UKURAN PEMUSATAN DATA

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "UKURAN PEMUSATAN DATA"

Transkripsi

1 Pertemuan ketiga UKURAN PEMUSATAN DATA Karakteristik suatu kumpulan data adalah : (1). Memusat pada nilai tertentu dari suatu distribusi, yang disebut nilai pusat (middle of data set), dan (2). Menyebar/berpencar (spread of data set). Termasuk dalam ukuran tendensi sentral (measures of central tendency) : rata-rata hitung, rata-rata geometric, rata-rata harmonic, median dan modus. Jenis ukuran penyebaran (measures of dispersion) yaitu penyebaran mutlak dan penyebaran relative. Termasuk dalam penyebaran adalah : range, deviasi kuartil, simpangan rata-rata, varians, simpangan baku. A. Rata-rata Hitung (Mean) Rata-rata hitung merupakan jumlah dari seluruh nilai data dibagi dengan banyaknya data. Rumus rata-rata hitung untuk data kuantitatif tanpa pengelompokkan, dimana datanya x 1, x 2, x 3, x 4,, x n dengan data n buah, adalah : Cari mean dari 5 orang mahasiswa hasil ujian mata kuliah statistik, jika x 1 = 70, x 2 = 65, x 3 = 30, x 4 = 45, dan x 5 = 60! Rumus rata-rata hitung untuk data kuantitatif yang sudah dikelompokkan, dihitung dengan rumus : x i adalah titik tengah masing-masing kelas f i adalah frekuensi masing-masing kelas Cari mean dari data distribusi frekuensi berikut : No. Kelas Interval Frekuensi (fi) xi fi.xi , , Σfi = 80 Σfi.xi = Maka meannya adalah : IBM LENOVO FE-UWP-STATISTIKA 1

2 Mencari mean dengan cara coding, rumusnya : Ci adalah pengkodean (mulai dari 0) Xo adalah nilai tengah kelas yang memakai kode 0 P = panjang kelas/interval No. Kelas Interval Frekuensi (fi) c i f i.c i x , , Σf i = 80 Σf i.c i = Maka nilai rata-ratanya : B. M o d u s Modus adalah nilai yang mempunyai frekuensi terbesar dalam suatu kumpulan data. Modus berguna untuk mengetahui tingkat seringnya terjadi suatu peristiwa. Jika nilai yang tampil dengan frekuensi tertinggi ada dua disebut bimodal, kalau ada tiga disebut trimodal, kalau ada banyak disebut multimodal. Modus dapat digunakan untuk semua skala pengukuran data mulai dari nominal hingga ratio. Dari data 10 orang mahasiswa yang mengikuti tes statistika sebgai berikut : 50, 40, 37, 50, 50, 60, 80, 80, 70, 90. Maka modusnya (Mo) adalah : 50. Untuk menentukan modus dari data kuantitatif dengan data distribusi frekuensi, rumus yang dipakai : b = Tepi batas bawah kelas modus P = Panjang kelas/interval b 1 = Frekuensi kelas modus dikurangi frekuensi kelas sebelumnya b 2 = Frekuensi kelas modus dikurangi frekuensi kelas berikutnya IBM LENOVO FE-UWP-STATISTIKA 2

3 Diketahui distribusi frekuensi dibawah ini : Σf = Berdasarkan tabel di atas, didapat : b 1 = = 5 b 2 = 25 5 = 20 b = ( ) : 2 = 80,5 P = 10 Sehingga modusnya adalah : Kelas modus C. M e d i a n Median merupakan nilai tengah dari nilai-nilai pengamatan yang disusun secara teratur menurut besarnya data. Median membagi nilai pengamatan yang ada pada gugus data sehingga 50% terletak dibawah median dan 50% di atas median. Median dapat dipergunakan bila skala pengukuran datanya minimal ordinal, sehingga terhadap nilai-nilai pengamatan dapat dilakukan pemeringkatan untuk menemukan nilai pengamatan yang berlokasi di tengah. Median dari data berikut : 2, 3, 5, 7, 8, 9, 10 adalah 7 (untuk data ganjil). Dan median dari data 2, 3, 5, 7, 8, 9, 10, 11 adalah (7 + 8) /2 = 7,5 (untuk data genap) Untuk menentukan median dari data yang dikelompokkan dalam data distribusi frekuensi menggunakan rumus : b = tepi batas bawah kelas median P = panjang kelas/interval F = Jumlah frekuensi sebelum kelas median f = Frekuensi kelas median n = jumlah seluruh frekuensi Diketahui tabel distribusi frekuensi di bawah ini : Kelas median Σf = IBM LENOVO FE-UWP-STATISTIKA 3

4 Berdasarkan tabel di atas : Kelas median adalah : 72/2 = 36,5 (angka 36,5 terletak di kelas interval 5) sehingga didapat : b = 70,5; p = 10; F = 23; f = 20; n = 73. Dengan demikian nilai mediannya adalah : D. Hubungan Mean, Median dan Modus Hubungan antara mean, median dan modus dari suatu distribusi frekuensi adalah sebagai berikut : Bila nilai mean, nilai median dan nilai modus sama besar ( = Me = Mo), artinya nilai mean, median dan modus terletak pada satu titik dari kurva distribusi frekuensi, dan kurva/data tersebut berbentuk simetris (symmetrical curve) Bila nilai mean lebih besar dari nilai median dan nilai modus ( > Me > Mo ), artinya nilai mean terletak di sebelah kanan kurva distribusi frekuensi, kemudian median di tengah dan modus dikiri, maka kurva/data tersebut bentunya tidak simetris dan menceng kesebelah kanan (skewed right) Bila nilai mean lebih kecil dari nilai median dan nilai modus ( = Me = Mo), artinya nilai mean terletak disebelah kiri kurva distribusi frekuensi, kemudian median di tengah dan modus di kanan, maka kurva/data tersebut bentuknya tidak simetris dan menceng ke sebelah kiri (skewed left) E. K u a r t i l Kuartil merupakan nilai-nilai yang membagi data yang telah diurutkan menjadi empat bagian yang sama, sehingga dalam suatu gugus data didapati 3 kuartil (kuartil 1, kuartil 2 atau median, dan kuartil 3). Untuk lebih jelas perhatikan gambar berikut : Gugus data dalam kuartil Q 1 Q 2 Q 3 Lowes observation ¼ of items ¼ of items ¼ of items ¼ of items 1 st quartile 2 nd quartile (median) 1 rd quartile highest observation Untuk menentukan nilai kuartil perlu diperhatikan langkah-langkah berikut, yaitu : 1. Susun data tersebut menurut nilainya, 2. Tentukan letak kuartil, dan 3. Tentukan nilai kuartil Letak kuartil : Q k = Kuartil ke-k k = 1, 2, 3 N = Banyak data/observasi Tentukan letak Q 1, Q 2, dan Q 3 serta nilainya dari data berikut : 35, 40, 70, 80, 91, 50, 61, 25, , 35, 40, 50, 61, 70, 80, 91, 95 IBM LENOVO FE-UWP-STATISTIKA 4

