Rata-rata hitung sekumpulan data hasil observasi dapat dihitung dengan menggunakan rumus berikut :

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Rata-rata hitung sekumpulan data hasil observasi dapat dihitung dengan menggunakan rumus berikut :"

Transkripsi

1 UKURAN STATISTIK Pendahuluan aturan statistic merupakan aturan yang menunjukkan bagaimana suatu gugus data memusat dan menyebar. aturan pemusatan yang umum digunakan untuk mendeskripsikan data adalah mean (rata-rata hitung), median, dan modus. Kuartil merupakan aturan untuk mengetahui letak data. aturan penyebaran suatu kelompok data terhadap pusat data disebut dispersi atau variasi atau keragaman data. aturan dispersi data yang umum dipakai adalah jangkauan (range), variansi dan standar deviasi. ATURAN PEMUSATAN Mean(Rata-rata hitung) Rata-rata hitung sekumpulan data hasil observasi dapat dihitung dengan menggunakan rumus berikut : dimana : Xi= nilai dari observasi yang ke-i n = banyaknya observasi ukuran sampel Median Median adalah nilai yang membagi distribusi data yang telah diurutkan (ascending) menjadi 2 bagian yang sama besar. Median adalah suatu nilai yang membatasi 50% frekuensi bagian bawah dengan 50% frekuensi distribusi bagian atas. Letak Median -> Letak Median dalam distribusi data yang telah diurutkan = n+1 2 Jika distribusi memiliki frekuensin genap, maka median dihitung secara kompromi artinya dengan membagi dua nilai nilai yang berada di tengah-tengah distribusi. Contoh : Tinggi Badan 5 mahasiswa (meter): Sorted: n = 5 Letak Median = (5 + 1) / 2 = 6 / 2 = 3 Median = Data ke-3 = 1,75 Median Untuk Data Yang Sudah Dikelompokkan Median= 1 n cfb Me = Bb + ( 2 ) i fd 1

2 Ket: Bb cfb Fd i n : Batas Bawah Nyata interval yang mengandung median : Frekuensim kumulatif di bawah klas interval yang mengandung median : Frekuensi kelas interval yang emngandung median : interval kelas : Banyak frekuensi dalam distribusi (banyak responden) Contoh: Distribusi frekuensi kenaikan tekanan darah sistole pada pasien yang mendapatkan serangan hipertensi di RS Harapan Hidup Tahun 2008 Kelas Frekuensi Frek Kumlatif Batas Bawah Nyata i = 8 Letak Median = n / 2 = 50 / 2 = 25 Median = Data ke-25 terletak (dikandung) dikelas Kelas Median = Bb Kelas Median = 23.5 dan Ba Kelas Median = 31.5 fd= 17 Frek. Kumulatif dibawah Kelas Median = -> s = 25? = 15 Frek. Kumulatif sampai Kelas Median = 27 -> s? = 27? 25 = 2 Median = Me = (

