UKURAN PENYEBARAN DATA

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "UKURAN PENYEBARAN DATA"

Transkripsi

1 UKURAN PENYEBARAN DATA STKIP SILIWANGI BANDUNG Sumber : 1.Sudjana. Budino dan Koster 3. Berbagai sumber LUVY S. ZANTHY 1

2 Ukuran Penyebaran Data (Ukuran Dispersi) Ukuran penyebaran data atau ukuran dispersi adalah O Ukuran variasi atau seberapa jauh nilai tersebar dari data satu dengan lainnya dari gugus data. O suatu ukuran yang menyatakan seberapa besar nilainilai data berbeda atau bervariasi dengan nilai ukuran pusatnya atau seberapa besar penyimpangan nilai-nilai data dengan nilai pusatnya. O Aplikasi ukuran dispersi yang sering digunakan adalah standar deviasi. LUVY S. ZANTHY

3 KEGUNAAN UKURAN DISPERSI a. Ukuran penyebaran dapat digunakan untuk menentukan apakah nilai rata-ratanya benarbenar representatif atau tidak. Apabila suatu kelompok data mempunyai penyebaran yang tidak sama terhadap nilai rataratanya, maka dikatakan bahwa nilai rata-rata tersebut tidak representatif. b. Ukuran penyebaran dapat digunakan untuk mengadakan perbandingan terhadap variabilitas data. c. Ukuran penyebaran dapat membantu penggunaan ukuran statistika, misalnya dalam pengujian hipotesis, apakah dua sampel berasal dari populasi yang sama atau tidak. LUVY S. ZANTHY 3

4 JENIS UKURAN DISPERSI 1. Dispersi absolut / mutlak Digunakan untuk mengetahui tingkat variasi nilai observasi pada suatu data. Jangkauan (Range) Simpangan Rata-rata (Mean Deviation) Variansi (Variance) Standar Deviasi (Standart Deviation) Simpangan Kuartil (Quartile Deviation). Dispersi relatif Digunakan untuk membandingkan tingkat variasi nilai observasi pada suatu data dengan tingkat variasi nilai observasi data-data lainnya. Koefisien Variasi (Coeficient of Variation) LUVY S. ZANTHY 4

5 1. Rentang Merupakan ukuran dispersi yg merupakan selisih nilai maksimum dan minimum. Rentang = data terbesar data terkecil R LUVY S. ZANTHY 5

6 . Rentang antar kuartil (RAK) : Ketiga nilai tersebut dinamakan nilai-nilai kuartil dan dilambangkan dengan : Q1 = kuartil pertama Q = kuartil kedua Q3 = kuartil ketiga 50% Q1 Q Q3 Rentang antar kuartil didapat dari selisih antara nilai kuartil teratas (Q 3 ) dan kuartil terbawah (Q 1 ). Nilainya tidak terpengaruh oleh nilaiekstrim. Rumus : RAK = Q3 - Q1 LUVY S. ZANTHY 6

7 3. Rentang Semi Interkuartil/Simpangan Kuartil /Deviasi Kuartil : Nilai setengah dari selisih antara kuartil teratas dan terbawah Rumus : SK = ½ (Q3 - Q1) Simpangan kuartil (SK) digunakan untuk : melihat lokasi dari data. LUVY S. ZANTHY 7

8 Contoh : Sekelompok data : Ditanya : a. Rentang, Rentang Antar Kuartil, dan Simpang Kuartil? b. Apakah ada data pencilan? Jawab : R = X t X r = 4 1 = Q1 RAK = Q3 - Q1 = 13 = 9 Median / Q Q3 SK = ½ (Q3 - Q1) = ½ ( 13) = 4,5 LUVY S. ZANTHY 8

9 4. Simpangan rata-rata/deviasi rata-rata/ mean deviation : Simpangan rata-rata merupakan suatu simpangan nilai untuk observasi terhadap rata-rata. Simpangan rata-rata adalah jumlah nilai mutlak dari selisih semua nilai dengan nilai rata-rata dibagi dibagi dengan banyaknya data. Data tunggal SR X - n X LUVY S. ZANTHY 9

10 Contoh soal 1. data tunggal : x x i - x 0,33-1,67 1,33 -,67-0,67 3, n = 6 x = 40 / 6 = 6,67 SR X - n SR 10 6 X 1,67 LUVY S. ZANTHY

11 5. VARIANS Varians adalah rata rata dari simpangan kuadrat setiap data terhadap rata rata hitung. X - X nx - X n atau n Data tunggal LUVY S. ZANTHY 11

12 6. Simpangan Baku/ Standard Deviasi O Simpangan Baku/deviasi baku sering digunakan untuk menyatakan derajat dispersi (penyebaran). Karl Pearson O Simpangan baku merupakan ukuran penyebaran yang paling baik, karena menggambarkan besarnya penyebaran tiap-tiap unit observasi. Data Sd x - x n atau Sd Tunggal n x x LUVY S. ZANTHY 1

13 , Data hasil penjualan dari 5 pedagang adalah : 5, 8, 4, 10, 3. Berapa varians dan standar deviasi hasil penjualan? x - x n (5 6) (8 6) (4 6) 5 (10 6) (3 6) 6,8 Sd x - n x Sd 6,8,6077 LUVY S. ZANTHY 13

14 7. Koefisien Variasi O Untuk membandingkan kelompok dengan variabel yang sama tetapi nilai yang berbeda. KV ( SD / X ) x100% LUVY S. ZANTHY 14

15 8. Nilai Baku Nilai baku atau skor baku adalah hasil transformasi antara nilai rata rata hitung dengan standar deviasi Rumus: Z i X 1 S X Nilai i = 1,, 3,, n LUVY S. ZANTHY 15

16 Contoh Soal 3. Ada dua jenis bola lampu. Lampu jenis A secara rata rata mampu menyala selama 1500 jam dengan simpangan baku (standar deviasi) S1 = 75 jam, sedangkan lampu jenis B secara rata rata dapat menyala selama jam dengan simpangan baku S = 300 jam. Lampu mana yang kualitasnya paling baik? Jawab: Lampu jenis A: Lampu jenis B: KV KV S 75 *100% *100% 18,3% 1 1 X S X 300 *100% *100% 17,1% 1750 Lampu jenis A lebih baik daripada lampu jenis B LUVY S. ZANTHY 16

