Bab. Vektor. A. Vektor B. Perkalian Vektor. Hasil yang harus Anda capai: menerapkan konsep besaran Fisika dan pengukurannya.

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bab. Vektor. A. Vektor B. Perkalian Vektor. Hasil yang harus Anda capai: menerapkan konsep besaran Fisika dan pengukurannya."

Transkripsi

1 2 Sumer: Dsr-Dsr Foto Jurnlistik, 2003 esrn yng memiliki esr dn rh diseut esrn vektor. Keceptn merupkn slh stu esrn vektor. Vektor Hsil yng hrus nd cpi: menerpkn konsep esrn Fisik dn pengukurnny. Setelh mempeljri ini, nd hrus mmpu: melkukn penjumlhn vektor.. Vektor. Perklin Vektor 31

2 Tes Kompetensi wl. Vektor ktivits Fisik 2.1 Vektor esultn Tujun Percon Sisw dpt memhmi vektor dn vektor resultn lt-lt Percon 1. Penggris 3. Pensil wrn 2. Kerts Lngkh-Lngkh Percon 1. utlh denh sekolh nd pd kerts erpetk (ut gr ukurn sklny sesui dengn perndingn yng tept pd kerts terseut). 2. Dengn menggunkn pensil wrn, gmrkn rh pnh pd lintsn yng nd llui dri gerng utm sekolh menuju ke kels nd. 3. Dengn cr yng sm seperti pd lngkh 2, gmrkn lintsn yng nd tempuh dri kels menuju perpustkn sekolh. 4. erpkh pnjng lintsn keduny? Ke mn rhny? 5. utlh gris lurus dri gerng sekolh ke kels nd, kemudin dri kels nd ke perpustkn dn dri gerng sekolh ke perpustkn. erpkh pnjng lintsnny? Ke mn sj rhny? Tugs nd 2.1 nd telh mengethui pengertin esrn vektor. gimn dengn esrn sklr? Diskusikn dengn temn nd tentng pengertin esrn sklr. Seutkn contoh-contoh yng termsuk esrn sklr dn contoh-contoh yng termsuk esrn vektor. 1. esrn Sklr dn esrn Vektor 32 Mudh dn ktif eljr Fisik untuk Kels X

3 . Menggmrkn Vektor. Penulisn Notsi esrn Vektor () () 50 N rh kiri Gmr 2.1 Pnjng vektor dlh 40 N dn vektor dlh 50 N. Stu stun skl pd vektor d esrny 10 N. pngkl vektor Gmr 2.2 Seuh vektor D 40 N rh knn pnjng vektor Gmr 2.3 Contoh eerp vektor, vektor = vektor. C rh vektor 2. Penjumlhn dn Selisih Vektor. Penjumlhn Vektor C = D + C D = + C Gmr 2.4 dlh vektor resultn dri vektor dn Gmr 2.5 esultn tig uh vektor, yitu = + + C yngdiperoleh dengn metode jjrgenjng. Vektor 33

4 Q Q V 3 V 2 V 4 V 3 V 5 V 1 V 6 P P Gmr 2.6 esultn du uh vektor = P + Q dilukis dengn metode poligon. c c = V 4 V5 V 6 Gmr 2.7 esultn enm uh vektor = V 1 + V 2 + V 3 + V 4 + V 5 + V 6 dilukis dengn metode poligon.. Selisih Vektor V 1 V 2 V 2 Gmr 2.8 esultn selisih vektor c =. L 1 2 V M K Gmr 2.9 esultn du vektor 3. umus untuk Menentukn esr dn rh esultn Du uh Vektor Gmr 2.10 Du uh vektor sling tegk lurus. Contoh Mudh dn ktif eljr Fisik untuk Kels X

5 sin F 2 F 1 Ingtlh Pd segitig C erlku: turn sinus: c sin sin sin turn cosinus: 2 = 2 + c 2 2c cos 2 = 2 + c 2 2c cos c 2 = cos c C Contoh 2.2 v Mengurikn Vektor v 1 F y y F Tntngn untuk nd Du vektor keceptn v 1 dn v 2 msing-msing esrny 3 m/s dn 8 m/s. Kedu vektor memiliki titik pngkl yng sm. Tentukn resultn kedu vektor itu, jik sudut yng mengpit kedu vektor dlh 120. F x x Gmr 2.11 Vektor F diurikn menjdi komponen-komponenny pd sumu-x dn sumu-y, yitu F x dn F y. Vektor 35

6 Contoh 2.3 Contoh 2.4 Tntngn untuk nd Tentukn esr komponen x dn y dri seuh vektor perpindhn 30 m dengn sudut. 5. Menjumlhkn Vektor dengn Cr nlisis 36 Mudh dn ktif eljr Fisik untuk Kels X

7 Contoh 2.5 V 2 V V 2y 3 V 3y 120 V 3x V 4x V 4 V 4y V 2x y 23,41 x V 1 Tugs nd 2.2 Perhtikn opersi vektor erikut. V = V 1 + V 2 pkh V selmny hrus leih esr dripd V 1 dn V 2? Diskusikn dengn temn nd. 6. Vektor Stun x y j F k z y Gmr 2.12 Vektor F dn vektor stunny dlm koordint krtesin tig dimensi i x Vektor 37

8 Kt Kunci esrn sklr esrn vektor metode jjrgenjng metode poligon vektor resultn cr nlisis vektor stun Contoh 2.6 Tes Kompetensi Su 38 Mudh dn ktif eljr Fisik untuk Kels X

