TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS. Fitri Yulianti, SP. MSi.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS. Fitri Yulianti, SP. MSi."

Transkripsi

1 TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS Fitri Yulianti, SP. MSi.

2 UKURAN PENYIMPANGAN Pengukuran penyimpangan adalah suatu ukuran yang menunjukkan tinggi rendahnya perbedaan data yang diperoleh dari rata-ratanya. Ukuran penyimpangan digunakan untuk mengetahui luas penyimpangan data atau homogenitas data. Dua variabel data yang memiliki mean sama belum tentu memiliki kualitas yang sama, tergantung dari besar atau kecil ukuran penyebaran datanya. Ada bebarapa macam ukuran penyebaran data, namun yang umum digunakan adalah standar deviasi.

3 UKURAN PENYIMPANGAN Macam-macam ukuran penyimpangan data adalah : 1. Jangkauan (range) 2. Simpangan rata-rata (mean deviation) 3. Simpangan baku (standard deviation) 4. Varians (variance) 5. Koefisien variasi (Coefficient of variation)

4 1. Jangkauan (Range) Range adalah salah satu ukuran statistik yang menunjukan jarak penyebaran data antara nilai terendah (Xmin) dengan nilai tertinggi (Xmax). R = Xmax Xmin Range = nilai maksimum nilai minimum

5 Contoh Jangkauan (Range) Berikut ini nilai ujian semester dari 3 mahasiswa A = B = C = Dari data diatas dapat diketahui bahwa A = memiliki Xmax=80, Xmin= 40, R = 40, meanya 60 B = memiliki Xmax=70, Xmin= 50, R = 20, meanya 60 C = memiliki Xmax=60, Xmin= 60, R = 0, meanya 60 Dari contoh di atas dapat disimpulkan bahwa : a. Semakin kecil rangenya maka semakin homogen distribusinya b. Semakin besar rangenya maka semakin heterogen distribusinya c. Semakin kecil rangenya, maka meannya merupakan wakil yang representatif d. Semakin besar rangenya maka meannya semakin kurang representatif

6 2. Simpangan rata-rata (mean deviation) Simpangan rata-rata merupakan penyimpangan nilai-nilai individu dari nilai rata-ratanya. Rata-rata bisa berupa mean atau median. Untuk data mentah simpangan rata-rata dari median cukup kecil sehingga simpangan ini dianggap paling sesuai untuk data mentah. Namun pada umumnya, simpangan rata-rata yang dihitung dari mean yang sering digunakan untuk nilai simpangan rata-rata.

7 2. Simpangan rata-rata (mean deviation) Data tunggal dengan seluruh skornya berfrekuensi satu

8 2. Simpangan rata-rata (mean deviation) Data kelompok ( dalam distribusi frekuensi)

9 Contoh Simpangan rata-rata (mean deviation)

10 3. Simpangan baku (standard deviation) Standar deviasi merupakan ukuran penyebaran yang paling banyak digunakan. Semua gugus data dipertimbangkan sehingga lebih stabil dibandingkan dengan ukuran lainnya. Namun, apabila dalam gugus data tersebut terdapat nilai ekstrem, standar deviasi menjadi tidak sensitif lagi, sama halnya seperti mean. Standar Deviasi memiliki beberapa karakteristik khusus lainnya : 1. Standar Deviasi tidak berubah apabila setiap unsur pada gugus datanya di tambahkan atau dikurangkan dengan nilai konstan tertentu. 2. Standar Deviasi berubah apabila setiap unsur pada gugus datanya dikali/dibagi dengan nilai konstan tertentu. Bila dikalikan dengan nilai konstan, standar deviasi yang dihasilkan akan setara dengan hasilkali dari nilai standar deviasi aktual dengan konstan.

11 3. Simpangan baku (standard deviation) Rumus Simpangan Baku untuk Data Tunggal untuk data sample menggunakan rumus untuk data populasi menggunkan rumus

12 Contoh Simpangan baku (standard deviation) Selama 10 kali ulangan semester ini sobat mendapat nilai 91, 79, 86, 80, 75, 100, 87, 93, 90,dan 88. Berapa simpangan baku dari nilai ulangan sobat? Jawab Soal di atas menanyakan simpangan baku dari data populasi jadi menggunakan rumus simpangan baku untuk populasi. rata-rata = ( )/10 = 869/10 = 85,9

13 3. Simpangan baku (standard deviation) Rumus Simpangan Baku untuk Data Kelompok untuk data sample menggunakan rumus untuk data populasi menggunkan rumus

14 Contoh Simpangan baku (standard deviation) Diketahui data tinggi badan 50 siswa samapta kelas c adalah sebagai berikut hitunglah berapa simpangan bakunya

15 Contoh Simpangan baku (standard deviation)

16 Contoh Simpangan baku (standard deviation)

17 4. Varians (variance) Varians adalah salah satu ukuran dispersi atau ukuran variasi. Varians dapat menggambarkan bagaimana berpencarnya suatu data kuantitatif. Varians diberi simbol σ 2 (baca: sigma kuadrat) untuk populasi dan untuk s 2 sampel. Selanjutnya kita akan menggunakan simbol s 2 untuk varians karena umumnya kita hampir selalu berkutat dengan sampel dan jarang sekali berkecimpung dengan populasi.

18 4. Varians (variance) Rumus varian atau ragam data tunggal untuk populasi Rumus varian atau ragam data tunggal untuk sampel

19 4. Varians (variance) Rumus varian atau ragam data kelompok untuk sampel Rumus varian atau ragam data kelompok untuk populasi

20 Keterangan: σ 2 = varians atau ragam untuk populasi S 2 = varians atau ragam untuk sampel f i = Frekuensi x i = Titik tengah x = Rata-rata (mean) sampel dan μ = rata-rata populasi n = Jumlah data

21 Contoh Varians (variance)

22 Contoh Varians (variance)

23 5. Koefisien variasi (Coefficient of variation) Koefisien variasi merupakan suatu ukuran variansi yang dapat digunakan untuk membandingkan suatu distribusi data yang mempunyai satuan yang berbeda. Kalau kita membandingkan berbagai variansi atau dua variabel yang mempunyai satuan yang berbeda maka tidak dapat dilakukan dengan menghitung ukuran penyebaran yang sifatnya absolut. Koefisien variasi adalah suatu perbandingan antara simpangan baku dengan nilai rata-rata dan dinyatakan dengan persentase. Besarnya koefisien variasi akan berpengaruh terhadap kualitas sebaran data. Jadi jika koefisien variasi semakin kecil maka datanya semakin homogen dan jika koefisien korelasi semakin besar maka datanya semakin heterogen.