5 Letak kuartil 1 (Q 1 ) adalah : Q 1 = 1(9 + 1) : 4 = 2,5. Jadi kuarti ke 1 terletak diantara data ke 2 dan ke 3. Maka nilai kuartil 1 adalah data ke 2 + ½ (data ke 3 data ke 2) = 35 + ½(40 35) = 35 + ½(5) = 37,5 Letak kuartil 2 (Q 2 adalah Q 2 = 2(9 + 1) : 4 = 5. Jadi kuartil ke 2 terletak pada data ke 5 yaitu 61 (nilai kuartil 2 adalah 61) Letak kuartil 3 (Q 3 ) adalah Q 3 = 3(9 + 1) : 4 = 7,5. Jadi kuartil ke 3 terletak di antara data ke 7 dan data ke 8, maka kuartil 3 adalah data ke 7 + ½(data ke 8 data ke 7) = 80 + ½(91 80) = 80 + ½(11) = 85,5. Rumus untuk mencari nilai kuartil untuk data yang telah dikelompokkan dalam distribusi frekuensi adalah : Q k = kuartil ke k k = 1, 2, 3 B 1 = batas bawah kelas yang mengandung Q k i = interval kelas Cfb = jumlah frekuensi sebelum kelas yang mengandung Q k f Q = frekuensi kelas yang mengandung Q k n = banyak observasi Cari letak dan nilai Q 1, Q 2, dan Q 3 dari data sebagai berikut : Letak Q 1 Letak Q 2 Letak Q Σf = 80 Berdasarkan tabel di atas didapat : Letak Qi = (k/4). N Letak Q1 = (1/4). 80 = 20 Letak Q2 = (2/4). 80 = 40 Letak Q3 = (3/4). 80 = 60 Untuk Q 1 = k = 1, cfb = 8, B 1 = 60,5; i = 10, f Q = 15, N = 80. Nilai kuartil 1 nya adalah : Untuk Q 2 = k = 2, cfb = 23, B 1 = 70,5; i = 10, f Q = 20, N = 80. Nilai kuartil 2 nya adalah : Untuk Q 3 = k = 3, cfb = 43, B 1 = 80,5; i = 10, f Q = 25, N = 80. Nilai kuartil 3 nya adalah : IBM LENOVO FE-UWP-STATISTIKA 5

6 F. D e s i l Jika kelompok suatu data dapat dibagi menjadi 10 bagian yang sama didapat 9 pembagi dan tiap pembagi disebut desil. Rumus mencari letak desil untuk data yang tidak dikelompokkan dalam distribusi frekuensi adalah : Letak desil : D k = Desil ke-k k = 1, 2, 3, 4, 5, 6, 7, 8, 9 N = Banyak data/observasi Cari letak dan nilai D 2, D 4, D 6 dari data sebagai berikut : 30, 46, 47, 50, 35, 25, 40, 40, 55, 60, 70, 80, 90! Rumus mencari nilai desil untuk data yang telah dikelompokkan dalam distribusi frekuensi adalah : D k = Desil ke k k = 1, 2, 3, 4, 5, 6, 7, 8, 9 B 1 = batas bawah kelas yang mengandung D k i = interval kelas Cfb = jumlah frekuensi sebelum kelas yang mengandung D k f D = frekuensi kelas yang mengandung D K n = banyak observasi Cari letak nilai D 2, D 4, D 6,D 8 dari data sebagai berikut : Letak D 2 Letak D 4 Letak D 6 dan D Σf = 80 IBM LENOVO FE-UWP-STATISTIKA 6

7 Misal kita ambil D 8 Letak D 8 = (8 x 80)/10 = 64 Maka nilai Misal kita ambil D 2 Letak D 2 = (2 x 80)/10 = Maka nilai Misal kita ambil D 4 Letak D 4 = (4 x 80)/10 = Maka nilai Misal kita ambil D 6 Letak D 6 = (6 x 80)/10 = Maka nilai G. P e r s e n t i l (Percentile) Jika suatu data dibagi menjadi 100 bagian yang sama didapat 99 pembagi, dan setiap pembagi disebut persentil. Letak persentil : D k = Persentil ke-k k = 1, 2, 3, 4, 5, 6,, 99 N = Banyak data/observasi Tentukan letak P 20 serta nilainya dari data berikut ini : 35, 40, 70, 80, 91, 50, 61, 25, 95 25, 35, 40, 50, 61, 70, 80, 91, 95 Letak persentil 20 (P 20 ) adalah : P 20 = 20(9 + 1)/100 = 2. Jadi persentil ke 20 terletak pada data ke 2, yaitu 35. Rumus mencari nilai persentil untuk data yang telah dikelompokkan dalam distribusi frekuensi adalah : P k = Persentil ke k k = 1, 2, 3, 4, 5, 6, 7, 8, 9 B 1 = batas bawah kelas yang mengandung P k i = interval kelas Cfb = jumlah frekuensi sebelum kelas yang mengandung P k f D = frekuensi kelas yang mengandung P K n = banyak observasi IBM LENOVO FE-UWP-STATISTIKA 7

8 Cari letak nilai P 50 dan P 75 dari data sebagai berikut : Letak P Σf = 80 Letak P 50 = (50 x 80) / 100 = 40 Letak P 75 = L A T I H A N 1. Dari 100 orang mahasiswa Program Studi FE Universitas Wijaya Putra Surabaya yang mengikuti ujian akhir semester mata kuliah statistic, diambil sampel secara acak 10 orang mahasiswa untuk nilai ujiannya. Setelah diteliti, didapat data sebagai berikut : 60, 70, 75, 80, 55, 100, 90, 65, 70, 85. Hitunglah rata-rata hitung nilai mahasiswa tersebut! 2. Apa yang akan anda tuliskan tentang modus dalam suatu percobaan bila : a. dari 10 percobaan tidak ada nilai yang sama b. dari 6 percobaan semua nilai sama c. dari 6 percobaan, nilainya 1, 2, 3, 3, 4, dan 4 3. Hitunglah nilai rata-rata, median dan modus dari distribusi frekuensi berikut : Kelas Frekuensi Sampel acak 50 orang karyawan perusahaan, setelah diteliti mengenai besar pengeluaran per bulannya, diperoleh data sebgai berikut : Pengeluaran Per Bulan (dalam ribuan rupiah) Banyak Pegawai (orang) Diminta IBM LENOVO FE-UWP-STATISTIKA 8

9 a. Rata-rata hitung besarnya pengeluaran per bulan 50 karyawan tersebut b. Modus besarnya pengeluaran per bulan 50 karyawan tersebut c. Median besarnya pengeluaran per bulan 50 karyawan tersebut d. Tunjukkan hubungan rata-rata, modus, dan median di atas dalam bentuk kurva 5. Maju, Inc. adalah distributor barang-barang elektronika. Dalam bisnis ini, kepastian waktu yang dibutuhkan pelanggan untuk mambayar faktur mereka adalah sangat penting. Berikut adalah sampel dari Maju, Inc. yang menyatakan susunan faktur dari yang terkecil ke yang terbesar, berdasarkan waktu dan hari : 13, 113, 13, 20, 26, 27, 31, 34, 34, 34, 35, 35, 36, 37, 38, 41, 41, 41, 45, 47, 47, 47, 50, 51, 53, 54, 56, 62, 67, 82. Diminta a. Tentukan nilai kuartil 1 dan 3 b. Tentukan nilai desil 2 dan 8 c. Tentukan nilai persentil ke 67 IBM LENOVO FE-UWP-STATISTIKA 9

BAB III LANDASAN TEORI. kuesioner wawancara tidak akan teratur. Bagian pengolahan data menggunakan