17 4.Nilai rata rata ujian akhir semester mata kuliah Statistika Bisnis dengan 45 mahasiswa adalah 78 dan simpangan baku/standar deviasi (S) = 10. Sedangkan untuk mata kuliah Bahasa Inggris di Kelas itu mempunyai nilai rata rata 84 dan simpangan bakunya (S) = 18. Bila dikelas itu, Desi mendapat nilai UAS untuk Statistika Bisnis adalah 86 dan untuk bahasa Inggris adalah 9, bagaimana posisi/ prestasi Desi di kelas itu? Jawab: Untuk mengetahui posisi/ prestasi Desi, maka harus dicari nilai baku (Z) dari kedua mata kuliah tersebut. Z X S X dengan nilai X adalah nilai UAS yang diperoleh Desi LUVY S. ZANTHY 17

18 O Untuk Mata Kuliah Statistika X = 86 S = 10 Maka: X 78 Z ,8 O Untuk Mata Kuliah Bahasa Inggris X = 9 S = 18 Maka: X 84 Z ,4 Karena nilai baku (Z) untuk mata kuliah Statistika Bisnis lebih besar dari B. Inggris, maka posisi Desi lebih baik pada mata kuliah Statistika Bisnis dari pada B. Inggris LUVY S. ZANTHY 18

HARISON,S.Pd,M.Kom JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI PADANG

HARISON,S.Pd,M.Kom JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI PADANG HARISON,S.Pd,M.Kom JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI PADANG HOMOGEN DAN HETEROGEN DATA I. 50,50,50,50,50 II. 30,40,50,60,70 III.0,30,50,70,80 Ketiga kelompok data

Lebih terperinci

Contoh: Pada data Tabel satu diperoleh range pada masing masing mata kuliah. adalah: Matakuliah Max min range A B C

Contoh: Pada data Tabel satu diperoleh range pada masing masing mata kuliah. adalah: Matakuliah Max min range A B C POKOK BAHASAN : Ukuran Penyebaran SUB POKOK BAHASAN : a. Range, b. RAK, c. SD, d. Varians, TIK : Mahasiswa dapat : a. Menjelaskan analisa deskriptif dengan ukuran penyebaran b. mampu melakukan analisa

Lebih terperinci

UKURAN DISPERSI (SEBARAN)DATA

UKURAN DISPERSI (SEBARAN)DATA Malim Muhammad, M.Sc. UKURAN DISPERSI (SEBARAN)DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DISPERSI

Lebih terperinci

DISPERSI DATA. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation)

DISPERSI DATA. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation) DISPERSI DISPERSI DATA Ukuran penyebaran suatu kelompok data terhadap pusat data. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation)

Lebih terperinci

Statistika & Probabilitas

Statistika & Probabilitas Statistika & Probabilitas Dispersi Data Dispersi Data Dispersi adalah ukuran penyebaran suatu kelompok data terhadap pusat data. Beberapa jenis ukuran dispersi data : Jangkauan (range) Simpangan rata-rata

Lebih terperinci

PENGUKURAN DESKRIPTIF

PENGUKURAN DESKRIPTIF PENGUKURAN DESKRIPTIF STATISTIK INDUSTRI I Jurusan Teknik Industri Universitas Brawijaya Malang 1 PENGUKURAN DESKRIPTIF Suatu pengukuran yang bertujuan untuk memberikan gambaran tentang data yang diperoleh

Lebih terperinci

Metode Penelitian Kuantitatif Aswad Analisis Deskriptif

Metode Penelitian Kuantitatif Aswad Analisis Deskriptif Analisis Deskriptif Tanpa mengurangi keterumuman, pembahasan analisis deskriptif kali ini difokuskan kepada pembahasan tentang Ukuran Pemusatan Data, dan Ukuran Penyebaran Data Terlebih dahulu penting

Lebih terperinci

UKURAN PENYEBARAN DATA

UKURAN PENYEBARAN DATA UKURAN PENYEBARAN DATA HERDIAN S.Pd., M.Pd. SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER (STMIK) PRINGSEWU UKURAN PENYEBARAN DATA Selain ukuran pemusatan data dan ukuran letak data, ada juga yang

Lebih terperinci

STATISTIKA DESKRIPTIF. Wenny Maulina, S.Si., M.Si

STATISTIKA DESKRIPTIF. Wenny Maulina, S.Si., M.Si STATISTIKA DESKRIPTIF Wenny Maulina, S.Si., M.Si Ukuran Pemusatan Ukuran pemusatan ukuran ringkas yang menggambarkan karakteristik umum data tersebut. Modus (Mode): Nilai pengamatan yang paling sering

Lebih terperinci

STATISTIK. Rahma Faelasofi

STATISTIK. Rahma Faelasofi STATISTIK Rahma Faelasofi 1 BAB 3 VARIABILITAS Pengertian Jangkauan Mean deviasi Standar deviasi 2 Pengertian Pengukuran penyebaran adalah pengukuran tingkat penyebaran nilai dalam suatu kumpulan data

Lebih terperinci

Tabel 7-1 Rata-rata hitung hasil test mata kuliah statistik deskriptif kelompok A dan B. A B

Tabel 7-1 Rata-rata hitung hasil test mata kuliah statistik deskriptif kelompok A dan B. A B A. Pengukuran Penyebaran (Dispersi) 1. Pengertian Tentang Disperse. Digunakan untuk menunjukkan keadaan berikut : a. Gambaran variabilitas data Yang dimaksud dengan variabilitas data adalah suatu ukuran

Lebih terperinci

Setelah mempelajari bahan ajar ini diharapkan Anda dapat:

Setelah mempelajari bahan ajar ini diharapkan Anda dapat: D. Pembelajaran 4 1. Silabus N o STANDAR KOMPE TENSI Menerapk an aturan konsep statistika dalam pemecaha n masalah KOMPE TENSI DASAR Mengidenti fikasi pengerti-an statistik, statistika, populasi dan sampel

Lebih terperinci

Pengukuran Deskriptif. Debrina Puspita Andriani /

Pengukuran Deskriptif. Debrina Puspita Andriani    / Pengukuran Deskriptif 3 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Pendahuluan Tendensi Sentral Ukuran Dispersi 3 Pendahuluan Pengukuran Deskriptif 4 Definisi Pengukuran

Lebih terperinci

Statistik Deskriptif Ukuran Dispersi

Statistik Deskriptif Ukuran Dispersi MAKALAH STATISTIKA DASAR Statistik Deskriptif Ukuran Dispersi Oleh: Kelompok 1 Dwireta Ramadanti Aliv Vito Palox Arif Rahman Hakim Asrar Halim Desi Anggraini Eki Maruci Hary Sentosa Monalisa Muhammad Irvand

