LAB MANAJEMEN DASAR MODUL STATISTIKA 1. Nama : NPM : Kelas : Fakultas Ekonomi Universitas Gunadarma Kelapa Dua

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "LAB MANAJEMEN DASAR MODUL STATISTIKA 1. Nama : NPM : Kelas : Fakultas Ekonomi Universitas Gunadarma Kelapa Dua"

Transkripsi

1 LAB MANAJEMEN DASAR MODUL STATISTIKA 1 Nama : NPM : Kelas : Fakultas Ekonomi Universitas Gunadarma Kelapa Dua 1

2 UKURAN STATISTIK Pendahuluan Ukuran statistik merupakan ukuran yang menunjukkan bagaimana suatu gugus data memusat dan menyebar. Di dalam ukuran statistik ada tiga bentuk ukuran deskripsi data, yaitu : ukuran pusat data, ukuran variabilitas data dan ukuran bentuk distribusi data. Ukuran pusat data yang banyak digunakan untuk mendeskripsikan data adalah mean (rata-rata hitung), median dan modus. Ukuran penyebaran suatu kelompok data terhadap pusat data disebut disperse atau variasi atau keragaman data. Ukuran disperse data yang umum dipakai adalah jangkauan (range), variansi dan standar deviasi. UKURAN PEMUSATAN 1. MEAN (rata-rata hitung) Rata-rata dihitung dengan menjumlahkan seluruh angka data yang selanjutnya dibagi dengan banyaknya (jumlah) data. Jumlah data untuk data sampel disebut sebagai ukuran sampel yang disimbolkan dengan n dan untuk data populasi disebut sebagai ukuran populasi yang disimbolkan dengan N. Untuk rata-rata hitung sekumpulan data hasil observasi dihitung dengan menggunakan rumus berikut : Rata-rata (X ) = (Xi) / N Dimana : Xi = nilai dari observasi yang ke-i N = banyaknya observasi ukuran sample. 2. MEDIAN Median adalah nilai yang membagi gugus data yang telah tersortir (ascending) menjadi 2 bagian yang sama besar. Letak median = (n+1)/2 Kuartil adalah nilai yang membagi gugus data yang telah tersortir (ascending) menjadi empat bagian yang sama besar. Nilai kuartil terdiri dari kuartil 1, kuartil 2 dan kuartil 3. Nilai kuartil 2 suatu gugus data sama dengan nilai median tersebut. 3. MODUS Modus merupakan nilai yang paling sering muncul atau nilai yang frekuensinya paling tinggi. UKURAN PENYEBARAN 1. Jangkauan (range) Jangkauan atau range (r) suatu gugus data adalah selisih antara nilai maksimum dengan nilai minimum. 2. Variansi Variansi adalah rata-rata kuadrat selisih atau kuadrat simpangan dari semua nilai data terhadap rata-rata hitung. Variansi untuk sampel dilambangkan dengan s 2. sedangkan untuk populasi dilambangkan dengan σ 2 Variansi (s) 2 = [ (Xi-X)] / (n-1) 3. Standar Deviasi Standar deviasi adalah akar pangkat dua dari variansi. Standar deviasi seringkali disebut simpangan baku. 2

3 Contoh : Diketahui data umur pegawai PT DOFI yaitu Untuk mencari nilai-nilai ukuran statistik data tersebut dengan menggunakan program R, ikutilah langkah-langkah berikut : 1. Tekan icon R Commander pada desktop, kemudian akan muncul tampilan seperti gambar di bawah ini. 2. Pilih menu Data, New data set. Masukkan nama dari data set adalah umur, lalu tekan tombol OK. 3. Masukkan data umur pegawai PT. DOFI. Jika data editor tidak aktif maka dapat diaktifkan dengan menekan RGui di taskbar windows pada bagian bawah layar monitor. Jika sudah selesai dalam pengisian data tekan tombol Close. Untuk mengubah nama dan tipe variabel, dapat dilakukan dengan cara double click pada variable yang ingin di setting 3

4 4. Untuk mengecek kebenaran data yang sudah dimasukkan, tekan tombol View data set maka akan muncul tampilan seperti gambar di bawah ini. Jika ada data yang salah, tekan tombol edit data set, lalu perbaiki data yang salah. 5. Jika data sudah benar, pilih menu Statistic, Summaries, Active data set. 4

5 6. Akan muncul tampilan : Maka kita bisa mengetahui bahwa dari data umur pegawai PT. DOFI, memiliki nilai : Minimum : Kuartil 1 : Median : Mean : Kuartil 3 : Maximum :

6 Untuk mengetahui standar deviasi, lakukan langkah berikut : 1. Tekan Statistic, Summaries, Numerical Summeries. 2. Maka akan muncul tampilan seperti gambar di bawah ini, kemudian tekan tombol OK. Mean sd 0% 25% 50% 75% 100% n

7 Dari tampilan ini, anda bisa mendapatkan tambahan informasi numeric, yaitu standar deviasi : Perhatikan perbandingan tampilan pertama dan kedua. Terlihat bahwa nilai minimum pada tampilan pertama sama dengan nilai kuartil 0% pada tampilan kedua. Nilai median sama dengan quartile 50% dan seterusnya. Nilai n menunjukkan banyaknya data. Untuk melihat bentuk histogram dari data umur pegawai PT DOFI, lakukan langkah berikut : 1. Tekan R Commander, Graphs, Histogram kemudian akan muncul tampilan seperti gambar di bawah ini. 2. Pilih Frequency Counts, OK. 3. Akan terlihat bahwa kelas modus adalah antara dengan frekuensi 3. Jika histogram tidak aktif maka dapat diaktifkan dengan menekan RGui di Taskbar windows pada bagian bawah layar monitor. 7

8 Untuk membersihkan script window pada R Commander, lakukan langkah berikut : 1. Letakkan kursor pada script window 2. Kilik Kanan 3. Klik kiri pada clear window Untuk membersihkan output window pada R commander, lakukan langkah berikut : 1. Letakkan kursor pada output window 2. Kilik kanan 3. Klik kiri pada clear window 8

9 Untuk melakukan perhitungan, misalnya mencari nilai : Jangkauan (r) = nilai maksimum nilai minimum, maka lakukan langkah sebagai berikut : 1. Aktifkan R Commander kemudian tuliskan pada script window, misalkan a=26. lalu tekan tombol submit 2. Tuliskan pada script window, misalkan b=19. lalu tekan tombol submit 3. Tuliskan pada script window, c=a-b. lalu tekan tombol submit 4. Tuliskan pada script window, c lalu tekan tombol submit 5. Maka hasilnya akan muncul pada output window 9