24 Contoh Koefisien variasi (Coefficient of variation)

25 Skewness and Kurtosis Sebelum data diolah dan dianalisis maka harus dipenuhi persyaratan analisis terlebih dahulu. Dengan asumsi bahwa : a. Data yang dihubungkan berdistribusi normal. b. Data yang dibandingkan bersifat homogen.

26 Skewness Kecondongan suatu kurva dapat dilihat dari perbedaan letak mean, median dan modusnya. Jika ketiga ukuran pemusatan data tersebut berada pada titik yang sama, maka dikatakan simetris atau data berdistribusi normal. Sedangkan jika tidak berarti data tidak simetris atau tidak berdistribusi normal.

27 Skewness Ukuran kecondongan data terbagi atas tiga bagian, yaitu : Kecondongan data ke arah kiri (ekornya condong kiri/negatif) di mana nilai modus lebih dari nilai mean (modus > mean). Kecondongan data simetris (distribusi normal) di mana nilai mean dan modus adalah sama (mean = modus). Kecondongan data ke arah kanan (ekornya condong kanan/positif) di mana nilai mean lebih dari nilai modus (mean > modus).

28 Skewness Pada distribusi data yang simetris, mean, median dan modus bernilai sama.

29 Skewness

30 Skewness Nilainya dapat diukur menggunakan : Koefisien kecondongan Pearson dan Koefisien kecondongan Momen Untuk contoh kali ini digunakan Koefisien kecondongan Pearson

31 Skewness Koefisien Kemencengan Pearson merupakan nilai selisih rata-rata dengan modus dibagi simpangan baku. Koefisien Kemencengan Pearson dirumuskan sebagai berikut: Sk μ Mo σ atau Sk 3(μ Md) σ Dimana : Sk : koefisien kecondongan µ : nilai rata-rata hitung Mo : nilai modus Md : nilai median σ : standar deviasi *) Untuk data dikelompokan rumus tetap sama dan di kalikan dengan (fi) Sk = [µ - Mo ].fi / atau = 3.[µ - Md].fi /

32 Skewness Jika nilai Sk dihubungkan dengan keadaan kurva maka : Sk = 0 kurva memiliki bentuk simetris; Sk > 0 nilai-nilai mean terletak di sebelah kanan Mo, kurva memiliki ekor memanjang ke kanan, kurva menceng ke kanan/positif; Sk < 0 nilai-nilai mean terletak di sebelah kiri Mo, kurva memiliki ekor memanjang ke kiri, kurva menceng ke kiri/negatif.

33 Contoh Skewness

34 Skewness Menghitung skewness dengan excel Cara penulisan rumus skewness di excel : Skew (number1, number2,...) Dimana : Number1, number2... berupa argumen yang ingin dihitung skewnessnya. Juga dapat menggunakan array tunggal atau referensi ke array, bukan argumen yang dipisahkan oleh koma.

35 Skewness Sebagai contoh, buat tabel seperti di bawah ini : 1. Ketik Data Post pada sell A2 hingga A11 2. Untuk menghitung nilai skewness, di sel C2 ketik formula =SKEW(A2:A11)

36 Skewness Terlihat nilai skewnessnya lebih kecil dari 1, berarti jika grafik kurva distribusinya dibuat akan tampak seperti pada gambar Negative Skew.

37 Skewness Ukuran kemiringan yang lain adalah koefisien β 1 (baca 'beta-satu'): Dimana Interpretasi Distribusi dikatakan simetris apabila nilai b 1 = 0. Skewness positif atau negatif tergantung pada nilai b 1 apakah bernilai positif atau negatif.

38 Skewness Ukuran Skewness yang sering digunakan: Skewness Populasi: Skewness Sampel: atau formula berikut (MS Excel): NB: kedua formula di atas menghasilkan nilai skewness yang sama Interpretasi: Distribusi dikatakan simetris apabila nilai g 1 = 0. Skewness positif atau negatif tergantung pada nilai g 1 apakah bernilai positif atau negatif.

39 Skewness Menurut Bulmer, M. G., Principles of Statistics (Dover, 1979): highly skewed: jika skewness kurang dari 1 atau lebih dari +1 moderately skewed: jika skewness antara 1 dan ½ atau antara +½ dan +1. approximately symmetric: jika skewness is berada di antara ½ dan +½.

40 Kurtosis Kurtosis atau keruncingan adalah tingkat kepuncakan dari sebuah distribusi yang biasanya diambil secara relatif terhadap suatu distribusi normal. Berdasarkan keruncingannya, kurva distribusi dapat dibedakan atas tiga macam, yaitu : 1) Leptokurtik, merupakan distribusi yang memiliki puncak relatif tinggi (nilai keruncingan > 3) 2) Platikurtik, merupakan distribusi yang memiliki puncak hampir mendatar (nilai keruncingan <3) 3) Mesokurtik, merupakan distribusi yang memiliki puncak sedang dan tidak mendatar (Normal (nilai keruncingan = 3)

41 Kurtosis Untuk mengetahui keruncingan suatu distribusi, ukuran yang sering digunakan adalah koefisien kurtosis persentil. Koefisien keruncingan atau koefisien kurtosis dilambangkan dengan α4 (alpha 4).

42 Kurtosis Menghitung Kurtosis dengan excel Cara penulisan rumus kurtosis di excel : Kurt (number1, number2,...) Dimana : Number1, number2... berupa argumen yang ingin dihitung kurtosisnya. Juga dapat menggunakan array tunggal atau referensi ke array, bukan argumen yang dipisahkan oleh koma.

43 Kurtosis Sebagai contoh, buat tabel seperti di bawah ini : 1. Ketik Data Pre pada sell A2 hingga A11 2. Untuk menghitung nilai kurtosis, di sel C2 ketik formula =Kurt(A2:A11) Hasil krtosis =

44 Kurtosis Kurtosis dihitung dengan menggunakan koefisien Pearson, β 2 (baca 'beta - dua'). dimana:

45 Kurtosis Ukuran Kurtosis yang sering digunakan: Kurtosis Populasi: Kurtosis: Excess Kurtosis: Kurtosis Sampel: atau formula berikut (MS Excel): s = standar deviasi NB: Excel menggunakan nilai Excess Kurtosis. Hasil perhitungan dari kedua formula di atas, menghasilkan nilai yang sama

46 Kurtosis Interpretasi: Distribusi dikatakan: Mesokurtik (Normal) jika b 2 = 3 Leptokurtik jika b 2 > 3 platikurtik jika b 2 < 3

Dr. I Gusti Bagus Rai Utama, SE., M.MA., MA.