3 Me = ( Me = ( 17 Me= (0.88)8 Me= Me= Median dari 50 pasien yang mengalami kenaikan tekanan darah sistole akibat serangan hipertensi di RS Harapan Hiduppada tahun 2008 adalah mmhg. Kuartil, Desil dan Kuartil. Ketersediaan ukuran atau norma merupakan salah satu syarat yang harus diperhatikan sebagai seorang perancang test yang handal. Norma dimaksud untuk memisahkan bagi mereka yang tergolong baik dan kurang baik dan norma itu tak dapat disediakan hanya atas asumsi atau renungan semata-mata, tetapi harus atas dasar kenyataan (obyektif). Kita bisa menggolongkan distribusi dalam sebuah kelompok menjadi 2 golongangan dengan menggunakan median, juga 4 golongan yakni sangat baik, baik, kurang baik dan tidak baik dengan yang disebut kuartil. Kalau kita ingin menyediakan norma dalam sepuluh golongan maka akan digunakan desil yang membagi kelompok menjadi per %, sedangkan kalau ingin menyediakan norma yang lebih halus lagi dapat menggunakan apa yangdisebut persentil yakni yang membagi kelompok menjadi persen (0 golongan). Kuartil adalah nilai yang membagi distribusi data menjadi empat bagian yang sama besar. Nilai kuartil terdiri dari kuartil 1 (K1), kuartil 2 (K2) dan kuartil 3 (K3). Nilai kuartil 2 suatu distribusi data sama dengan nilai Median data tersebut. Kuartil 1 adalah suatu nilai dalam distribusi yang membatasi 25% frekuensi bagian bawah distribusi dari 75% frekuesnsi bagian atas. Kuartil 2 adalah suatu nilai dalam distribusi yang membatasi 50% frekuensi bagian bawah 50% frekuesnsi bagian atas. Kuartil 3 adalah suatu nilai dalam distribusi yang membatasi 75% frekuensi bagian bawah distribusi dari 25% frekuesnsi bagian atas. Diagram dibawah ini semoga dapat memabantu menjelaskan kedudukan ketiga kuartil seperti yang disebutkan pada definisi di atas. Begitupula dapat mengantarkan pemahaman terhadap konsep Desil dan Persentil. 3

4 25% K3 50% K3 K2 75% K2 75% K1 K1 50% 25% Kuartil Untuk Data Yang Sudah Dikelompokkan Kelas kuartil ke-q : Kelas dimana Kuartil ke-q berada Kelas kuartil didapatkan dengan membandingkan Letak Kuartil ke-q dengan frekuensi kumulatif Median= 1 n cfb Ki = Bb + ( 4 ) i fd Ket: Ki Bb cfb Fd i n : Kuartil yang dicari (kuartil ke ) : Batas Bawah Nyata interval yang mengandung median : Frekuensim kumulatif di bawah klas interval yang mengandung median : Frekuensi kelas interval yang emngandung median : interval kelas : Banyak frekuensi dalam distribusi (banyak responden) Contoh 4: Tentukan kuartil ke-3 Kelas Frekuensi Frek Kumlatif Tepi Batas Kelas

5 Median = K 3 = ( K 3 = ( K 3 = ( K3= (0.35)8 K3= K3= 42.3 Kuartil 3 (75%) dari 50 pasien yang mengalami kenaikan tekanan darah sistole akibat serangan hipertensi di RS Harapan Hiduppada tahun 2008 adalah 42.3 mmhg ke bawah. KETERANGAN : interval = i = 8 Letak kuartil ke-3 = 3n / 4 = 3 X 50 /4 = 37.5 [Frekuensi kumlatif] Kuartil ke-3 = data ke-37.5 terletak di kelas => Kelas kuartil ke-3 = BB Nyata Kelas kuartil ke-3 = 39.5 dan BA Nyata Kelas Kuartil ke-3= 47.5 fd = [ frekuensi kelas kuartil ke-3 ] Frek. Kumulatif sebelum Kelas Kuartil ke-3 = 34 Desil 5

6 Nilai yang membagi distribusi frekuensi data yang telah di urut (ascending) menjadi bagian yang sama besar. Kita memiliki 9 desil dalam tiap distrubsi frekuensi yang disebut D1, D2, D3 hingga D9. Desil 1 (D1) adalah suatu titik nilai yang membatasi % frekuensi yang terbawah dalam distribusi. Desl 2 (D2) suatu titik nilai yang membatasi 20% frekuensi yang terbawah dalam distribusi. Dst 1 n cfb Di = Bb + ( ) i fd Ket: Di Bb cfb Fd i n : Desil yang dicari (Desil ke ) : Batas Bawah Nyata interval yang mengandung median : Frekuensim kumulatif di bawah klas interval yang mengandung median : Frekuensi kelas interval yang emngandung median : interval kelas : Banyak frekuensi dalam distribusi (banyak responden) Letak Desil ke-1 = 1n / Letak Desil ke-5 = 5n / = n / 2 ini samadengan letak Median Letak Desil ke-9 = 9n /, n = banyak data Contoh 5:Tentukan desil ke-9 Kelas Frekuensi Frek Kumlatif Tepi Batas Kelas