LAB MANAJEMEN DASAR MODUL STATISTIKA 1

LAB MANAJEMEN DASAR MODUL STATISTIKA 1 LAB MANAJEMEN DASAR MODUL STATISTIKA 1 Nama : NPM/Kelas : Fakultas/Jurusan : Hari dan Shift Praktikum : Fakultas Ekonomi Universitas Gunadarma Kelapa dua E531 1 UKURAN STATISTIK Pendahuluan Ukuran statistik

Lebih terperinci

KATA PENGANTAR. Kelapa Dua, September Tim Litbang

KATA PENGANTAR. Kelapa Dua, September Tim Litbang KATA PENGANTAR Puji syukur kami panjatkan kepada Tuhan Yang Maha Esa atas limpahan rahmat dan karunia-nya sehingga modul praktikum Statistika 1 materi ukuran statistik ini dapat terselesaikan. Modul praktikum

Lebih terperinci

LAB MANAJEMEN DASAR MODUL STATISTIKA 1

LAB MANAJEMEN DASAR MODUL STATISTIKA 1 LAB MANAJEMEN DASAR MODUL STATISTIKA 1 Nama : NPM/Kelas : Fakultas/Jurusan : Hari dan Shift Praktikum : Fakultas Ekonomi Universitas Gunadarma Kelapa dua E531 1 UKURAN STATISTIK Pendahuluan Ukuran statistik

Lebih terperinci

Manajemen. Modul Riset Akuntansi UJI NORMALITAS. Manajemen

Manajemen. Modul Riset Akuntansi UJI NORMALITAS. Manajemen UJI NORMALITAS 2 29 Objektif: Mahasiswa dapat menguji tentang kenormalan distribusi data menggunakan R-Programming 30 Tujuan dari uji normalitas adalah untuk mengetahui apakah data yang diambil adalah

Lebih terperinci

LAB MANAJEMEN DASAR MODUL METODE RISET PRAKTIKUM ILAB KAMPUS H

LAB MANAJEMEN DASAR MODUL METODE RISET PRAKTIKUM ILAB KAMPUS H LAB MANAJEMEN DASAR MODUL METODE RISET PRAKTIKUM ILAB KAMPUS H Nama : NPM/Kelas : Fakultas/Jurusan : Fakultas Ekonomi Universitas Gunadarma Kelapa dua E531 1 UJI PERBEDAAN LEBIH DARI DUA SAMPEL (ANOVA)

Lebih terperinci

UJI 2 SAMPLE BERPASANGAN. (PAIRED SAMPLE t-test)

UJI 2 SAMPLE BERPASANGAN. (PAIRED SAMPLE t-test) UJI 2 SAMPLE BERPASANGAN (PAIRED SAMPLE t-test) 4 71 Objektif: Mahasiswa dapat menguji perbedaan rata-rata antara samplesampel yang berpasangan menggunakan R-Programming 72 Paired sample t-test adalah

Lebih terperinci

UJI PERBEDAAN LEBIH DARI DUA SAMPEL (ANOVA)

UJI PERBEDAAN LEBIH DARI DUA SAMPEL (ANOVA) UJI PERBEDAAN LEBIH DARI DUA SAMPEL (ANOVA) 6 124 Objektif: Mahasiswa dapat menguji perbedaan lebih dari dua sampel atau disebut juga analisis varians menggunakan R- Programming 125 Diterapkan untuk membanding

Lebih terperinci

MODUL UJI NON PARAMETRIK (CHI-SQUARE/X 2 )

MODUL UJI NON PARAMETRIK (CHI-SQUARE/X 2 ) MODUL UJI NON PARAMETRIK (CHI-SQUARE/X 2 ) Tujuan Praktikum: Membantu mahasiswa memahami materi Distribusi Chi Square Pengambilan keputusan dari suatu kasus dengan menggunakan kaidah dan syarat Distribusi

Lebih terperinci

UJI T SAMPEL BEBAS (INDEPENDENT SAMPLE T-TEST)

UJI T SAMPEL BEBAS (INDEPENDENT SAMPLE T-TEST) UJI T SAMPEL BEBAS (INDEPENDENT SAMPLE T-TEST) 3 50 Objektif Mahasiswa dapat menghitung distribusi t untuk pengujian hipotesis menggunakan R-Programming 51 Uji-t 2 sampel independen (bebas) adalah metode

Lebih terperinci

UJI NONPARAMETRIK (CHI SQUARE / X2)

UJI NONPARAMETRIK (CHI SQUARE / X2) UJI NONPARAMETRIK (CHI SQUARE / X2) 5 92 Objektif Mahasiswa dapat menghitung uji parametik dan uji nonparametric Mahasiswa dapat menguji ada atau tidaknya interdependensi antara variable kuantitatif yang

Lebih terperinci

REGRESI LINIER BERGANDA

REGRESI LINIER BERGANDA REGRESI LINIER BERGANDA 7 150 Objektif Mahasiswa dapat menentukan persamaan regresi menggunakan R programming 151 Analisis regresi adalah studi mengenai ketergantungan suatu variabel (variaabel tak bebas)

Lebih terperinci

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada.

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Azimmatul Ihwah Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Ada cara yg lebih baik untuk menginterpretasi data yg

Lebih terperinci

LAB MANAJEMEN DASAR MODUL RISET AKUNTANSI PRAKTIKUM REGULER LAB E531. Nama : NPM / Kelas : Fakultas /Jurusan :

LAB MANAJEMEN DASAR MODUL RISET AKUNTANSI PRAKTIKUM REGULER LAB E531. Nama : NPM / Kelas : Fakultas /Jurusan : LAB MANAJEMEN DASAR MODUL RISET AKUNTANSI PRAKTIKUM REGULER LAB E531 Nama : NPM / Kelas : Fakultas /Jurusan : Fakultas Ekonomi Universitas Gunadarma Kelapa dua 2013/2014 KATA PENGANTAR Assalamu alaikum

Lebih terperinci

STATISTIKA DESKRIPTIF. Wenny Maulina, S.Si., M.Si

STATISTIKA DESKRIPTIF. Wenny Maulina, S.Si., M.Si STATISTIKA DESKRIPTIF Wenny Maulina, S.Si., M.Si Ukuran Pemusatan Ukuran pemusatan ukuran ringkas yang menggambarkan karakteristik umum data tersebut. Modus (Mode): Nilai pengamatan yang paling sering