9 . Perklin Vektor 1. Perklin Titik Vektor cos Gmr 2.13 Perklin du vektor merupkn proyeksi vektor pertm ke vektor kedu. Ingtlh dlh sudut yng esrny sellu ntr dn 180 Contoh Perklin Silng Vektor Tntngn untuk nd Hsil perklin titik ntr vektor x dn vektor y dlh 2,55. Kedu vektor terseut, yitu x = i + j dn y = 2j + 3k. Hitunglh sudut yng dientuk oleh kedu vektor terseut. Vektor 39

10 C Gmr 2.14 Perklin silng vektor dn vektor. Ingtlh Untuk menytkn nili sutu esrn vektor, selin dpt ditndi dengn cetk miring, dpt jug dituliskn dengn tnd mutlk i k j Contoh 2.8 c 40 Mudh dn ktif eljr Fisik untuk Kels X

11 = i j k i j x y z x y x y z x y Mri Mencri Thu Kt Kunci perklin titik vektor perklin silng vektor sudut pit komuttif metode determinn Tes Kompetensi Su ngkumn Vektor 41

12 Pet Konsep jenisny efleksi Setelh mempeljri ini, tentu nd telh memperoleh pengethun ru, di ntrny dlh nd dpt melkukn penjumlhn vektor. Pengethun plgi yng nd peroleh setelh mempeljri ini? pkh nd mendpt kesulitn dlm memhmi mteri pd ini? Jik d, diskusikn kesulitn terseut dengn temn nd tu tnykn kepd guru. 42 Mudh dn ktif eljr Fisik untuk Kels X

13 Tes Kompetensi 2 1 N 60 2 N d c 4 N terhdp sumu-x Vektor 43

14 x F = 2 N F 1 = 30 N y F 3 = 60 N F 2 = 40 N F 4 = 10 N F 5 = 90 N 30 x 44 Mudh dn ktif eljr Fisik untuk Kels X

Materi IX A. Pendahuluan

Materi IX A. Pendahuluan Mteri IX Tujun :. Mhsisw dpt memhmi vektor. Mhsisw mmpu mengunkn vektor dlm persoln sederhn 3. Mhsisw mengimplementsikn konsep vektor pd rngkin listrik. Pendhulun Sudh menjdi kesepktn umum hw untuk menentukn

Lebih terperinci

FISIKA BESARAN VEKTOR

FISIKA BESARAN VEKTOR K-3 Kels X FISIKA BESARAN VEKTOR TUJUAN PEMBELAJARAN Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi pengertin besrn vektor.. Mengusi konsep penjumlhn vektor dengn berbgi metode.

Lebih terperinci

VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama.

VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama. -1- VEKTOR PENGERTIAN VEKTOR dlh sutu esrn yng mempunyi nili (esr) dn rh. Sutu vektor dpt digmrkn segi rus gris errh. Nili (esr) vektor dinytkn dengn pnjng gris dn rhny dinytkn dengn tnd pnh. Notsi vektor

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MODUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYADIN EKO RAHARJO, M.PD. NIP. 9705 00 00 Penulisn Modul e Lerning ini diiyi oleh dn DIPA BLU UNY TA 00 Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor

Lebih terperinci

MATERI I : VEKTOR. Pertemuan-01

MATERI I : VEKTOR. Pertemuan-01 MATERI I : VEKTOR Pertemun-0. Pendhulun Definisi Vektor didefinisikn segi esrn yng memiliki rh. Keeptn, gy dn pergesern merupkn ontoh ontoh dri vektor kren semuny memiliki esr dn rh wlupun untuk keeptn

Lebih terperinci

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung

Lebih terperinci

VEKTOR. Adri Priadana. ilkomadri.com

VEKTOR. Adri Priadana. ilkomadri.com VEKTOR Adri Pridn ilkomdri.com Pengertin Dlm Fisik dikenl du buh besrn, yitu 1. Besrn Sklr. Besrn Vektor Pengertin Besrn Sklr dlh sutu besrn yng hny mempunyi nili dn dinytkn dengn sutu bilngn tunggl diserti

Lebih terperinci

VEKTOR. seperti AB, AB, a r, a, atau a.

VEKTOR. seperti AB, AB, a r, a, atau a. VEKTOR I. KOMPETENSI YANG DICAPAI Mhsisw dpt :. Menggmr vektor dengn sistem vektor stun.. Menghitung perklin vektor. 3. Menghitung penmhn vektor dengn turn segitig, turn rn genng, dn turn poligon. 4. Menghitung

Lebih terperinci

Erna Sri Hartatik. Aljabar Linear. Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan)

Erna Sri Hartatik. Aljabar Linear. Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan) Ern Sri Hrttik Aljr Liner Pertemun Aljr Vektor (Perklin vektor-lnjutn) Pemhsn Perklin Cross (Cross Product) - Model cross product - Sift cross product Pendhulun Selin dot product d fungsi perklin product

Lebih terperinci

Vektor di R2 ( Baca : Vektor di ruang dua ) adalah Vektor- di ruang dua )

Vektor di R2 ( Baca : Vektor di ruang dua ) adalah Vektor- di ruang dua ) A Pengertin Vektor Di R Vektor di R ( B : Vektor di rung du ) dlh Vektor- di rung du ) dlh Vektor-vektor ng terletk pd idng dtr pengertin vektor ng leih singkt dlh sutu esrn ng memiliki esr dn rh tertentu

Lebih terperinci

Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah

Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah VEKTOR Definisi Vektor Vektor dlh esrn yng mempunyi esr dn rh Besr vektor rtiny pnjng vektor Arh vektor rtiny sudut yng dientuk dengn sumu X positif Vektor disjikn dlm entuk rus gris errh Gmr Vektor B

Lebih terperinci

Jarak Titik, Garis dan Bidang dalam Ruang

Jarak Titik, Garis dan Bidang dalam Ruang Pge of Kegitn eljr. Tujun Pembeljrn Setelh mempeljri kegitn beljr, dihrpkn sisw dpt :. Menentukn jrk titik dn gris dlm rung b. Menentukn jrk titik dn bidng dlm rung c. Menentukn jrk ntr du gris dlm rung.