Lebih terperinci

Pengukuran Deskriptif

Pengukuran Deskriptif Pengukuran Deskriptif 2.2 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Pendahuluan Tendensi Sentral Ukuran Dispersi 3 Pendahuluan Pengukuran Deskriptif 4 Definisi

Lebih terperinci

UKURAN PENYEBARAN DATA

UKURAN PENYEBARAN DATA Pertemuan keempat UKURAN PENYEBARAN DATA Ukuran penyebaran data digunakan untuk melengkapi deskripsi dari sifat-sifat sekelompok data, terutama dalam membandingkan sifat-sifat yang dimiliki oleh masing-masing

Lebih terperinci

dapat digunakan formulasi sebagai berikut : Letak Letak Letak

dapat digunakan formulasi sebagai berikut : Letak Letak Letak 1. Ukuran Letak Agar kita dapat mengetahui lebih jauh mengenai karakteristik data observasi dengan beberapa ukuran sentral, kita sebaiknya mengetahui beberapa ukuran lain, yaitu ukuran letak. Ada tiga

Lebih terperinci

STATISTIKA DESKRIPTIF. Tendensi Sentral & Ukuran Dispersi

STATISTIKA DESKRIPTIF. Tendensi Sentral & Ukuran Dispersi STATISTIKA DESKRIPTIF Tendensi Sentral & Ukuran Dispersi Statistik dan Statistika Statistik : nilai-nilai ukuran data yang mudah dimengerti. Contoh : statistik liga sepak bola Indonesia Statistika : ilmu

Lebih terperinci

PENGUKURAN VARIASI. Mampu menjelaskan dan menganalisis hal-hal yang berkaitan dengan pengukuran variasi

PENGUKURAN VARIASI. Mampu menjelaskan dan menganalisis hal-hal yang berkaitan dengan pengukuran variasi BAB 4 PENGUKURAN VARIASI Kompetensi Mampu menjelaskan dan menganalisis hal-hal yang berkaitan dengan pengukuran variasi Indikator 1. Menjelaskan range 2. Menjelaskan range antar kuartil 3. Menjelaskan

Lebih terperinci

BAB III UKURAN TENGAH DAN DISPERSI

BAB III UKURAN TENGAH DAN DISPERSI BAB III UKURAN TENGAH DAN DISPERSI Dalam pembicaraan yang lalu kita telah mempresentasikan data dalam bentuk tabel dan grafik yang bertujuan meringkaskan dan menggambarkan data kuantitatif, untuk mendapatkan

Lebih terperinci

Macam ukuran penyimpangan. Range/Rentang/Jangkauan Standar Deviasi/simpangan baku Varians Ukuran penyimpangan lain

Macam ukuran penyimpangan. Range/Rentang/Jangkauan Standar Deviasi/simpangan baku Varians Ukuran penyimpangan lain UKURAN PENYIMPANGAN Ukuran penyimpangan adalah ukuran yang menyatakan seberapa jauh penyimpangan nilainilai data dari nilai-nilai pusatnya atau ukuran yang menyatakan seberapa banyak nilai-nilai data yang

Lebih terperinci

TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS. Fitri Yulianti, SP. MSi.

TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS. Fitri Yulianti, SP. MSi. TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS Fitri Yulianti, SP. MSi. UKURAN PENYIMPANGAN Pengukuran penyimpangan adalah suatu ukuran yang menunjukkan tinggi rendahnya perbedaan data yang diperoleh

Lebih terperinci

BAB IV DISPERSI DATA

BAB IV DISPERSI DATA BAB IV DIPERI DATA Dispersi adalah ukuran penyebaran suatu kelompok data terhadap pusat data. Ukuran dispersi yang sering digunakan dalam penelitian ialah jangkauan (range), simpangan rata-rata (mean deviation),

Lebih terperinci

C. Ukuran Letak dan Ukuran Penyebaran Data

C. Ukuran Letak dan Ukuran Penyebaran Data C. Ukuran Letak dan Ukuran Penyebaran Data. Ukuran Letak Data Tunggal a. Kuartil Pada data dengan banyak data n 4, Kuartil membagi data menjadi 4 bagian sama banyak, sehingga diperoleh tiga nilai yang

Lebih terperinci

BAB III METODE PENELITIAN. Pendekatan yang digunakan dalam menyelesaikan masalah penelitian ini

BAB III METODE PENELITIAN. Pendekatan yang digunakan dalam menyelesaikan masalah penelitian ini 50 BAB III METODE PENELITIAN A. Pendekatan dan Metode Penelitian Pendekatan yang digunakan dalam menyelesaikan masalah penelitian ini adalah pendekatan kuantitatif. Pendekatan kuantitatif dipilih penulis

Lebih terperinci

By : Hanung N. Prasetyo

By : Hanung N. Prasetyo theory STATISTIKA DESKRIPTIF By : Hanung N. Prasetyo UKURAN PEMUSATAN Nilai tunggal yang mewakili semua data atau kumpulan pengamatan dimana nilai tersebut menunjukkan pusat data. Yang termasuk ukuran

Lebih terperinci

MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA

MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA AMIYELLA ENDISTA SKG.MKM Email : amiyella.endista@yahoo.com Website : www.berandakami.wordpress.com Perhitungan Nilai Gejala Pusat Mean Median Modus Range

Lebih terperinci

DISTRIBUSI FREKUENSI. Luvy S. Zanthy, S.P.,M.Pd. STATISTIKA DASAR 1

DISTRIBUSI FREKUENSI. Luvy S. Zanthy, S.P.,M.Pd. STATISTIKA DASAR 1 DISTRIBUSI FREKUENSI Luvy S. Zanthy, S.P.,M.Pd. STATISTIKA DASAR 1 DISTRIBUSI FREKUENSI (TABEL DEFINISI FREKUENSI) Pengelompokkan data yang dilakukan dengan cara mendistribusikan data dalam kelas atau

Lebih terperinci

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada.