Lebih terperinci

LABORATORIUM MANAJEMEN DASAR STATISTIKA 1 PTA 2015/2016 NAMA : NPM : KELAS : KP : TUTOR : ASBAR :

LABORATORIUM MANAJEMEN DASAR STATISTIKA 1 PTA 2015/2016 NAMA : NPM : KELAS : KP : TUTOR : ASBAR : LABORATORIUM MANAJEMEN DASAR STATISTIKA 1 PTA 2015/2016 NAMA : NPM : KELAS : KP : TUTOR : ASBAR : FAKULTAS EKONOMI UNIVERSITAS GUNADARMA JAKARTA 2015 KATA PENGANTAR Puji syukur kami panjatkan kepada Tuhan

Lebih terperinci

DISPERSI DATA. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation)

DISPERSI DATA. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation) DISPERSI DISPERSI DATA Ukuran penyebaran suatu kelompok data terhadap pusat data. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation)

Lebih terperinci

PENGUKURAN DESKRIPTIF

PENGUKURAN DESKRIPTIF PENGUKURAN DESKRIPTIF STATISTIK INDUSTRI I Jurusan Teknik Industri Universitas Brawijaya Malang 1 PENGUKURAN DESKRIPTIF Suatu pengukuran yang bertujuan untuk memberikan gambaran tentang data yang diperoleh

Lebih terperinci

Memulai SPSS dan Mengelola File

Memulai SPSS dan Mengelola File MODUL 1 Memulai SPSS dan Mengelola File A. MEMULAI SPSS Untuk memulai SPSS for Windows langkah yang harus dilakukan adalah: Klik menu Start Programs SPSS for Windows SPSS for Windows. Kemudian akan ditampilkan

Lebih terperinci

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada.

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Azimmatul Ihwah Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Ada cara yg lebih baik untuk menginterpretasi data yg

Lebih terperinci

Distribusi Frekuensi dan Statistik Deskriptif Lainnya

Distribusi Frekuensi dan Statistik Deskriptif Lainnya BAB 2 Distribusi Frekuensi dan Statistik Deskriptif Lainnya Misalnya seorang penjaga gudang mencatat berapa sak gandum keluar dari gudang selama 15 hari kerja, maka diperoleh distribusi data seperti berikut.

Lebih terperinci

Metode Penelitian Kuantitatif Aswad Analisis Deskriptif

Metode Penelitian Kuantitatif Aswad Analisis Deskriptif Analisis Deskriptif Tanpa mengurangi keterumuman, pembahasan analisis deskriptif kali ini difokuskan kepada pembahasan tentang Ukuran Pemusatan Data, dan Ukuran Penyebaran Data Terlebih dahulu penting

Lebih terperinci

Pengukuran Deskriptif. Debrina Puspita Andriani /

Pengukuran Deskriptif. Debrina Puspita Andriani    / Pengukuran Deskriptif 3 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Pendahuluan Tendensi Sentral Ukuran Dispersi 3 Pendahuluan Pengukuran Deskriptif 4 Definisi Pengukuran

Lebih terperinci

MODUL PRAKTIKUM STATISTIKA

MODUL PRAKTIKUM STATISTIKA MODUL PRAKTIKUM STATISTIKA Versi 3.0 Tahun Penyusunan 2011 Tim Penyusun 1. Intaglia Harsanti 2. 3. Laboratorium Psikologi Jurusan Psikologi Fakultas Psikologi UNIVERSITAS GUNADARMA Daftar Isi Daftar Isi...

Lebih terperinci

SPSS FOR WINDOWS BASIC. By : Syafrizal

SPSS FOR WINDOWS BASIC. By : Syafrizal SPSS FOR WINDOWS BASIC By : Syafrizal SPSS merupakan software statistik yang paling populer, fasilitasnya sangat lengkap dibandingkan dengan software lainnya, penggunaannya pun cukup mudah Langkah pertama

Lebih terperinci

Pengukuran Deskriptif

Pengukuran Deskriptif Pengukuran Deskriptif 2.2 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Pendahuluan Tendensi Sentral Ukuran Dispersi 3 Pendahuluan Pengukuran Deskriptif 4 Definisi

Lebih terperinci

UKURAN DISPERSI (SEBARAN)DATA

UKURAN DISPERSI (SEBARAN)DATA Malim Muhammad, M.Sc. UKURAN DISPERSI (SEBARAN)DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DISPERSI

Lebih terperinci

Statistika & Probabilitas

Statistika & Probabilitas Statistika & Probabilitas Dispersi Data Dispersi Data Dispersi adalah ukuran penyebaran suatu kelompok data terhadap pusat data. Beberapa jenis ukuran dispersi data : Jangkauan (range) Simpangan rata-rata

Lebih terperinci

UKURAN PENYEBARAN DATA

UKURAN PENYEBARAN DATA UKURAN PENYEBARAN DATA STKIP SILIWANGI BANDUNG Sumber : 1.Sudjana. Budino dan Koster 3. Berbagai sumber LUVY S. ZANTHY 1 Ukuran Penyebaran Data (Ukuran Dispersi) Ukuran penyebaran data atau ukuran dispersi

Lebih terperinci

ANALISIS DERET BERKALA

ANALISIS DERET BERKALA ANALISIS DERET BERKALA PENDAHULUAN Analisis deret berkala merupakan prosedur analisis yang dapat digunakan untuk mengetahui gerak perubahan nilai suatu variabel sebagai akibat dari perubahan waktu. Dalam

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 2 Review Statistika Dasar

STK511 Analisis Statistika. Pertemuan 2 Review Statistika Dasar STK511 Analisis Statistika Pertemuan 2 Review Statistika Dasar Statistika Populasi Sampling Pendugaan Contoh Deskriptif Tingkat Keyakinan Statistika Deskriptif vs Statistika Inferensia Ilmu Peluang Parameter

Lebih terperinci

UKURAN TENGAH DAN UKURAN DISPERSI

UKURAN TENGAH DAN UKURAN DISPERSI UKURAN TENGAH DAN UKURAN DISPERSI UKURAN TENGAH Ukuran tengah nilai tunggal yang representatif untuk keseluruhan nilai data. Ukuran tendensi sentral nilainya cenderung terletak di urutan paling tengah

Lebih terperinci

NAMA : NPM : KELAS : KP : TUTOR : ASBAR : LAB. MANAJEMEN DASAR vii LITBANG PTA 16/17

NAMA : NPM : KELAS : KP : TUTOR : ASBAR : LAB. MANAJEMEN DASAR vii LITBANG PTA 16/17 NAMA : NPM : KELAS : KP : TUTOR : ASBAR : LAB. MANAJEMEN DASAR vii LITBANG PTA 16/17 KATA PENGANTAR KATA PENGANTAR Dengan menyebut nama Allah, kami panjatkan puji dan syukur ata kehadirat-nya, yang telah