BAB III LANDASAN TEORI. kuesioner wawancara tidak akan teratur. Bagian pengolahan data menggunakan 16 BAB III LANDASAN TEORI 3.1 Kuesioner 3.1.1 Peranan Kuesioner Rancangan kuesioner adalah salah satu pondasi dasar riset pasar. Kuesioner merupakan alat untuk mewancarai seorang. Sebuah kuesioner memberikan

Lebih terperinci

DISPERSI DATA. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation)

DISPERSI DATA. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation) DISPERSI DISPERSI DATA Ukuran penyebaran suatu kelompok data terhadap pusat data. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation)

Lebih terperinci

UKURAN NILAI SENTRAL&UKURAN PENYEBARAN. Tita Talitha, MT

UKURAN NILAI SENTRAL&UKURAN PENYEBARAN. Tita Talitha, MT UKURAN NILAI SENTRAL&UKURAN PENYEBARAN Tita Talitha, MT DISTRIBUSI FREKWENSI PENGERTIAN distribusi frekwensi adalah suatu tabel dimana banyaknya kejadian / frekwensi didistribusikan ke dalam kelas-kelas

Lebih terperinci

Pengukuran Deskriptif

Pengukuran Deskriptif Pengukuran Deskriptif 2.2 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Pendahuluan Tendensi Sentral Ukuran Dispersi 3 Pendahuluan Pengukuran Deskriptif 4 Definisi

Lebih terperinci

Pengukuran Deskriptif. Debrina Puspita Andriani /

Pengukuran Deskriptif. Debrina Puspita Andriani    / Pengukuran Deskriptif 3 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Pendahuluan Tendensi Sentral Ukuran Dispersi 3 Pendahuluan Pengukuran Deskriptif 4 Definisi Pengukuran

Lebih terperinci

PENGUKURAN DESKRIPTIF

PENGUKURAN DESKRIPTIF PENGUKURAN DESKRIPTIF STATISTIK INDUSTRI I Jurusan Teknik Industri Universitas Brawijaya Malang 1 PENGUKURAN DESKRIPTIF Suatu pengukuran yang bertujuan untuk memberikan gambaran tentang data yang diperoleh

Lebih terperinci

UKURAN-UKURAN NILAI PUSAT

UKURAN-UKURAN NILAI PUSAT UKURAN-UKURAN NILAI PUSAT Nilai tunggal yang dinilai dapat mewakili keseluruhan nilai dalam data dianggap sebagai rata-rata (averages). Nilai rata-rata dihitung bedasarkan keseluruhan nilai yang terdapat

Lebih terperinci

UKURAN PENYEBARAN DATA

UKURAN PENYEBARAN DATA Pertemuan keempat UKURAN PENYEBARAN DATA Ukuran penyebaran data digunakan untuk melengkapi deskripsi dari sifat-sifat sekelompok data, terutama dalam membandingkan sifat-sifat yang dimiliki oleh masing-masing

Lebih terperinci

BAGIAN UKURAN PEMUSATAN DAN UKURAN LETAK. Memahami konsep dan menerapkan prosedur statistik dalam menghitung ukuran pemusatan dan ukuran letak.

BAGIAN UKURAN PEMUSATAN DAN UKURAN LETAK. Memahami konsep dan menerapkan prosedur statistik dalam menghitung ukuran pemusatan dan ukuran letak. UKURAN PEMUSATAN DAN UKURAN LETAK BAGIAN 1 Memahami konsep dan menerapkan prosedur statistik dalam menghitung ukuran pemusatan dan ukuran letak. a. Mendeskripsikan konsep dan penerapan prosedur statistik

Lebih terperinci

UNIVERSITAS NEGERI MALANG FAKULTAS ILMU KEOLAHRAGAAN JURUSAN ILMU KESEHATAN MASYARAKAT

UNIVERSITAS NEGERI MALANG FAKULTAS ILMU KEOLAHRAGAAN JURUSAN ILMU KESEHATAN MASYARAKAT UKURAN PEMUSATAN MAKALAH UNTUK MEMENUHI TUGAS MATAKULIAH Dasar-dasar Biostatistik Deskriptif Yang dibina oleh Bapak Dr. Saichudin, M.Kes Ibu dr. Anindya, S.Ked Oleh : Derada Imanadani 130612607847/2013

Lebih terperinci

By : Hanung N. Prasetyo

By : Hanung N. Prasetyo theory STATISTIKA DESKRIPTIF By : Hanung N. Prasetyo UKURAN PEMUSATAN Nilai tunggal yang mewakili semua data atau kumpulan pengamatan dimana nilai tersebut menunjukkan pusat data. Yang termasuk ukuran

Lebih terperinci

UKURAN PEMUSATAN DATA STATISTIK

UKURAN PEMUSATAN DATA STATISTIK UKURAN PEMUSATAN DATA STATISTIK Pengantar Dari setiap kumpulan data, terdapat tiga ukuran atau tiga nilai statistik yang dapat mewakili data tersebut, yaitu rataan (mean), median, dan modus. Ketiga nilai

Lebih terperinci

BAB 3: NILAI RINGKASAN DATA

BAB 3: NILAI RINGKASAN DATA BAB 3: NILAI RINGKASAN DATA Penyajian data dalam bentuk tabel dan grafik memberikan kemudahan bagi kita untuk menggambarkan data dan membuat kesimpulan terhadap sifat data. Namun tabel dan grafik belum

Lebih terperinci

HARISON,S.Pd,M.Kom JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI PADANG

HARISON,S.Pd,M.Kom JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI PADANG HARISON,S.Pd,M.Kom JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI PADANG HOMOGEN DAN HETEROGEN DATA I. 50,50,50,50,50 II. 30,40,50,60,70 III.0,30,50,70,80 Ketiga kelompok data

Lebih terperinci

Kenapa Data Harus Diringkas?

Kenapa Data Harus Diringkas? 1 Kenapa Data Harus Diringkas? Agar data berguna, pengamatan yang diperoleh harus disusun dalam bentuk yang lebih terorganisir. Peringkasan data akan memudahkan pengambilan kesimpulan Peringkasan data

Lebih terperinci

Ukuran Nilai Sentral

Ukuran Nilai Sentral Ukuran Nilai Sentral Nilai Sentral Pengertian Nilai Sentral Nilai sentral suatu rangkaian data adalah nilai dalam rangkaian data yang dapat mewakili data tersebut. Suatu rangkaian data biasanya memiliki

Lebih terperinci

9. STATISTIKA. f u. X s = Rataan sementara, pilih x i dari data dengan f i terbesar. Ukuran Pemusatan Data A. Rata-rata. 1.