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Azimmatul Ihwah Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Ada cara yg lebih baik untuk menginterpretasi data yg

Lebih terperinci

King s Learning Be Smart Without Limits NAMA : KELAS :

King s Learning Be Smart Without Limits NAMA : KELAS : NAMA : KELAS : A. PENGERTIAN STATISTIKA Statistika adalah ilmu yang mempelajari cara mengumpulkan dan menyusun data, mengolah dan menganalisis data, serta menyajikan data. Statistik adalah hasil dari pengolahan

Lebih terperinci

PENS. Probability and Random Process. Topik 2. Statistik Deskriptif. Prima Kristalina Maret 2016

PENS. Probability and Random Process. Topik 2. Statistik Deskriptif. Prima Kristalina Maret 2016 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 2. Statistik Deskriptif Prima Kristalina Maret 2016 1 Outline [2][1] 1. Penyajian Data o Tabel

Lebih terperinci

PENGANTAR STATISTIK JR113. Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI Pertemuan 6

PENGANTAR STATISTIK JR113. Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI Pertemuan 6 PENGANTAR STATISTIK JR113 Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI 2008 Pertemuan 6 MODUS Modus (Mo) adalah sebuah ukuran untuk menyatakan fenomena yang paling banyak terjadi atau

Lebih terperinci

Probabilitas dan Statistika Analisis Data Lanjut. Adam Hendra Brata

Probabilitas dan Statistika Analisis Data Lanjut. Adam Hendra Brata Probabilitas dan Analisis Lanjut Adam Hendra Brata Tunggal Populasi adalah sebagai sekumpulan data yang mengidentifikasi suatu fenomena. Sampel adalah sekumpulan data yang diambil atau diseleksi dari suatu

Lebih terperinci

LEMBAR AKTIVITAS SISWA STATISTIKA 2 B. PENYAJIAN DATA

LEMBAR AKTIVITAS SISWA STATISTIKA 2 B. PENYAJIAN DATA Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA STATISTIKA 2 B. PENYAJIAN DATA Beberapa bentuk penyajian data, sebagai berikut: Kompetensi Dasar (KURIKULUM 2013): 3.15 Memahami dan menggunakan berbagai ukuran

Lebih terperinci

STATISTIK DESKRIPTIF. Penyajian Data, ukuran Pemusatan Data, Ukuran Penyebaran Data

STATISTIK DESKRIPTIF. Penyajian Data, ukuran Pemusatan Data, Ukuran Penyebaran Data STATISTIK DESKRIPTIF Penyajian Data, ukuran Pemusatan Data, Ukuran Penyebaran Data 1. Statisitik Deskriptif 2. Penyajian Data 3. Ukuran Pemusatan Data 4. Ukuran Penyebaran Data Materi Pokok Indikator Setelah

Lebih terperinci

Ukuran Penyebaran Suatu ukuran baik parameter atau statistik untuk mengetahui seberapa besar penyimpangan data dengan nilai rata-rata hitungnya.

Ukuran Penyebaran Suatu ukuran baik parameter atau statistik untuk mengetahui seberapa besar penyimpangan data dengan nilai rata-rata hitungnya. UKURAN PENYEBARAN 1 Bab 4 PENGANTAR Ukuran Penyebaran Suatu ukuran baik parameter atau statistik untuk mengetahui seberapa besar penyimpangan data dengan nilai rata-rata hitungnya. Ukuran penyebaran membantu

Lebih terperinci

Pertemuan 8 UKURAN PENYEBARAN. A. Ukuran Penyebaran untuk Data yang tidak Dikelompokkan. Terdapat empat ukuran penyebaran absolut yang utama, yaitu:

Pertemuan 8 UKURAN PENYEBARAN. A. Ukuran Penyebaran untuk Data yang tidak Dikelompokkan. Terdapat empat ukuran penyebaran absolut yang utama, yaitu: Pertemuan 8 UKURA PEYEBARA 1. Pengertian Penyebaran (Dispersi) Penyebaran adalah perserakan data individual terhadap nilai rata-rata. Data homogen memiliki penyebaran (dispersi) yang kecil, sedangkan data

Lebih terperinci

Dr. I Gusti Bagus Rai Utama, SE., M.MA., MA.

Dr. I Gusti Bagus Rai Utama, SE., M.MA., MA. Dr. I Gusti Bagus Rai Utama, SE., M.MA., MA. Populasi : totalitas dari semua objek/ individu yg memiliki karakteristik tertentu, jelas dan lengkap yang akan diteliti Sampel : bagian dari populasi yang

Lebih terperinci

UKURAN TENGAH DAN UKURAN DISPERSI

UKURAN TENGAH DAN UKURAN DISPERSI UKURAN TENGAH DAN UKURAN DISPERSI UKURAN TENGAH Ukuran tengah nilai tunggal yang representatif untuk keseluruhan nilai data. Ukuran tendensi sentral nilainya cenderung terletak di urutan paling tengah

Lebih terperinci

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada.

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Azimmatul Ihwah Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Ada cara yg lebih baik untuk menginterpretasi data yg

Lebih terperinci

LAB MANAJEMEN DASAR MODUL STATISTIKA 1. Nama : NPM : Kelas : Fakultas Ekonomi Universitas Gunadarma Kelapa Dua

LAB MANAJEMEN DASAR MODUL STATISTIKA 1. Nama : NPM : Kelas : Fakultas Ekonomi Universitas Gunadarma Kelapa Dua LAB MANAJEMEN DASAR MODUL STATISTIKA 1 Nama : NPM : Kelas : Fakultas Ekonomi Universitas Gunadarma Kelapa Dua 1 UKURAN STATISTIK Pendahuluan Ukuran statistik merupakan ukuran yang menunjukkan bagaimana

Lebih terperinci

TUGAS II STATISTIKA. Oleh. Butsiarah / 15B Kelas B PROGRAM STUDI PENDIDIKAN TEKNOLOGI DAN KEJURUAN PROGRAM PASCASARJANA

TUGAS II STATISTIKA. Oleh. Butsiarah / 15B Kelas B PROGRAM STUDI PENDIDIKAN TEKNOLOGI DAN KEJURUAN PROGRAM PASCASARJANA TUGAS II STATISTIKA Oleh Butsiarah / 15B20020 Kelas B PROGRAM STUDI PENDIDIKAN TEKNOLOGI DAN KEJURUAN PROGRAM PASCASARJANA UNIVERSITAS NEGERI MAKASSAR 2015 1. Penelitian terhadap nilai mahasiswa S1 Jurusan