Lebih terperinci

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: GARIS SINGGUNG PADA HIPERBOLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (, ) pd

Lebih terperinci

Menerapkan konsep vektor dalam pemecahan masalah. Menerapkan konsep vektor pada bangun ruang

Menerapkan konsep vektor dalam pemecahan masalah. Menerapkan konsep vektor pada bangun ruang VEKTOR PADA BIDANG SK : Menerpkn konsep vektor dlm pemechn mslh KD : Menerpkn konsep vektor pd bidng dtr Menerpkn konsep vektor pd bngun rung TUJUAN PELATIHAN: Pesert memiliki kemmpun untuk mengembngkn

Lebih terperinci

UNTUK MENDAPATKAN SOAL PREDIKSI SBMPTN 2015

UNTUK MENDAPATKAN SOAL PREDIKSI SBMPTN 2015 -. UNTUK MENDAPATKAN SOAL PREDIKSI SBMPTN 015 SILAHKAN KLIK KUNJUNGI: WWW.E-SBMPTN.COM Ltihn Sol Fisik 1. Thun hy dlh stun dri... (A) jrk (D) momentum (B) keeptn (E) energi (C) wktu. Stu wtt hour sm dengn...

Lebih terperinci

[RUMUS CEPAT MATEMATIKA]

[RUMUS CEPAT MATEMATIKA] http://meetied.wordpress.com SMAN BoneBone, Luwu Utr, SulSel Keslhn teresr yng diut mnusi dlm kehidupnny dlh terusmenerus mers tkut hw merek kn melkukn keslhn (Elert Hud) [RUMUS CEPAT MATEMATIKA] Vektor

Lebih terperinci

Vektor di R 2 dan R 3

Vektor di R 2 dan R 3 Vektor di R dn R Pengertin Vektor dlh besrn yng mempunyi besr dn rh Vektor digmbrkn oleh rus gris yng dilengkpi dengn nk pnh vektor dimuli dri titik wl (initil point) dn dikhiri oleh titik khir (terminl

Lebih terperinci

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: PERSAMAAN GARIS SINGGUNG PADA ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (,

Lebih terperinci

ELIPS. A. Pengertian Elips

ELIPS. A. Pengertian Elips ELIPS A. Pengertin Elips Elips dlh tempt kedudukn titik-titik yng jumlh jrkny terhdp du titik tertentu mempunyi nili yng tetp. Kedu titik terseut dlh titik focus / titik pi. Elips jug didefinisikn segi

Lebih terperinci

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan.

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan. 1. Identits Trigonometri Pengertin Identits Trigonometri dlh kesmn yng memut entuk trigonometri dn erlku untuk semrng sudut yng dierikn. Jenis Identits Trigonometri 1. Identits trigonometri dsr erikut

Lebih terperinci

b. Notasi vektor : - Vektor A dinotasikan a atau a atau PQ - Panjang vektor a dinotasikan a atau PQ

b. Notasi vektor : - Vektor A dinotasikan a atau a atau PQ - Panjang vektor a dinotasikan a atau PQ BAB 4 VEKTOR Stndr Kompetensi: 3. Menggunkn konsep mtriks, vektor, dn trnsformsi Kompetensi Dsr: 3.4 Menggunkn sift-sift dn opersi ljbr vktor dlm pemechn mslh 3.5 Menggunkn sift-sift dn opersi perklin

Lebih terperinci

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom

Lebih terperinci

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri Mmt Apliksi SMA Bhs Dikethui A = Tentukn hsil opersi berikut A c A A b A A d A Dikethui A = Tentukn hsil opersi berikut (A + B) c (B A) b A + AB + B d B BA + A Sol Terbuk Kerjkn di buku tugs Jik X = dn

Lebih terperinci

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits

Lebih terperinci

VECTOR DI BIDANG R 2 DAN RUANG R 3. Nurdinintya Athari (NDT)

VECTOR DI BIDANG R 2 DAN RUANG R 3. Nurdinintya Athari (NDT) VECTOR DI BIDANG R DAN RUANG R Nurdininty Athri (NDT) VEKTOR DI BIDANG (R ) DAN DI RUANG (R ) Pokok Bhsn :. Notsi dn Opersi Vektor. Perklin titik dn Proyeksi Ortogonl. Perklin silng dn Apliksiny Beerp

Lebih terperinci

didefinisikan sebagai bilangan yang dapat ditulis dengan b

didefinisikan sebagai bilangan yang dapat ditulis dengan b 1 PENDAHULUAN 1.1 Sistem Bilngn Rel Untuk mempeljri klkulus perlu memhmi hsn tentng system ilngn rel, kren klkulus didsrkn pd system ilngn rel dn siftsiftny. Sistem ilngn yng pling sederhn dlh ilngn sli,

Lebih terperinci

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 5 Sesi N INTEGRAL TENTU DAN LUAS DAERAH A. DEFINISI INTEGRAL TENTU Bentuk integrl f d = f + c diseut segi integrl tk tentu kren hsil dri pengintegrlnn msih erup

Lebih terperinci

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1 Pge of 8 Kegitn eljr 5. Tujun Pembeljrn Setelh mempeljri kegitn beljr 5, dihrpkn sisw dpt. Menentukn unsur-unsur segitig dengn turn sinus b. Menentukn unsur-unsur segitig dengn turn kosinus. Menghitung

Lebih terperinci

IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2

IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2 GRMMR CONTEXT-FREE DN PRING entuk umum produksi CFG dlh :, V N, (V N V T )* nlisis sintks dlh penelusurn seuh klimt (tu sentensil) smpi pd simol wl grmmr. nlisis sintks dpt dilkukn mellui derivsi tu prsing.

