UKURAN PENYEBARAN DATA

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "UKURAN PENYEBARAN DATA"

Transkripsi

1 Pertemuan keempat UKURAN PENYEBARAN DATA Ukuran penyebaran data digunakan untuk melengkapi deskripsi dari sifat-sifat sekelompok data, terutama dalam membandingkan sifat-sifat yang dimiliki oleh masing-masing data terhadap kelompoknya atau sifat-sifat sekelompok data dengan kelompok data lainnya. A. Range Range adalah selisih antara nilai maksimum (highest value) dengan nilai minimum (lowest value) dalam suatu gugus data. Range (R) = x n - x 1 Mencari range untuk data yang sudah dikelompokkan, adalah : R = Batas bawah kelas terakhir batas bawah kelas pertama, atau R = Nilai tengah tertinggi nilai tengah terendah No Kelas interval f i x i , , , , , , ,5 Σf i = 73 Berdasarkan tabel di atas : Batas bawah kelas terakhir = 91 Batas bawah kelas pertama = 31 Maka range : R = = 60, atau Nilai tengah tertinggi = 95,5 Nilai tengah terendah = 35,5 Maka range : R = 95,5 35,5 = 60 B. Deviasi Kuartil Deviasi kuartil merupakan selisih nilai kaurtil ketiga (Q3) dengan kuartil kesatu (Q1) dibagi dua. Untuk menghitung deviasi kuartil data tak berkelompok dan data yang berkelompok dipakai rumus sebagai berikut : Tentukan deviasi kuartil dari data berikut : 35, 40, 70, 80, 91, 50, 61, 25, 95! Letak kuartil 1 (Q 1 ) adalah : Q 1 = 1(9 + 1) : 4 = 2,5. Jadi kuarti ke 1 terletak diantara data ke 2 dan ke 3. Maka nilai kuartil 1 adalah data ke 2 + ½ (data ke 3 data ke 2) = 35 + ½(40 35) = 35 + ½(5) = 37,5 Letak kuartil 2 (Q 2 adalah Q 2 = 2(9 + 1) : 4 = 5. Jadi kuartil ke 2 terletak pada data ke 5 yaitu 61 (nilai kuartil 2 adalah 61) IBM LENOVO FE-UWP-STATISTIKA 1

2 Letak kuartil 3 (Q 3 ) adalah Q 3 = 3(9 + 1) : 4 = 7,5. Jadi kuartil ke 3 terletak di antara data ke 7 dan data ke 8, maka kuartil 3 adalah data ke 7 + ½(data ke 8 data ke 7) = 80 + ½(91 80) = 80 + ½(11) = 85,5. Maka deviasi kuartilnya adalah : = 24 C. Simpangan Absolut Rata-rata Simpangan absolute rata-rata adalah jumlah mutlak penyimpangan setiap nilai pengamatan terhadap rata-rata, dibagi banyaknya pengamatan. Simpangan absolute rata-rata mencerminkan rata-rata selisih mutlak nilai data terhadap nilai rata-rata. Untuk data yang tidak dikelompokkan, simpangan absolute rata-rata (MAD) dihitung dari : Dimana : = Rata-rata hitung N = Banyaknya observasi Pengeluaran per bulan dari lima orang ibu rumah tangga untuk keperluan biaya hidup (dalam ratusan ribu rupiah) pada tahun 2010 adalah sebagai berikut : 3; 4; 4,5; 5; 6. Tentukan deviasi rata-ratanya! = Untuk data yang dikelompokkan, simpangan absolute rata-rata (MAD) dihitung dari : Dimana : = Rata-rata hitung N = Banyaknya observasi f i = frekuensi kelas ke-i No. Kelas Frekuensi Interval (fi) x i f i.x i f , ,88 39, , ,88 166, , Σ = 80 Σ = Σ = IBM LENOVO FE-UWP-STATISTIKA 2

3 Maka D. R a g a m Ragam adalah jumlah kuadrat dari selisih nilai observasi dengan rata-rata hitung dibagi banyaknya observasi. Untuk populasi, ragam dihitung dengan formula : Cari SD dari data sebgai berikut : 5, 7, 8, 9, 10, 21! x X - (X - ) = 60 = s = Untuk data yang dikelompokkan formulanya : IBM LENOVO FE-UWP-STATISTIKA 3

4 Di mana : Xi = Nilai tengah kelas ke-i N = Banyaknya data populasi / sampel Fi = Frekuensi kelas ke-i No. Kelas Frekuensi Interval (fi) x i f i.x i 2 f , ,21 790, , , , , Σ = 80 Σ = Σ = 2 Maka Varians = s2 = Standar deviasi = s = = E. Skor Baku Skor baku merupakan suatu ukuran relative yang menyatakan penyimpangan data dari nilai rata-ratanya yang diukur berdasarkan nilai standar deviasinya. Formula untuk populasi : Untuk sampel : F. Koefisien variasi Koefisien variasi merupakan ukuran variasi relative yang bertujuan membandingkan variasi dari beberapa gugus data yang mempunyai satuan berbeda. Koefisien variasi (KV) diperoleh dengan formula : G. K u r t o s i s Kurtosis merupakan tingkat menggunungnya suatu distribusi, yang umumnya dibandingkan dengan distribusi normal. Bentuk kurtosis, yaitu : 1. Leptokurtic, yaitu distribusi yang berpuncak tinggi dan ekornya relative panjang. 2. Platikurtik, yaitu distribusi yang berpuncak agak mendatar dan ekornya relative pendek, dan IBM LENOVO FE-UWP-STATISTIKA 4

5 3. Mesokurtik, yaitu distribusi normal, puncaknya tidak begitu tinggi dan tidak begitu mendatar Rumus untuk data yang belum dikelompokkan : Di mana : = Koefisien kurtosi = Rata-rata sampel N = Jumlah data S = Simpangan baku Rumus untuk data yang sudah dikelompokkan : Keterangan : Fi = Frekuensi kelas ke-i Ketentuan : = / mendekati 3 : Bentuk Mesokurtik > 3 : Bentuk Leptokurtik < 3 : Bentuk Platikurtik L A T I H A N 1. Diketahui data sebagai berikut : 5, 9, 4, 10. Tentukan varians-nya! 2. Seorang peternak ikan hias mempunyai 10 ikan arwana yang dipelihara dan diberi makanan special. Pada suatu waktu, ikan tersebut ditimbang. Setelah ditimbang ke 10 ikan tersebut mempunyai berat sebagai berikut (dalam gram) : 124, 125, 125, 123, 120, 124, 127, 125, 126, dan 121. Tentukan : a. Varians b. Standard deviation c. Koefisien variasi 3. Besar omzet penjualan sampel acak 70 toko sebuah komplek pertokoan di kota Surabaya pada bulan Juni 2010, dalam jutaan rupiah disusun sebgai berikut : Omzet Banyaknya Toko penjualan Tentukan : a. Deviasi rata-rata omzet penjualan 70 toko b. Standart deviation omzet penjulan 70 toko c. Koefisien variasi d. Kurtosisnya IBM LENOVO FE-UWP-STATISTIKA 5

