahyu Prasetyo 2, Vika Yugi Kurniawan 3, Sri Wahyuni 4 1 Mahasiswa S2 Matematika FMIPA UGM, 2 Mahasiswa S2 Matematika FMIPA UGM, 3

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan.

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas mengenai dasar teori untuk menganalisis simulasi kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. 2.1 Persamaan Diferensial Biasa

Lebih terperinci

Nilai Eigen dan Vektor Eigen Universal Matriks Interval Atas Aljabar Max-Plus

Nilai Eigen dan Vektor Eigen Universal Matriks Interval Atas Aljabar Max-Plus Nilai Eigen dan Vektor Eigen Universal Matriks Interval Atas Aljabar Max-Plus Fitri Aryani 1, Tri Novita Sari 2 Jurusan Matematika Fakultas Sains dan Teknologi UIN Suska Riau e-mail: khodijah_fitri@uin-suska.ac.id

Lebih terperinci

SISTEM PERSAMAAN LINEAR ( BAGIAN II )

SISTEM PERSAMAAN LINEAR ( BAGIAN II ) SISTEM PERSAMAAN LINEAR ( BAGIAN II ) D. FAKTORISASI MATRIKS D2 2. METODE ITERASI UNTUK MENYELESAIKAN SPL D3 3. NILAI EIGEN DAN VEKTOR EIGEN D4 4. POWER METHOD Beserta contoh soal untuk setiap subbab 2

Lebih terperinci

RANK MATRIKS ATAS RING KOMUTATIF

RANK MATRIKS ATAS RING KOMUTATIF Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 1 (2013), hal. 63 70. RANK MATRIKS ATAS RING KOMUTATIF Eka Wulan Ramadhani, Nilamsari Kusumastuti, Evi Noviani INTISARI Rank dari matriks

Lebih terperinci

UNIVERSITAS PENDIDIKAN INDONESIA

UNIVERSITAS PENDIDIKAN INDONESIA Ruang Norm Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Definisi. Misalkan suatu ruang vektor atas. Norm pada didefinisikan sebagai fungsi. : yang memenuhi N1. 0 N2. 0 0 N3.,, N4.,, Kita dapat

Lebih terperinci

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO PERANGKAT PEMBELAJARAN MATA KULIAH : ALJABAR LINIER 2 KODE : MKK414515 DOSEN PENGAMPU : Annisa Prima Exacta, M.Pd. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS

Lebih terperinci

Aljabar Linier Elementer. Kuliah 27

Aljabar Linier Elementer. Kuliah 27 Aljabar Linier Elementer Kuliah 27 Materi Kuliah Transformasi Linier Invers Matriks Transformasi Linier Umum //24 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Satu ke satu dan Sifat-sifatnya Definisi

Lebih terperinci

Matriks - Definisi. Sebuah matriks yang memiliki m baris dan n kolom disebut matriks m n. Sebagai contoh: Adalah sebuah matriks 2 3.

Matriks - Definisi. Sebuah matriks yang memiliki m baris dan n kolom disebut matriks m n. Sebagai contoh: Adalah sebuah matriks 2 3. MATRIKS Pokok Bahasan Matriks definisi Notasi matriks Matriks yang sama Panambahan dan pengurangan matriks Perkalian matriks Transpos suatu matriks Matriks khusus Determinan suatu matriks bujursangkar

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor

Lebih terperinci

BAB II MATRIKS POSITIF. Pada bab ini akan dibahas mengenai Teorema Perron, yaitu teori hasil kontribusi

BAB II MATRIKS POSITIF. Pada bab ini akan dibahas mengenai Teorema Perron, yaitu teori hasil kontribusi BAB II MATRIKS POSITIF Pada bab ini akan dibahas mengenai Teorema Perron, yaitu teori hasil kontribusi dari seorang matematikawan German, Oskar Perron. Perron menerbitkan tulisannya tentang sifat-sifat

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari

BAB 2 LANDASAN TEORI. Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari BAB 2 LANDASAN TEORI 21 Analisis Komponen Utama 211 Pengantar Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari tulisan Karl Pearson pada tahun 1901 untuk peubah non-stokastik Analisis

Lebih terperinci

RUANG HASIL KALI DALAM (RHKD) Makalah Ini Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pengampu: Abdul Aziz Saefudin, M.

RUANG HASIL KALI DALAM (RHKD) Makalah Ini Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pengampu: Abdul Aziz Saefudin, M. RUANG HASIL KALI DALAM (RHKD) Makalah Ini Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pengampu: Abdul Aziz Saefudin, M.Pd Disusun oleh: Kelompok 5 1. Nurita Cahyaningtyas (14144100112)

Lebih terperinci

KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS

KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 279 284. KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS Adrianus Sumitro, Nilamsari Kusumastuti, Shantika Martha

Lebih terperinci

untuk setiap x sehingga f g

untuk setiap x sehingga f g Jadi ( f ( f ) bernilai nol untuk setiap x, sehingga ( f ( f ) fungsi nol atau ( f ( f ) Aksioma 5 Ambil f, g F, R, ( f g )( f g ( g( g( ( f g)( Karena ( f g )( ( f g)( untuk setiap x sehingga f g Aksioma