7 Median = D 9 = ( D 9 = ( D 9 = ( 3 D9= (0.33)8 D9= D9= Desil 9 (90%) dari 50 pasien yang mengalami kenaikan tekanan darah sistole akibat serangan hipertensi di RS Harapan Hidup pada tahun 2008 adalah mmhg ke bawah. Interval = i = 8 Letak Desil ke-9 =( 9 x 50 )/= 45 Desil ke-9 = Data ke-45 terletak dikelas => Kelas desil ke-9 = TBB Kelas Desil ke-9 = 47.5 dan TBA Kelas Desil ke-9 = 55.5 fd= 3 Frek. Kumulatif sebelum Kelas Desil ke-9 = 44 -> s = 45? 44 = 1 frek. Kumulatif sampai Kelas Desil ke-9 = 47 -> s? = 47? 45 Desil ke-9 = TBB Kelas Desil ke-9 + i (S / f9) = (1 / 3) = ( ) = = persentil Persentil -> Nilai yang membagi gugus data yang telah tersortir (ascending) menjadi 0 bagian yang sama besar Letak Persentil = n / 0 Letak Persentil ke-50 = 50n / 0 = n / 2 Letak Persentil ke-99 = 99 / 7

8 Kelas Persentil ke-p : Kelas dimana Persentil ke-p berada Kelas Persentil ke-p didapatkan dengan membandingkan Letak Persentil ke-p dengan Frekuensi Kumulatif Persentil ke-p = TBB Kelas Persentil ke-p + i(s / fp) p : 1,2,3?99 TBB : Tepi Batas Bawah s : selisih antara Letak Persentil ke-p dengan Frekuensi Kumulatif sebelum kelas Persentil ke-p TBA : Tepi Batas Atas s? : selisih antara Letak Persentil ke-p dengan Frekuensi Kumulatif sampai kelas persentil ke-p i : interval kelas fp: Frekuensi kelas Persentil ke-p Contoh 6:Tentukan persentil ke-56 Kelas Frekuensi Frek Kumlatif Tepi Batas Kelas Interval = i = 8 Letak Persentil ke-56 = (56n / 0) = (56 x 50)/0 = 28 Persentil ke-56 = Data ke -28 terletak dikelas 32? 39 * Kelas Persentil ke-56 = 32? 39 TBB Kelas Persentil ke-56 = 31.5 dan TBA Kelas Persentil ke-56 = 39.5 fp = 7 Frek. Kumlatif sebelum kelas persentil ke-56 = 27 --> s = = 1 Frek. Kumlatif sampai kelas persentil ke-56 = 34 --> s' = = 6 Persentil ke-56 = TBB Kelas persentil ke-56 + i (s / fe) = (1 /7) = ( ) = =

9 Persentil ke-56 = TBB Kelas persentil ke-56 - i (s' / fe) = (6 / 7) = (6 / 7) = = Modus Modus merupakan nilai yang paling sering muncul atau nilai yang frekuensinya paling tinggi. Modus untuk Ungrouped Data Contoh: Sumbangan PMI warga Depok Modus : Rp Catatan: o bisa terjadi data dengan beberapa modus (multi-modus) o bisa terjadi data tanpa modus Modus Untuk Grouped Data Kelas Modus: Kelas dimana Modus berada atau kelas dengan frekuensi tertinggi Tepi Batas Bawah kelas ke-i = Batas Bawah kelas ke-i + Batas Atas kelas ke(i-1) 2 Tepi Batas Atas kelas ke-i = Batas Atas kelas ke-i + Batas Bawah kelas ke (i+1) 2 Modus = TBB Kelas Modus + i(d1 / d1 + d2) Contoh : Kelas Frekuensi(f 1 ) Tepi batas kelas