DISPERSI DATA. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation)

DISPERSI DATA. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation) DISPERSI DISPERSI DATA Ukuran penyebaran suatu kelompok data terhadap pusat data. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation)

Lebih terperinci

PENS. Probability and Random Process. Topik 2. Statistik Deskriptif. Prima Kristalina Maret 2016

PENS. Probability and Random Process. Topik 2. Statistik Deskriptif. Prima Kristalina Maret 2016 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 2. Statistik Deskriptif Prima Kristalina Maret 2016 1 Outline [2][1] 1. Penyajian Data o Tabel

Lebih terperinci

Ukuran Penyebaran Suatu ukuran baik parameter atau statistik untuk mengetahui seberapa besar penyimpangan data dengan nilai rata-rata hitungnya.

Ukuran Penyebaran Suatu ukuran baik parameter atau statistik untuk mengetahui seberapa besar penyimpangan data dengan nilai rata-rata hitungnya. UKURAN PENYEBARAN 1 Bab 4 PENGANTAR Ukuran Penyebaran Suatu ukuran baik parameter atau statistik untuk mengetahui seberapa besar penyimpangan data dengan nilai rata-rata hitungnya. Ukuran penyebaran membantu

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Pertemuan ketiga UKURAN PEMUSATAN DATA Karakteristik suatu kumpulan data adalah : (1). Memusat pada nilai tertentu dari suatu distribusi, yang disebut nilai pusat (middle of data set), dan (2). Menyebar/berpencar

Lebih terperinci

Statistika & Probabilitas

Statistika & Probabilitas Statistika & Probabilitas Dispersi Data Dispersi Data Dispersi adalah ukuran penyebaran suatu kelompok data terhadap pusat data. Beberapa jenis ukuran dispersi data : Jangkauan (range) Simpangan rata-rata

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 LATAR BELAKANG BAB I PENDAHULUAN 1.1 LATAR BELAKANG Risiko adalah kerugian karena kejadian yang tidak diharapkan terjadi. Misalnya, kejadian sakit mengakibatkan kerugian sebesar biaya berobat dan upah yang hilang karena

Lebih terperinci

TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS. Fitri Yulianti, SP. MSi.

TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS. Fitri Yulianti, SP. MSi. TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS Fitri Yulianti, SP. MSi. UKURAN PENYIMPANGAN Pengukuran penyimpangan adalah suatu ukuran yang menunjukkan tinggi rendahnya perbedaan data yang diperoleh

Lebih terperinci

UKURAN PENYEBARAN DATA

UKURAN PENYEBARAN DATA UKURAN PENYEBARAN DATA STKIP SILIWANGI BANDUNG Sumber : 1.Sudjana. Budino dan Koster 3. Berbagai sumber LUVY S. ZANTHY 1 Ukuran Penyebaran Data (Ukuran Dispersi) Ukuran penyebaran data atau ukuran dispersi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Data Data adalah bentuk jamak dari datum, yang dapat diartikan sebagai informasi yang diterima yang bentuknya dapat berupa angka, kata-kata, atau dalam bentuk lisan dan tulisan

Lebih terperinci

Dr. I Gusti Bagus Rai Utama, SE., M.MA., MA.

Dr. I Gusti Bagus Rai Utama, SE., M.MA., MA. Dr. I Gusti Bagus Rai Utama, SE., M.MA., MA. Populasi : totalitas dari semua objek/ individu yg memiliki karakteristik tertentu, jelas dan lengkap yang akan diteliti Sampel : bagian dari populasi yang

Lebih terperinci

PENGUKURAN VARIASI. Mampu menjelaskan dan menganalisis hal-hal yang berkaitan dengan pengukuran variasi

PENGUKURAN VARIASI. Mampu menjelaskan dan menganalisis hal-hal yang berkaitan dengan pengukuran variasi BAB 4 PENGUKURAN VARIASI Kompetensi Mampu menjelaskan dan menganalisis hal-hal yang berkaitan dengan pengukuran variasi Indikator 1. Menjelaskan range 2. Menjelaskan range antar kuartil 3. Menjelaskan

Lebih terperinci

Statistik Deskriptif: Central Tendency & Variation

Statistik Deskriptif: Central Tendency & Variation Statistik Deskriptif: Central Tendency & Variation Widya Rahmawati Central Tendency (Ukuran Pemusatan) dan Variation (Ukuran Simpangan) 1) Ukuran pemusatan atau ukuran lokasi adalah beberapa ukuran yang

Lebih terperinci

CIRI-CIRI DISTRIBUSI NORMAL

CIRI-CIRI DISTRIBUSI NORMAL DISTRIBUSI NORMAL CIRI-CIRI DISTRIBUSI NORMAL Berbentuk lonceng simetris terhadap x = μ distribusi normal atau kurva normal disebut juga dengan nama distribusi Gauss, karena persamaan matematisnya ditemukan

Lebih terperinci

HARISON,S.Pd,M.Kom JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI PADANG

HARISON,S.Pd,M.Kom JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI PADANG HARISON,S.Pd,M.Kom JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI PADANG HOMOGEN DAN HETEROGEN DATA I. 50,50,50,50,50 II. 30,40,50,60,70 III.0,30,50,70,80 Ketiga kelompok data

Lebih terperinci

Contoh: Pada data Tabel satu diperoleh range pada masing masing mata kuliah. adalah: Matakuliah Max min range A B C

Contoh: Pada data Tabel satu diperoleh range pada masing masing mata kuliah. adalah: Matakuliah Max min range A B C POKOK BAHASAN : Ukuran Penyebaran SUB POKOK BAHASAN : a. Range, b. RAK, c. SD, d. Varians, TIK : Mahasiswa dapat : a. Menjelaskan analisa deskriptif dengan ukuran penyebaran b. mampu melakukan analisa

Lebih terperinci

PENGUKURAN DESKRIPTIF

PENGUKURAN DESKRIPTIF PENGUKURAN DESKRIPTIF STATISTIK INDUSTRI I Jurusan Teknik Industri Universitas Brawijaya Malang 1 PENGUKURAN DESKRIPTIF Suatu pengukuran yang bertujuan untuk memberikan gambaran tentang data yang diperoleh