Lebih terperinci

Sufyani Prabawanto Bahan Belajar Mandiri 4. Pendahuluan

Sufyani Prabawanto Bahan Belajar Mandiri 4. Pendahuluan 1 Sufyani Prabawanto Bahan Belajar Mandiri 4 UKURAN SIMPANGAN DAN UKURAN KETERKAITAN Pendahuluan Pengetahuan kita tentang berbagai macam ukuran sangat diperlukan agar kita dapat memperoleh gambaran lebih

Lebih terperinci

Statistik Deskriptif: Central Tendency & Variation

Statistik Deskriptif: Central Tendency & Variation Statistik Deskriptif: Central Tendency & Variation Widya Rahmawati Central Tendency (Ukuran Pemusatan) dan Variation (Ukuran Simpangan) 1) Ukuran pemusatan atau ukuran lokasi adalah beberapa ukuran yang

Lebih terperinci

5. STATISTIKA PENYELESAIAN. a b c d e Jawab : b

5. STATISTIKA PENYELESAIAN. a b c d e Jawab : b . STATISTIKA A. Membaca Sajian Data dalam Bentuk Diagram. UN 00 IPS PAKET A Diagram lingkaran berikut menunjukan persentase jenis pekerjaan penduduk di kota X. Jumlah penduduk seluruhnya adalah 3.600.000

Lebih terperinci

STATISTIK. Materi Pertemuan V Ukuran Dispersi (Penyebaran)

STATISTIK. Materi Pertemuan V Ukuran Dispersi (Penyebaran) STATISTIK Materi Pertemuan V Ukuran Dispersi (Penyebaran) Ukuran Dispersi (Penyebaran) Ukuran dispersi merupakan suatu metode analisis data yang ditunjukan dengan penyimpangan/penyebaran dari distribusi

Lebih terperinci

STATISTIKA 4 UKURAN LETAK

STATISTIKA 4 UKURAN LETAK TUJUAN STATISTIKA 4 UKURAN LETAK MODUL 4 Melatih berfikir dan bernalar secara logis dan kritis serta mengembangkan aktifitas, kreatifitas dalam memecahkan masalah serta mampu mengkomunikasikan ide dan

Lebih terperinci

Ukuran Dispersi (Variasi, atau Penyimpangan) untuk Data Tunggal

Ukuran Dispersi (Variasi, atau Penyimpangan) untuk Data Tunggal Ukuran Dispersi (Variasi, atau Penyimpangan) untuk Data Tunggal BAB: UKURAN VARIABILITAS/ DISPERSI A. Pengertian Ukuran Variabilitas: Dlm kehidupan sehari-hari, kita sering menemukan banyaknya informasi

Lebih terperinci

STATISTIKA DESKRIPTIF Dosen:

STATISTIKA DESKRIPTIF Dosen: LEMBAR TUGAS MAHASISWA (LTM) Mata Kuliah: STATISTIKA DESKRIPTIF Dosen: Nama NIM Kelas Jurusan Akademi : : : : : AKADEMI - AKADEMI BINA SARANA INFORMATIKA J A K A R T A C.2009 1 BAB I PENDAHULUAN Pertemuan

Lebih terperinci

KATA PENGANTAR. Kelapa Dua, September Tim Litbang

KATA PENGANTAR. Kelapa Dua, September Tim Litbang KATA PENGANTAR Puji syukur kami panjatkan kepada Tuhan Yang Maha Esa atas limpahan rahmat dan karunia-nya sehingga modul praktikum Statistika 1 materi ukuran statistik ini dapat terselesaikan. Modul praktikum

Lebih terperinci

BESARAN STATISTIK (UKURAN TENGAH DAN UKURAN

BESARAN STATISTIK (UKURAN TENGAH DAN UKURAN BESARAN STATISTIK (UKURAN TENGAH DAN UKURAN DISPERSI) UKURAN TENGAH Ukuran tengah nilai tunggal yang representatif untuk keseluruhan nilai data. Ukuran tendensi sentral nilainya cenderung terletak di urutan

Lebih terperinci

BAB 8 ANALISIS STUDI DESKRIPTIF DAN DATA DASAR. Bab ini menjelaskan secara lebih mendalam jenis studi deskriptif

BAB 8 ANALISIS STUDI DESKRIPTIF DAN DATA DASAR. Bab ini menjelaskan secara lebih mendalam jenis studi deskriptif BAB 8 ANALISIS STUDI DESKRIPTIF DAN DATA DASAR Bab ini menjelaskan secara lebih mendalam jenis studi deskriptif maupun teknik mendekripsikan data secara grafis maupun secara angka. Sebagai ilustrasi aplikasi

Lebih terperinci

DESKRIPSI MATA KULIAH

DESKRIPSI MATA KULIAH DESKRIPSI MATA KULIAH Nama Mata Kuliah Kode Mata Kuliah Kredit : Statistika dan Probabilitas : IF32225 : 3 SKS (3X45 menit) Deskripsi : Membahas mengenai cara-cara pengumpulan data, penganalisisan dan

Lebih terperinci

STATISTIKA 3 UKURAN PENYEBARAN

STATISTIKA 3 UKURAN PENYEBARAN TUJUAN STATISTIKA UKURAN PENYEBARAN Melatih berfikir dan belajar secara logis dan kritis serta mengembangkan aktifitas, kreatifitas dalam memecahkan masalah serta mampu mengkomunikasikan ide dan gagasan

Lebih terperinci

PENGANTAR STATISTIK Pusat Data dan Satistik Pendidikan-Kebudayaan Setjen, Kemdikbud 2014

PENGANTAR STATISTIK Pusat Data dan Satistik Pendidikan-Kebudayaan Setjen, Kemdikbud 2014 PENGANTAR STATISTIK Pusat Data dan Satistik Pendidikan-Kebudayaan Setjen, Kemdikbud 2014 Daftar Isi: 1. Definisi Statistik 2. Unit Analisis & Lingkup Analisis 3. Pengukuran Nilai Sentral 4. Pengukuran

Lebih terperinci

BAB III METODE PENELITIAN. learning cycle 7-E, learning cycle 5-E dan pembelajaran langsung. Pendekatan yang digunakan adalah pendekatan kuantitatif.