Lebih terperinci

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn

Lebih terperinci

Pengertian Matriks. B. Notasi Matriks. a 21 adalah elemen baris 2 kolom 1. Banyaknya baris : Banyaknya kolom : Ordo Matrik :

Pengertian Matriks. B. Notasi Matriks. a 21 adalah elemen baris 2 kolom 1. Banyaknya baris : Banyaknya kolom : Ordo Matrik : MATRIKS Segi gmrn wl mengeni mteri mtriks mri kit ermti urin erikut ini. Dikethui dt hsil penjuln tiket penerngn tujun Medn dn Sury dri seuh gen tiket selm empt hri erturut-turut disjikn dlm tel erikut.

Lebih terperinci

GRAFIK ALIRAN SINYAL

GRAFIK ALIRAN SINYAL GRAFIK ALIRAN SINYAL PENGANTAR Grfik lirn sinl merupkn sutu pendektn ng digunkn untuk menjikn dinmik sistem pengturn. Grfik lirn sinl merupkn sutu digrm ng mewkili seperngkt persmn ljr linier. Untuk mengnlisis

Lebih terperinci

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier 8. Dri fungsi-fungsi ng disjikn dengn digrm pnh erikut ini mnkh ng merupkn fungsi onto, injektif tu ijektif, jik relsi dri A ke B? A c d IV B A c d V B A c d VI B B. Konsep Fungsi Linier. Tujun Setelh

Lebih terperinci

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1 PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 6y y 8y. Dikethui R dn. Temukn nili y. y y 8y 6 Solusi: 6y y 8y y y 8y 6 6y y 8y 8y y 6 y 8 0 y y y 0 y y y 0 ( y ) ( y ) 0 y y 8y 6 ( y )(y ) 0 y 0tu y 0

Lebih terperinci

Vektor B A B. A. Pengertian Vektor. B. Operasi pada Vektor. C. Perbandingan Vektor. D. Perkalian Skalar Dua Vektor dan Proyeksi Vektor

Vektor B A B. A. Pengertian Vektor. B. Operasi pada Vektor. C. Perbandingan Vektor. D. Perkalian Skalar Dua Vektor dan Proyeksi Vektor Vektor B A B 4 A. Pengertin Vektor B. Opersi pd Vektor C. Perndingn Vektor D. Perklin Sklr Du Vektor dn Proyeksi Vektor Sumer: http://imges.encrt.msn.com Pernhkh klin meliht leming yng meluncur di udr

Lebih terperinci

Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh :

Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh : TRIKS. PENGERTIN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom diseut

Lebih terperinci

ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum

ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum LJR LINIER _ Mtrik Ir Prsetyningrum DEFINISI MTRIKS pkh yng dimksud dengn Mtriks? kumpuln ilngn yng disjikn secr tertur dlm ris dn kolom yng mementuk sutu persegi pnjng, sert termut dintr sepsng tnd kurung.

Lebih terperinci

BAB IV METODE ANALISIS RANGKAIAN

BAB IV METODE ANALISIS RANGKAIAN BAB IV METODE ANALISIS RANGKAIAN. Anlisis Arus Cng Anlisis rus cng memnftkn hukum Kirchoff I (KCL) dn hukum Kirchoff I (KVL). Contoh - Tentukn esr rus dlm loop terseut dn gimn rh rusny? Ohm 0V 0V Ohm 0V

Lebih terperinci

PERTEMUAN - 1 JENIS DAN OPERASI MATRIKS

PERTEMUAN - 1 JENIS DAN OPERASI MATRIKS PERTEMUN - JENIS DN OPERSI MTRIKS Pengertin Mtriks : merupkn sutu lt tu srn yng sngt mpuh untuk menyelesikn model-model liner. Definisi : Mtriks dlh susunn empt persegi pnjng tu bujur sngkr dri bilngn-bilngn

Lebih terperinci

A. PENGERTIAN B. DETERMINAN MATRIKS

A. PENGERTIAN B. DETERMINAN MATRIKS ATRIKS A. PENGERTIAN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi

Lebih terperinci

MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah.

MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah. MATRIKS Stndr Kompetensi : Menggunkn konsep mtriks, vektor, dn trnsformsi dlm pemechn mslh Kompetensi Dsr : Menggunkn sift-sift dn opersi mtriks untuk menentukn invers mtriks persegi Menggunkn determinn

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : thereiveni.wordpre.om NM : KELS : BB TRIGONOMETRI thereiveni.wordpre.om Pengukurn Sudut d du tun pengukurn udut yitu : derjt dn rdin Stun derjt Definii : = putrn 36 Ingt : putrn = 36 Jdi : putrn = 8 putrn

Lebih terperinci

matematika WAJIB Kelas X RASIO TRIGONOMETRI Kurikulum 2013 A. Definisi Trigonometri

matematika WAJIB Kelas X RASIO TRIGONOMETRI Kurikulum 2013 A. Definisi Trigonometri Kurikulum 0 Kels X mtemtik WAJIB RASIO TRIGONOMETRI Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi rsio-rsio trigonometri yng meliputi sinus, kosinus, tngen,