Dr. I Gusti Bagus Rai Utama, SE., M.MA., MA. Dr. I Gusti Bagus Rai Utama, SE., M.MA., MA. Populasi : totalitas dari semua objek/ individu yg memiliki karakteristik tertentu, jelas dan lengkap yang akan diteliti Sampel : bagian dari populasi yang

Lebih terperinci

DISPERSI DATA. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation)

DISPERSI DATA. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation) DISPERSI DISPERSI DATA Ukuran penyebaran suatu kelompok data terhadap pusat data. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation)

Lebih terperinci

Statistik Deskriptif: Central Tendency & Variation

Statistik Deskriptif: Central Tendency & Variation Statistik Deskriptif: Central Tendency & Variation Widya Rahmawati Central Tendency (Ukuran Pemusatan) dan Variation (Ukuran Simpangan) 1) Ukuran pemusatan atau ukuran lokasi adalah beberapa ukuran yang

Lebih terperinci

PENS. Probability and Random Process. Topik 2. Statistik Deskriptif. Prima Kristalina Maret 2016

PENS. Probability and Random Process. Topik 2. Statistik Deskriptif. Prima Kristalina Maret 2016 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 2. Statistik Deskriptif Prima Kristalina Maret 2016 1 Outline [2][1] 1. Penyajian Data o Tabel

Lebih terperinci

Statistika & Probabilitas

Statistika & Probabilitas Statistika & Probabilitas Dispersi Data Dispersi Data Dispersi adalah ukuran penyebaran suatu kelompok data terhadap pusat data. Beberapa jenis ukuran dispersi data : Jangkauan (range) Simpangan rata-rata

Lebih terperinci

By : Hanung N. Prasetyo

By : Hanung N. Prasetyo theory STATISTIKA DESKRIPTIF By : Hanung N. Prasetyo UKURAN PEMUSATAN Nilai tunggal yang mewakili semua data atau kumpulan pengamatan dimana nilai tersebut menunjukkan pusat data. Yang termasuk ukuran

Lebih terperinci

STATISTIK. Materi Pertemuan V Ukuran Dispersi (Penyebaran)

STATISTIK. Materi Pertemuan V Ukuran Dispersi (Penyebaran) STATISTIK Materi Pertemuan V Ukuran Dispersi (Penyebaran) Ukuran Dispersi (Penyebaran) Ukuran dispersi merupakan suatu metode analisis data yang ditunjukan dengan penyimpangan/penyebaran dari distribusi

Lebih terperinci

Ukuran Penyebaran Suatu ukuran baik parameter atau statistik untuk mengetahui seberapa besar penyimpangan data dengan nilai rata-rata hitungnya.

Ukuran Penyebaran Suatu ukuran baik parameter atau statistik untuk mengetahui seberapa besar penyimpangan data dengan nilai rata-rata hitungnya. UKURAN PENYEBARAN 1 Bab 4 PENGANTAR Ukuran Penyebaran Suatu ukuran baik parameter atau statistik untuk mengetahui seberapa besar penyimpangan data dengan nilai rata-rata hitungnya. Ukuran penyebaran membantu

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Topik manajemen risiko menjadi mengemuka setelah terjadi banyak kejadian tidak terantisipasi yang menyebabkan kerugian perusahaan. Depresi tajam dan cepat terhadap

Lebih terperinci

BAB IV DISPERSI DATA

BAB IV DISPERSI DATA BAB IV DIPERI DATA Dispersi adalah ukuran penyebaran suatu kelompok data terhadap pusat data. Ukuran dispersi yang sering digunakan dalam penelitian ialah jangkauan (range), simpangan rata-rata (mean deviation),

Lebih terperinci

UKURAN PENYEBARAN DATA

UKURAN PENYEBARAN DATA Pertemuan keempat UKURAN PENYEBARAN DATA Ukuran penyebaran data digunakan untuk melengkapi deskripsi dari sifat-sifat sekelompok data, terutama dalam membandingkan sifat-sifat yang dimiliki oleh masing-masing

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 LATAR BELAKANG BAB I PENDAHULUAN 1.1 LATAR BELAKANG Risiko adalah kerugian karena kejadian yang tidak diharapkan terjadi. Misalnya, kejadian sakit mengakibatkan kerugian sebesar biaya berobat dan upah yang hilang karena

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Risiko, Manajemen Risiko, dan Manajemen Risiko Finansial

BAB 2 LANDASAN TEORI. 2.1 Risiko, Manajemen Risiko, dan Manajemen Risiko Finansial BAB 2 LANDASAN TEORI 2.1 Risiko, Manajemen Risiko, dan Manajemen Risiko Finansial Risiko adalah kerugian akibat kejadian yang tidak dikehendaki muncul. Risiko diidentifikasikan berdasarkan faktor penyebabnya,

Lebih terperinci

Statistik Deskriptif dengan Microsoft Office Excel

Statistik Deskriptif dengan Microsoft Office Excel Statistik Deskriptif dengan Microsoft Office Excel Junaidi, Junaidi I. Prosedur Statistik Deskriptif pada Excel Statistik deskriptif adalah statistik yang bertujuan untuk mendeskripsikan atau menggambarkan

Lebih terperinci

CIRI-CIRI DISTRIBUSI NORMAL

CIRI-CIRI DISTRIBUSI NORMAL DISTRIBUSI NORMAL CIRI-CIRI DISTRIBUSI NORMAL Berbentuk lonceng simetris terhadap x = μ distribusi normal atau kurva normal disebut juga dengan nama distribusi Gauss, karena persamaan matematisnya ditemukan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Data Data adalah bentuk jamak dari datum, yang dapat diartikan sebagai informasi yang diterima yang bentuknya dapat berupa angka, kata-kata, atau dalam bentuk lisan dan tulisan

Lebih terperinci

Statistik Deskriptif Ukuran Dispersi

Statistik Deskriptif Ukuran Dispersi MAKALAH STATISTIKA DASAR Statistik Deskriptif Ukuran Dispersi Oleh: Kelompok 1 Dwireta Ramadanti Aliv Vito Palox Arif Rahman Hakim Asrar Halim Desi Anggraini Eki Maruci Hary Sentosa Monalisa Muhammad Irvand

Lebih terperinci

UKURAN NILAI SENTRAL&UKURAN PENYEBARAN. Tita Talitha, MT

UKURAN NILAI SENTRAL&UKURAN PENYEBARAN. Tita Talitha, MT UKURAN NILAI SENTRAL&UKURAN PENYEBARAN Tita Talitha, MT DISTRIBUSI FREKWENSI PENGERTIAN distribusi frekwensi adalah suatu tabel dimana banyaknya kejadian / frekwensi didistribusikan ke dalam kelas-kelas