BAB III METODE PENELITIAN. learning cycle 7-E, learning cycle 5-E dan pembelajaran langsung. Pendekatan yang digunakan adalah pendekatan kuantitatif. BAB III METODE PENELITIAN A. Jenis Penelitian Jenis penelitian ini adalah penelitian percobaan (experiment research), karena pada penelitian ini terdapat perlakuan khusus terhadap variabelvariabel yang

Lebih terperinci

RANCANGAN AKTIVITAS TUTORIAL (RAT)

RANCANGAN AKTIVITAS TUTORIAL (RAT) RANCANGAN AKTIVITAS TUTORIAL (RAT) Nama Mata Kuliah/ sks/ Kode : Statistika Dasar/ 3/ PAMA 3226 Nama Tutor/ NPP : Adi Nur Cahyono, S.Pd., M.Pd./088201206 Deskripsi Singkat Mata Kuliah : Mata kuliah ini

Lebih terperinci

BAB III METODE PENELITIAN. kelamin dan pendekatan SAVI, Inkuiri, RME dengan setting pembelajaran. tanggal 7 September 2013 di SMP Buana.

BAB III METODE PENELITIAN. kelamin dan pendekatan SAVI, Inkuiri, RME dengan setting pembelajaran. tanggal 7 September 2013 di SMP Buana. 56 BAB III METODE PENELITIAN A. Jenis Penelitian Jenis dari penelitian ini adalah penelitian kuantitatif, karena ingin mengetahui perbedaan hasil belajar matematika siswa yang ditinjau dari jenis kelamin

Lebih terperinci

PERTEMUAN 2 STATISTIKA DASAR MAT 130

PERTEMUAN 2 STATISTIKA DASAR MAT 130 PERTEMUAN 2 STATISTIKA DASAR MAT 130 Data 1. Besaran Statistika berbicara tentang data dalam bentuk besaran (dimensi) Besaran adalah sesuatu yang dapat dipaparkan secara jelas dan pada prinsipnya dapat

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Jenis penelitian yang digunakan adalah penelitian deskriptif dengan

BAB III METODOLOGI PENELITIAN. Jenis penelitian yang digunakan adalah penelitian deskriptif dengan 53 BAB III METODOLOGI PENELITIAN A. Metode dan Desain penelitian Jenis penelitian yang digunakan adalah penelitian deskriptif dengan pendekatan kuantitatif komparatif. Alasan menggunakan pendekatan komparatif

Lebih terperinci

SATUAN ACARA TUTORIAL (SAT) Mata Kuliah : Statistika Dasar/PAMA 3226 SKS : 3 SKS Tutorial : ke-1 Nama Tutor : Adi Nur Cahyono, S.Pd., M.Pd.

SATUAN ACARA TUTORIAL (SAT) Mata Kuliah : Statistika Dasar/PAMA 3226 SKS : 3 SKS Tutorial : ke-1 Nama Tutor : Adi Nur Cahyono, S.Pd., M.Pd. Tutorial : ke-1 Nama Tutor : a. Menjelaskan pengertian statistik; b. Menjelaskan pengertian statistika; c. Menjelaskan pengertian data statistik; d. Menjelaskan contoh macam-macam data; e. Menjelaskan

Lebih terperinci

UKURAN PENYEBARAN DATA

UKURAN PENYEBARAN DATA UKURA PEYEBARA DATA Seventh Meeting Khatib A. Latief Email: kalatief@gmail.com; khatibalatif@yahoo.com Twitter: @khatibalatief Mobile: +68 1168 3019 Ukuran Penyebaran data Ukuran penyebaran data adalah

Lebih terperinci

1.0 Distribusi Frekuensi dan Tabel Silang

1.0 Distribusi Frekuensi dan Tabel Silang ANALISIS DESKRIPTIF 1.0 Distribusi Frekuensi dan Tabel Silang 1.1 Pengantar Statistik deskriptif Statistika deskriptif adalah bidang statistika yang mempelajari tatacara penyusunan dan penyajian data yang

Lebih terperinci

MATERI STATISTIK. Genrawan Hoendarto

MATERI STATISTIK. Genrawan Hoendarto MATERI STATISTIK Distribusi Frekwensi Perhitungan Tendensi Pusat Penyimpangan atau Dispersi Teori Probabilitas Teori Distribusi Distribusi Sampling / Pengambilan Contoh Pengujian Hipotesis Regresi dan

Lebih terperinci

BAB 3: NILAI RINGKASAN DATA

BAB 3: NILAI RINGKASAN DATA BAB 3: NILAI RINGKASAN DATA Penyajian data dalam bentuk tabel dan grafik memberikan kemudahan bagi kita untuk menggambarkan data dan membuat kesimpulan terhadap sifat data. Namun tabel dan grafik belum

Lebih terperinci

Pengumpulan & Penyajian Data

Pengumpulan & Penyajian Data Pengumpulan & Penyajian Data Cara Pengumpulan Data 1. Mengadakan penelitian langsung ke lapangan atau laboratorium terhadap obyek yang diteliti, hasilnya dicatat dan dianalisis 2. Mengambil atau menggunakan

Lebih terperinci

STATISTIKA. Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah

STATISTIKA. Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah 1 SMA SANTA ANGELA STATISTIKA Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah Kompetensi Dasar : Membaca data dalam bentuk tabel dan

Lebih terperinci

Probabilitas dan Statistika Analisis Data dan Ukuran Pemusatan. Adam Hendra Brata

Probabilitas dan Statistika Analisis Data dan Ukuran Pemusatan. Adam Hendra Brata Probabilitas dan Analisis dan Adam Hendra Brata Deskriptif Induktif Pembagian Deskriptif Metode guna mengumpulkan, menghitung, dan menyajikan suatu data secara kwantitatif sehingga memberikan informasi

Lebih terperinci

STATISTIKA MATEMATIKA KELAS XI MIA

STATISTIKA MATEMATIKA KELAS XI MIA STATISTIKA MATEMATIKA KELAS XI MIA STATISTIKA Matematika Kelas XI MIA 90 80 70 60 50 40 30 20 10 0 East West North 1st Qtr 2nd Qtr 3rd Qtr 4th Qtr Disusun oleh : Markus Yuniarto, S.Si Tahun Pelajaran 2016

Lebih terperinci

25/09/2013. Metode Statistika (STK211) Pertanyaan. Modus (Mode) Ukuran Pemusatan. Median. Cara menghitung median contoh

25/09/2013. Metode Statistika (STK211) Pertanyaan. Modus (Mode) Ukuran Pemusatan. Median. Cara menghitung median contoh Metode Statistika (STK11) Pertanyaan Jika punya data mengenai daya Pertemuan III Statistika ti tik Dasar (Basic Statistics) ti ti hidup dari baterai HP merk XXX Dimana lokasi atau pusat dari data? ukuran