9. STATISTIKA. f u. X s = Rataan sementara, pilih x i dari data dengan f i terbesar. Ukuran Pemusatan Data A. Rata-rata. 1. 9. STATISTIKA Ukuran Pemusatan Data A. Rata-rata 1. Data tunggal: X = 2. Data terkelompok: x1 + x 2 + x3 +... + x n n Cara konvensional Cara sandi f = i xi X f u X Xs i i = + c f i f i Keterangan: f i

Lebih terperinci

PENS. Probability and Random Process. Topik 2. Statistik Deskriptif. Prima Kristalina Maret 2016

PENS. Probability and Random Process. Topik 2. Statistik Deskriptif. Prima Kristalina Maret 2016 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 2. Statistik Deskriptif Prima Kristalina Maret 2016 1 Outline [2][1] 1. Penyajian Data o Tabel

Lebih terperinci

STATISTIKA KELAS : XI BAHASA SEMESTER : I (SATU) Disusun Oleh : Drs. Pundjul Prijono Nip

STATISTIKA KELAS : XI BAHASA SEMESTER : I (SATU) Disusun Oleh : Drs. Pundjul Prijono Nip MODUL MATEMATIKA STATISTIKA 11.1. KELAS : XI BAHASA SEMESTER : I (SATU) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.1981.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI Jalan Mayjen Sungkono

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN Topik Bahasan : Membahas Silabus Perkuliahan Tujuan Umum : Mahasiswa Mengetahui Komponen Yang Perlu Dipersiapkan Dalam Matakuliah Ini satu kali Tujuan 1 Menjelaskan tentang Mengakomodasi berbagai masukan

Lebih terperinci

UKURAN TENGAH DAN UKURAN DISPERSI

UKURAN TENGAH DAN UKURAN DISPERSI UKURAN TENGAH DAN UKURAN DISPERSI UKURAN TENGAH Ukuran tengah nilai tunggal yang representatif untuk keseluruhan nilai data. Ukuran tendensi sentral nilainya cenderung terletak di urutan paling tengah

Lebih terperinci

Median Median dari data yang belum dikelompokkan

Median Median dari data yang belum dikelompokkan Median Median merupakan salah satu ukuran pemusatan atau sebuah nilai yang berada ditengah-tengah data, setelah data tersebut diurutkan. Mungkin Anda bertanya, mengapa perlu median setelah Anda mempelajari

Lebih terperinci

UKURAN PEMUSATAN MK. STATISTIK (MAM 4137) 3 SKS (3-0) Ledhyane Ika Harlyan

UKURAN PEMUSATAN MK. STATISTIK (MAM 4137) 3 SKS (3-0) Ledhyane Ika Harlyan UKURAN PEMUSATAN MK. STATISTIK (MAM 4137) 3 SKS (3-0) Ledhyane Ika Harlyan 1 DAFTAR ISI Mean Median Modus Kuartil, Desil dan Presentil Hubungan Mean-Median-Modus 2 Ukuran Statistik Untuk menjelaskan ciri-ciri

Lebih terperinci

MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA

MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA AMIYELLA ENDISTA SKG.MKM Email : amiyella.endista@yahoo.com Website : www.berandakami.wordpress.com Perhitungan Nilai Gejala Pusat Mean Median Modus Range

Lebih terperinci

Probabilitas dan Statistika Analisis Data dan Ukuran Pemusatan. Adam Hendra Brata

Probabilitas dan Statistika Analisis Data dan Ukuran Pemusatan. Adam Hendra Brata Probabilitas dan Analisis dan Adam Hendra Brata Deskriptif Induktif Pembagian Deskriptif Metode guna mengumpulkan, menghitung, dan menyajikan suatu data secara kwantitatif sehingga memberikan informasi

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA UKURAN PEMUSATAN DATA MODUL 3 Oleh : Firmansyah, S.Kom A. TEMA DAN TUJUAN KEGIATAN PEMBELAJARAN 1. Tema : Ukuran Pemusatan Data 2. Fokus : Pembahasan Materi Pokok 1. Arti dan manfaat ukuran pemusatan data

Lebih terperinci

S T A T I S T I K A. Pertemuan ke-2

S T A T I S T I K A. Pertemuan ke-2 S T A T I S T I K A Pertemuan ke-2 Dasar-dasar Penghitungan Gejala Pusat Mean / Average / Rata-rata / Median / Me Mode / Modus / Mo Standard Deviation / Simpangan Baku / s Contoh : Susunlah data hasil

Lebih terperinci

Ukuran Pemusatan (Central Tendency)

Ukuran Pemusatan (Central Tendency) Ukuran Pemusatan (Central Tendency) MUHAMMAD ARIF RAHMAN arifelzain@ub.ac.id Central Tendency Ukuran statistik yang menyatakan bahwa satu skor dapat mewakili keseluruhan distribusi skor yang sedang diteliti.

Lebih terperinci

BAB III UKURAN TENGAH DAN DISPERSI

BAB III UKURAN TENGAH DAN DISPERSI BAB III UKURAN TENGAH DAN DISPERSI Dalam pembicaraan yang lalu kita telah mempresentasikan data dalam bentuk tabel dan grafik yang bertujuan meringkaskan dan menggambarkan data kuantitatif, untuk mendapatkan

Lebih terperinci

MINGGU KE- III: UKURAN NILAI SENTRAL

MINGGU KE- III: UKURAN NILAI SENTRAL MINGGU KE- III: UKURAN NILAI SENTRAL Tujuan Instruksinal Umum : 1. Mahasiswa memahami apa yang dimaksud dengan nilai sentral 2. Mahasiswa memahami guna dari perhitungan nilai sentral 3. Mahasiswa dapat

Lebih terperinci

Ukuran gejala pusat. Nugraeni

Ukuran gejala pusat. Nugraeni Ukuran gejala pusat Nugraeni UKURAN PEMUSATAN Merupakan nilai tunggal yang mewakili semua data atau kumpulan pengamatan dimana nilai tersebut menunjukkan pusat data. Yang termasuk ukuran pemusatan : 1.

Lebih terperinci

Statistika Materi 3 UKURAN PEMUSATAN. Nilai Tunggal yang mewakili Karakteristik Sekumpulan data. Hugo Aprilianto, M.Kom

Statistika Materi 3 UKURAN PEMUSATAN. Nilai Tunggal yang mewakili Karakteristik Sekumpulan data. Hugo Aprilianto, M.Kom Statistika Materi 3 UKURAN PEMUSATAN Nilai Tunggal yang mewakili Karakteristik Sekumpulan data UKURAN PEMUSATAN Adalah nilai tunggal yang mewakili suatu kumpulan data dan menunjukkan karakteristik dari

Lebih terperinci

BESARAN STATISTIK (UKURAN TENGAH DAN UKURAN

BESARAN STATISTIK (UKURAN TENGAH DAN UKURAN BESARAN STATISTIK (UKURAN TENGAH DAN UKURAN DISPERSI) UKURAN TENGAH Ukuran tengah nilai tunggal yang representatif untuk keseluruhan nilai data. Ukuran tendensi sentral nilainya cenderung terletak di urutan

Lebih terperinci

Rata-rata hitung sekumpulan data hasil observasi dapat dihitung dengan menggunakan rumus berikut :

Rata-rata hitung sekumpulan data hasil observasi dapat dihitung dengan menggunakan rumus berikut : UKURAN STATISTIK Pendahuluan aturan statistic merupakan aturan yang menunjukkan bagaimana suatu gugus data memusat dan menyebar. aturan pemusatan yang umum digunakan untuk mendeskripsikan data adalah mean

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Data Data adalah bentuk jamak dari datum, yang dapat diartikan sebagai informasi yang diterima yang bentuknya dapat berupa angka, kata-kata, atau dalam bentuk lisan dan tulisan

Lebih terperinci

Laporan Tugas dan Quiz Statistik Deskriptif. 1. Berikan penjelasan secara singkat apa yang dimaksud dengan:

Laporan Tugas dan Quiz Statistik Deskriptif. 1. Berikan penjelasan secara singkat apa yang dimaksud dengan: Nama : Purnomo Satria NIM : 1133467162 Evaluasi Pertemuan 4 dan 5 Laporan Tugas dan Quiz Statistik Deskriptif 1. Berikan penjelasan secara singkat apa yang dimaksud dengan: a. Rata-rata hitung, median,

Lebih terperinci

STATISTIKA DESKRIPTIF. Tendensi Sentral & Ukuran Dispersi

STATISTIKA DESKRIPTIF. Tendensi Sentral & Ukuran Dispersi STATISTIKA DESKRIPTIF Tendensi Sentral & Ukuran Dispersi Statistik dan Statistika Statistik : nilai-nilai ukuran data yang mudah dimengerti. Contoh : statistik liga sepak bola Indonesia Statistika : ilmu

Lebih terperinci

PENGANTAR STATISTIK JR113. Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI Pertemuan 6

PENGANTAR STATISTIK JR113. Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI Pertemuan 6 PENGANTAR STATISTIK JR113 Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI 2008 Pertemuan 6 MODUS Modus (Mo) adalah sebuah ukuran untuk menyatakan fenomena yang paling banyak terjadi atau

Lebih terperinci

Gejala Pusat - Statistika

Gejala Pusat - Statistika Gejala Pusat - Statistika Desma Eka Rindiani desmarindi@yahoo.co.id http://ladies-kopites.blogspot.com Lisensi Dokumen: Seluruh dokumen di StatistikaPendidikan.Com dapat digunakan, dimodifikasi dan disebarkan

Lebih terperinci

dapat digunakan formulasi sebagai berikut : Letak Letak Letak

dapat digunakan formulasi sebagai berikut : Letak Letak Letak 1. Ukuran Letak Agar kita dapat mengetahui lebih jauh mengenai karakteristik data observasi dengan beberapa ukuran sentral, kita sebaiknya mengetahui beberapa ukuran lain, yaitu ukuran letak. Ada tiga

Lebih terperinci

5. STATISTIKA PENYELESAIAN. a b c d e Jawab : b

5. STATISTIKA PENYELESAIAN. a b c d e Jawab : b . STATISTIKA A. Membaca Sajian Data dalam Bentuk Diagram. UN 00 IPS PAKET A Diagram lingkaran berikut menunjukan persentase jenis pekerjaan penduduk di kota X. Jumlah penduduk seluruhnya adalah 3.600.000

Lebih terperinci

Oleh Azimmatul Ihwah

Oleh Azimmatul Ihwah Oleh Azimmatul Ihwah Kasus: Di 5 perusahaan sejenis di kota Malang, yaitu perusahaan A, B, C, D dan E, seorang manufacturer ingin mengetahui perusahaan mana dengan kinerja karyawan terbaik. Diambil 50

Lebih terperinci

SOAL STATISTIKA KELAS XI Oleh: Erni Kundiarsih

SOAL STATISTIKA KELAS XI Oleh: Erni Kundiarsih SOAL STATISTIKA KELAS XI Oleh: Erni Kundiarsih MATEMATIKANET.COM Data berikut untuk soal nomor 1 4 Nilai ulangan harian matematika dari 14 orang siswa yang diambil secara acak adalah 7, 5, 8, 6, 7, 8,

Lebih terperinci

LEMBAR AKTIVITAS SISWA STATISTIKA 2 B. PENYAJIAN DATA

LEMBAR AKTIVITAS SISWA STATISTIKA 2 B. PENYAJIAN DATA Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA STATISTIKA 2 B. PENYAJIAN DATA Beberapa bentuk penyajian data, sebagai berikut: Kompetensi Dasar (KURIKULUM 2013): 3.15 Memahami dan menggunakan berbagai ukuran

Lebih terperinci

STATISTIK DAN STATISTIKA

STATISTIK DAN STATISTIKA STATISTIK DAN STATISTIKA MAKNA DARI PENGERTIAN STATISTIK DAN STATISTIKA DATA STATISTIK Pengertian : Data adalah keterangan atau fakta mengenai suatu persoalan bisa berupa kategori (rusak, baik senang,

Lebih terperinci

C. Ukuran Letak dan Ukuran Penyebaran Data

C. Ukuran Letak dan Ukuran Penyebaran Data C. Ukuran Letak dan Ukuran Penyebaran Data. Ukuran Letak Data Tunggal a. Kuartil Pada data dengan banyak data n 4, Kuartil membagi data menjadi 4 bagian sama banyak, sehingga diperoleh tiga nilai yang

Lebih terperinci

Materi II STATISTIK DESKRIPTIF STMIK KAPUTAMA BINJAI

Materi II STATISTIK DESKRIPTIF STMIK KAPUTAMA BINJAI Materi II STATISTIK DESKRIPTIF STMIK KAPUTAMA BINJAI DISTRIBUSI FREKUENSI Frekuensi adalah kekerapan atau keseringan suatu data berulang atau berada dalam deretan angka tersebut. Distribusi adalah penyaluran,

Lebih terperinci

Ukuran Letak (Kuartil, Desil dan Persentil)

Ukuran Letak (Kuartil, Desil dan Persentil) Ukuran Letak (Kuartil, Desil dan Persentil) Jika sekelompok data dibagi menjadi dua bagian yang sama, maka nilai yang berada di tengah (50%) disebut dengan median. Konsep median dapat diperluas yaitu kelompok

Lebih terperinci

Nama Penulis pungkyrahmatika@gmail.com http:/statistikapendidikan.com. Abstrak/Ringkasan. Pendahuluan. Lisensi Dokumen:

Nama Penulis pungkyrahmatika@gmail.com http:/statistikapendidikan.com. Abstrak/Ringkasan. Pendahuluan. Lisensi Dokumen: UKURAN NILAI PUSAT DAN UKURAN DISPERSI Nama Penulis pungkyrahmatika@gmail.com http:/statistikapendidikan.com Lisensi Dokumen: Seluruh dokumen di StatistikaPendidikan.Com dapat digunakan, dimodifikasi dan

Lebih terperinci

STATISTIKA INDUSTRI I. Agustina Eunike, ST., MT., MBA.

STATISTIKA INDUSTRI I. Agustina Eunike, ST., MT., MBA. STATISTIKA INDUSTRI I Agustina Eunike, ST., MT., MBA. PERTEMUAN-1 DATA Data Hasil pengamatan pada suatu populasi Untuk mendapatkan informasi yang akurat Pengumpulan data Pengolahan data Penyajian data

Lebih terperinci

Penyimpulan data numerik & kategorik. Elsa Roselina Dewi Gayatri

Penyimpulan data numerik & kategorik. Elsa Roselina Dewi Gayatri Penyimpulan data numerik & kategorik Elsa Roselina Dewi Gayatri P. data numerik Tendensi sentral (mean, median, modus) Hubungan mean, median, modus Ukuran variasi (range, interkuartil range, mean deviasi,

Lebih terperinci

STATISTIKA DESKRIPTIF. Wenny Maulina, S.Si., M.Si

STATISTIKA DESKRIPTIF. Wenny Maulina, S.Si., M.Si STATISTIKA DESKRIPTIF Wenny Maulina, S.Si., M.Si Ukuran Pemusatan Ukuran pemusatan ukuran ringkas yang menggambarkan karakteristik umum data tersebut. Modus (Mode): Nilai pengamatan yang paling sering