Lebih terperinci

PENS. Probability and Random Process. Topik 2. Statistik Deskriptif. Prima Kristalina Maret 2016

PENS. Probability and Random Process. Topik 2. Statistik Deskriptif. Prima Kristalina Maret 2016 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 2. Statistik Deskriptif Prima Kristalina Maret 2016 1 Outline [2][1] 1. Penyajian Data o Tabel

Lebih terperinci

Pertemuan 6 & 7 UJI VALIDITAS DAN RELIABILITAS. Objektif:

Pertemuan 6 & 7 UJI VALIDITAS DAN RELIABILITAS. Objektif: Pertemuan 6 & 7 UJI VALIDITAS DAN RELIABILITAS Objektif: 1. Mahasiswa dapat mengetahui ketepatan mengukur suatu alat ukur (uji validitas) 2. Mahasiswa dapat menentukan konsistensi alat ukur (uji reliabilitas)

Lebih terperinci

MODUL 2. TABULASI DATA. TABULASI DATA Pembuatan Tabel Frekwensi. Perintah Statistik

MODUL 2. TABULASI DATA. TABULASI DATA Pembuatan Tabel Frekwensi. Perintah Statistik MODUL 2. Tujuan : 1. Membuat tabel frekwensi dan memahami perintah statistik, chart, dan format. 2. Memahami penyajian data secara numerik berupa analisis statistik deskriptif, yang menyajikan ukuran-ukuran

Lebih terperinci

BAB 8 ANALISIS STUDI DESKRIPTIF DAN DATA DASAR. Bab ini menjelaskan secara lebih mendalam jenis studi deskriptif

BAB 8 ANALISIS STUDI DESKRIPTIF DAN DATA DASAR. Bab ini menjelaskan secara lebih mendalam jenis studi deskriptif BAB 8 ANALISIS STUDI DESKRIPTIF DAN DATA DASAR Bab ini menjelaskan secara lebih mendalam jenis studi deskriptif maupun teknik mendekripsikan data secara grafis maupun secara angka. Sebagai ilustrasi aplikasi

Lebih terperinci

Rata-rata hitung sekumpulan data hasil observasi dapat dihitung dengan menggunakan rumus berikut :

Rata-rata hitung sekumpulan data hasil observasi dapat dihitung dengan menggunakan rumus berikut : UKURAN STATISTIK Pendahuluan aturan statistic merupakan aturan yang menunjukkan bagaimana suatu gugus data memusat dan menyebar. aturan pemusatan yang umum digunakan untuk mendeskripsikan data adalah mean

Lebih terperinci

Langkah-Langkah Perhitungan Berikut diberikan data penjualan mobil Bima selama tahun 2000:

Langkah-Langkah Perhitungan Berikut diberikan data penjualan mobil Bima selama tahun 2000: BAB 1 STATISTIK DESKRIPTIF Statistik deskriptif lebih berhubungan dengan pengumpulan dan peringkatan data, serta penyajian hasil peringkasan tersebut. Data statistik yang bisa diperoleh dari hasil sensus,

Lebih terperinci

STK 211 Metode statistika. Materi 2 Statistika Deskriptif

STK 211 Metode statistika. Materi 2 Statistika Deskriptif STK 211 Metode statistika Materi 2 Statistika Deskriptif 1 Statistika Deskriptif Merupakan teknik penyajian dan peringkasan data sehingga menjadi informasi yang mudah dipahami Penyajian data dapat dilakukan

Lebih terperinci

Skala pengukuran dan Ukuran Pemusatan. Ukuran Pemusatan

Skala pengukuran dan Ukuran Pemusatan. Ukuran Pemusatan Skala Pengukuran Nominal (dapat dikelompokkan, tidak punya urutan) Ordinal (dapat dikelompokkan, dapat diurutkan, jarak antar nilai tidak tetap sehingga tidak dapat dijumlahkan) Interval (dapat dikelompokkan,

Lebih terperinci

LABORATORIUM MANAJEMEN DASAR MODUL STATISTIKA 2. Nama : NPM/Kelas : Fakultas/Jurusan :

LABORATORIUM MANAJEMEN DASAR MODUL STATISTIKA 2. Nama : NPM/Kelas : Fakultas/Jurusan : LABORATORIUM MANAJEMEN DASAR MODUL STATISTIKA 2 Nama : NPM/Kelas : Fakultas/Jurusan : FAKULTAS EKONOMI UNIVERSITAS GUNADARMA KALIMALANG J1416 ATA 2012/2013 KATA PENGANTAR Puji syukur kami panjatkan kepada

Lebih terperinci

SOAL STATISTIKA KELAS XI Oleh: Erni Kundiarsih

SOAL STATISTIKA KELAS XI Oleh: Erni Kundiarsih SOAL STATISTIKA KELAS XI Oleh: Erni Kundiarsih MATEMATIKANET.COM Data berikut untuk soal nomor 1 4 Nilai ulangan harian matematika dari 14 orang siswa yang diambil secara acak adalah 7, 5, 8, 6, 7, 8,

Lebih terperinci

STATISTIKA DESKRIPTIF

STATISTIKA DESKRIPTIF STATISTIKA DESKRIPTIF 1 Statistika deskriptif berkaitan dengan penerapan metode statistika untuk mengumpulkan, mengolah, menyajikan dan menganalisis data kuantitatif secara deskriptif. Statistika inferensia

Lebih terperinci

Statistika Deskriptif

Statistika Deskriptif Statistika Deskriptif Materi 2 - STK511 AnalisisStatistika September 26, 2017 Sep, 2017 1 Merupakan teknik penyajian dan peringkasan data sehingga menjadi informasi yang mudah dipahami Apa yang disajikan

Lebih terperinci

5. STATISTIKA PENYELESAIAN. a b c d e Jawab : b

5. STATISTIKA PENYELESAIAN. a b c d e Jawab : b . STATISTIKA A. Membaca Sajian Data dalam Bentuk Diagram. UN 00 IPS PAKET A Diagram lingkaran berikut menunjukan persentase jenis pekerjaan penduduk di kota X. Jumlah penduduk seluruhnya adalah 3.600.000