Lebih terperinci

RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) FAKULTAS TARBIYAH & ILMU KEGURUAN UNISNU JEPARA Mata Kuliah STATISTIK

RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) FAKULTAS TARBIYAH & ILMU KEGURUAN UNISNU JEPARA Mata Kuliah STATISTIK RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) FAKULTAS TARBIYAH & ILMU KEGURUAN UNISNU JEPARA 2015 Mata Kuliah STATISTIK Kode UNIS 14110 Disusun oleh:.. FAKULTAS TARBIYAH & ILMU KEGURUAN UNIVERSITAS

Lebih terperinci

Kuliah 4. Ukuran Penyebaran Data

Kuliah 4. Ukuran Penyebaran Data Kuliah 4. Ukuran Penyebaran Data Mata Kuliah Statistika Dr. Ir. Rita Rostika MP. 21 Maret 2012 Prodi Perikanan Fakultas Perikanan dan Ilmu Kelautan Universitas Padjadjaran Content Rentang Data Rentang

Lebih terperinci

STATISTIKA KELAS : XI BAHASA SEMESTER : I (SATU) Disusun Oleh : Drs. Pundjul Prijono Nip

STATISTIKA KELAS : XI BAHASA SEMESTER : I (SATU) Disusun Oleh : Drs. Pundjul Prijono Nip MODUL MATEMATIKA STATISTIKA 11.1. KELAS : XI BAHASA SEMESTER : I (SATU) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.1981.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI Jalan Mayjen Sungkono

Lebih terperinci

PENGUKURAN VARIANS DAN SIMPANGAN BAKU

PENGUKURAN VARIANS DAN SIMPANGAN BAKU PEGUKURA VARIAS DA SIMPAGA BAKU Varians data yang belum dikelompokkan Pengertian varians mirip dengan deviasi rata-rata. Hanya saja, untuk memperoleh hasil perhitungan dalam bilangan positif tidak lagi

Lebih terperinci

LAB MANAJEMEN DASAR MODUL STATISTIKA 1

LAB MANAJEMEN DASAR MODUL STATISTIKA 1 LAB MANAJEMEN DASAR MODUL STATISTIKA 1 Nama : NPM/Kelas : Fakultas/Jurusan : Hari dan Shift Praktikum : Fakultas Ekonomi Universitas Gunadarma Kelapa dua E531 1 UKURAN STATISTIK Pendahuluan Ukuran statistik

Lebih terperinci

BAB I PENDAHULUAN. Nilai ujian statistik 5 mahasiswa kelas A adalah 71,75,79,77,73 Nilai ujian statistik 5 mahasiswa kelas B adalah 45,60, 90,85,95

BAB I PENDAHULUAN. Nilai ujian statistik 5 mahasiswa kelas A adalah 71,75,79,77,73 Nilai ujian statistik 5 mahasiswa kelas B adalah 45,60, 90,85,95 BAB I PENDAHULUAN Dalam penyelidikan data sering kali kita membutuhkan informasi yang lebih banyak dari pada hanya mengetahui salah satu tendensi sentral saja. Misal kita ingin mengetahui bagaimana penyebaran

Lebih terperinci

Gejala Pusat - Statistika

Gejala Pusat - Statistika Gejala Pusat - Statistika Desma Eka Rindiani desmarindi@yahoo.co.id http://ladies-kopites.blogspot.com Lisensi Dokumen: Seluruh dokumen di StatistikaPendidikan.Com dapat digunakan, dimodifikasi dan disebarkan

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB II STATISTIKA

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB II STATISTIKA SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB II STATISTIKA Dr. Djadir, M.Pd. Dr. Ilham Minggi, M.Si Ja aruddin,s.pd.,m.pd. Ahmad Zaki, S.Si.,M.Si Sahlan Sidjara, S.Si.,M.Si

Lebih terperinci

Uji Hipotesis dengan ANOVA (Analysis of Variance)

Uji Hipotesis dengan ANOVA (Analysis of Variance) Uji Hipotesis dengan ANOVA (Analysis of Variance) I. Pengertian Dalam sebuah penelitian, terkadang kita ingin membandingkan hasil perlakuan (treatment) pada sebuah populasi dengan populasi yang lain dengan

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 1:,, Statistika FMIPA Universitas Islam Indonesia Data Populasi dan Sampel Menurut Websters New World Dictionary, data berarti sesuatu yang diketahui atau dianggap. Dengan demikian, data dapat memberikan

Lebih terperinci

UKURAN SIMPANGAN DAN UKURAN VARIASI. Ukuran Simpangan

UKURAN SIMPANGAN DAN UKURAN VARIASI. Ukuran Simpangan Ukuran simpangan: Rentang Rentang antar kuartil Simpangan kuartil Rata rata simpangan Ukuran Variasi: Varians Simpangan baku Angka Baku Koefisien Variasi UKURAN SIMPANGAN DAN UKURAN VARIASI Ukuran Simpangan

Lebih terperinci

MODUL MATEMATIKA SMA IPA Kelas 11

MODUL MATEMATIKA SMA IPA Kelas 11 SMA IPA Kelas A. Data Tunggal No. Jenis Rumus Rumus. Rata-rata (rataan) hitung _ x x x x n Median Me x, untuk n ganjil _ x : rata-rata x n : data ke-n n : banyaknya data. Modus Modus (Mo) merupakan data

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemuan III Statistika Deskripsi dan Eksplorasi (2) Septian Rahardiantoro - STK IPB 1 Misalkan diketahui data sebagai berikut Data 1 No Jenis Kelamin Tinggi Berat Agama

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1. Deskripsi Data Hasil Penelitian Sebagaimana telah dikemukakan pada bab-bab sebelumnya bahwa penelitian ini terdiri dari dua perangkat data, yakni 1) Data Pola

Lebih terperinci

Metode Statistika (STK211) Statistika Deskriptif (2) Dr. Ir. Kusman Sadik Dept. Statistika IPB, 2015

Metode Statistika (STK211) Statistika Deskriptif (2) Dr. Ir. Kusman Sadik Dept. Statistika IPB, 2015 Metode Statistika (STK211) Statistika Deskriptif (2) Dr. Ir. Kusman Sadik Dept. Statistika IPB, 2015 1 Pertanyaan Jika kita punya data mengenai daya hidup dari baterai Laptop merk XXX Dimana lokasi atau

Lebih terperinci

SATUAN ACARA PERKULIAHAN DAN SILABUS MATA KULIAH STATISTIK I JURUSAN AKUNTANSI STIE SEBELAS APRIL SUMEDANG. Mengulas garis besar materi pertemuan