Lebih terperinci

BAB 4 PERBANDINGAN, PROPORSI, DAN SKALA

BAB 4 PERBANDINGAN, PROPORSI, DAN SKALA BAB PERBANDINGAN, PROPORSI, DAN SKALA A. Perndingn. Perndingn dn Pechn Perndingn tu rsio ntr dn ditulis : dlh pechn, dengn syrt 0. Jdi, Jik k 0, mk :, dengn 0. Apil 0, mk : :. : k: k :. k k Menyederhnkn

Lebih terperinci

Percobaan RANGKAIAN RESISTOR, HUKUM OHM DAN PEMBAGI TEGANGAN. (Oleh : Sumarna, Lab-Elins, Jurdik Fisika FMIPA UNY)

Percobaan RANGKAIAN RESISTOR, HUKUM OHM DAN PEMBAGI TEGANGAN. (Oleh : Sumarna, Lab-Elins, Jurdik Fisika FMIPA UNY) Percon ANGKAIAN ESISTO, HUKUM OHM DAN PEMBAGI TEGANGAN (Oleh : Sumrn, L-Elins, Jurdik Fisik FMIPA UNY) E-mil : sumrn@un.c.id) 1. Tujun 1). Mempeljri cr-cr merngki resistor. 2). Mempeljri wtk rngkin resistor.

Lebih terperinci

BAB 1 PENDAHULUAN. f tidak semua bernilai nol dan a, b, disebut persamaan kuadrat di dalam variabel. atau disebut juga permukaan kuadrat;

BAB 1 PENDAHULUAN. f tidak semua bernilai nol dan a, b, disebut persamaan kuadrat di dalam variabel. atau disebut juga permukaan kuadrat; PENDHULUN. Ltr elkng Dlm memhs permslhn-permslhn sttistik dn fisik sering dijumpi nlis-nlis mslh ng menngkut fungsi-fungsi non linier, misln mengeni entuk-entuk kudrt. entuk kudrt ng is digmrkn pd rung

Lebih terperinci

1. Pengertian Matriks

1. Pengertian Matriks BAB MATRIKS BAB MATRIKS. Pengertin Mtriks. Opersi Mtriks. Trnspose Sutu Mtriks. Kesmn Duh Buh Mtriks. Jenis-Jenis Mtriks. Trnsformsi Elementer 7. Rnk Mtriks . Pengertin Mtriks Mtriks dlh dftr ilngn yng

Lebih terperinci

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT Persmn Kudrt. Bentuk Umum Persmn Kudrt Mislkn,, Є R dn 0 mk persmn yng erentuk 0 dinmkn persmn kudrt dlm peuh. Dlm persmn kudrt 0, dlh koefisien

Lebih terperinci

Pendahuluan. 1.1 SKALAR DAN VEKTOR Skalar Hanya mempunyai besar Contoh : massa, volume, temperatur, energi

Pendahuluan. 1.1 SKALAR DAN VEKTOR Skalar Hanya mempunyai besar Contoh : massa, volume, temperatur, energi nlisis Vektor Pendhulun 1.1 SKL DN VEKTO Sklr Hn mempuni besr Contoh : mss, volume, tempertur, energi Vektor Mempuni besr dn rh Contoh : g, keceptn, perceptn Medn sklr esrn tergntung pd posisin dlm rung

Lebih terperinci

PRINSIP DASAR SURVEYING

PRINSIP DASAR SURVEYING POKOK HSN : PRINSIP DSR SURVEYING Metri system, Dsr Mtemtik, Prinsip pengkurn : pengkurn jrk, pengkurn sudut dn pengukurn jrk dn sudut,.. Sistem Ukurn Jrk Unit pling dsr dlm sistem metrik dlh meter, dimn

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN ( RPP ) Satuan Pendidikan : SMP LAB UNDIKSHA Kelas/Semester. : Pangkat Tak Sebenarnya. Alokasi Waktu : 3 40 menit

RENCANA PELAKSANAAN PEMBELAJARAN ( RPP ) Satuan Pendidikan : SMP LAB UNDIKSHA Kelas/Semester. : Pangkat Tak Sebenarnya. Alokasi Waktu : 3 40 menit RENCANA PELAKSANAAN PEMBELAJARAN ( RPP ) Stun Pendidikn : SMP LAB UNDIKSHA Kels/Semester Mt Peljrn : IX/1 : Mtemtik Topik : Pngkt Tk Seenrny Aloksi Wktu : 40 menit A. Stndr Kompetensi. Memhmi sift-sift

Lebih terperinci

BAB ALJABAR MARIX Dlm pokok bhsn ini kn disjikn dsr-dsr opersi ljbr mtrix yng berhubungn dengn nlisis struktur dengn menggunkn metode mtrix kekkun (stiffness method)... Pengertin Mtrix Mtrix merupkn sutu

Lebih terperinci

02. OPERASI BILANGAN

02. OPERASI BILANGAN 0. OPERASI BILANGAN A. Mm-mm Bilngn Rel Dlm kehidupn sehri-hri dn dlm mtemtik ergi keterngn seringkli menggunkn ilngn yng is digunkn dlh ilngn sli. Bilngn dlh ungkpn dri penulisn stu tu eerp simol ilngn.