Lebih terperinci

MATERI STATISTIK. Genrawan Hoendarto

MATERI STATISTIK. Genrawan Hoendarto MATERI STATISTIK Distribusi Frekwensi Perhitungan Tendensi Pusat Penyimpangan atau Dispersi Teori Probabilitas Teori Distribusi Distribusi Sampling / Pengambilan Contoh Pengujian Hipotesis Regresi dan

Lebih terperinci

UKURAN PENYEBARAN DATA

UKURAN PENYEBARAN DATA UKURAN PENYEBARAN DATA STKIP SILIWANGI BANDUNG Sumber : 1.Sudjana. Budino dan Koster 3. Berbagai sumber LUVY S. ZANTHY 1 Ukuran Penyebaran Data (Ukuran Dispersi) Ukuran penyebaran data atau ukuran dispersi

Lebih terperinci

Distribution. Contoh Kasus. Widya Rahmawati

Distribution. Contoh Kasus. Widya Rahmawati Distribution Widya Rahmawati Contoh Kasus Mahasiswa A sudah mendapatkan data hasil penelitian Mahasiswa A sedang mempertimbangkan angka statistik mana yang sebaiknya ditampilkan (mean atau median) analisis

Lebih terperinci

Statistika Materi 5. Ukuran Penyebaran. (Lanjutan) Hugo Aprilianto, M.Kom

Statistika Materi 5. Ukuran Penyebaran. (Lanjutan) Hugo Aprilianto, M.Kom Statistika Materi 5 Ukuran Penyebaran (Lanjutan) Hugo Aprilianto, M.Kom UKURAN PENYEBARAN RELATIF yaitu mengubah ukuran penyebaran dari berbagai satuan menjadi ukuran relatif atau persen. Penggunaan ukuran

Lebih terperinci

HARISON,S.Pd,M.Kom JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI PADANG

HARISON,S.Pd,M.Kom JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI PADANG HARISON,S.Pd,M.Kom JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI PADANG HOMOGEN DAN HETEROGEN DATA I. 50,50,50,50,50 II. 30,40,50,60,70 III.0,30,50,70,80 Ketiga kelompok data

Lebih terperinci

Metode Penelitian Kuantitatif Aswad Analisis Deskriptif

Metode Penelitian Kuantitatif Aswad Analisis Deskriptif Analisis Deskriptif Tanpa mengurangi keterumuman, pembahasan analisis deskriptif kali ini difokuskan kepada pembahasan tentang Ukuran Pemusatan Data, dan Ukuran Penyebaran Data Terlebih dahulu penting

Lebih terperinci

UNIVERSITAS NEGERI MALANG FAKULTAS ILMU KEOLAHRAGAAN JURUSAN ILMU KESEHATAN MASYARAKAT

UNIVERSITAS NEGERI MALANG FAKULTAS ILMU KEOLAHRAGAAN JURUSAN ILMU KESEHATAN MASYARAKAT UKURAN PEMUSATAN MAKALAH UNTUK MEMENUHI TUGAS MATAKULIAH Dasar-dasar Biostatistik Deskriptif Yang dibina oleh Bapak Dr. Saichudin, M.Kes Ibu dr. Anindya, S.Ked Oleh : Derada Imanadani 130612607847/2013

Lebih terperinci

OUTLINE BAGIAN I Statistik Deskriptif

OUTLINE BAGIAN I Statistik Deskriptif UKURAN PENYEBARAN 1 OUTLINE BAGIAN I Statistik Deskriptif Pengertian Statistika Penyajian Data Ukuran Pemusatan Ukuran Penyebaran Angka Indeks Deret Berkala dan Peramalan Range, Deviasi Rata-rata, Varians

Lebih terperinci

FAKULTAS KEGURUAN DAN ILMU PENDIDIKIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

FAKULTAS KEGURUAN DAN ILMU PENDIDIKIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON S T A T I S T I K A Oleh : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS KEGURUAN DAN ILMU PENDIDIKIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010 Wijaya : Statistika 0 I. PENDAHULUAN Statistika adalah

Lebih terperinci

ANALISIS DAN PEMBAHASAN

ANALISIS DAN PEMBAHASAN BAB IV ANALISIS DAN PEMBAHASAN Bab ini akan membahas hasil pengolahan data penelitian dalam bentuk deskripsi data, dan pengujian hipotesis yang diolah dengan bantuan perangkat lunak komputer, yaitu program

Lebih terperinci

BAB 3: NILAI RINGKASAN DATA

BAB 3: NILAI RINGKASAN DATA BAB 3: NILAI RINGKASAN DATA Penyajian data dalam bentuk tabel dan grafik memberikan kemudahan bagi kita untuk menggambarkan data dan membuat kesimpulan terhadap sifat data. Namun tabel dan grafik belum

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN.1. Karakteristik Data Pengamatan karakteristik tegakan hutan seumur puspa dilakukan pada dua plot di Hutan Pendidikan Gunung Walat dengan luas masing-masing plot berukuran 1

Lebih terperinci

Pertemuan 8 UKURAN PENYEBARAN. A. Ukuran Penyebaran untuk Data yang tidak Dikelompokkan. Terdapat empat ukuran penyebaran absolut yang utama, yaitu:

Pertemuan 8 UKURAN PENYEBARAN. A. Ukuran Penyebaran untuk Data yang tidak Dikelompokkan. Terdapat empat ukuran penyebaran absolut yang utama, yaitu: Pertemuan 8 UKURA PEYEBARA 1. Pengertian Penyebaran (Dispersi) Penyebaran adalah perserakan data individual terhadap nilai rata-rata. Data homogen memiliki penyebaran (dispersi) yang kecil, sedangkan data

Lebih terperinci

statistika untuk penelitian

statistika untuk penelitian statistika untuk penelitian Kelompok Ilmiah Remaja (KIR) Delayota Experiment Team (D Expert) 2013 Freeaninationwallpaper.blogspot.com Apa itu Statistika? Statistika adalah ilmu yang mempelajari cara pengumpulan,

Lebih terperinci

UKURAN TENGAH DAN UKURAN DISPERSI

UKURAN TENGAH DAN UKURAN DISPERSI UKURAN TENGAH DAN UKURAN DISPERSI UKURAN TENGAH Ukuran tengah nilai tunggal yang representatif untuk keseluruhan nilai data. Ukuran tendensi sentral nilainya cenderung terletak di urutan paling tengah

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Topik manajemen risiko menjadi mengemuka setelah terjadi banyak kejadian yang menyebabkan kerugian pada perusahaan. Depresi tajam dan cepat terhadap rupiah (krisis

Lebih terperinci

Pengantar Statistik. Nanang Erma Gunawan

Pengantar Statistik. Nanang Erma Gunawan Pengantar Statistik Nanang Erma Gunawan nanang_eg@uny.ac.id Sekilas tentang sejarah Statistik Statistik: pada awal zaman Masehi, bangsa-bangsa mengumpulkan data untuk mendapatkan informasi mengenai pajak,

Lebih terperinci

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada.