Lebih terperinci

TUGAS II STATISTIKA. Oleh. Butsiarah / 15B Kelas B PROGRAM STUDI PENDIDIKAN TEKNOLOGI DAN KEJURUAN PROGRAM PASCASARJANA

TUGAS II STATISTIKA. Oleh. Butsiarah / 15B Kelas B PROGRAM STUDI PENDIDIKAN TEKNOLOGI DAN KEJURUAN PROGRAM PASCASARJANA TUGAS II STATISTIKA Oleh Butsiarah / 15B20020 Kelas B PROGRAM STUDI PENDIDIKAN TEKNOLOGI DAN KEJURUAN PROGRAM PASCASARJANA UNIVERSITAS NEGERI MAKASSAR 2015 1. Penelitian terhadap nilai mahasiswa S1 Jurusan

Lebih terperinci

. Rumus untuk rata-rata gabungan adalah

. Rumus untuk rata-rata gabungan adalah Jawaban Bab IV 1. Macam-macam ukuran gejala pusat dan ukuran letak yang dikenal hingga sekarang terdiri dari golongan pertama yang meliputi rata-rata atau rata-rata hitung, rata-rata ukur, rata-rata harmonic,

Lebih terperinci

STATISTIK. Materi Pertemuan V Ukuran Dispersi (Penyebaran)

STATISTIK. Materi Pertemuan V Ukuran Dispersi (Penyebaran) STATISTIK Materi Pertemuan V Ukuran Dispersi (Penyebaran) Ukuran Dispersi (Penyebaran) Ukuran dispersi merupakan suatu metode analisis data yang ditunjukan dengan penyimpangan/penyebaran dari distribusi

Lebih terperinci

Pengantar Statistik. Nanang Erma Gunawan

Pengantar Statistik. Nanang Erma Gunawan Pengantar Statistik Nanang Erma Gunawan nanang_eg@uny.ac.id Sekilas tentang sejarah Statistik Statistik: pada awal zaman Masehi, bangsa-bangsa mengumpulkan data untuk mendapatkan informasi mengenai pajak,

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kelas 11 Matematika Statistika - Data Tunggal - Set 2 Uraian Doc. Name: AR11MAT0108 Version : 2012-08 halaman 1 01. Hitunglah mean, median, dan modus dari data berikut ini! (A) 43, 52, 54, 47,

Lebih terperinci

(TENDENCY CENTRAL) Oleh: Ig. Dodiet Aditya Setyawan, SKM, MPH.

(TENDENCY CENTRAL) Oleh: Ig. Dodiet Aditya Setyawan, SKM, MPH. UKURAN NILAI PUSAT (TENDENCY CENTRAL) [DESKRIPSI: Ukuran Nilai Pusat atau yang sering disebut Ukuran Rata-Rata merupakan suatu nilai yang dipandang representatif untuk dapat memberikan gambaran secara

Lebih terperinci

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada.

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Azimmatul Ihwah Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Ada cara yg lebih baik untuk menginterpretasi data yg

Lebih terperinci

STATISTIKA 1. A. Ukuran Pemusatan Data 11/16/2015. Peta Konsep. A. Ukuran Pemusatan Data

STATISTIKA 1. A. Ukuran Pemusatan Data 11/16/2015. Peta Konsep. A. Ukuran Pemusatan Data //0 Jurnal Daftar Hadir Materi A Materi Umum STATISTIKA Kelas X, Semester Pemusatan Statistika Letak Penyebaran Peta Konsep Data Tunggal A. Pemusatan Data Pemusatan Letak Penyebaran SoalLatihan Menggambar

Lebih terperinci

STATISTIKA 2 11/20/2015. B. Menghitung Ukuran Data dari Data Berkelompok. Peta Konsep. B. Menghitung Ukuran Data dari Data Berkelompok

STATISTIKA 2 11/20/2015. B. Menghitung Ukuran Data dari Data Berkelompok. Peta Konsep. B. Menghitung Ukuran Data dari Data Berkelompok /0/0 Peta Konsep Jurnal Datar Hadir Materi B Materi Umum STATISTIKA Kelas XI, Semester Pemusatan Statistika Letak Data Tunggal Penyebaran SoalLatihan B. Menghitung Data dari Data Berkelompok Pemusatan

Lebih terperinci

Deviasi rata-rata (rata-rata simpangan) data yang belum dikelompokkan

Deviasi rata-rata (rata-rata simpangan) data yang belum dikelompokkan Statistik Deskriptif DEVIASI RATA-RATA / RATA-RATA SIMPANGAN Mean Deviasi atau Average Deviation atau Deviasi Mean dari deviasi nilai-nilai dari Mean dalam suatu distribusi, diambil nilainya yang absolut.

Lebih terperinci

Ujian Tengah Semester Nama:.. STK211 Metode Statistika NRP:.. Semester Ganjil - TA 2016/2017 Studi Mayor:..

Ujian Tengah Semester Nama:.. STK211 Metode Statistika NRP:.. Semester Ganjil - TA 2016/2017 Studi Mayor:.. OAL TIPE 1 Ujian Tengah emester Nama:.. TK211 Metode tatistika NRP:.. emester Ganjil - TA 2016/2017 Program tudi Mayor:.. Petunjuk Umum: 1. Anda hanya diperkenankan membawa catatan 1 (satu) lembar A4,

Lebih terperinci

Ujian Tengah Semester Nama:.. STK211 Metode Statistika NRP:.. Semester Ganjil - TA 2016/2017 Studi Mayor:..

Ujian Tengah Semester Nama:.. STK211 Metode Statistika NRP:.. Semester Ganjil - TA 2016/2017 Studi Mayor:.. OAL TIPE 1 Ujian Tengah emester Nama:.. TK211 Metode tatistika NRP:.. emester Ganjil - TA 2016/2017 Program tudi Mayor:.. Petunjuk Umum: 1. Anda hanya diperkenankan membawa catatan 1 (satu) lembar A4,

Lebih terperinci

FAKULTAS KEGURUAN DAN ILMU PENDIDIKIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

FAKULTAS KEGURUAN DAN ILMU PENDIDIKIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON S T A T I S T I K A Oleh : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS KEGURUAN DAN ILMU PENDIDIKIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010 Wijaya : Statistika 0 I. PENDAHULUAN Statistika adalah

Lebih terperinci

Statistik Dasar. 1. Pendahuluan Persamaan Statistika Dalam Penelitian. 2. Penyusunan Data Dan Penyajian Data

Statistik Dasar. 1. Pendahuluan Persamaan Statistika Dalam Penelitian. 2. Penyusunan Data Dan Penyajian Data Statistik Dasar 1. Pendahuluan Persamaan Statistika Dalam Penelitian 2. Penyusunan Data Dan Penyajian Data 3. Ukuran Tendensi Sentral, Ukuran Penyimpangan 4. Momen Kemiringan 5. Distribusi Normal t Dan

Lebih terperinci

STATISTIKA: UKURAN LOKASI DATA. Tujuan Pembelajaran

STATISTIKA: UKURAN LOKASI DATA. Tujuan Pembelajaran KTSP & K-13 matematika K e l a s XI STATISTIKA: UKURAN LOKASI DATA Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan sebagai berikut. 1. Dapat menentukan kuartil data

Lebih terperinci

STAND N AR R K OMP M E P T E EN E S N I:

STAND N AR R K OMP M E P T E EN E S N I: Silabus Matematika Kelas XI IPS Smester 1 STANDAR KOMPETENSI: Menggunakan aturan statistika, kaidah pencacahan, dan sifat- sifat peluang dalam pemecahan masalah. u Kompetensi Dasar 1.1 Membaca data dalam

Lebih terperinci

BUKU RANCANGAN PENGAJARAN

BUKU RANCANGAN PENGAJARAN BUKU RANCANGAN PENGAJARAN Mata Kuliah STATISTIK SOSIAL Disusun oleh: SYAHRUL, S.T., M.Eng Program Studi Ilmu Administrasi Fakultas Ilmu Sosial dan Ilmu Politik Universitas 17 Agustus 1945 Samarinda 2015

Lebih terperinci

III. BESARAN, LOKASI, DAN VARIASI

III. BESARAN, LOKASI, DAN VARIASI III. BESARAN, LOKASI, DAN VARIASI RATA-RATA Rata-rata (average) adalah nilai yang mewakili sehimpunan atau sekelompok data (a set of data). Nilai rata-rata cenderung berada di tengah-tengah jika data disusun

Lebih terperinci

Pengukuran Kesehatan

Pengukuran Kesehatan 1 Pengukuran Kesehatan Ukuran Sentral: Mean atau Arithmetic Mean Median Modus Ukuran Variasi: Range Mean Deviasi Standar deviasi, Standar Error, 95%CI Coefisien Variasi Ukuran Posisi: Median Kuartil Desil

Lebih terperinci

STATISTIKA DESKRIPTIF

STATISTIKA DESKRIPTIF STATISTIKA DESKRIPTIF Ukuran Pusat (measure of center) Ukuran Penyebaran (measure of variability) Menurut Anda, bagaimana penampilan saya? Gambaran saya? Visualizing Telling Dapatkan Anda tentukan manakah

Lebih terperinci

Statistik Deskriptif Ukuran Dispersi

Statistik Deskriptif Ukuran Dispersi MAKALAH STATISTIKA DASAR Statistik Deskriptif Ukuran Dispersi Oleh: Kelompok 1 Dwireta Ramadanti Aliv Vito Palox Arif Rahman Hakim Asrar Halim Desi Anggraini Eki Maruci Hary Sentosa Monalisa Muhammad Irvand

Lebih terperinci

SATUAN ACARA PEMBELAJARAN (SAP)

SATUAN ACARA PEMBELAJARAN (SAP) SATUAN ACARA PEMBELAJARAN (SAP) Mata Kuliah : Statistik Kode Mata Kuliah : PSI-106 Jumlah SKS : 3 Waktu Pertemuan : 150 menit Kompetensi Dasar : 1. Penguasaan metodologi penelitian psikologi Indikator

Lebih terperinci

UKURAN PEMUSATAN : MEAN, MEDIAN, MODUS

UKURAN PEMUSATAN : MEAN, MEDIAN, MODUS UKURAN PEMUSATAN : MEAN, MEDIAN, MODUS PERTEMUAN IV EvanRamdan DATA BERKELOMPOK Data berkelompok adalah data yang telah dikelompokan ke dalam kelaskelas dan disajikan dalam tabel frekuensi UKURAN PEMUSATAN

Lebih terperinci

STK 211 Metode statistika. Materi 2 Statistika Deskriptif

STK 211 Metode statistika. Materi 2 Statistika Deskriptif STK 211 Metode statistika Materi 2 Statistika Deskriptif 1 Statistika Deskriptif Merupakan teknik penyajian dan peringkasan data sehingga menjadi informasi yang mudah dipahami Penyajian data dapat dilakukan

Lebih terperinci

Statistika & Probabilitas

Statistika & Probabilitas Statistika & Probabilitas Ukuran Pemusatan Data Ukuran Pemusatan Data Ukuran pemusatan adalah suatu ukuran yang menunjukkan dimana suatu data memusat atau suatu kumpulan pengamatan memusat (mengelompok)

Lebih terperinci

Materi W11a S T A T I S T I K A. Kelas X, Semester 2. A. Ukuran Pemusatan Data.

Materi W11a S T A T I S T I K A. Kelas X, Semester 2. A. Ukuran Pemusatan Data. Materi W11a S T A T I S T I K A Kelas X, Semester 2 A. Ukuran Pemusatan Data www.yudarwi.com A. Ukuran Pemusatan Data Ukuran pemusatan kumpulan data merupakan ukuran yang nilainya cenderung memusat (sama

Lebih terperinci

Contoh: Pada data Tabel satu diperoleh range pada masing masing mata kuliah. adalah: Matakuliah Max min range A B C

Contoh: Pada data Tabel satu diperoleh range pada masing masing mata kuliah. adalah: Matakuliah Max min range A B C POKOK BAHASAN : Ukuran Penyebaran SUB POKOK BAHASAN : a. Range, b. RAK, c. SD, d. Varians, TIK : Mahasiswa dapat : a. Menjelaskan analisa deskriptif dengan ukuran penyebaran b. mampu melakukan analisa

Lebih terperinci

BAB 4 UKURAN TENDENSI SENTRAL

BAB 4 UKURAN TENDENSI SENTRAL BAB 4 UKURAN TENDENSI SENTRAL A. Pengertian Ukuran Tendensi Sentral Beserta Macam - macamnya Menurut Saleh (998 : 3-4), pengukuran nilai sentral merupakan suatu usaha yang ditujukan untuk mengukur besarnya

Lebih terperinci

Statistika I. Pertemuan 2 & 3 Statistika Dasar (Basic( Ari Wibowo, MPd Prodi PAI Jurusan Tarbiyah STAIN Surakarta. Konsep Peubah

Statistika I. Pertemuan 2 & 3 Statistika Dasar (Basic( Ari Wibowo, MPd Prodi PAI Jurusan Tarbiyah STAIN Surakarta. Konsep Peubah Statistika I Pertemuan & 3 Statistika Dasar (Basic( Statistic) Ari Wibowo, MPd Prodi PAI Jurusan Tarbiyah STAIN Surakarta Konsep Peubah Definisi Peubah merupakan karakteristik dari objek yang sedang diamati,

Lebih terperinci

1.0 Distribusi Frekuensi dan Tabel Silang

1.0 Distribusi Frekuensi dan Tabel Silang ANALISIS DESKRIPTIF 1.0 Distribusi Frekuensi dan Tabel Silang 1.1 Pengantar Statistik deskriptif Statistika deskriptif adalah bidang statistika yang mempelajari tatacara penyusunan dan penyajian data yang

Lebih terperinci

MATERI STATISTIK. Genrawan Hoendarto

MATERI STATISTIK. Genrawan Hoendarto MATERI STATISTIK Distribusi Frekwensi Perhitungan Tendensi Pusat Penyimpangan atau Dispersi Teori Probabilitas Teori Distribusi Distribusi Sampling / Pengambilan Contoh Pengujian Hipotesis Regresi dan

Lebih terperinci

Unit 2. Tendensi Sentral Dan Variabilitas. Awaluddin Tjalla. Pendahuluan

Unit 2. Tendensi Sentral Dan Variabilitas. Awaluddin Tjalla. Pendahuluan Unit Tendensi Sentral Dan Variabilitas Pendahuluan Awaluddin Tjalla D alam kondisi pembelajaran sehari-hari guru melakukan pengamatan dan pengukuran terhadap hasil belajar siswa. Variasi hasil dari suatu

Lebih terperinci

Refisia Caturasa Abstrak/Ringkasan. Pendahuluan

Refisia Caturasa  Abstrak/Ringkasan. Pendahuluan Sekilas Tentang Pengukuran Gejala Pusat (Mean, Median, Modus, Kuartal) Refisia Caturasa Refisia@gmail.com http://penulis.com Lisensi Dokumen: Seluruh dokumen di StatistikaPendidikan.Com dapat digunakan,

Lebih terperinci

PENGERTIAN STATISTIK. Tim Dosen Mata Kuliah Statistika Pendidikan 1. Rudi Susilana, M.Si. 2. Riche Cynthia Johan, S.Pd., M.Si. 3. Dian Andayani, S.Pd.