Lebih terperinci

DISTRIBUSI POISSON Pendahuluan Rumus Pendekatan Peluang Poisson untuk Binomial P ( x ; µ ) = (e µ. µ X ) / X! n. p Rumus Proses Poisson

DISTRIBUSI POISSON Pendahuluan Rumus Pendekatan Peluang Poisson untuk Binomial P ( x ; µ ) = (e µ. µ X ) / X! n. p Rumus Proses Poisson DISTRIBUSI POISSON Pendahuluan Distribusi poisson diberi nama sesuai dengan penemunya yaitu Siemon D. Poisson. Distribusi ini merupakan distribusi probabilitas untuk variabel diskrit acak yang mempunyai

Lebih terperinci

LAB MANAJEMEN DASAR MODUL RISET AKUNTANSI PRAKTIKUM I LAB KAMPUS H

LAB MANAJEMEN DASAR MODUL RISET AKUNTANSI PRAKTIKUM I LAB KAMPUS H LAB MANAJEMEN DASAR MODUL RISET AKUNTANSI PRAKTIKUM I LAB KAMPUS H Nama : NPM/Kelas : Fakultas/Jurusan : Fakultas Ekonomi Universitas Gunadarma Kelapa dua E531 1 UJI VALIDITAS DAN RELIABILITAS INSTRUMEN

Lebih terperinci

By : Hanung N. Prasetyo

By : Hanung N. Prasetyo theory STATISTIKA DESKRIPTIF By : Hanung N. Prasetyo UKURAN PEMUSATAN Nilai tunggal yang mewakili semua data atau kumpulan pengamatan dimana nilai tersebut menunjukkan pusat data. Yang termasuk ukuran

Lebih terperinci

STATISTIK. Rahma Faelasofi

STATISTIK. Rahma Faelasofi STATISTIK Rahma Faelasofi 1 BAB 3 VARIABILITAS Pengertian Jangkauan Mean deviasi Standar deviasi 2 Pengertian Pengukuran penyebaran adalah pengukuran tingkat penyebaran nilai dalam suatu kumpulan data

Lebih terperinci

STK 211 Metode statistika. Agus Mohamad Soleh

STK 211 Metode statistika. Agus Mohamad Soleh STK 211 Metode statistika Merupakan teknik penyajian dan peringkasan data sehingga menjadi informasi yang mudah dipahami Apa yang disajikan dan diringkas? --> PEUBAH Univariate vs Bivariate vs Multivariate

Lebih terperinci

LABORATORIUM MANAJEMEN DASAR MODUL METODE RISET. Nama : NPM/Kelas : Fakultas/Jurusan :

LABORATORIUM MANAJEMEN DASAR MODUL METODE RISET. Nama : NPM/Kelas : Fakultas/Jurusan : LABORATORIUM MANAJEMEN DASAR MODUL METODE RISET Nama : NPM/Kelas : Fakultas/Jurusan : FAKULTAS EKONOMI UNIVERSITAS GUNADARMA DEPOK 2015 LABORATORIUM MANAJEMEN DASAR KATA PENGANTAR Assalamu alaikum Wr.

Lebih terperinci

ANALISIS DATA EKSPLORATIF MODUL 4 PENGANTAR MINITAB

ANALISIS DATA EKSPLORATIF MODUL 4 PENGANTAR MINITAB ANALISIS DATA EKSPLORATIF KELAS C2 MODUL 4 PENGANTAR MINITAB Nama Nomor Praktikan Mahasiswa Sri Siska Wirdaniyati 12611125 Tanggal Kumpul 5 Desember 2013 Praktikan Tanda tangan Laboran Nama Penilai Tanggal

Lebih terperinci

UJI VALIDITAS DAN RELIABILITAS INSTRUMEN PENGUMPULAN DATA

UJI VALIDITAS DAN RELIABILITAS INSTRUMEN PENGUMPULAN DATA Modul R UJI VALIDITAS DAN RELIABILITAS INSTRUMEN PENGUMPULAN DATA I. UJI VALIDITAS Sebelum instrument/alat ukur digunakan untuk mengumpulkan data penelitian, maka perlu dilakukan uji coba kuesioner untuk

Lebih terperinci

LEMBAR AKTIVITAS SISWA STATISTIKA 2 B. PENYAJIAN DATA

LEMBAR AKTIVITAS SISWA STATISTIKA 2 B. PENYAJIAN DATA Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA STATISTIKA 2 B. PENYAJIAN DATA Beberapa bentuk penyajian data, sebagai berikut: Kompetensi Dasar (KURIKULUM 2013): 3.15 Memahami dan menggunakan berbagai ukuran

Lebih terperinci

BESARAN STATISTIK (UKURAN TENGAH DAN UKURAN

BESARAN STATISTIK (UKURAN TENGAH DAN UKURAN BESARAN STATISTIK (UKURAN TENGAH DAN UKURAN DISPERSI) UKURAN TENGAH Ukuran tengah nilai tunggal yang representatif untuk keseluruhan nilai data. Ukuran tendensi sentral nilainya cenderung terletak di urutan

Lebih terperinci

LAB MANAJEMEN DASAR MODUL METODE RISET PRAKTIKUM I LAB KAMPUS H

LAB MANAJEMEN DASAR MODUL METODE RISET PRAKTIKUM I LAB KAMPUS H LAB MANAJEMEN DASAR MODUL METODE RISET PRAKTIKUM I LAB KAMPUS H Nama : NPM/Kelas : Fakultas/Jurusan : Fakultas Ekonomi Universitas Gunadarma Kelapa dua E531 1 UJI VALIDITAS DAN RELIABILITAS INSTRUMEN PENGUMPULAN

Lebih terperinci

By Syarifah Hikmah JS. MK Statistika (MAM 4137)

By Syarifah Hikmah JS. MK Statistika (MAM 4137) By Syarifah Hikmah JS MK Statistika (MAM 4137) Daftar Isi Wilayah/Rentang Deviasi rata-rata terhadap nilai tengah Ragam Simpangan baku Ukuran Statistik Untuk menjelaskan ciri-ciri data yang penting maka

Lebih terperinci

HARISON,S.Pd,M.Kom JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI PADANG

HARISON,S.Pd,M.Kom JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI PADANG HARISON,S.Pd,M.Kom JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI PADANG HOMOGEN DAN HETEROGEN DATA I. 50,50,50,50,50 II. 30,40,50,60,70 III.0,30,50,70,80 Ketiga kelompok data