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Azimmatul Ihwah Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Ada cara yg lebih baik untuk menginterpretasi data yg

Lebih terperinci

BAB IV HASIL PENELITIAN

BAB IV HASIL PENELITIAN BAB IV HASIL PENELITIAN Empat bagian penting yaitu bagian deskripsi data, pengujian persyaratan analisis, pengujian hipotesis penelitian, dan bagian keterbatasan penelitian akan disajikan di sini, dan

Lebih terperinci

Kuliah 4. Ukuran Penyebaran Data

Kuliah 4. Ukuran Penyebaran Data Kuliah 4. Ukuran Penyebaran Data Mata Kuliah Statistika Dr. Ir. Rita Rostika MP. 21 Maret 2012 Prodi Perikanan Fakultas Perikanan dan Ilmu Kelautan Universitas Padjadjaran Content Rentang Data Rentang

Lebih terperinci

BAB III SIMULASI PENGGUNAAN PERTIDAKSAMAAN PADA DISTRIBUSI

BAB III SIMULASI PENGGUNAAN PERTIDAKSAMAAN PADA DISTRIBUSI BAB III SIMULASI PENGGUNAAN PERTIDAKSAMAAN PADA DISTRIBUSI 3.1 Pendahuluan Pada bab sebelumnya telah dibahas mengenai pertidaksamaan Chernoff dengan terlebih dahulu diberi pemaparan mengenai dua pertidaksamaan

Lebih terperinci

PENGANTAR STATISTIK JR113. Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI Pertemuan 6

PENGANTAR STATISTIK JR113. Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI Pertemuan 6 PENGANTAR STATISTIK JR113 Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI 2008 Pertemuan 6 MODUS Modus (Mo) adalah sebuah ukuran untuk menyatakan fenomena yang paling banyak terjadi atau

Lebih terperinci

PERTEMUAN 2 STATISTIKA DASAR MAT 130

PERTEMUAN 2 STATISTIKA DASAR MAT 130 PERTEMUAN 2 STATISTIKA DASAR MAT 130 Data 1. Besaran Statistika berbicara tentang data dalam bentuk besaran (dimensi) Besaran adalah sesuatu yang dapat dipaparkan secara jelas dan pada prinsipnya dapat

Lebih terperinci

BESARAN STATISTIK (UKURAN TENGAH DAN UKURAN

BESARAN STATISTIK (UKURAN TENGAH DAN UKURAN BESARAN STATISTIK (UKURAN TENGAH DAN UKURAN DISPERSI) UKURAN TENGAH Ukuran tengah nilai tunggal yang representatif untuk keseluruhan nilai data. Ukuran tendensi sentral nilainya cenderung terletak di urutan

Lebih terperinci

PENGUKURAN DESKRIPTIF

PENGUKURAN DESKRIPTIF PENGUKURAN DESKRIPTIF STATISTIK INDUSTRI I Jurusan Teknik Industri Universitas Brawijaya Malang 1 PENGUKURAN DESKRIPTIF Suatu pengukuran yang bertujuan untuk memberikan gambaran tentang data yang diperoleh

Lebih terperinci

Pengukuran Kesehatan

Pengukuran Kesehatan 1 Pengukuran Kesehatan Ukuran Sentral: Mean atau Arithmetic Mean Median Modus Ukuran Variasi: Range Mean Deviasi Standar deviasi, Standar Error, 95%CI Coefisien Variasi Ukuran Posisi: Median Kuartil Desil

Lebih terperinci

1.0 Distribusi Frekuensi dan Tabel Silang

1.0 Distribusi Frekuensi dan Tabel Silang ANALISIS DESKRIPTIF 1.0 Distribusi Frekuensi dan Tabel Silang 1.1 Pengantar Statistik deskriptif Statistika deskriptif adalah bidang statistika yang mempelajari tatacara penyusunan dan penyajian data yang

Lebih terperinci

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada.

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Azimmatul Ihwah Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Ada cara yg lebih baik untuk menginterpretasi data yg

Lebih terperinci

II. TINJAUAN PUSTAKA WRPLOT View (Wind Rose Plots for Meteorological Data) WRPLOT View adalah program yang memiliki kemampuan untuk

II. TINJAUAN PUSTAKA WRPLOT View (Wind Rose Plots for Meteorological Data) WRPLOT View adalah program yang memiliki kemampuan untuk II. TINJAUAN PUSTAKA 2.1. WRPLOT View (Wind Rose Plots for Meteorological Data) WRPLOT View adalah program yang memiliki kemampuan untuk mempresentasikan data kecepatan angin dalam bentuk mawar angin sebagai

Lebih terperinci

MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA

MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA AMIYELLA ENDISTA SKG.MKM Email : amiyella.endista@yahoo.com Website : www.berandakami.wordpress.com Perhitungan Nilai Gejala Pusat Mean Median Modus Range

Lebih terperinci

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB I PENDAHULUAN. Universitas Sumatera Utara 1 BAB I PENDAHULUAN 1.1. Belakang Topik manajemen risiko menjadi mengemuka setelah terjadi banyak kejadian yang menyebabkan kerugian pada perusahaan. Depresi tajam dan cepat terhadap rupiah (krisis moneter),

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Jenis penelitian yang digunakan adalah penelitian deskriptif dengan

BAB III METODOLOGI PENELITIAN. Jenis penelitian yang digunakan adalah penelitian deskriptif dengan 53 BAB III METODOLOGI PENELITIAN A. Metode dan Desain penelitian Jenis penelitian yang digunakan adalah penelitian deskriptif dengan pendekatan kuantitatif komparatif. Alasan menggunakan pendekatan komparatif

Lebih terperinci

Distribusi Normal, Skewness dan Qurtosis

Distribusi Normal, Skewness dan Qurtosis Distribusi Normal, Skewness dan Qurtosis Departemen Biostatistika FKM UI 1 2 SAP Statistika 1, minggu ke-4 4 Membekali mahasiswa agar lebih paham dan menguasai teori terkait: menghitung ukuran penyimpangan

Lebih terperinci

Oleh Azimmatul Ihwah

Oleh Azimmatul Ihwah Oleh Azimmatul Ihwah Kasus: Di 5 perusahaan sejenis di kota Malang, yaitu perusahaan A, B, C, D dan E, seorang manufacturer ingin mengetahui perusahaan mana dengan kinerja karyawan terbaik. Diambil 50