SATUAN ACARA PERKULIAHAN DAN SILABUS MATA KULIAH STATISTIK I JURUSAN AKUNTANSI STIE SEBELAS APRIL SUMEDANG. Mengulas garis besar materi pertemuan SATUAN ACARA PERKULIAHAN DAN SILABUS MATA KULIAH STATISTIK I JURUSAN AKUNTANSI STIE SEBELAS APRIL SUMEDANG KODE MATA KULIAH : EUE 201 MATA KULIAH : STATISTIK I BOBOT SKS : 2 SKS JURUSAN : AKUNTANSI TK/SEMESTER

Lebih terperinci

Uji Validitas dan Reliabilitas

Uji Validitas dan Reliabilitas Uji Validitas dan Reliabilitas Uji Validitas Tes Setiap penyusunan instrumen dalam penelitian selalu memperhitungkan beberapa pertimbangan seperti apa yang hendak diukurnya, apakah data yang terkumpul

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA

SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB II STATISTIKA Dr. Djadir, M.Pd. Dr. Ilham Minggi, M.Si Ja faruddin,s.pd.,m.pd. Ahmad Zaki, S.Si.,M.Si Sahlan Sidjara, S.Si.,M.Si

Lebih terperinci

III. METODOLOGI PENELITIAN. 3.1 Waktu Penelitian Penelitian dilakukan pada Oktober Maret 2012.

III. METODOLOGI PENELITIAN. 3.1 Waktu Penelitian Penelitian dilakukan pada Oktober Maret 2012. 21 III. METODOLOGI PENELITIAN 3.1 Waktu Penelitian Penelitian dilakukan pada Oktober 2011 - Maret 2012. 3.2 Pengumpulan Data Pengumpulan data dilakukan dengan cara: 1. Rekapitulasi hasil uji profisiensi

Lebih terperinci

S T A T I S T I K A. Pertemuan ke-2

S T A T I S T I K A. Pertemuan ke-2 S T A T I S T I K A Pertemuan ke-2 Dasar-dasar Penghitungan Gejala Pusat Mean / Average / Rata-rata / Median / Me Mode / Modus / Mo Standard Deviation / Simpangan Baku / s Contoh : Susunlah data hasil

Lebih terperinci

B. Lokasi dan Waktu Penelitian Penelitian ini dilaksanakan di SMA N 1 Kaliwungu yang beralamat di Kecamatan Kaliwungu Kabupaten Kendal pada

B. Lokasi dan Waktu Penelitian Penelitian ini dilaksanakan di SMA N 1 Kaliwungu yang beralamat di Kecamatan Kaliwungu Kabupaten Kendal pada BAB III METODE PENELITIAN A. Jenis dan Pendekatan Penelitian Penelitian ini menggunakan jenis dan desain penelitian kuantitatif. Penelitian kuantitatif adalah penelitian yang berlandaskan pada filsafat

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN Topik Bahasan : Membahas Silabus Perkuliahan Tujuan Umum : Mahasiswa Mengetahui Komponen Yang Perlu Dipersiapkan Dalam Matakuliah Ini satu kali Tujuan 1 Menjelaskan tentang Mengakomodasi berbagai masukan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 34 H 1 = Terdapat perbedaan hasil belajar siswa yang mendapatkan pembelajaran dengan model pembelajaran kooperatif tipe STAD dengan model pembelajaran kooperatif tipe Jigsaw. BAB III METODOLOGI PENELITIAN

Lebih terperinci

BAB 4 Hasil Penelitian dan Interpretasi

BAB 4 Hasil Penelitian dan Interpretasi 47 BAB 4 Hasil Penelitian dan Interpretasi Pada bab ini, akan dipaparkan hasil penelitian serta interpretasi dari hasil penelitian tersebut. Akan dijabarkan gambaran umum responden dan hasil dari analisa

Lebih terperinci

SAMPLING METHODS Metode Penarikan Contoh STK221 3(2-2)

SAMPLING METHODS Metode Penarikan Contoh STK221 3(2-2) SAMPLING METHODS Metode Penarikan Contoh STK221 3(2-2) Pustaka Scheaffer RL, Mendenhall W, Ott RL. 2006. Elementary Survey Sampling, 6th ed. Belmont: Duxbury Press. Levy PS, Lemeshow S. 1999. Sampling

Lebih terperinci

STK 211 Metode statistika. Materi 2 Statistika Deskriptif

STK 211 Metode statistika. Materi 2 Statistika Deskriptif STK 211 Metode statistika Materi 2 Statistika Deskriptif 1 Statistika Deskriptif Merupakan teknik penyajian dan peringkasan data sehingga menjadi informasi yang mudah dipahami Penyajian data dapat dilakukan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Data Data adalah bentuk jamak dari datum, yang dapat diartikan sebagai informasi yang diterima yang bentuknya dapat berupa angka, kata-kata, atau dalam bentuk lisan dan tulisan

Lebih terperinci

Deviasi rata-rata (rata-rata simpangan) data yang belum dikelompokkan

Deviasi rata-rata (rata-rata simpangan) data yang belum dikelompokkan Statistik Deskriptif DEVIASI RATA-RATA / RATA-RATA SIMPANGAN Mean Deviasi atau Average Deviation atau Deviasi Mean dari deviasi nilai-nilai dari Mean dalam suatu distribusi, diambil nilainya yang absolut.

Lebih terperinci

Statistik Dasar. 1. Pendahuluan Persamaan Statistika Dalam Penelitian. 2. Penyusunan Data Dan Penyajian Data

Statistik Dasar. 1. Pendahuluan Persamaan Statistika Dalam Penelitian. 2. Penyusunan Data Dan Penyajian Data Statistik Dasar 1. Pendahuluan Persamaan Statistika Dalam Penelitian 2. Penyusunan Data Dan Penyajian Data 3. Ukuran Tendensi Sentral, Ukuran Penyimpangan 4. Momen Kemiringan 5. Distribusi Normal t Dan

Lebih terperinci

Pertemuan III Statistika Dasar (Basic Statistics)

Pertemuan III Statistika Dasar (Basic Statistics) Pertemuan III Statistika Dasar (Basic Statistics) Jika punya data mengenai daya hidup dari baterai HP merk XXX Dimana lokasi atau pusat dari data? ukuran pemusatan Seberapa besar variasi dari data ukuran

Lebih terperinci