Lebih terperinci

Statistik Deskriptif dengan Microsoft Office Excel

Statistik Deskriptif dengan Microsoft Office Excel Statistik Deskriptif dengan Microsoft Office Excel Junaidi, Junaidi I. Prosedur Statistik Deskriptif pada Excel Statistik deskriptif adalah statistik yang bertujuan untuk mendeskripsikan atau menggambarkan

Lebih terperinci

STATISTIKA KELAS : XI BAHASA SEMESTER : I (SATU) Disusun Oleh : Drs. Pundjul Prijono Nip

STATISTIKA KELAS : XI BAHASA SEMESTER : I (SATU) Disusun Oleh : Drs. Pundjul Prijono Nip MODUL MATEMATIKA STATISTIKA 11.1. KELAS : XI BAHASA SEMESTER : I (SATU) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.1981.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI Jalan Mayjen Sungkono

Lebih terperinci

Setelah mempelajari bahan ajar ini diharapkan Anda dapat:

Setelah mempelajari bahan ajar ini diharapkan Anda dapat: D. Pembelajaran 4 1. Silabus N o STANDAR KOMPE TENSI Menerapk an aturan konsep statistika dalam pemecaha n masalah KOMPE TENSI DASAR Mengidenti fikasi pengerti-an statistik, statistika, populasi dan sampel

Lebih terperinci

King s Learning Be Smart Without Limits NAMA : KELAS :

King s Learning Be Smart Without Limits NAMA : KELAS : NAMA : KELAS : A. PENGERTIAN STATISTIKA Statistika adalah ilmu yang mempelajari cara mengumpulkan dan menyusun data, mengolah dan menganalisis data, serta menyajikan data. Statistik adalah hasil dari pengolahan

Lebih terperinci

ABSTRAK. Kata kunci : statistika deskriptif, animasi, Adobe Flash CS3. vii Universitas Kristen Maranatha

ABSTRAK. Kata kunci : statistika deskriptif, animasi, Adobe Flash CS3. vii Universitas Kristen Maranatha ABSTRAK Di sini kita mengembangkan aplikasi untuk membantu pengguna dalam belajar statistik deskriptif pada tingkat sekolah tinggi. Aplikasi ini menarik secara visual, oleh karena itu aplikasi ini ditujukan

Lebih terperinci

UJI VALIDITAS DAN RELIABILITAS INSTRUMEN PENGUMPULAN DATA

UJI VALIDITAS DAN RELIABILITAS INSTRUMEN PENGUMPULAN DATA UJI VALIDITAS DAN RELIABILITAS INSTRUMEN PENGUMPULAN DATA 3 Objektif Mahasiswa dapat mengetahui ketepatan mengukur suatu alat ukur (uji validitas) Mahasiswa dapat menentukan konsistensi alat ukur (uji

Lebih terperinci

MODUL PRAKTIKUM STATISTIKA 2. Laboratorium Jurusan. Manajemen Dasar. Fakultas Ekonomi UNIVERSITAS GUNADARMA. Versi 3.1. Tahun Penyusunan 2012

MODUL PRAKTIKUM STATISTIKA 2. Laboratorium Jurusan. Manajemen Dasar. Fakultas Ekonomi UNIVERSITAS GUNADARMA. Versi 3.1. Tahun Penyusunan 2012 MODUL PRAKTIKUM STATISTIKA 2 Versi 3.1 Tahun Penyusunan 2012 Tim Penyusun 1. Ir. Rina Sugiarti, MM 2. Lies Handrijaningsih, SE.,MM 3. Budi Sulistyo SE.,MM 4. Oktavia Anna Rahayu 5. Intan Permatasari Laboratorium

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemuan III Statistika Deskripsi dan Eksplorasi (2) Septian Rahardiantoro - STK IPB 1 Misalkan diketahui data sebagai berikut Data 1 No Jenis Kelamin Tinggi Berat Agama

Lebih terperinci

C. Ukuran Letak dan Ukuran Penyebaran Data

C. Ukuran Letak dan Ukuran Penyebaran Data C. Ukuran Letak dan Ukuran Penyebaran Data. Ukuran Letak Data Tunggal a. Kuartil Pada data dengan banyak data n 4, Kuartil membagi data menjadi 4 bagian sama banyak, sehingga diperoleh tiga nilai yang

Lebih terperinci

LABORATORIUM MANAJEMEN DASAR MODUL STATISTIKA 2 ATA 2014/2015

LABORATORIUM MANAJEMEN DASAR MODUL STATISTIKA 2 ATA 2014/2015 LABORATORIUM MANAJEMEN DASAR MODUL STATISTIKA 2 ATA 2014/2015 NAMA : NPM : KELAS : FAKULTAS EKONOMI UNIVERSITAS GUNADARMA DEPOK KATA PENGANTAR Assalamu alaikum Wr. Wb. Puji syukur kami panjatkan kepada

Lebih terperinci

TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS. Fitri Yulianti, SP. MSi.

TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS. Fitri Yulianti, SP. MSi. TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS Fitri Yulianti, SP. MSi. UKURAN PENYIMPANGAN Pengukuran penyimpangan adalah suatu ukuran yang menunjukkan tinggi rendahnya perbedaan data yang diperoleh

Lebih terperinci

BAB IV DISPERSI DATA

BAB IV DISPERSI DATA BAB IV DIPERI DATA Dispersi adalah ukuran penyebaran suatu kelompok data terhadap pusat data. Ukuran dispersi yang sering digunakan dalam penelitian ialah jangkauan (range), simpangan rata-rata (mean deviation),

Lebih terperinci

BAB 14 UJI DESKRIPTIF, VALIDITAS DAN NORMALITAS DATA

BAB 14 UJI DESKRIPTIF, VALIDITAS DAN NORMALITAS DATA BAB 14 UJI DESKRIPTIF, VALIDITAS DAN NORMALITAS DATA SPSS menyediakan fasilitas untuk melakukan analisis deskriptif data seperti uji deskriptif, validitas dan normalitas data. Uji deskriptif yang dilakukan

Lebih terperinci

Nomor Case Penunjuk Sel Heading Variable Kotak-kotak Variabel

Nomor Case Penunjuk Sel Heading Variable Kotak-kotak Variabel 1 MODUL 1. MEMULAI PASW DAN MENGELOLA FILE Tujuan : 1. Mengoperasikan PASW dan menjalankan menu-menu utama dalam PASW 2. Mengatur data editor yang meliputi menyimpan data, mengganti nilai data, menghapus,