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Risiko, Manajemen Risiko, dan Manajemen Risiko Finansial

BAB 2 LANDASAN TEORI. 2.1 Risiko, Manajemen Risiko, dan Manajemen Risiko Finansial BAB 2 LANDASAN TEORI 2.1 Risiko, Manajemen Risiko, dan Manajemen Risiko Finansial Risiko adalah kerugian akibat kejadian yang tidak dikehendaki muncul. Risiko diidentifikasikan berdasarkan faktor penyebabnya,

Lebih terperinci

Pertemuan 8 UKURAN PENYEBARAN. A. Ukuran Penyebaran untuk Data yang tidak Dikelompokkan. Terdapat empat ukuran penyebaran absolut yang utama, yaitu:

Pertemuan 8 UKURAN PENYEBARAN. A. Ukuran Penyebaran untuk Data yang tidak Dikelompokkan. Terdapat empat ukuran penyebaran absolut yang utama, yaitu: Pertemuan 8 UKURA PEYEBARA 1. Pengertian Penyebaran (Dispersi) Penyebaran adalah perserakan data individual terhadap nilai rata-rata. Data homogen memiliki penyebaran (dispersi) yang kecil, sedangkan data

Lebih terperinci

By : Hanung N. Prasetyo

By : Hanung N. Prasetyo theory STATISTIKA DESKRIPTIF By : Hanung N. Prasetyo UKURAN PEMUSATAN Nilai tunggal yang mewakili semua data atau kumpulan pengamatan dimana nilai tersebut menunjukkan pusat data. Yang termasuk ukuran

Lebih terperinci

BAB IV DISPERSI DATA

BAB IV DISPERSI DATA BAB IV DIPERI DATA Dispersi adalah ukuran penyebaran suatu kelompok data terhadap pusat data. Ukuran dispersi yang sering digunakan dalam penelitian ialah jangkauan (range), simpangan rata-rata (mean deviation),

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Topik manajemen risiko menjadi mengemuka setelah terjadi banyak kejadian tidak terantisipasi yang menyebabkan kerugian perusahaan. Depresi tajam dan cepat terhadap

Lebih terperinci

OUTLINE BAGIAN I Statistik Deskriptif

OUTLINE BAGIAN I Statistik Deskriptif UKURAN PENYEBARAN 1 OUTLINE BAGIAN I Statistik Deskriptif Pengertian Statistika Penyajian Data Ukuran Pemusatan Ukuran Penyebaran Angka Indeks Deret Berkala dan Peramalan Range, Deviasi Rata-rata, Varians

Lebih terperinci

PENGUKURAN VARIANS DAN SIMPANGAN BAKU

PENGUKURAN VARIANS DAN SIMPANGAN BAKU PEGUKURA VARIAS DA SIMPAGA BAKU Varians data yang belum dikelompokkan Pengertian varians mirip dengan deviasi rata-rata. Hanya saja, untuk memperoleh hasil perhitungan dalam bilangan positif tidak lagi

Lebih terperinci

UNIVERSITAS NEGERI MALANG FAKULTAS ILMU KEOLAHRAGAAN JURUSAN ILMU KESEHATAN MASYARAKAT

UNIVERSITAS NEGERI MALANG FAKULTAS ILMU KEOLAHRAGAAN JURUSAN ILMU KESEHATAN MASYARAKAT UKURAN PEMUSATAN MAKALAH UNTUK MEMENUHI TUGAS MATAKULIAH Dasar-dasar Biostatistik Deskriptif Yang dibina oleh Bapak Dr. Saichudin, M.Kes Ibu dr. Anindya, S.Ked Oleh : Derada Imanadani 130612607847/2013

Lebih terperinci

Pengukuran Deskriptif

Pengukuran Deskriptif Pengukuran Deskriptif 2.2 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Pendahuluan Tendensi Sentral Ukuran Dispersi 3 Pendahuluan Pengukuran Deskriptif 4 Definisi

Lebih terperinci

PENGANTAR STATISTIK JR113. Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI Pertemuan 6

PENGANTAR STATISTIK JR113. Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI Pertemuan 6 PENGANTAR STATISTIK JR113 Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI 2008 Pertemuan 6 MODUS Modus (Mo) adalah sebuah ukuran untuk menyatakan fenomena yang paling banyak terjadi atau

Lebih terperinci

Statistik Deskriptif Ukuran Dispersi

Statistik Deskriptif Ukuran Dispersi MAKALAH STATISTIKA DASAR Statistik Deskriptif Ukuran Dispersi Oleh: Kelompok 1 Dwireta Ramadanti Aliv Vito Palox Arif Rahman Hakim Asrar Halim Desi Anggraini Eki Maruci Hary Sentosa Monalisa Muhammad Irvand

Lebih terperinci

TUGAS II STATISTIKA. Oleh. Butsiarah / 15B Kelas B PROGRAM STUDI PENDIDIKAN TEKNOLOGI DAN KEJURUAN PROGRAM PASCASARJANA

TUGAS II STATISTIKA. Oleh. Butsiarah / 15B Kelas B PROGRAM STUDI PENDIDIKAN TEKNOLOGI DAN KEJURUAN PROGRAM PASCASARJANA TUGAS II STATISTIKA Oleh Butsiarah / 15B20020 Kelas B PROGRAM STUDI PENDIDIKAN TEKNOLOGI DAN KEJURUAN PROGRAM PASCASARJANA UNIVERSITAS NEGERI MAKASSAR 2015 1. Penelitian terhadap nilai mahasiswa S1 Jurusan

Lebih terperinci

STATISTIK. Rahma Faelasofi

STATISTIK. Rahma Faelasofi STATISTIK Rahma Faelasofi 1 BAB 3 VARIABILITAS Pengertian Jangkauan Mean deviasi Standar deviasi 2 Pengertian Pengukuran penyebaran adalah pengukuran tingkat penyebaran nilai dalam suatu kumpulan data

Lebih terperinci

STATISTIK. Materi Pertemuan V Ukuran Dispersi (Penyebaran)

STATISTIK. Materi Pertemuan V Ukuran Dispersi (Penyebaran) STATISTIK Materi Pertemuan V Ukuran Dispersi (Penyebaran) Ukuran Dispersi (Penyebaran) Ukuran dispersi merupakan suatu metode analisis data yang ditunjukan dengan penyimpangan/penyebaran dari distribusi