10 50 Kelas Modus = 24? 31 Frek. kelas modus = 17 TBB Kelas Modus = 23.5 Frek. kelas sebelum kelas modus = i = 8 Frek. kelas sesudah kelas modus = 7 d1 = 17? = 7 d2 = 17? 7 = Modus = (7 / 7 + ) = ( ) = = Ukuran Penyebaran Jangkauan (Range) Jangkauan atau range (r) suatu gugus data adalah selisih antara nilai maksimum dengan nilai minimum. Variasi Variansi adalah rata-rata kuadrat selisih atau kuadrat simpangan dari semua nilai data terhadap rata-rata hitung. Variansi untuk sampel dilambangkan dengan s 2. Sedangkan untuk populasi dilambangkan dengan ð 2. Untuk Populasi Varians Dimana : ð 2 = ragam populasi ð = Simpangan baku populasi Simpangan baku (ð) = ð 2 Untuk Sampel Varians Dimana : s 2 = ragam sampel s = Simpangan baku sampel Simpangan baku (s) = s 2 Koefisien varians = S (0) x Contoh Soal :

11 Dari hasil observasi 20 pegawai di instansi perpajakan diketahui hasil test IQ-nya adalah sebagai berikut : Penyelesaian : Mean atau rata-rata(x) = = Varian(S 2 ) = ( )^2 + ( )^ ( )^2 = Simpangan Baku(S) = = Koefisien Varians (V) = (0) = 15.38% Data Yang Telah Dikelompokkan (Grouped Data) Rumus komputasinya yang digunakan dalam mencari rata-rata hitung, simpangan baku dan varians pada data yang telah dikelompokkan adalah : a. Metode Difisional Untuk Populasi Simpangan baku (ð) = ð 2 Untuk Sampel Dimana : Simpangan baku (s) = s 2 Xi = tanda (titik tengah kelas ke-i) Fi = frekuensi pada kelas ke-i 11

12 N = jumlah data keseluruhan untuk populasi n = jumlah data frekuensi untuk sampel b. Metode Pengkodean Untuk Populasi : Simpangan baku (ð) = ð 2 Untuk Sampel : Simpangan baku (s) = s 2 Koefisien varians = S (0) x Dimana : Xa = titik tengah pada kelas yang berkode nol i = interval Ui = kode titik tengah pada kelas ke-i Fi = frekuensi pada kelas ke-i N = jumlah data keseluruhan untuk populasi n = jumlah data frekuensi untuk sampel Contoh Soal : Sebuah industri pupuk di daerah Bogor mempekerjakan 0 orang karyawan. Dengan perincian usia seperti di bawah ini : PT. PUPUK KUJANG DISTRIBUSI USIA 0 KARYAWAN Usia (dlm tahun) Frekuensi

13 Hitunglah : a. rata-rata dengan 2 metode b. simpangan baku dengan 2 metode c. varians d. koefisien varians Penyelesaian : 5. Metode Difisional Usia (dlm tahun) Fi Xi FiXi (Xi-X)<SUP)2< sup> Fi(Xi-X) Jumlah a. Rata-rata(µ) = 3413 / 0 = b. Varian(ð 2 ) = / 0 = c. Simpangan baku(ð) = = 8.69 d. Koefisien varians (V) = (8.69 / 34.13) x 0 = Metode Pengkodean Usia (dlm tahun) Fi Xi FiXi (Xi-X)<SUP)2< sup> Fi(Xi-X) Jumlah