Lebih terperinci

TUGAS II STATISTIKA. Oleh. Butsiarah / 15B Kelas B PROGRAM STUDI PENDIDIKAN TEKNOLOGI DAN KEJURUAN PROGRAM PASCASARJANA

TUGAS II STATISTIKA. Oleh. Butsiarah / 15B Kelas B PROGRAM STUDI PENDIDIKAN TEKNOLOGI DAN KEJURUAN PROGRAM PASCASARJANA TUGAS II STATISTIKA Oleh Butsiarah / 15B20020 Kelas B PROGRAM STUDI PENDIDIKAN TEKNOLOGI DAN KEJURUAN PROGRAM PASCASARJANA UNIVERSITAS NEGERI MAKASSAR 2015 1. Penelitian terhadap nilai mahasiswa S1 Jurusan

Lebih terperinci

BELAJAR SPSS. Langkah pertama yang harus dilakukan adalah dengan cara menginstal terlebih dahulu software SPSS

BELAJAR SPSS. Langkah pertama yang harus dilakukan adalah dengan cara menginstal terlebih dahulu software SPSS BELAJAR SPSS SPSS merupakan software statistik yang paling populer, fasilitasnya sangat lengkap dibandingkan dengan software lainnya, penggunaannya pun cukup mudah. Langkah pertama yang harus dilakukan

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kelas Matematika Statistika - Data Tunggal - Set Pilihan Ganda Doc. Name: ARMAT00 Version: 0-0 halaman 0. Mean dari (x - ), (x - ), x, (x + ), (x + ), (x + ) (A) x + (B) x + 0, (C) x + (D) x

Lebih terperinci

LABORATORIUM MANAJEMEN DASAR MODUL RISET AKUNTANSI ATA 2014/2015

LABORATORIUM MANAJEMEN DASAR MODUL RISET AKUNTANSI ATA 2014/2015 LABORATORIUM MANAJEMEN DASAR MODUL RISET AKUNTANSI ATA 2014/2015 NAMA : NPM : KELAS : FAKULTAS EKONOMI UNIVERSITAS GUNADARMA DEPOK KATA PENGANTAR Assalamu alaikum Wr. Wb. Puji syukur kami panjatkan kepada

Lebih terperinci

STATISTIK DESKRIPTIF. Penyajian Data, ukuran Pemusatan Data, Ukuran Penyebaran Data

STATISTIK DESKRIPTIF. Penyajian Data, ukuran Pemusatan Data, Ukuran Penyebaran Data STATISTIK DESKRIPTIF Penyajian Data, ukuran Pemusatan Data, Ukuran Penyebaran Data 1. Statisitik Deskriptif 2. Penyajian Data 3. Ukuran Pemusatan Data 4. Ukuran Penyebaran Data Materi Pokok Indikator Setelah

Lebih terperinci

BAB 3: NILAI RINGKASAN DATA

BAB 3: NILAI RINGKASAN DATA BAB 3: NILAI RINGKASAN DATA Penyajian data dalam bentuk tabel dan grafik memberikan kemudahan bagi kita untuk menggambarkan data dan membuat kesimpulan terhadap sifat data. Namun tabel dan grafik belum

Lebih terperinci

MENGOPERASIKAN SISTEM OPERASI

MENGOPERASIKAN SISTEM OPERASI MENGOPERASIKAN SISTEM OPERASI software system operasi generasi terakhir yang dikeluarkan Microsoft adalah Windows 95 Windows 98 Windows XP dan Vista Windows 7 Windows Me Sofware yang dirancangan khusus

Lebih terperinci

STATISTIKA. Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah

STATISTIKA. Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah 1 SMA SANTA ANGELA STATISTIKA Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah Kompetensi Dasar : Membaca data dalam bentuk tabel dan

Lebih terperinci

STATISTIKA DESKRIPTIF. Tendensi Sentral & Ukuran Dispersi

STATISTIKA DESKRIPTIF. Tendensi Sentral & Ukuran Dispersi STATISTIKA DESKRIPTIF Tendensi Sentral & Ukuran Dispersi Statistik dan Statistika Statistik : nilai-nilai ukuran data yang mudah dimengerti. Contoh : statistik liga sepak bola Indonesia Statistika : ilmu

Lebih terperinci

25/09/2013. Metode Statistika (STK211) Pertanyaan. Modus (Mode) Ukuran Pemusatan. Median. Cara menghitung median contoh

25/09/2013. Metode Statistika (STK211) Pertanyaan. Modus (Mode) Ukuran Pemusatan. Median. Cara menghitung median contoh Metode Statistika (STK11) Pertanyaan Jika punya data mengenai daya Pertemuan III Statistika ti tik Dasar (Basic Statistics) ti ti hidup dari baterai HP merk XXX Dimana lokasi atau pusat dari data? ukuran

Lebih terperinci

UKURAN PENYEBARAN DATA

UKURAN PENYEBARAN DATA UKURAN PENYEBARAN DATA HERDIAN S.Pd., M.Pd. SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER (STMIK) PRINGSEWU UKURAN PENYEBARAN DATA Selain ukuran pemusatan data dan ukuran letak data, ada juga yang

Lebih terperinci

PENGENALAN ALAT HITUNG: KALKULATOR DAN FUNGSI KALKULATOR PADA PROGRAM R STATISTIKA

PENGENALAN ALAT HITUNG: KALKULATOR DAN FUNGSI KALKULATOR PADA PROGRAM R STATISTIKA Praktikum Perancangan Percobaan 1 PRAKTIKUM 1 PENGENALAN ALAT HITUNG: KALKULATOR DAN FUNGSI KALKULATOR PADA PROGRAM R STATISTIKA A. Tujuan Instruksional Khusus Mahasiswa diharapkan mampu: a. Menggunakan

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika ntiremed Kelas 11 Matematika Statistika - Data Tunggal - Set 1 Uraian Doc. Name: R11MT0106 Version : 2012-08 halaman 1 01. Hitunglah mean, median, dan modus dari () 4, 4, 7, 5, 9, 8, 3, 2, 5, 4 () 25,

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN BAB III ANALISIS DAN PERANCANGAN Analisa merupakan bidang yang menarik, melibatkan studi interaksi antar manusia, kelompok-kelompok orang, komputer dan organisasi. Yang digunakan dalam penelitian ini cara

Lebih terperinci

II. MENDESKRIPSIKAN DATA 13 Desember 2005

II. MENDESKRIPSIKAN DATA 13 Desember 2005 II. MENDESKRIPSIKAN DATA 13 Desember 2005 1 Analisis Deskriptif Tujuan dari analisis deskritif adalah memberikan gambaran ringkas tentang suatu data. Data bisa berupa data categorical atau data non-categorical.