Lebih terperinci

Macam ukuran penyimpangan. Range/Rentang/Jangkauan Standar Deviasi/simpangan baku Varians Ukuran penyimpangan lain

Macam ukuran penyimpangan. Range/Rentang/Jangkauan Standar Deviasi/simpangan baku Varians Ukuran penyimpangan lain UKURAN PENYIMPANGAN Ukuran penyimpangan adalah ukuran yang menyatakan seberapa jauh penyimpangan nilainilai data dari nilai-nilai pusatnya atau ukuran yang menyatakan seberapa banyak nilai-nilai data yang

Lebih terperinci

Pengukuran Deskriptif. Debrina Puspita Andriani /

Pengukuran Deskriptif. Debrina Puspita Andriani    / Pengukuran Deskriptif 3 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Pendahuluan Tendensi Sentral Ukuran Dispersi 3 Pendahuluan Pengukuran Deskriptif 4 Definisi Pengukuran

Lebih terperinci

UKURAN DISPERSI (SEBARAN)DATA

UKURAN DISPERSI (SEBARAN)DATA Malim Muhammad, M.Sc. UKURAN DISPERSI (SEBARAN)DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DISPERSI

Lebih terperinci

BAB I PENDAHULUAN. Nilai ujian statistik 5 mahasiswa kelas A adalah 71,75,79,77,73 Nilai ujian statistik 5 mahasiswa kelas B adalah 45,60, 90,85,95

BAB I PENDAHULUAN. Nilai ujian statistik 5 mahasiswa kelas A adalah 71,75,79,77,73 Nilai ujian statistik 5 mahasiswa kelas B adalah 45,60, 90,85,95 BAB I PENDAHULUAN Dalam penyelidikan data sering kali kita membutuhkan informasi yang lebih banyak dari pada hanya mengetahui salah satu tendensi sentral saja. Misal kita ingin mengetahui bagaimana penyebaran

Lebih terperinci

REVIEW BIOSTATISTIK DESKRIPTIF

REVIEW BIOSTATISTIK DESKRIPTIF REVIEW BIOSTATISTIK DESKRIPTIF POKOK BAHASAN 1. Konsep statistik deskriptif 2. Data dan variabel 3. Nilai Tengah (Ukuran Pusat), posisi dan variasi) pada data tunggal dan kelompok 4. Penyajian data 5.

Lebih terperinci

FAKULTAS KEGURUAN DAN ILMU PENDIDIKIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

FAKULTAS KEGURUAN DAN ILMU PENDIDIKIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON S T A T I S T I K A Oleh : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS KEGURUAN DAN ILMU PENDIDIKIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010 Wijaya : Statistika 0 I. PENDAHULUAN Statistika adalah

Lebih terperinci

MODUL MATEMATIKA SMA IPA Kelas 11

MODUL MATEMATIKA SMA IPA Kelas 11 SMA IPA Kelas A. Data Tunggal No. Jenis Rumus Rumus. Rata-rata (rataan) hitung _ x x x x n Median Me x, untuk n ganjil _ x : rata-rata x n : data ke-n n : banyaknya data. Modus Modus (Mo) merupakan data

Lebih terperinci

BAB 3: NILAI RINGKASAN DATA

BAB 3: NILAI RINGKASAN DATA BAB 3: NILAI RINGKASAN DATA Penyajian data dalam bentuk tabel dan grafik memberikan kemudahan bagi kita untuk menggambarkan data dan membuat kesimpulan terhadap sifat data. Namun tabel dan grafik belum

Lebih terperinci

1. UN A35, B47, C61, D74, dan E Data yang diberikan dalam tabel frekuensi sebagai berikut. Nilai modus dari data pada tabel adalah.

1. UN A35, B47, C61, D74, dan E Data yang diberikan dalam tabel frekuensi sebagai berikut. Nilai modus dari data pada tabel adalah. . SOAL-SOAL 1. UN A, B, C1, D, dan E101 Data yang diberikan dalam tabel rekuensi sebagai berikut. Nilai modus dari data pada tabel adalah. A. B. C. D. E. 0 9, 9, 9, 0 9, 9, Ukuran 0 9 0 9 0 9 0 9 1 0 9

Lebih terperinci

By Syarifah Hikmah JS. MK Statistika (MAM 4137)

By Syarifah Hikmah JS. MK Statistika (MAM 4137) By Syarifah Hikmah JS MK Statistika (MAM 4137) Daftar Isi Wilayah/Rentang Deviasi rata-rata terhadap nilai tengah Ragam Simpangan baku Ukuran Statistik Untuk menjelaskan ciri-ciri data yang penting maka

Lebih terperinci

LEMBAR AKTIVITAS SISWA STATISTIKA 2 B. PENYAJIAN DATA

LEMBAR AKTIVITAS SISWA STATISTIKA 2 B. PENYAJIAN DATA Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA STATISTIKA 2 B. PENYAJIAN DATA Beberapa bentuk penyajian data, sebagai berikut: Kompetensi Dasar (KURIKULUM 2013): 3.15 Memahami dan menggunakan berbagai ukuran

Lebih terperinci

Probabilitas dan Statistika Analisis Data Lanjut. Adam Hendra Brata

Probabilitas dan Statistika Analisis Data Lanjut. Adam Hendra Brata Probabilitas dan Analisis Lanjut Adam Hendra Brata Tunggal Populasi adalah sebagai sekumpulan data yang mengidentifikasi suatu fenomena. Sampel adalah sekumpulan data yang diambil atau diseleksi dari suatu

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Topik manajemen risiko menjadi mengemuka setelah terjadi banyak kejadian yang menyebabkan kerugian pada perusahaan. Depresi tajam dan cepat terhadap rupiah (krisis

Lebih terperinci

5. STATISTIKA PENYELESAIAN. a b c d e Jawab : b

5. STATISTIKA PENYELESAIAN. a b c d e Jawab : b . STATISTIKA A. Membaca Sajian Data dalam Bentuk Diagram. UN 00 IPS PAKET A Diagram lingkaran berikut menunjukan persentase jenis pekerjaan penduduk di kota X. Jumlah penduduk seluruhnya adalah 3.600.000

Lebih terperinci

Kuliah 4. Ukuran Penyebaran Data

Kuliah 4. Ukuran Penyebaran Data Kuliah 4. Ukuran Penyebaran Data Mata Kuliah Statistika Dr. Ir. Rita Rostika MP. 21 Maret 2012 Prodi Perikanan Fakultas Perikanan dan Ilmu Kelautan Universitas Padjadjaran Content Rentang Data Rentang