Lebih terperinci

UNIVERSITAS MUHAMMADIYAH PAREPARE Parepare, 2009

UNIVERSITAS MUHAMMADIYAH PAREPARE Parepare, 2009 Dengan Materi: STATISTIKA DESKRIPTIF Presented by: Andi Rusdi, S.Pd. UNIVERSITAS MUHAMMADIYAH PAREPARE Parepare, 2009 STATISTIK DESKRIPTIF Metode statistik adalah prosedur-prosedur yang yang digunakan

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Dalam pelaksanaan kegiatan penelitian ini dilakukan pre-test atau tes awal

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Dalam pelaksanaan kegiatan penelitian ini dilakukan pre-test atau tes awal 28 BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 Hasil Penelitian 4.1.1 Deskripsi Hasil Penelitian a. Deskripsi Hasil Penelitian Variabel X 1 (Pre-Test) Dalam pelaksanaan kegiatan penelitian ini dilakukan

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN BAB IV METODE PENELITIAN 4.1. Waktu dan Tempat Penelitian Penelitian dilaksanakan pada bulan Maret hingga April 2011 dengan lokasi penelitian berada di Hutan Pendidikan Gunung Walat, Kabupaten Sukabumi.

Lebih terperinci

Distribusi Frekuensi dan Statistik Deskriptif Lainnya

Distribusi Frekuensi dan Statistik Deskriptif Lainnya BAB 2 Distribusi Frekuensi dan Statistik Deskriptif Lainnya Misalnya seorang penjaga gudang mencatat berapa sak gandum keluar dari gudang selama 15 hari kerja, maka diperoleh distribusi data seperti berikut.

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN Topik Bahasan : Membahas Silabus Perkuliahan Tujuan Umum : Mahasiswa Mengetahui Komponen Yang Perlu Dipersiapkan Dalam Matakuliah Ini satu kali Tujuan 1 Menjelaskan tentang Mengakomodasi berbagai masukan

Lebih terperinci

BAB II TEORI DASAR. Metode statistik telah banyak digunakan dalam kehidupan sehari-hari, oleh

BAB II TEORI DASAR. Metode statistik telah banyak digunakan dalam kehidupan sehari-hari, oleh BAB II TEORI DASAR 2.1 Pendahuluan Metode statistik telah banyak digunakan dalam kehidupan sehari-hari, oleh peneliti, pemerintah, masyarakat umum, pemimpin perusahaan, baik dalam bidang ilmu pengetahuan,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Citra Digital Citra digital adalah citra yang bersifat diskrit yang dapat diolah oleh computer. Citra ini dapat dihasilkan melalui kamera digital dan scanner ataupun citra yang

Lebih terperinci

Tabel 7-1 Rata-rata hitung hasil test mata kuliah statistik deskriptif kelompok A dan B. A B

Tabel 7-1 Rata-rata hitung hasil test mata kuliah statistik deskriptif kelompok A dan B. A B A. Pengukuran Penyebaran (Dispersi) 1. Pengertian Tentang Disperse. Digunakan untuk menunjukkan keadaan berikut : a. Gambaran variabilitas data Yang dimaksud dengan variabilitas data adalah suatu ukuran

Lebih terperinci

BAB 14 UJI DESKRIPTIF, VALIDITAS DAN NORMALITAS DATA

BAB 14 UJI DESKRIPTIF, VALIDITAS DAN NORMALITAS DATA BAB 14 UJI DESKRIPTIF, VALIDITAS DAN NORMALITAS DATA SPSS menyediakan fasilitas untuk melakukan analisis deskriptif data seperti uji deskriptif, validitas dan normalitas data. Uji deskriptif yang dilakukan

Lebih terperinci

dapat digunakan formulasi sebagai berikut : Letak Letak Letak

dapat digunakan formulasi sebagai berikut : Letak Letak Letak 1. Ukuran Letak Agar kita dapat mengetahui lebih jauh mengenai karakteristik data observasi dengan beberapa ukuran sentral, kita sebaiknya mengetahui beberapa ukuran lain, yaitu ukuran letak. Ada tiga

Lebih terperinci

Statistik Dasar. 1. Pendahuluan Persamaan Statistika Dalam Penelitian. 2. Penyusunan Data Dan Penyajian Data

Statistik Dasar. 1. Pendahuluan Persamaan Statistika Dalam Penelitian. 2. Penyusunan Data Dan Penyajian Data Statistik Dasar 1. Pendahuluan Persamaan Statistika Dalam Penelitian 2. Penyusunan Data Dan Penyajian Data 3. Ukuran Tendensi Sentral, Ukuran Penyimpangan 4. Momen Kemiringan 5. Distribusi Normal t Dan

Lebih terperinci

Setelah mempelajari bahan ajar ini diharapkan Anda dapat:

Setelah mempelajari bahan ajar ini diharapkan Anda dapat: D. Pembelajaran 4 1. Silabus N o STANDAR KOMPE TENSI Menerapk an aturan konsep statistika dalam pemecaha n masalah KOMPE TENSI DASAR Mengidenti fikasi pengerti-an statistik, statistika, populasi dan sampel

Lebih terperinci

STATISTIKA DESKRIPTIF. Tendensi Sentral & Ukuran Dispersi

STATISTIKA DESKRIPTIF. Tendensi Sentral & Ukuran Dispersi STATISTIKA DESKRIPTIF Tendensi Sentral & Ukuran Dispersi Statistik dan Statistika Statistik : nilai-nilai ukuran data yang mudah dimengerti. Contoh : statistik liga sepak bola Indonesia Statistika : ilmu

Lebih terperinci

BAB 8 ANALISIS STUDI DESKRIPTIF DAN DATA DASAR. Bab ini menjelaskan secara lebih mendalam jenis studi deskriptif

BAB 8 ANALISIS STUDI DESKRIPTIF DAN DATA DASAR. Bab ini menjelaskan secara lebih mendalam jenis studi deskriptif BAB 8 ANALISIS STUDI DESKRIPTIF DAN DATA DASAR Bab ini menjelaskan secara lebih mendalam jenis studi deskriptif maupun teknik mendekripsikan data secara grafis maupun secara angka. Sebagai ilustrasi aplikasi

Lebih terperinci

5. STATISTIKA PENYELESAIAN. a b c d e Jawab : b

5. STATISTIKA PENYELESAIAN. a b c d e Jawab : b . STATISTIKA A. Membaca Sajian Data dalam Bentuk Diagram. UN 00 IPS PAKET A Diagram lingkaran berikut menunjukan persentase jenis pekerjaan penduduk di kota X. Jumlah penduduk seluruhnya adalah 3.600.000

Lebih terperinci

BAB III METODE PENELITIAN. Pendekatan yang digunakan dalam menyelesaikan masalah penelitian ini