Lebih terperinci

SATUAN ACARA TUTORIAL (SAT) Mata Kuliah : Statistika Dasar/PAMA 3226 SKS : 3 SKS Tutorial : ke-1 Nama Tutor : Adi Nur Cahyono, S.Pd., M.Pd.

SATUAN ACARA TUTORIAL (SAT) Mata Kuliah : Statistika Dasar/PAMA 3226 SKS : 3 SKS Tutorial : ke-1 Nama Tutor : Adi Nur Cahyono, S.Pd., M.Pd. Tutorial : ke-1 Nama Tutor : a. Menjelaskan pengertian statistik; b. Menjelaskan pengertian statistika; c. Menjelaskan pengertian data statistik; d. Menjelaskan contoh macam-macam data; e. Menjelaskan

Lebih terperinci

UKURAN PENYEBARAN DATA

UKURAN PENYEBARAN DATA Pertemuan keempat UKURAN PENYEBARAN DATA Ukuran penyebaran data digunakan untuk melengkapi deskripsi dari sifat-sifat sekelompok data, terutama dalam membandingkan sifat-sifat yang dimiliki oleh masing-masing

Lebih terperinci

Ukuran Statistik Bagi Data

Ukuran Statistik Bagi Data Ukuran Statistik Bagi Data 1.1 Parameter dan Statistik Dalam statistika dikenal istilah populasi. Populasi merupakan kumpulan objek yang merupakan objek pengamatan kita. Deskripsi dari populasi tersebut

Lebih terperinci

Statistika I. Pertemuan 2 & 3 Statistika Dasar (Basic( Ari Wibowo, MPd Prodi PAI Jurusan Tarbiyah STAIN Surakarta. Konsep Peubah

Statistika I. Pertemuan 2 & 3 Statistika Dasar (Basic( Ari Wibowo, MPd Prodi PAI Jurusan Tarbiyah STAIN Surakarta. Konsep Peubah Statistika I Pertemuan & 3 Statistika Dasar (Basic( Statistic) Ari Wibowo, MPd Prodi PAI Jurusan Tarbiyah STAIN Surakarta Konsep Peubah Definisi Peubah merupakan karakteristik dari objek yang sedang diamati,

Lebih terperinci

KISI KISI SOAL UJI COBA UJIAN NASIONAL TA MATEMATIKA SMK PROGRAM KEAHLIAN PARIWISATA MGMP MATEMATIKA SMK KABUPATEN CIANJUR

KISI KISI SOAL UJI COBA UJIAN NASIONAL TA MATEMATIKA SMK PROGRAM KEAHLIAN PARIWISATA MGMP MATEMATIKA SMK KABUPATEN CIANJUR KISI KISI SOAL UJI COBA UJIAN NASIONAL TA.008 009 MATEMATIKA SMK PROGRAM KEAHLIAN PARIWISATA MGMP MATEMATIKA SMK KABUPATEN CIANJUR A. Sub Kompetensi : PERBANDINGAN. Untuk membuat sebuah rumah dengan waktu

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Pertemuan ketiga UKURAN PEMUSATAN DATA Karakteristik suatu kumpulan data adalah : (1). Memusat pada nilai tertentu dari suatu distribusi, yang disebut nilai pusat (middle of data set), dan (2). Menyebar/berpencar

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kelas 11 Matematika Statistika - Data Tunggal - Set 2 Uraian Doc. Name: AR11MAT0108 Version : 2012-08 halaman 1 01. Hitunglah mean, median, dan modus dari data berikut ini! (A) 43, 52, 54, 47,

Lebih terperinci

PENGANTAR STATISTIK JR113. Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI Pertemuan 6

PENGANTAR STATISTIK JR113. Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI Pertemuan 6 PENGANTAR STATISTIK JR113 Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI 2008 Pertemuan 6 MODUS Modus (Mo) adalah sebuah ukuran untuk menyatakan fenomena yang paling banyak terjadi atau

Lebih terperinci

dapat digunakan formulasi sebagai berikut : Letak Letak Letak

dapat digunakan formulasi sebagai berikut : Letak Letak Letak 1. Ukuran Letak Agar kita dapat mengetahui lebih jauh mengenai karakteristik data observasi dengan beberapa ukuran sentral, kita sebaiknya mengetahui beberapa ukuran lain, yaitu ukuran letak. Ada tiga

Lebih terperinci

Probabilitas dan Statistika Analisis Data Lanjut. Adam Hendra Brata

Probabilitas dan Statistika Analisis Data Lanjut. Adam Hendra Brata Probabilitas dan Analisis Lanjut Adam Hendra Brata Tunggal Populasi adalah sebagai sekumpulan data yang mengidentifikasi suatu fenomena. Sampel adalah sekumpulan data yang diambil atau diseleksi dari suatu

Lebih terperinci

DESKRIPSI DATA. sekumpulan data yang sudah dikumpulkan. Ukuran pemusatan dibagi menjadi dua yaitu:

DESKRIPSI DATA. sekumpulan data yang sudah dikumpulkan. Ukuran pemusatan dibagi menjadi dua yaitu: DESKRIPSI DATA A. Ukuran Pemusatan Ukuran pemusatan ini digunakan untuk memudahkan peneliti dalam membuat deskripsi sekumpulan data yang sudah dikumpulkan. Ukuran pemusatan dibagi menjadi dua yaitu: rata-rata

Lebih terperinci

SILABUS KEGIATAN PEMBELAJARAN. Membaca sajian data dalam bentuk diagram garis, dan diagram batang.

SILABUS KEGIATAN PEMBELAJARAN. Membaca sajian data dalam bentuk diagram garis, dan diagram batang. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas/Program : XI / IPS Semester : 1 SILABUS STANDAR KOMPETENSI: 1. Menggunakan aturan statistika, kaidah pencacahan, dan sifat-sifat peluang dalam pemecahan

Lebih terperinci

LABORATORIUM MANAJEMEN DASAR MODUL STATISTIKA 2. Nama : NPM/Kelas : Fakultas/Jurusan :

LABORATORIUM MANAJEMEN DASAR MODUL STATISTIKA 2. Nama : NPM/Kelas : Fakultas/Jurusan : LABORATORIUM MANAJEMEN DASAR MODUL STATISTIKA 2 Nama : NPM/Kelas : Fakultas/Jurusan : FAKULTAS EKONOMI UNIVERSITAS GUNADARMA KELAPA DUA ATA 2012/2013 KATA PENGANTAR Puji syukur kami panjatkan kepada Tuhan

Lebih terperinci