Lebih terperinci

UKURAN PENYEBARAN DATA

UKURAN PENYEBARAN DATA UKURA PEYEBARA DATA Seventh Meeting Khatib A. Latief Email: kalatief@gmail.com; khatibalatif@yahoo.com Twitter: @khatibalatief Mobile: +68 1168 3019 Ukuran Penyebaran data Ukuran penyebaran data adalah

Lebih terperinci

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB I PENDAHULUAN. Universitas Sumatera Utara 1 BAB I PENDAHULUAN 1.1. Belakang Topik manajemen risiko menjadi mengemuka setelah terjadi banyak kejadian yang menyebabkan kerugian pada perusahaan. Depresi tajam dan cepat terhadap rupiah (krisis moneter),

Lebih terperinci

Deviasi rata-rata (rata-rata simpangan) data yang belum dikelompokkan

Deviasi rata-rata (rata-rata simpangan) data yang belum dikelompokkan Statistik Deskriptif DEVIASI RATA-RATA / RATA-RATA SIMPANGAN Mean Deviasi atau Average Deviation atau Deviasi Mean dari deviasi nilai-nilai dari Mean dalam suatu distribusi, diambil nilainya yang absolut.

Lebih terperinci

MATERI STATISTIK. Genrawan Hoendarto

MATERI STATISTIK. Genrawan Hoendarto MATERI STATISTIK Distribusi Frekwensi Perhitungan Tendensi Pusat Penyimpangan atau Dispersi Teori Probabilitas Teori Distribusi Distribusi Sampling / Pengambilan Contoh Pengujian Hipotesis Regresi dan

Lebih terperinci

Probabilitas dan Statistika Analisis Data dan Ukuran Pemusatan. Adam Hendra Brata

Probabilitas dan Statistika Analisis Data dan Ukuran Pemusatan. Adam Hendra Brata Probabilitas dan Analisis dan Adam Hendra Brata Deskriptif Induktif Pembagian Deskriptif Metode guna mengumpulkan, menghitung, dan menyajikan suatu data secara kwantitatif sehingga memberikan informasi

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Jenis penelitian yang digunakan adalah penelitian deskriptif dengan

BAB III METODOLOGI PENELITIAN. Jenis penelitian yang digunakan adalah penelitian deskriptif dengan 53 BAB III METODOLOGI PENELITIAN A. Metode dan Desain penelitian Jenis penelitian yang digunakan adalah penelitian deskriptif dengan pendekatan kuantitatif komparatif. Alasan menggunakan pendekatan komparatif

Lebih terperinci

BAB I PENDAHULUAN. TNR 12 SPACE 2.0 BEFORE AFTER 0 MARGIN 3,4,3,3 KERTAS A4 TULISAN INGGRIS ITALIC 1.2 Rumusan Masalah

BAB I PENDAHULUAN. TNR 12 SPACE 2.0 BEFORE AFTER 0 MARGIN 3,4,3,3 KERTAS A4 TULISAN INGGRIS ITALIC 1.2 Rumusan Masalah BAB I PENDAHULUAN TNR 14 BOLD 1.1 Latar Belakang (1 halaman. min 4 paragraf.) TNR 12 SPACE 2.0 BEFORE AFTER 0 MARGIN 3,4,3,3 KERTAS A4 TULISAN INGGRIS 1.2 Rumusan Masalah Rumusan masalah yang digunakan

Lebih terperinci

Distribution. Contoh Kasus. Widya Rahmawati

Distribution. Contoh Kasus. Widya Rahmawati Distribution Widya Rahmawati Contoh Kasus Mahasiswa A sudah mendapatkan data hasil penelitian Mahasiswa A sedang mempertimbangkan angka statistik mana yang sebaiknya ditampilkan (mean atau median) analisis

Lebih terperinci

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada.

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Azimmatul Ihwah Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Ada cara yg lebih baik untuk menginterpretasi data yg

Lebih terperinci

STATISTIKA MATEMATIKA KELAS XI MIA

STATISTIKA MATEMATIKA KELAS XI MIA STATISTIKA MATEMATIKA KELAS XI MIA STATISTIKA Matematika Kelas XI MIA 90 80 70 60 50 40 30 20 10 0 East West North 1st Qtr 2nd Qtr 3rd Qtr 4th Qtr Disusun oleh : Markus Yuniarto, S.Si Tahun Pelajaran 2016

Lebih terperinci

UNIVERSITAS MUHAMMADIYAH PAREPARE Parepare, 2009

UNIVERSITAS MUHAMMADIYAH PAREPARE Parepare, 2009 Dengan Materi: STATISTIKA DESKRIPTIF Presented by: Andi Rusdi, S.Pd. UNIVERSITAS MUHAMMADIYAH PAREPARE Parepare, 2009 STATISTIK DESKRIPTIF Metode statistik adalah prosedur-prosedur yang yang digunakan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab ini terdiri dari dua bagian. Pada bagian pertama berisi tinjauan pustaka dari penelitian-penelitian sebelumnya dan beberapa teori penunjang berisi definisi-definisi yang digunakan

Lebih terperinci

TUGAS MAKALAH STATISTIKA DESKRIPTIF UKURAN PENYEBARAN DATA (KEMIRINGAN DAN KERUNCINGAN) MAKALAH

TUGAS MAKALAH STATISTIKA DESKRIPTIF UKURAN PENYEBARAN DATA (KEMIRINGAN DAN KERUNCINGAN) MAKALAH TUGAS MAKALAH STATISTIKA DESKRIPTIF UKURAN PENYEBARAN DATA (KEMIRINGAN DAN KERUNCINGAN) MAKALAH Diajukan untuk memenuhi tugas mata kuliah Statistika Deskriptif Kelompok 5 : 1. Ade Risma Arianto (NIM: 12110457)

Lebih terperinci

Pengantar Statistik. Nanang Erma Gunawan

Pengantar Statistik. Nanang Erma Gunawan Pengantar Statistik Nanang Erma Gunawan nanang_eg@uny.ac.id Sekilas tentang sejarah Statistik Statistik: pada awal zaman Masehi, bangsa-bangsa mengumpulkan data untuk mendapatkan informasi mengenai pajak,

Lebih terperinci

LAB MANAJEMEN DASAR MODUL STATISTIKA 1. Nama : NPM : Kelas : Fakultas Ekonomi Universitas Gunadarma Kelapa Dua