Lebih terperinci

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66 MATRIKS Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Matriks Bogor, 2012 1 / 66 Topik Bahasan 1 Matriks 2 Operasi Matriks 3 Determinan matriks 4 Matriks Invers 5 Operasi

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

MENGHITUNG DETERMINAN MATRIKS MENGGUNAKAN METODE SALIHU

MENGHITUNG DETERMINAN MATRIKS MENGGUNAKAN METODE SALIHU MENGHITUNG DETERMINAN MATRIKS MENGGUNAKAN METODE SALIHU DENGAN Andi Bahota 1*, Aziskhan 2, Musraini M. 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen JurusanMatematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

04-Ruang Vektor dan Subruang

04-Ruang Vektor dan Subruang 04-Ruang Vektor dan Subruang Vektor (1) Dosen: Anny Yuniarti, M.Comp.Sc Gasal 2011-2012 Anny2011 1 Agenda Bagian 1: Ruang Vektor Bagian 2: Nullspace of A: Solusi Ax = 0 Bagian 3: Rank dan Row-reduced-form

Lebih terperinci

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank khozin mu tamar 9 Oktober 2014 PERTEMUAN-4 : SISTEM KOORDINAT, DIMEN- SI RUANG VEKTOR DAN RANK 1. Sistem koordinat (a) Ketunggalan scalar

Lebih terperinci

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU Sistem persamaan linear orde/ tingkat satu memiliki bentuk standard : = = = = = = = = = + + + + + + + + + + Diasumsikan koefisien = dan fungsi adalah menerus

Lebih terperinci

II. TINJAUAN PUSATAKA

II. TINJAUAN PUSATAKA 4 II. TINJAUAN PUSATAKA 2.1 Operator Definisi 2.1.1 (Kreyszig, 1989) Suatu pemetaan pada ruang vektor khususnya ruang bernorma disebut operator. Definisi 2.1.2 (Kreyszig, 1989) Diberikan ruang Bernorm

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN KS96 KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mencari ruang baris, ruang kolom,

Lebih terperinci

KARAKTERISTIK PERSAMAAN ALJABAR RICCATI DAN PENERAPANNYA PADA MASALAH KENDALI

KARAKTERISTIK PERSAMAAN ALJABAR RICCATI DAN PENERAPANNYA PADA MASALAH KENDALI Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 4 Mei 0 KARAKTERISTIK PERSAMAAN ALJABAR RICCATI DAN PENERAPANNYA PADA MASALAH KENDALI

Lebih terperinci

MENENTUKAN PERPANGKATAN MATRIKS TANPA MENGGUNAKAN EIGENVALUE

MENENTUKAN PERPANGKATAN MATRIKS TANPA MENGGUNAKAN EIGENVALUE MENENTUKAN PERPANGKATAN MATRIKS TANPA MENGGUNAKAN EIGENVALUE Rini Pratiwi 1*, Rolan Pane 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu

Lebih terperinci

BAB I PENDAHULUAN. 3) Untuk mengetahui apa yang dimaksud dengan invers matriks. 4) Untuk mengetahui apa yang dimaksud dengan determinan matriks

BAB I PENDAHULUAN. 3) Untuk mengetahui apa yang dimaksud dengan invers matriks. 4) Untuk mengetahui apa yang dimaksud dengan determinan matriks 1.1 LATAR BELAKANG BAB I PENDAHULUAN Teori matriks merupakan salah satu cabang ilmu aljabar linier yang menjadi pembahasan penting dalam ilmu matematika. Sejalan dengan perkembangan ilmu pengetahuan, aplikasi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Konvek Definisi 2.1.1. Suatu himpunan C di R n dikatakan konvek jika untuk setiap x, y C dan setiap bilangan real α, 0 < α < 1, titik αx + (1 - α)y C atau garis penghubung

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Eigen Value Eigen Vector TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Eigen Value Eigen Vector TIM KALIN KS091206 KALKULUS DAN ALJABAR LINEAR Eigen Value Eigen Vector TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat menghitung eigen value dan eigen vector

Lebih terperinci

Pertemuan 1 Sistem Persamaan Linier dan Matriks

Pertemuan 1 Sistem Persamaan Linier dan Matriks Matriks & Ruang Vektor Pertemuan Sistem Persamaan Linier dan Matriks Start Matriks & Ruang Vektor Outline Materi Pengenalan Sistem Persamaan Linier (SPL) SPL & Matriks Matriks & Ruang Vektor Persamaan

Lebih terperinci

Matriks Leslie dan Aplikasinya dalam Memprediksi Jumlah dan Laju pertumbuhan Penduduk di Kota Makassar

Matriks Leslie dan Aplikasinya dalam Memprediksi Jumlah dan Laju pertumbuhan Penduduk di Kota Makassar Matriks Leslie dan Aplikasinya dalam Memprediksi Jumlah dan Laju pertumbuhan Penduduk di Kota Makassar Wahidah Sanusi 1, Sukarna 1 dan Nur Ridiawati 1, a) 1 Jurusan Matematika, Fakultas Matematika dan