BAB III METODE PENELITIAN. Pendekatan yang digunakan dalam menyelesaikan masalah penelitian ini 50 BAB III METODE PENELITIAN A. Pendekatan dan Metode Penelitian Pendekatan yang digunakan dalam menyelesaikan masalah penelitian ini adalah pendekatan kuantitatif. Pendekatan kuantitatif dipilih penulis

Lebih terperinci

STATISTIKA DESKRIPTIF. Wenny Maulina, S.Si., M.Si

STATISTIKA DESKRIPTIF. Wenny Maulina, S.Si., M.Si STATISTIKA DESKRIPTIF Wenny Maulina, S.Si., M.Si Ukuran Pemusatan Ukuran pemusatan ukuran ringkas yang menggambarkan karakteristik umum data tersebut. Modus (Mode): Nilai pengamatan yang paling sering

Lebih terperinci

STATISTIKA DESKRIPTIF Dosen:

STATISTIKA DESKRIPTIF Dosen: LEMBAR TUGAS MAHASISWA (LTM) Mata Kuliah: STATISTIKA DESKRIPTIF Dosen: Nama NIM Kelas Jurusan Akademi : : : : : AKADEMI - AKADEMI BINA SARANA INFORMATIKA J A K A R T A C.2009 1 BAB I PENDAHULUAN Pertemuan

Lebih terperinci

Ukuran Simpangan/Penyebaran

Ukuran Simpangan/Penyebaran Ukuran Simpangan/Penyebaran Anief Fauzan Rozi, S. Kom., M. Eng. Phone/WA: 0856 4384 6541 PIN BB: 29543EC4 Sertakan idenotas Anda keoka akan add contact Email : anief.umby@gmail.com Blog: anief.mercubuana-

Lebih terperinci

PENGANTAR STATISTIK Pusat Data dan Satistik Pendidikan-Kebudayaan Setjen, Kemdikbud 2014

PENGANTAR STATISTIK Pusat Data dan Satistik Pendidikan-Kebudayaan Setjen, Kemdikbud 2014 PENGANTAR STATISTIK Pusat Data dan Satistik Pendidikan-Kebudayaan Setjen, Kemdikbud 2014 Daftar Isi: 1. Definisi Statistik 2. Unit Analisis & Lingkup Analisis 3. Pengukuran Nilai Sentral 4. Pengukuran

Lebih terperinci

PENGUKURAN VARIANS DAN SIMPANGAN BAKU

PENGUKURAN VARIANS DAN SIMPANGAN BAKU PEGUKURA VARIAS DA SIMPAGA BAKU Varians data yang belum dikelompokkan Pengertian varians mirip dengan deviasi rata-rata. Hanya saja, untuk memperoleh hasil perhitungan dalam bilangan positif tidak lagi

Lebih terperinci

Probabilitas dan Statistika Analisis Data Lanjut. Adam Hendra Brata

Probabilitas dan Statistika Analisis Data Lanjut. Adam Hendra Brata Probabilitas dan Analisis Lanjut Adam Hendra Brata Tunggal Populasi adalah sebagai sekumpulan data yang mengidentifikasi suatu fenomena. Sampel adalah sekumpulan data yang diambil atau diseleksi dari suatu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Probabilitas (Peluang) Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya

Lebih terperinci

KATA PENGANTAR. Kelapa Dua, September Tim Litbang

KATA PENGANTAR. Kelapa Dua, September Tim Litbang KATA PENGANTAR Puji syukur kami panjatkan kepada Tuhan Yang Maha Esa atas limpahan rahmat dan karunia-nya sehingga modul praktikum Statistika 1 materi ukuran statistik ini dapat terselesaikan. Modul praktikum

Lebih terperinci

Makalah Sebagai Salah Satu Tugas dalam Mata Kuliah ANALISIS STATISTIK. Oleh: 1. Trilius Septaliana KR ( ) 2. Aisyah ( )

Makalah Sebagai Salah Satu Tugas dalam Mata Kuliah ANALISIS STATISTIK. Oleh: 1. Trilius Septaliana KR ( ) 2. Aisyah ( ) MOMEN, KEMIRINGAN DAN KERUNCINGAN, DISTRIBUSI NORMAL, DISTRIBUSI T, DISTRIBUSI F, DISTRIBUSI BINOMIAL, DISTRIBUSI POISSON, UJI NORMALITAS DAN HOMOGENITAS, UJI F DAN t, HIPOTESIS, DAN ANOVA Makalah Sebagai

Lebih terperinci

STATISTIKA DESKRIPTIF

STATISTIKA DESKRIPTIF STATISTIKA DESKRIPTIF 1 Statistika deskriptif berkaitan dengan penerapan metode statistika untuk mengumpulkan, mengolah, menyajikan dan menganalisis data kuantitatif secara deskriptif. Statistika inferensia

Lebih terperinci

UKURAN DISPERSI (SEBARAN)DATA

UKURAN DISPERSI (SEBARAN)DATA Malim Muhammad, M.Sc. UKURAN DISPERSI (SEBARAN)DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DISPERSI

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. data mentah dari pelaksanaan Pre-Test atau tes awal dapat dilihat pada lampiran 2

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. data mentah dari pelaksanaan Pre-Test atau tes awal dapat dilihat pada lampiran 2 BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1. Hasil Penelitian 4.1.1 Deskripsi Hasil Penelitian a. Deskripsi Hasil Penelitian Variabel X 1 (Pre-Test) Penelitian ini dilakukan dengan menggunakan metode eksperimen

Lebih terperinci

Contoh: Pada data Tabel satu diperoleh range pada masing masing mata kuliah. adalah: Matakuliah Max min range A B C

Contoh: Pada data Tabel satu diperoleh range pada masing masing mata kuliah. adalah: Matakuliah Max min range A B C POKOK BAHASAN : Ukuran Penyebaran SUB POKOK BAHASAN : a. Range, b. RAK, c. SD, d. Varians, TIK : Mahasiswa dapat : a. Menjelaskan analisa deskriptif dengan ukuran penyebaran b. mampu melakukan analisa

Lebih terperinci

Penyimpulan data numerik & kategorik. Elsa Roselina Dewi Gayatri

Penyimpulan data numerik & kategorik. Elsa Roselina Dewi Gayatri Penyimpulan data numerik & kategorik Elsa Roselina Dewi Gayatri P. data numerik Tendensi sentral (mean, median, modus) Hubungan mean, median, modus Ukuran variasi (range, interkuartil range, mean deviasi,

Lebih terperinci

Probabilitas dan Statistika Analisis Data dan Ukuran Pemusatan. Adam Hendra Brata

Probabilitas dan Statistika Analisis Data dan Ukuran Pemusatan. Adam Hendra Brata Probabilitas dan Analisis dan Adam Hendra Brata Deskriptif Induktif Pembagian Deskriptif Metode guna mengumpulkan, menghitung, dan menyajikan suatu data secara kwantitatif sehingga memberikan informasi