14 8. a. Rata-rata(X) = (59 / 0) = b. Varian(ð 2 ) = 7 2 x ((189-(59^2/0)) / 0 = c. Simpangan baku(ð) = = 8.69 d. Koefisien varians (V) = (8.69 / 34.13) x 0 = 25.46% Manfaat Yang Diperoleh Adalah 1. Rata-rata hitung dapat digunakan untuk mengetahui apakah suatu kegiatan terjadi atau kenaikan dari suatu target yang diinginkan 2. Simpangan baku dapat digunakan untuk menguji pemakaian suatu alat, apakah alat tersebut layak dipakai atau tidak dengan penetapan simpangan baku yang normal di gunakan. 3. Rata-rata hitung dapat dihubungkan dengan simpangan baku dengan menggunakan koefisien Varians dimana % ini dapat digunakan untuk mengetahui seberapa besar simpangan yang terjadi diantara rata-rata hitung rersebut atau dapat juga digunakan untuk membandingkan dua data yang sama. 14

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA UKURAN PEMUSATAN DATA MODUL 3 Oleh : Firmansyah, S.Kom A. TEMA DAN TUJUAN KEGIATAN PEMBELAJARAN 1. Tema : Ukuran Pemusatan Data 2. Fokus : Pembahasan Materi Pokok 1. Arti dan manfaat ukuran pemusatan data

Lebih terperinci

PENGUKURAN DESKRIPTIF

PENGUKURAN DESKRIPTIF PENGUKURAN DESKRIPTIF STATISTIK INDUSTRI I Jurusan Teknik Industri Universitas Brawijaya Malang 1 PENGUKURAN DESKRIPTIF Suatu pengukuran yang bertujuan untuk memberikan gambaran tentang data yang diperoleh

Lebih terperinci

DISPERSI DATA. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation)

DISPERSI DATA. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation) DISPERSI DISPERSI DATA Ukuran penyebaran suatu kelompok data terhadap pusat data. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation)

Lebih terperinci

Pengukuran Deskriptif

Pengukuran Deskriptif Pengukuran Deskriptif 2.2 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Pendahuluan Tendensi Sentral Ukuran Dispersi 3 Pendahuluan Pengukuran Deskriptif 4 Definisi

Lebih terperinci

UKURAN TENGAH DAN UKURAN DISPERSI

UKURAN TENGAH DAN UKURAN DISPERSI UKURAN TENGAH DAN UKURAN DISPERSI UKURAN TENGAH Ukuran tengah nilai tunggal yang representatif untuk keseluruhan nilai data. Ukuran tendensi sentral nilainya cenderung terletak di urutan paling tengah

Lebih terperinci

Pengukuran Deskriptif. Debrina Puspita Andriani /

Pengukuran Deskriptif. Debrina Puspita Andriani    / Pengukuran Deskriptif 3 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Pendahuluan Tendensi Sentral Ukuran Dispersi 3 Pendahuluan Pengukuran Deskriptif 4 Definisi Pengukuran

Lebih terperinci

BESARAN STATISTIK (UKURAN TENGAH DAN UKURAN

BESARAN STATISTIK (UKURAN TENGAH DAN UKURAN BESARAN STATISTIK (UKURAN TENGAH DAN UKURAN DISPERSI) UKURAN TENGAH Ukuran tengah nilai tunggal yang representatif untuk keseluruhan nilai data. Ukuran tendensi sentral nilainya cenderung terletak di urutan

Lebih terperinci

C. Ukuran Letak dan Ukuran Penyebaran Data

C. Ukuran Letak dan Ukuran Penyebaran Data C. Ukuran Letak dan Ukuran Penyebaran Data. Ukuran Letak Data Tunggal a. Kuartil Pada data dengan banyak data n 4, Kuartil membagi data menjadi 4 bagian sama banyak, sehingga diperoleh tiga nilai yang

Lebih terperinci

LEMBAR AKTIVITAS SISWA STATISTIKA 2 B. PENYAJIAN DATA

LEMBAR AKTIVITAS SISWA STATISTIKA 2 B. PENYAJIAN DATA Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA STATISTIKA 2 B. PENYAJIAN DATA Beberapa bentuk penyajian data, sebagai berikut: Kompetensi Dasar (KURIKULUM 2013): 3.15 Memahami dan menggunakan berbagai ukuran