Lebih terperinci

Konstruksi Matriks NonNegatif Simetri dengan Spektrum Bilangan Real

Konstruksi Matriks NonNegatif Simetri dengan Spektrum Bilangan Real J. Math. and Its Appl. ISSN: 189-605X Vol. 4, No. 1, May 007, 17 5 Konstruksi Matriks NonNegatif Simetri dengan Spektrum Bilangan Real Bambang Sugandi 1 dan Erna Apriliani 1 Jurusan Matematika, FMIPA Unibraw,

Lebih terperinci

Penyelesaian Penempatan Kutub Umpan Balik Keluaran dengan Matriks Pseudo Invers

Penyelesaian Penempatan Kutub Umpan Balik Keluaran dengan Matriks Pseudo Invers Penyelesaian Penempatan Kutub Umpan Balik Keluaran dengan Matriks Pseudo Invers Agung Wicaksono Program Studi Matematika Jurusan Matematika FSM UNDIP Onforest212@gmail.com Abstrak: Metode matriks pseudo

Lebih terperinci

SEMINAR NASIONAL BASIC SCIENCE II

SEMINAR NASIONAL BASIC SCIENCE II ISBN : 978--97-- PROSEDING SEMINAR NASIONAL BASIC SCIENCE II Konstribusi Sains Untuk Pengembangan Pendidikan, Biodiversitas dan Metigasi Bencana Pada Daerah Kepulauan SCIENTIFIC COMMITTEE: Prof. H.J. Sohilait,

Lebih terperinci

MODUL E LEARNING SEKSI -1 MATA KULIAH : ALJABAR LINIER KODE MATA KULIAH : ESA 151 : 5099 : DRA ENDANG SUMARTINAH,MA

MODUL E LEARNING SEKSI -1 MATA KULIAH : ALJABAR LINIER KODE MATA KULIAH : ESA 151 : 5099 : DRA ENDANG SUMARTINAH,MA MODUL E LEARNING SEKSI - MATA KULIAH : ALJABAR LINIER KODE MATA KULIAH : ESA DOSEN : : DRA ENDANG SUMARTINAH,MA TUJUAN MATA KULIAH : A.URAIAN DAN TUJUAN MATA KULIAH : Mahasiswa mempelajari Matriks, Determinan,

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN KS091206 KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mengetahui definisi dan sifat-sifat dari ruang vektor

Lebih terperinci

BAB III MATRIKS HERMITIAN. dan konsep-konsep lainnya yang berkaitan dengan matriks Hermitian. Matriks

BAB III MATRIKS HERMITIAN. dan konsep-konsep lainnya yang berkaitan dengan matriks Hermitian. Matriks BAB III MATRIKS HERMITIAN Pada bab ini, akan dibahas beberapa konsep penting dari matriks Hermitian dan konsep-konsep lainnya yang berkaitan dengan matriks Hermitian. Matriks Hermitian merupakan kelas

Lebih terperinci

MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI

MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI SAP (1) Buku : Suryadi H.S. 1991, Pengantar Aljabar dan Geometri analitik Vektor Definisi, Notasi, dan Operasi Vektor Susunan

Lebih terperinci

BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert

BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert BAB 2 RUANG HILBERT Pokok pembicaraan kita dalam tugas akhir ini berpangkal pada teori ruang Hilbert. Untuk itu di bab ini akan diberikan definisi ruang Hilbert dan ciri-cirinya, separabilitas ruang Hilbert,

Lebih terperinci

Teori kendali. Oleh: Ari suparwanto

Teori kendali. Oleh: Ari suparwanto Teori kendali Oleh: Ari suparwanto Minggu Ke-1 Permasalahan oleh : Ari Suparwanto Permasalahan Diberikan sistem dan sinyal referensi. Masalah kendali adalah menentukan sinyal kendali sehingga output sistem

Lebih terperinci

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang

Lebih terperinci

RUANG FAKTOR. Oleh : Muhammad Kukuh

RUANG FAKTOR. Oleh : Muhammad Kukuh Muhammad Kukuh, Ruang RUANG FAKTOR Oleh : Muhammad Kukuh Abstraksi Pada struktur aljabar dikenal istilah grup faktor yaitu Jika grup dan N Subgrup normal G, maka grup faktor dengan operasi Apabila G ruang

Lebih terperinci

Spektrum Graf Hyperoctahedral Melalui Matriks Sirkulan Dengan Visual Basic 6.0

Spektrum Graf Hyperoctahedral Melalui Matriks Sirkulan Dengan Visual Basic 6.0 Jurnal Sainsmat, September 2013, Halaman 131-139 Vol. II. No. 2 ISSN 2086-6755 http://ojs.unm.ac.id/index.php/sainsmat Spektrum Graf Hyperoctahedral Melalui Matriks Sirkulan Dengan Visual Basic 6.0 Hyperoctahedral

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR Pokok Bahasan : Sistem persamaan linier Sub Pokok Bahasan : Sistem persamaan linier Eliminasi Gauss Eliminasi Gauss Jordan Penyelesaian SPL dengan invers SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan

Lebih terperinci