Lebih terperinci

MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X

MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 6 Sesi N INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR Apliksi integrl erikutn dlh menentukn volume end ng memiliki sumu putr. Contoh endn dlh tung,

Lebih terperinci

PEMBAHASAN. A. Teorema Pythagoras 1. Luas persegi dan luas segitiga siku-siku Perhatikan Gambar 1! D. Gambar 1

PEMBAHASAN. A. Teorema Pythagoras 1. Luas persegi dan luas segitiga siku-siku Perhatikan Gambar 1! D. Gambar 1 PEMBAHASAN A. Teorem Pythgors 1. Lus persegi dn lus segitig siku-siku Perhtikn Gmr 1! D s A s B Gmr 1 Pd gmr terseut tmpk seuh persegi ABD yng pnjng sisiny s stun pnjng. Lus persegi ABD = sisi sisi L =

Lebih terperinci

Matematika EBTANAS Tahun 1992

Matematika EBTANAS Tahun 1992 Mtemtik EBTANAS Thun 99 EBT-SMA-9-0 Grfik fungsi kudrt yng persmnny y = x 5x memotong sumu x. Slh stu titik potongny dlh (, 0), mk nili sm dengn EBT-SMA-9-0 Persmn x px + 5 = 0 kr-krny sm. Nili p 0 tu

Lebih terperinci

Integral Tak Tentu dan Integral Tertentu

Integral Tak Tentu dan Integral Tertentu Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi

Lebih terperinci

Rencana Pelaksanaan Pembelajaran (RPP) Kelas / Semester : XI / 2. : Ilmu Pengetahuan Alam

Rencana Pelaksanaan Pembelajaran (RPP) Kelas / Semester : XI / 2. : Ilmu Pengetahuan Alam Renn Pelksnn Pemeljrn (RPP) Stun Pendidikn Mt Peljrn : SM Negeri Sidorjo : Mtemtik Kels / Semester : XI / Progrm loksi Wktu : Ilmu Pengethun lm : x menit Stndrt Kompetensi : Menentukn Komposisi Du Fungsi

Lebih terperinci

INTEGRAL. Kelas XII IIS Semester Genap. Oleh : Markus Yuniarto, S.Si. SMA Santa Angela Tahun Pelajaran 2017/2018

INTEGRAL. Kelas XII IIS Semester Genap. Oleh : Markus Yuniarto, S.Si. SMA Santa Angela Tahun Pelajaran 2017/2018 Modul Integrl INTEGRAL Kels XII IIS Semester Genp Oleh : Mrkus Yunirto, SSi SMA Snt Angel Thun Peljrn 7/8 Modul Mtemtik Kels XII IIS Semester TA 7/8 Modul Integrl INTEGRAL Stndr Kompetensi: Menggunkn konsep

Lebih terperinci

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR A SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR. Metode Eliminsi Guss Tinu sistem persmn liner ng terdiri dri i ris dn peuh, kni,,,, erikut.......... i i i Jik =, sistem persmn linern diseut sistem homogen, sedngkn

Lebih terperinci

VEKTOR. Vektor vektor yang mempunyai panjang dan arah yang sama dinamakan ekuivalen.

VEKTOR. Vektor vektor yang mempunyai panjang dan arah yang sama dinamakan ekuivalen. VEKTOR Vektor dlh sesutu yng mempunyi esrn tu pnjng dn rh. Vektor dpt dinytkn ser geometris segi segmen segmen gris terrh tu pnh pnh di rung- tu rung- dengn rh pnh menentukn rh vektor dn pnjng pnh menytkn

Lebih terperinci

PEMERINTAH PROVINSI JAWA BARAT DINAS PENDIDIKAN SMK NEGERI 1 BALONGAN

PEMERINTAH PROVINSI JAWA BARAT DINAS PENDIDIKAN SMK NEGERI 1 BALONGAN PEMERINTAH PROVINSI JAWA BARAT DINAS PENDIDIKAN SMK NEGERI BALONGAN RENCANA PELAKSANAAN PEMBELAJARAN Kode. Dok PBM.0 Edisi/Revisi A/0 Tnggl 7 Juli 07 Hlmn dri 8 RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nm

Lebih terperinci

BAB I PENDAHULUAN. l y. l x. Sumber : Teori dan Analisis Pelat (Szilard, 1989:14) Gambar 1.1.Rasio panjang dan lebar pelat. Universitas Sumatera Utara

BAB I PENDAHULUAN. l y. l x. Sumber : Teori dan Analisis Pelat (Szilard, 1989:14) Gambar 1.1.Rasio panjang dan lebar pelat. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Ltr Belkng Perkemngn perencnn konstruksi ngunn ertingkt eerp thun elkngn ini cukup erkemng pest, hl ini memuktikn hw mnusi segi pelku utm erush mendptkn konsep perencnn leih mn, nymn,

Lebih terperinci

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik Hiperol 7.1. Persmn Hiperol Bentuk Bku Hiperol dlh himpunn semu titik (, ) pd idng sedemikin hingg selisih positif jrk titik (, ) terhdp psngn du titik tertentu ng diseut titik fokus (foci) dlh tetp. Untuk

Lebih terperinci

PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN

PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN Sol Dierikn du vektor segi erikut: Grkn vektor ) ) Jw: ) Untuk enggr vektor, gr dhulu vektor, llu disung dengn vektor Vektor dlh vektor yng pnjngny kli vektor

Lebih terperinci

METODE ANALISIS. Tentukan arus pada masing-masing tahanan dengan menggunakan metode arus cabang untuk rangkaian seperti pada Gambar 1.

METODE ANALISIS. Tentukan arus pada masing-masing tahanan dengan menggunakan metode arus cabang untuk rangkaian seperti pada Gambar 1. 1. Anlisis Arus Cng METODE ANALSS Metode rus ng dlh slh stu metode penyelesin nlisis rngkin il rngkin terdiri dri du tu leih sumer. Pd metode rus ng ini, kn diperoleh rus pd setip ng dri sutu rngkin yng

Lebih terperinci

MATRIKS Definisi: Matriks Susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Matriks ditulis sebagai berikut (1)...