Lebih terperinci

UKURAN PEMUSATAN MK. STATISTIK (MAM 4137) 3 SKS (3-0) Ledhyane Ika Harlyan

UKURAN PEMUSATAN MK. STATISTIK (MAM 4137) 3 SKS (3-0) Ledhyane Ika Harlyan UKURAN PEMUSATAN MK. STATISTIK (MAM 4137) 3 SKS (3-0) Ledhyane Ika Harlyan 1 DAFTAR ISI Mean Median Modus Kuartil, Desil dan Presentil Hubungan Mean-Median-Modus 2 Ukuran Statistik Untuk menjelaskan ciri-ciri

Lebih terperinci

Probabilitas dan Statistika Analisis Data dan Ukuran Pemusatan. Adam Hendra Brata

Probabilitas dan Statistika Analisis Data dan Ukuran Pemusatan. Adam Hendra Brata Probabilitas dan Analisis dan Adam Hendra Brata Deskriptif Induktif Pembagian Deskriptif Metode guna mengumpulkan, menghitung, dan menyajikan suatu data secara kwantitatif sehingga memberikan informasi

Lebih terperinci

Pengumpulan & Penyajian Data

Pengumpulan & Penyajian Data Pengumpulan & Penyajian Data Cara Pengumpulan Data 1. Mengadakan penelitian langsung ke lapangan atau laboratorium terhadap obyek yang diteliti, hasilnya dicatat dan dianalisis 2. Mengambil atau menggunakan

Lebih terperinci

Macam ukuran penyimpangan. Range/Rentang/Jangkauan Standar Deviasi/simpangan baku Varians Ukuran penyimpangan lain

Macam ukuran penyimpangan. Range/Rentang/Jangkauan Standar Deviasi/simpangan baku Varians Ukuran penyimpangan lain UKURAN PENYIMPANGAN Ukuran penyimpangan adalah ukuran yang menyatakan seberapa jauh penyimpangan nilainilai data dari nilai-nilai pusatnya atau ukuran yang menyatakan seberapa banyak nilai-nilai data yang

Lebih terperinci

UKURAN PEMUSATAN DATA STATISTIK

UKURAN PEMUSATAN DATA STATISTIK UKURAN PEMUSATAN DATA STATISTIK Pengantar Dari setiap kumpulan data, terdapat tiga ukuran atau tiga nilai statistik yang dapat mewakili data tersebut, yaitu rataan (mean), median, dan modus. Ketiga nilai

Lebih terperinci

King s Learning Be Smart Without Limits NAMA : KELAS :

King s Learning Be Smart Without Limits NAMA : KELAS : NAMA : KELAS : A. PENGERTIAN STATISTIKA Statistika adalah ilmu yang mempelajari cara mengumpulkan dan menyusun data, mengolah dan menganalisis data, serta menyajikan data. Statistik adalah hasil dari pengolahan

Lebih terperinci

5. STATISTIKA PENYELESAIAN. a b c d e Jawab : b

5. STATISTIKA PENYELESAIAN. a b c d e Jawab : b . STATISTIKA A. Membaca Sajian Data dalam Bentuk Diagram. UN 00 IPS PAKET A Diagram lingkaran berikut menunjukan persentase jenis pekerjaan penduduk di kota X. Jumlah penduduk seluruhnya adalah 3.600.000

Lebih terperinci

dapat digunakan formulasi sebagai berikut : Letak Letak Letak

dapat digunakan formulasi sebagai berikut : Letak Letak Letak 1. Ukuran Letak Agar kita dapat mengetahui lebih jauh mengenai karakteristik data observasi dengan beberapa ukuran sentral, kita sebaiknya mengetahui beberapa ukuran lain, yaitu ukuran letak. Ada tiga

Lebih terperinci

9. STATISTIKA. f u. X s = Rataan sementara, pilih x i dari data dengan f i terbesar. Ukuran Pemusatan Data A. Rata-rata. 1.