LAB MANAJEMEN DASAR MODUL STATISTIKA 1. Nama : NPM : Kelas : Fakultas Ekonomi Universitas Gunadarma Kelapa Dua LAB MANAJEMEN DASAR MODUL STATISTIKA 1 Nama : NPM : Kelas : Fakultas Ekonomi Universitas Gunadarma Kelapa Dua 1 UKURAN STATISTIK Pendahuluan Ukuran statistik merupakan ukuran yang menunjukkan bagaimana

Lebih terperinci

Statistika Materi 5. Ukuran Penyebaran. (Lanjutan) Hugo Aprilianto, M.Kom

Statistika Materi 5. Ukuran Penyebaran. (Lanjutan) Hugo Aprilianto, M.Kom Statistika Materi 5 Ukuran Penyebaran (Lanjutan) Hugo Aprilianto, M.Kom UKURAN PENYEBARAN RELATIF yaitu mengubah ukuran penyebaran dari berbagai satuan menjadi ukuran relatif atau persen. Penggunaan ukuran

Lebih terperinci

Ukuran Simpangan/Penyebaran

Ukuran Simpangan/Penyebaran Ukuran Simpangan/Penyebaran Anief Fauzan Rozi, S. Kom., M. Eng. Phone/WA: 0856 4384 6541 PIN BB: 29543EC4 Sertakan idenotas Anda keoka akan add contact Email : anief.umby@gmail.com Blog: anief.mercubuana-

Lebih terperinci

Ukuran Dispersi (Variasi, atau Penyimpangan) untuk Data Tunggal

Ukuran Dispersi (Variasi, atau Penyimpangan) untuk Data Tunggal Ukuran Dispersi (Variasi, atau Penyimpangan) untuk Data Tunggal BAB: UKURAN VARIABILITAS/ DISPERSI A. Pengertian Ukuran Variabilitas: Dlm kehidupan sehari-hari, kita sering menemukan banyaknya informasi

Lebih terperinci

Metode Penelitian Kuantitatif Aswad Analisis Deskriptif

Metode Penelitian Kuantitatif Aswad Analisis Deskriptif Analisis Deskriptif Tanpa mengurangi keterumuman, pembahasan analisis deskriptif kali ini difokuskan kepada pembahasan tentang Ukuran Pemusatan Data, dan Ukuran Penyebaran Data Terlebih dahulu penting

Lebih terperinci

STATISTIKA 4 UKURAN LETAK

STATISTIKA 4 UKURAN LETAK TUJUAN STATISTIKA 4 UKURAN LETAK MODUL 4 Melatih berfikir dan bernalar secara logis dan kritis serta mengembangkan aktifitas, kreatifitas dalam memecahkan masalah serta mampu mengkomunikasikan ide dan

Lebih terperinci

UKURAN PENYEBARAN DATA

UKURAN PENYEBARAN DATA UKURAN PENYEBARAN DATA HERDIAN S.Pd., M.Pd. SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER (STMIK) PRINGSEWU UKURAN PENYEBARAN DATA Selain ukuran pemusatan data dan ukuran letak data, ada juga yang

Lebih terperinci

PERSIAPAN TES SKL KELAS XI, MATEMATIKA IPS Page 1

PERSIAPAN TES SKL KELAS XI, MATEMATIKA IPS Page 1 PERSIAPAN TES SKL XI, MATEMATIKA 1. Statistika (1-8). Peluang (9-16). Fungsi (17-4) 4. Limit (5-) 5. Turunan (-40) 40 SOAL PILIHAN GANDA 1. Perhatikan tabel berikut! Nilai Frekuensi 0 4 5 9 8 0 4 10 5

Lebih terperinci

7. Bentuk sederhana dari. adalah.. 4. Jika log 2 = a dan log 3 = b, maka nilai log 18 = a. a + 2b b. 2a + b c. a + b d. a 2 + b e.

7. Bentuk sederhana dari. adalah.. 4. Jika log 2 = a dan log 3 = b, maka nilai log 18 = a. a + 2b b. 2a + b c. a + b d. a 2 + b e. 1. Suatu pekerjaan jika dikerjakan 15 orang dapat diselesaikan dalam waktu 30 hari. Apabila pekerjaan tersebut ingin diselesaikan dalam waktu 25 hari, jumlah pekerja yang harus ditambah a. 3 orang b. 5

Lebih terperinci

STATISTIKA 2 11/20/2015. B. Menghitung Ukuran Data dari Data Berkelompok. Peta Konsep. B. Menghitung Ukuran Data dari Data Berkelompok

STATISTIKA 2 11/20/2015. B. Menghitung Ukuran Data dari Data Berkelompok. Peta Konsep. B. Menghitung Ukuran Data dari Data Berkelompok /0/0 Peta Konsep Jurnal Datar Hadir Materi B Materi Umum STATISTIKA Kelas XI, Semester Pemusatan Statistika Letak Data Tunggal Penyebaran SoalLatihan B. Menghitung Data dari Data Berkelompok Pemusatan

Lebih terperinci

SOAL-SOAL LATIHAN STATISTIKA UJIAN NASIONAL

SOAL-SOAL LATIHAN STATISTIKA UJIAN NASIONAL SOAL-SOAL LATIHAN STATISTIKA UJIAN NASIONAL Peserta didik memiliki kemampuan memahami konsep pada topic () Penyajian Data dalam Bentuk Tabel, Diagram, dan Grafik, (2) UKuran Pemusatan, Letak, dan Penyebaran

Lebih terperinci

SATUAN ACARA PERKULIAHAN DAN SILABUS MATA KULIAH STATISTIK I JURUSAN AKUNTANSI STIE SEBELAS APRIL SUMEDANG. Mengulas garis besar materi pertemuan

SATUAN ACARA PERKULIAHAN DAN SILABUS MATA KULIAH STATISTIK I JURUSAN AKUNTANSI STIE SEBELAS APRIL SUMEDANG. Mengulas garis besar materi pertemuan SATUAN ACARA PERKULIAHAN DAN SILABUS MATA KULIAH STATISTIK I JURUSAN AKUNTANSI STIE SEBELAS APRIL SUMEDANG KODE MATA KULIAH : EUE 201 MATA KULIAH : STATISTIK I BOBOT SKS : 2 SKS JURUSAN : AKUNTANSI TK/SEMESTER

Lebih terperinci

Rata-rata hitung sekumpulan data hasil observasi dapat dihitung dengan menggunakan rumus berikut :

Rata-rata hitung sekumpulan data hasil observasi dapat dihitung dengan menggunakan rumus berikut : UKURAN STATISTIK Pendahuluan aturan statistic merupakan aturan yang menunjukkan bagaimana suatu gugus data memusat dan menyebar. aturan pemusatan yang umum digunakan untuk mendeskripsikan data adalah mean

Lebih terperinci

STATISTIKA DESKRIPTIF. Tendensi Sentral & Ukuran Dispersi

STATISTIKA DESKRIPTIF. Tendensi Sentral & Ukuran Dispersi STATISTIKA DESKRIPTIF Tendensi Sentral & Ukuran Dispersi Statistik dan Statistika Statistik : nilai-nilai ukuran data yang mudah dimengerti. Contoh : statistik liga sepak bola Indonesia Statistika : ilmu

Lebih terperinci

SATUAN ACARA TUTORIAL (SAT) Mata Kuliah : Statistika Dasar/PAMA 3226 SKS : 3 SKS Tutorial : ke-1 Nama Tutor : Adi Nur Cahyono, S.Pd., M.Pd.