MATRIKS Definisi: Matriks Susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Matriks ditulis sebagai berikut (1)... MATRIKS Definisi: Mtriks Susunn persegi pnjng dri ilngn-ilngn yng ditur dlm ris dn kolom. Mtriks ditulis segi erikut ()... m... m... n... n......... mn Susunn dits diseut mtriks m x n kren memiliki m ris

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kels 11 Mtemtik Persipn UAS - 0 Doc. Nme: AR11MAT0UAS Version : 016-07 hlmn 1 01. Pd ulngn mtemtik, dikethui nili rt -rt kels dlh 58. Jik rt-rt nili mtemtik untuk sisw priny dlh 65, sedngkn untuk

Lebih terperinci

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN I TU URI HANDAY AN TW DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN 009 Vektor Mtriks GY A Y O M AT E M A T AK A R Mrkn, M.Si. DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENINGKATAN

Lebih terperinci

DETERMINAN. Matematika Industri I. TIP FTP UB Mas ud Effendi. Matematika Industri I

DETERMINAN. Matematika Industri I. TIP FTP UB Mas ud Effendi. Matematika Industri I DETERMINAN Mtemtik Industri I TIP FTP UB Ms ud Effendi Mtemtik Industri I Pokok Bhsn Determinn Determinn orde-ketig Persmn simultn dengn tig ilngn tidk dikethui Konsistensi sutu set persmn Sift-sift determinn

Lebih terperinci

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah satuan luas. a. 54 b. 32. d. 18 e.

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah satuan luas. a. 54 b. 32. d. 18 e. . Lus derh yng ditsi oleh kurv y = x dn gris x + y = dlh stun lus... c. d. 8 e. Sol Ujin Nsionl Thun 7 Kurv y = x dn gris x + y = ( y = x ) Sustikn nili y pd y = x sehingg didpt : x = x x = x x + x = (

Lebih terperinci

3 PANGKAT, AKAR, DAN LOGARITMA

3 PANGKAT, AKAR, DAN LOGARITMA PANGKAT, AKAR, DAN LOGARITMA.. Pngkt Pngkt dri seuh ilngn dlh sutu indeks ng menunjukkn nkn perklin ilngn ng sm secr eruntun. Notsi n errti hw hrus diklikn degn itu sendiri senk n kli. Notsi ilngn erpngkt

Lebih terperinci

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah . Lus derh yng ditsi oleh kurv y = x dn gris x + y = dlh stun lus... c. d. 8 Sol Ujin Nsionl Thun 7 Kurv y = x dn gris x + y = ( y = x ) Sustikn nili y pd y = x sehingg didpt : x = x x = x x + x = ( =,

Lebih terperinci

Matriks. Pengertian. Lambang Matrik

Matriks. Pengertian. Lambang Matrik triks Pengertin Definisi: trik dlh susunn bilngn tu fungsi yng diletkkn ts bris dn kolom sert dipit oleh du kurung siku. Bilngn tu fungsi tersebut disebut entri tu elemen mtrik. mbng mtrik dilmbngkn dengn

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor)

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor) Aljbr Liner Pertemun 12_14 Aljbr Vektor (Perklin vektor) Pembhsn Perklin vektor dengn sklr Rung vektor Perklin Vektor dengn Vektor: Dot Product - Model dot product - Sift dot product Pendhulun Penmbhn

Lebih terperinci

Bab. Pangkat Tak Sebenarnya. A. Bilangan Berpangkat Bulat B. Bentuk Akar dan Pangkat Pecahan

Bab. Pangkat Tak Sebenarnya. A. Bilangan Berpangkat Bulat B. Bentuk Akar dan Pangkat Pecahan B Sumer: www.h.dion.ne.jp Pngkt Tk Seenrny Di Kels VII, kmu telh mempeljri ilngn erpngkt positif. Pd ini, mteri terseut kn dihs leih dlm dn dikemngkn smpi dengn ilngn erpngkt negtif, nol, dn pehn. Dlm

Lebih terperinci

BAB 10. MATRIKS DAN DETERMINAN

BAB 10. MATRIKS DAN DETERMINAN Dessy Dwiynti, S.Si, MBA Mtemtik Ekonomi 1 BAB 10. MATRIKS DAN DETERMINAN 1. Pengertin mtriks Mtriks kumpuln bilngn yng disjikn secr tertur dlm bris dn kolom yng membentuk sutu persegi pnjng, sert termut

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bb berikut ini kn disjikn mteri pendukung yng dpt membntu penulis untuk menyelesikn permslhn yng kn dibhs pd bb selnjutny. Adpun mteri pendukungny dlh pengertin mtriks, jenis-jenis

Lebih terperinci

7. APLIKASI INTEGRAL

7. APLIKASI INTEGRAL 7. APLIKASI INTEGRAL 7. Menghitung Lus Derh.Mislkn derh D (, ), f ( ) D f() Lus D =? Lngkh :. Iris D menjdi n gin dn lus stu uh irisn dihmpiri oleh lus persegi pnjng dengn tinggi f() ls(ler) A f ( ). Lus

Lebih terperinci

Y y=f(x) LEMBAR KERJA SISWA. x=a. x=b

Y y=f(x) LEMBAR KERJA SISWA. x=a. x=b LEMBAR KERJA SISWA. Judul (Mteri Pokok) : Penggunn Integrl Tentu Untuk Menghitung Volume Bend Putr. Mt Peljrn : Mtemtik 3. Kels / Semester : II /. Wktu : 5 menit 5. Stndr Kompetensi :. Menggunkn konsep