Lebih terperinci

Median Median dari data yang belum dikelompokkan

Median Median dari data yang belum dikelompokkan Median Median merupakan salah satu ukuran pemusatan atau sebuah nilai yang berada ditengah-tengah data, setelah data tersebut diurutkan. Mungkin Anda bertanya, mengapa perlu median setelah Anda mempelajari

Lebih terperinci

LAB MANAJEMEN DASAR MODUL STATISTIKA 1. Nama : NPM : Kelas : Fakultas Ekonomi Universitas Gunadarma Kelapa Dua

LAB MANAJEMEN DASAR MODUL STATISTIKA 1. Nama : NPM : Kelas : Fakultas Ekonomi Universitas Gunadarma Kelapa Dua LAB MANAJEMEN DASAR MODUL STATISTIKA 1 Nama : NPM : Kelas : Fakultas Ekonomi Universitas Gunadarma Kelapa Dua 1 UKURAN STATISTIK Pendahuluan Ukuran statistik merupakan ukuran yang menunjukkan bagaimana

Lebih terperinci

Ukuran Dispersi (Variasi, atau Penyimpangan) untuk Data Tunggal

Ukuran Dispersi (Variasi, atau Penyimpangan) untuk Data Tunggal Ukuran Dispersi (Variasi, atau Penyimpangan) untuk Data Tunggal BAB: UKURAN VARIABILITAS/ DISPERSI A. Pengertian Ukuran Variabilitas: Dlm kehidupan sehari-hari, kita sering menemukan banyaknya informasi

Lebih terperinci

Haryoso Wicaksono, S.Si., M.M., M.Kom. 26

Haryoso Wicaksono, S.Si., M.M., M.Kom. 26 Distribusi probabilita kontinu, yaitu apabila random variabel yang digunakan kontinu. Probabilita dihitung untuk nilai dalam suatu interval tertentu. Probabilita di suatu titik = 0. Probabilita untuk random

Lebih terperinci

Statistik Deskriptif for IT langkah mudoh onolisis doto

Statistik Deskriptif for IT langkah mudoh onolisis doto Sudaryono Asep Saefullah Untung Rahardja Statistik Deskriptif for IT langkah mudoh onolisis doto Dilengkopi: Konsep, Contoh sool, Pembohoson, 8. Evoluosi mondiri DAFTAR lsi KATA PENGANTAR... iii DAFTAR

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. yang diperoleh dalam setiap tahapan penelitian yang telah dilakukan. Penelitian

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. yang diperoleh dalam setiap tahapan penelitian yang telah dilakukan. Penelitian 46 BAB IV HASIL PENELITIAN DAN PEMBAHASAN Pada bab ini akan dipaparkan mengenai hasil penelitian dan pembahasan yang diperoleh dalam setiap tahapan penelitian yang telah dilakukan. Penelitian dilakukan

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Pertemuan ketiga UKURAN PEMUSATAN DATA Karakteristik suatu kumpulan data adalah : (1). Memusat pada nilai tertentu dari suatu distribusi, yang disebut nilai pusat (middle of data set), dan (2). Menyebar/berpencar

Lebih terperinci

II. LANDASAN TEORI. karakteristik dari generalized Weibull distribution dibutuhkan beberapa fungsi

II. LANDASAN TEORI. karakteristik dari generalized Weibull distribution dibutuhkan beberapa fungsi II. LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan penelitian penulis. Dalam menyelesaikan momen, kumulan dan fungsi karakteristik dari generalized Weibull

Lebih terperinci

UKURAN PENYEBARAN DATA

UKURAN PENYEBARAN DATA UKURA PEYEBARA DATA Seventh Meeting Khatib A. Latief Email: kalatief@gmail.com; khatibalatif@yahoo.com Twitter: @khatibalatief Mobile: +68 1168 3019 Ukuran Penyebaran data Ukuran penyebaran data adalah

Lebih terperinci

Pengukuran Deskriptif

Pengukuran Deskriptif Pengukuran Deskriptif 2.2 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Pendahuluan Tendensi Sentral Ukuran Dispersi 3 Pendahuluan Pengukuran Deskriptif 4 Definisi

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam 4 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam menentukan momen, kumulan, dan fungsi karakteristik dari distribusi log-logistik (α,β). 2.1 Distribusi Log-Logistik

Lebih terperinci

STATISTIKA 4 UKURAN LETAK

STATISTIKA 4 UKURAN LETAK TUJUAN STATISTIKA 4 UKURAN LETAK MODUL 4 Melatih berfikir dan bernalar secara logis dan kritis serta mengembangkan aktifitas, kreatifitas dalam memecahkan masalah serta mampu mengkomunikasikan ide dan

Lebih terperinci

BAB IV HASIL PENELITIAN

BAB IV HASIL PENELITIAN 143 BAB IV HASIL PENELITIAN Pada bab ini diuraikan tentang: a) deskripsi data; b) uji prasyarat analisis; dan c) pengujian hipotesis penelitian. A. Deskripsi Data Penyajian statistik deskripsi hasil penelitian

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 Hasil Uji Instrument 4.1.1 Validitas instrument Hasil perhitungan instrument pretest dan posttest yang terdiri dari 30 butir soal dengan 4 alternatif pilihan

Lebih terperinci

Masalah Penyebaran data. Riana Nurhayati

Masalah Penyebaran data. Riana Nurhayati Masalah Penyebaran data Riana Nurhayati Penyebaran Data Penyajian data statistik dalam berbagai bentuk tabel distribusi frekuensi dan grafik, masih belum bisa membuat angka menjadi berbicara. Untuk dapat

Lebih terperinci

0 0 (Ruseffendi, 1994: 53) Keterangan: 0 : Pretes dan postes X : Kelompok yang memperoleh perlakuan

0 0 (Ruseffendi, 1994: 53) Keterangan: 0 : Pretes dan postes X : Kelompok yang memperoleh perlakuan BAB III METODE PENELITIAN A. Disain Penelitian Tujuan dari penelitian ini adalah untuk mengetahui peningkatan kemampuan berpikir kreatif matematis pada siswa yang pembelajarannya melalui model LAPS-Heuristik

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. yang ada di lapangan, maka peneliti mulai menyusun instrumen penelitian yang

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. yang ada di lapangan, maka peneliti mulai menyusun instrumen penelitian yang 4.1 Proses Penelitian BAB IV HASIL PENELITIAN DAN PEMBAHASAN Proses penelitian dalam penyusunan skripsi ini diawali dengan studi pendahuluan yang bertujuan untuk mengetahui gambaran permasalahan dan jumlah

Lebih terperinci