SATUAN ACARA TUTORIAL (SAT) Mata Kuliah : Statistika Dasar/PAMA 3226 SKS : 3 SKS Tutorial : ke-1 Nama Tutor : Adi Nur Cahyono, S.Pd., M.Pd. Tutorial : ke-1 Nama Tutor : a. Menjelaskan pengertian statistik; b. Menjelaskan pengertian statistika; c. Menjelaskan pengertian data statistik; d. Menjelaskan contoh macam-macam data; e. Menjelaskan

Lebih terperinci

STATISTIKA 3 UKURAN PENYEBARAN

STATISTIKA 3 UKURAN PENYEBARAN TUJUAN STATISTIKA UKURAN PENYEBARAN Melatih berfikir dan belajar secara logis dan kritis serta mengembangkan aktifitas, kreatifitas dalam memecahkan masalah serta mampu mengkomunikasikan ide dan gagasan

Lebih terperinci

III BAHAN DAN METODE PENELITIAN. Penelitian ini menggunakan sapi perah FH laktasi dengan total 100 ekor yaitu

III BAHAN DAN METODE PENELITIAN. Penelitian ini menggunakan sapi perah FH laktasi dengan total 100 ekor yaitu III BAHAN DAN METODE PENELITIAN 3.1 Bahan Penelitian Penelitian ini menggunakan sapi perah FH laktasi dengan total 100 ekor yaitu 23 ekor laktasi 1, 37 ekor laktasi 2, 25 ekor laktasi 3, dan 15 ekor laktasi

Lebih terperinci

LATIHAN SOAL MATEMATIKA KELAS XI IPS. adalah. A. 6 C. 2 E. 1 B. 3 D. 0.. Maka rumus fungsi invers f adalah.d

LATIHAN SOAL MATEMATIKA KELAS XI IPS. adalah. A. 6 C. 2 E. 1 B. 3 D. 0.. Maka rumus fungsi invers f adalah.d LATIHAN SOAL MATEMATIKA KELAS XI IPS. Diketahui fungsi f x px qx c dan f dan f, maka p c adalah. 6 E. 0. Jika g x x dan h x x, maka g h0... E. 0. Diketahui f x x, g x x, dan h x x. Maka nilai f g h...

Lebih terperinci

C. Ukuran Letak dan Ukuran Penyebaran Data

C. Ukuran Letak dan Ukuran Penyebaran Data C. Ukuran Letak dan Ukuran Penyebaran Data. Ukuran Letak Data Tunggal a. Kuartil Pada data dengan banyak data n 4, Kuartil membagi data menjadi 4 bagian sama banyak, sehingga diperoleh tiga nilai yang

Lebih terperinci

STATISTIKA DESKRIPTIF. Wenny Maulina, S.Si., M.Si

STATISTIKA DESKRIPTIF. Wenny Maulina, S.Si., M.Si STATISTIKA DESKRIPTIF Wenny Maulina, S.Si., M.Si Ukuran Pemusatan Ukuran pemusatan ukuran ringkas yang menggambarkan karakteristik umum data tersebut. Modus (Mode): Nilai pengamatan yang paling sering

Lebih terperinci

Kursus Statistika Dasar. Bagian 1. Pengelompokan Statistika. Istilah-istilah Dasar. Jenis Data. Pengelompokan Statistika lainnya. Bambang Suryoatmono

Kursus Statistika Dasar. Bagian 1. Pengelompokan Statistika. Istilah-istilah Dasar. Jenis Data. Pengelompokan Statistika lainnya. Bambang Suryoatmono Kursus Statistika Dasar Bambang Suryoatmono Bagian 1 Statistika Deskriptif Pengelompokan Statistika Statistika Deskriptif: statistika yang menggunakan data pada suatu kelompok untuk menjelaskan atau menarik

Lebih terperinci

4. Jika dari 100 data diperoleh data terendah 15 dan data tertinggi 84, maka banyaknya kelas adalah. A. 5 B. 6 C. 7 D. 8 E. 9

4. Jika dari 100 data diperoleh data terendah 15 dan data tertinggi 84, maka banyaknya kelas adalah. A. 5 B. 6 C. 7 D. 8 E. 9 1. Data yang berupa kumpulan angka disebut dengan data. A. Kelompok B. Tunggal C. Kuantitatif D. Kualitatif E. Acak 2. Di bawah ini yang bukan merupakan data kuantitatif adalah A. Suhu badan pasien B.

Lebih terperinci

Skala pengukuran dan Ukuran Pemusatan. Ukuran Pemusatan

Skala pengukuran dan Ukuran Pemusatan. Ukuran Pemusatan Skala Pengukuran Nominal (dapat dikelompokkan, tidak punya urutan) Ordinal (dapat dikelompokkan, dapat diurutkan, jarak antar nilai tidak tetap sehingga tidak dapat dijumlahkan) Interval (dapat dikelompokkan,

Lebih terperinci

1.0 Distribusi Frekuensi dan Tabel Silang

1.0 Distribusi Frekuensi dan Tabel Silang ANALISIS DESKRIPTIF 1.0 Distribusi Frekuensi dan Tabel Silang 1.1 Pengantar Statistik deskriptif Statistika deskriptif adalah bidang statistika yang mempelajari tatacara penyusunan dan penyajian data yang

Lebih terperinci

Ilmu Komunikasi Marketing Communication & Advertising

Ilmu Komunikasi Marketing Communication & Advertising Modul ke: Fakultas 06Ilmu Komunikasi UKURAN DISPERSI (PENYEBARAN) Memberikan informasi tentang sebaran nilai pada data tersebut dan dapat membandingkan sebaran data dari dua distribusi nilai Dra. Yuni

Lebih terperinci

BAB III METODE PENELITIAN. Pendekatan yang digunakan dalam menyelesaikan masalah penelitian ini