Lebih terperinci

BILANGAN BULAT. 1 Husein Tampomas, Rumus-rumus Dasar Matematika

BILANGAN BULAT. 1 Husein Tampomas, Rumus-rumus Dasar Matematika BILANGAN BULAT. Oprersi Hitung pd Bilngn Bult Bilngn ult (integer) memut semu ilngn cch dn lwn (negtif) ilngn sli, yitu:,, 4,,, 1, 0, 1, 2, 3, 4,, Bilngn ult disjikn dlm gris ilngn segi erikut. Bilngn

Lebih terperinci

SISTEM BILANGAN REAL. Purnami E. Soewardi. Direktorat Pembinaan Tendik Dikdasmen Ditjen GTK Kementerian Pendidikan dan Kebudayaan

SISTEM BILANGAN REAL. Purnami E. Soewardi. Direktorat Pembinaan Tendik Dikdasmen Ditjen GTK Kementerian Pendidikan dan Kebudayaan SISTEM BILANGAN REAL Purnmi E. Soewrdi Direktort Peminn Tendik Dikdsmen Ditjen GTK Kementerin Pendidikn dn Keudyn Himpunn Bilngn Asli (N) Bilngn sli dlh ilngn yng pertm kli dikenl dn digunkn oleh mnusi

Lebih terperinci

Bab. Fungsi. A. Relasi B. Fungsi atau Pemetaan C. Menghitung Nilai Fungsi

Bab. Fungsi. A. Relasi B. Fungsi atau Pemetaan C. Menghitung Nilai Fungsi Sumer: Dokumentsi Penulis Fungsi Thukh kmu p yng dimksud dengn fungsi? Konsep fungsi merupkn slh stu konsep yng penting dlm mtemtik. nyk permslhn sehri-hri yng tnp disdri menggunkn konsep ini. Mislny,

Lebih terperinci

matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma

matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma K-3 Kels mtemtik PEMINATAN FUNGSI LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi fungsi logritm.. Dpt menggunkn konsep fungsi logritm dlm menyelesikn

Lebih terperinci

BAB III MATRIKS

BAB III MATRIKS BB III MTRIKS PENGERTIN MTRIKS Pengertin Mtriks Mtriks dlh susunn bilngn-bilngn ng berbentuk persegi tu persegi pnjng ng ditur dlm bris dn kolom Bentuk Umum Mtriks : i m i m i m j j j ij mj n n n in mn

Lebih terperinci

Tiara Ariqoh Bawindaputri TIP / kelas L

Tiara Ariqoh Bawindaputri TIP / kelas L Tir Ariqoh Bwindputri 500008 TIP / kels L INTEGRAL Integrl Tk tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C Untuk

Lebih terperinci

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE)

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Mcm Mtriks Mtriks Nol () Mtriks yng semu entriny nol. Ex: Mtriks Identits (I) Mtriks persegi dengn entri pd digonl utmny dn pd tempt lin.

Lebih terperinci

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc.

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc. M T R I K S Oleh Dims Rhdin M, S.TP. M.Sc Emil rhdindims@yhoo.com JURUSN ILMU DN TEKNOLOGI PNGN UNIVERSITS SEBELS MRET SURKRT DEFINISI... Mtriks dlh susunn bilngn berbentuk jjrn segi empt siku-siku yng

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kels Mtemtik Persipn UAS 0 Doc. Nme: ARMAT0UAS Version : 06-09 hlmn 0. Pd ulngn mtemtik, dikethui nili rt -rt kels dlh 8, Jik rt-rt nili mtemtik untuk sisw priny dlh 6, sedngkn untuk sisw wnit

Lebih terperinci

Bab 4 Transformasi Geometri

Bab 4 Transformasi Geometri B 4 Trnsformsi Geometri TUJUAN PEMBELAJARAN Pem is memhmi konsep trnsformsi geometri -D dn -D : trnslsi, rotsi, Refleksi, her dn slling OUTCOME PEMBELAJARAN Pem is menghitung trnsformsi geometri -D ser

Lebih terperinci

A x = b apakah solusi x

A x = b apakah solusi x MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.

Lebih terperinci

http://meetied.wordpress.com Mtemtik X Semester 1 SMAN 1 Bone-Bone Reutlh st ini. Ap pun yng is And lkukn tu And impikn Mulilh!!! Keernin mengndung kejeniusn, kekutn dn kejin. Lkukn sj dn otk And kn muli

Lebih terperinci

BAB 5 KECEPATAN, JARAK, DAN WKATU

BAB 5 KECEPATAN, JARAK, DAN WKATU BAB 5 KECEPATAN, JARAK, DAN WKATU. Huungn Keceptn, Jrk, dn Wktu Huungn keceptn, jrk, dn wktu ditentukn oleh rumus segi erikut.. Jrk Keceptn Wktu tu S t.. Keceptn Wktu Jrk Wktu Jrk Keceptn tu tu S t S t

Lebih terperinci

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1 HITUNG INTEGRA BAB.Integrl tk tentu (tnp ts). Rumus-rumus ) ) n n n d c, n ) d c n n n. d c, n ). Sift-sift Integrl Contoh :... ) k. f ( ) d k. f ( ) d d d ln c ) ( ( ) ( )) ( ) ( ) d c ( ) ( ) d ( ) d

Lebih terperinci

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0 PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh c 0,,,c R, 0 Penyelesin Persmn Kudrt. Rumus c Rumus menentukn kr persmn kudrt c 0;,, c R dn 0, = ± 4c. Memfktorkn

Lebih terperinci