PENGERTIAN STATISTIK. Tim Dosen Mata Kuliah Statistika Pendidikan 1. Rudi Susilana, M.Si. 2. Riche Cynthia Johan, S.Pd., M.Si. 3. Dian Andayani, S.Pd. PENGERTIAN STATISTIK Tim Dosen Mata Kuliah Statistika Pendidikan 1. Rudi Susilana, M.Si. 2. Riche Cynthia Johan, S.Pd., M.Si. 3. Dian Andayani, S.Pd. PENGERTIAN STATISTIK Statistik adalah kesimpulan fakta

Lebih terperinci

Ukuran Penyebaran Suatu ukuran baik parameter atau statistik untuk mengetahui seberapa besar penyimpangan data dengan nilai rata-rata hitungnya.

Ukuran Penyebaran Suatu ukuran baik parameter atau statistik untuk mengetahui seberapa besar penyimpangan data dengan nilai rata-rata hitungnya. UKURAN PENYEBARAN 1 Bab 4 PENGANTAR Ukuran Penyebaran Suatu ukuran baik parameter atau statistik untuk mengetahui seberapa besar penyimpangan data dengan nilai rata-rata hitungnya. Ukuran penyebaran membantu

Lebih terperinci

STK 211 Metode statistika. Agus Mohamad Soleh

STK 211 Metode statistika. Agus Mohamad Soleh STK 211 Metode statistika Merupakan teknik penyajian dan peringkasan data sehingga menjadi informasi yang mudah dipahami Apa yang disajikan dan diringkas? --> PEUBAH Univariate vs Bivariate vs Multivariate

Lebih terperinci

TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS. Fitri Yulianti, SP. MSi.

TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS. Fitri Yulianti, SP. MSi. TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS Fitri Yulianti, SP. MSi. UKURAN PENYIMPANGAN Pengukuran penyimpangan adalah suatu ukuran yang menunjukkan tinggi rendahnya perbedaan data yang diperoleh

Lebih terperinci

DESKRIPSI DATA. sekumpulan data yang sudah dikumpulkan. Ukuran pemusatan dibagi menjadi dua yaitu:

DESKRIPSI DATA. sekumpulan data yang sudah dikumpulkan. Ukuran pemusatan dibagi menjadi dua yaitu: DESKRIPSI DATA A. Ukuran Pemusatan Ukuran pemusatan ini digunakan untuk memudahkan peneliti dalam membuat deskripsi sekumpulan data yang sudah dikumpulkan. Ukuran pemusatan dibagi menjadi dua yaitu: rata-rata

Lebih terperinci

King s Learning Be Smart Without Limits NAMA : KELAS :

King s Learning Be Smart Without Limits NAMA : KELAS : NAMA : KELAS : A. PENGERTIAN STATISTIKA Statistika adalah ilmu yang mempelajari cara mengumpulkan dan menyusun data, mengolah dan menganalisis data, serta menyajikan data. Statistik adalah hasil dari pengolahan

Lebih terperinci

STATISTIK DESKRIPTIF. Abdul Rohman, S.E

STATISTIK DESKRIPTIF. Abdul Rohman, S.E LOGO STATISTIK DESKRIPTIF Konsep Statistika STATISTIKA : Kegiatan untuk : mengumpulkan data menyajikan data menganalisis data dengan metode tertentu menginterpretasikan hasil analisis KEGUNAAN? Melalui

Lebih terperinci

Distribusi Frekuensi dan Statistik Deskriptif Lainnya

Distribusi Frekuensi dan Statistik Deskriptif Lainnya BAB 2 Distribusi Frekuensi dan Statistik Deskriptif Lainnya Misalnya seorang penjaga gudang mencatat berapa sak gandum keluar dari gudang selama 15 hari kerja, maka diperoleh distribusi data seperti berikut.

Lebih terperinci

Statistik Deskriptif: Central Tendency & Variation

Statistik Deskriptif: Central Tendency & Variation Statistik Deskriptif: Central Tendency & Variation Widya Rahmawati Central Tendency (Ukuran Pemusatan) dan Variation (Ukuran Simpangan) 1) Ukuran pemusatan atau ukuran lokasi adalah beberapa ukuran yang

Lebih terperinci

Oleh Azimmatul Ihwah

Oleh Azimmatul Ihwah Oleh Azimmatul Ihwah Kasus: Di sebuah SMA di kota Solo, seorang guru ingin mengetahui kelas mana di kelas XI IPA adalah kelas terbaik untuk mata pelajaran Kimia. Dari 5 kelas XI IPA yang ada di sekolah

Lebih terperinci

BAB1 PENgantar statistika

BAB1 PENgantar statistika BAB1 PENgantar statistika A. PENGERTIAN STATISTIK 1. Dalam arti sempit, Statistik merupakan sekumpulan angka-angka yang menerangkan sesuatu.. Dalam arti luas, Statistik merupakan kumpulan cara atau metode

Lebih terperinci

Statistika Deskriptif

Statistika Deskriptif Statistika Deskriptif Materi 2 - STK511 AnalisisStatistika September 26, 2017 Sep, 2017 1 Merupakan teknik penyajian dan peringkasan data sehingga menjadi informasi yang mudah dipahami Apa yang disajikan

Lebih terperinci

STATISTIKA. A Pengertian Statistik dan Statistika. B Populasi dan Sampel. C Pengertian Data PENGERTIAN STATISTIKA, POPULASI, DAN SAMPEL

STATISTIKA. A Pengertian Statistik dan Statistika. B Populasi dan Sampel. C Pengertian Data PENGERTIAN STATISTIKA, POPULASI, DAN SAMPEL STATISTIKA PENGERTIAN STATISTIKA, POPULASI, DAN SAMPEL A Pengertian Statistik dan Statistika Statistik adalah kumpulan akta berbentuk angka yang disusun dalam datar atau tabel, yang menggambarkan suatu

Lebih terperinci

Statistika Pendidikan

Statistika Pendidikan Statistika Pendidikan Statistika adalah metode ilmiah yang mempelajari pengumpulan, pengaturan, perhitungan, penggambaran dan penganalisisan data, serta penarikan kesimpulan yang valid berdasarkan penganalisisan

Lebih terperinci

Median (Mdn) Data Tunggal

Median (Mdn) Data Tunggal Median () Data Tunggal Median merupakan nilai yang berada di tengah ketika sekelompok data sebanyak n diurutkan mulai dari yang terkecil (X 1 ) sampai yang terbesar (X n ). Cara mencari nilai Rata-rata

Lebih terperinci