BAB III METODE PENELITIAN. Pendekatan yang digunakan dalam menyelesaikan masalah penelitian ini 50 BAB III METODE PENELITIAN A. Pendekatan dan Metode Penelitian Pendekatan yang digunakan dalam menyelesaikan masalah penelitian ini adalah pendekatan kuantitatif. Pendekatan kuantitatif dipilih penulis

Lebih terperinci

UKURAN TENGAH DAN UKURAN DISPERSI

UKURAN TENGAH DAN UKURAN DISPERSI UKURAN TENGAH DAN UKURAN DISPERSI UKURAN TENGAH Ukuran tengah nilai tunggal yang representatif untuk keseluruhan nilai data. Ukuran tendensi sentral nilainya cenderung terletak di urutan paling tengah

Lebih terperinci

MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA

MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA AMIYELLA ENDISTA SKG.MKM Email : amiyella.endista@yahoo.com Website : www.berandakami.wordpress.com Perhitungan Nilai Gejala Pusat Mean Median Modus Range

Lebih terperinci

Masalah Penyebaran data. Riana Nurhayati

Masalah Penyebaran data. Riana Nurhayati Masalah Penyebaran data Riana Nurhayati Penyebaran Data Penyajian data statistik dalam berbagai bentuk tabel distribusi frekuensi dan grafik, masih belum bisa membuat angka menjadi berbicara. Untuk dapat

Lebih terperinci

BAB 4 HASIL PENELITIAN

BAB 4 HASIL PENELITIAN BAB 4 HASIL PENELITIAN 4.1 Karakteristik Responden Sebelum hasil penelitian disajikan, terlebih dahulu dengan sederhana dijelaskan karakteristik responden. Karakteristik responden meliputi jenis kelamin,

Lebih terperinci

BAB III METODE PENELITIAN. kelamin dan pendekatan SAVI, Inkuiri, RME dengan setting pembelajaran. tanggal 7 September 2013 di SMP Buana.

BAB III METODE PENELITIAN. kelamin dan pendekatan SAVI, Inkuiri, RME dengan setting pembelajaran. tanggal 7 September 2013 di SMP Buana. 56 BAB III METODE PENELITIAN A. Jenis Penelitian Jenis dari penelitian ini adalah penelitian kuantitatif, karena ingin mengetahui perbedaan hasil belajar matematika siswa yang ditinjau dari jenis kelamin

Lebih terperinci

STATISTIKA KELAS : XI BAHASA SEMESTER : I (SATU) Disusun Oleh : Drs. Pundjul Prijono Nip

STATISTIKA KELAS : XI BAHASA SEMESTER : I (SATU) Disusun Oleh : Drs. Pundjul Prijono Nip MODUL MATEMATIKA STATISTIKA 11.1. KELAS : XI BAHASA SEMESTER : I (SATU) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.1981.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI Jalan Mayjen Sungkono

Lebih terperinci

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPS/Keagamaan

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPS/Keagamaan Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 00/0 Program Studi IPS/Keagamaan. Himpunan penyelesaian pertidaksamaan -x +x 5 0 adalah... A. { x x -5 atau x -, x R } D. { x x - atau

Lebih terperinci

SOAL STATISTIKA KELAS XI Oleh: Erni Kundiarsih

SOAL STATISTIKA KELAS XI Oleh: Erni Kundiarsih SOAL STATISTIKA KELAS XI Oleh: Erni Kundiarsih MATEMATIKANET.COM Data berikut untuk soal nomor 1 4 Nilai ulangan harian matematika dari 14 orang siswa yang diambil secara acak adalah 7, 5, 8, 6, 7, 8,

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN 44 BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Deskripsi Data Deskripsi data hasil penelitian dimaksudkan untuk memberikan gambaran umum mengenai hasil pengolahan data yang didapat dari dua variabel dalam

Lebih terperinci

BAB III SIMULASI PENGGUNAAN PERTIDAKSAMAAN PADA DISTRIBUSI

BAB III SIMULASI PENGGUNAAN PERTIDAKSAMAAN PADA DISTRIBUSI BAB III SIMULASI PENGGUNAAN PERTIDAKSAMAAN PADA DISTRIBUSI 3.1 Pendahuluan Pada bab sebelumnya telah dibahas mengenai pertidaksamaan Chernoff dengan terlebih dahulu diberi pemaparan mengenai dua pertidaksamaan

Lebih terperinci

UKURAN SIMPANGAN DAN UKURAN VARIASI. Ukuran Simpangan

UKURAN SIMPANGAN DAN UKURAN VARIASI. Ukuran Simpangan Ukuran simpangan: Rentang Rentang antar kuartil Simpangan kuartil Rata rata simpangan Ukuran Variasi: Varians Simpangan baku Angka Baku Koefisien Variasi UKURAN SIMPANGAN DAN UKURAN VARIASI Ukuran Simpangan

Lebih terperinci

STATISTIKA DESKRIPTIF

STATISTIKA DESKRIPTIF STATISTIKA DESKRIPTIF 1 Statistika deskriptif berkaitan dengan penerapan metode statistika untuk mengumpulkan, mengolah, menyajikan dan menganalisis data kuantitatif secara deskriptif. Statistika inferensia

Lebih terperinci

UKURAN PEMUSATAN DATA STATISTIK

UKURAN PEMUSATAN DATA STATISTIK UKURAN PEMUSATAN DATA STATISTIK Pengantar Dari setiap kumpulan data, terdapat tiga ukuran atau tiga nilai statistik yang dapat mewakili data tersebut, yaitu rataan (mean), median, dan modus. Ketiga nilai

Lebih terperinci

Distribusi Normal, Skewness dan Qurtosis

Distribusi Normal, Skewness dan Qurtosis Distribusi Normal, Skewness dan Qurtosis Departemen Biostatistika FKM UI 1 2 SAP Statistika 1, minggu ke-4 4 Membekali mahasiswa agar lebih paham dan menguasai teori terkait: menghitung ukuran penyimpangan

Lebih terperinci

III MATERI DAN METODE PENELITIAN. Objek penelitan ini menggunakan catatan produksi susu 305 hari dari

III MATERI DAN METODE PENELITIAN. Objek penelitan ini menggunakan catatan produksi susu 305 hari dari III MATERI DAN METODE PENELITIAN 3.1 Materi Penelitian 3.1.1 Objek Penelitian Objek penelitan ini menggunakan catatan produksi susu 305 hari dari ternak sapi perah yang terdapat di BBPTU HPT Baturraden.

Lebih terperinci