9. STATISTIKA. f u. X s = Rataan sementara, pilih x i dari data dengan f i terbesar. Ukuran Pemusatan Data A. Rata-rata. 1. 9. STATISTIKA Ukuran Pemusatan Data A. Rata-rata 1. Data tunggal: X = 2. Data terkelompok: x1 + x 2 + x3 +... + x n n Cara konvensional Cara sandi f = i xi X f u X Xs i i = + c f i f i Keterangan: f i

Lebih terperinci

STATISTIKA KELAS : XI BAHASA SEMESTER : I (SATU) Disusun Oleh : Drs. Pundjul Prijono Nip

STATISTIKA KELAS : XI BAHASA SEMESTER : I (SATU) Disusun Oleh : Drs. Pundjul Prijono Nip MODUL MATEMATIKA STATISTIKA 11.1. KELAS : XI BAHASA SEMESTER : I (SATU) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.1981.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI Jalan Mayjen Sungkono

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Pertemuan ketiga UKURAN PEMUSATAN DATA Karakteristik suatu kumpulan data adalah : (1). Memusat pada nilai tertentu dari suatu distribusi, yang disebut nilai pusat (middle of data set), dan (2). Menyebar/berpencar

Lebih terperinci

UKURAN STASISTIK (Bagian II) menjadi 2 bagian yang sama besar. A.1. MEDIAN untuk Ungrouped Data (data yg belum dikelompokkan)

UKURAN STASISTIK (Bagian II) menjadi 2 bagian yang sama besar. A.1. MEDIAN untuk Ungrouped Data (data yg belum dikelompokkan) Ukuran 2-1/8yth UKURAN STASISTIK (Bagian II) 2.3 MEDIAN, KUARTIL, DESIL dan PERSENTIL A. MEDIAN Median Nilai yang membagi gugu data yang telah terortir (acending) menjadi 2 bagian yang ama bear A.1. MEDIAN

Lebih terperinci

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SRIWIJAYA

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SRIWIJAYA UKURAN PEMUSATAN DATA DAN UKURAN LETAK FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SRIWIJAYA PENDAHULUAN Untuk mendapatkan gambaranyang lebih jelas tentang sekumpulan data data itu disajikan dalam

Lebih terperinci

LAB MANAJEMEN DASAR MODUL STATISTIKA 1. Nama : NPM : Kelas : Fakultas Ekonomi Universitas Gunadarma Kelapa Dua

LAB MANAJEMEN DASAR MODUL STATISTIKA 1. Nama : NPM : Kelas : Fakultas Ekonomi Universitas Gunadarma Kelapa Dua LAB MANAJEMEN DASAR MODUL STATISTIKA 1 Nama : NPM : Kelas : Fakultas Ekonomi Universitas Gunadarma Kelapa Dua 1 UKURAN STATISTIK Pendahuluan Ukuran statistik merupakan ukuran yang menunjukkan bagaimana

Lebih terperinci

STATISTIKA: UKURAN LOKASI DATA. Tujuan Pembelajaran

STATISTIKA: UKURAN LOKASI DATA. Tujuan Pembelajaran KTSP & K-13 matematika K e l a s XI STATISTIKA: UKURAN LOKASI DATA Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan sebagai berikut. 1. Dapat menentukan kuartil data

Lebih terperinci

BAB V UKURAN LETAK. Statistika-Handout 5 26

BAB V UKURAN LETAK. Statistika-Handout 5 26 BAB V UKURAN LETAK Selain ukuran pemusatan terdapat pula ukuran letak. Salah satu dari ukuran letak adalah median yang menunjukkan nilai skor tengah dalam susunan skor yang diurutkan mulai dari yang terkecil

Lebih terperinci

BAB 3: NILAI RINGKASAN DATA

BAB 3: NILAI RINGKASAN DATA BAB 3: NILAI RINGKASAN DATA Penyajian data dalam bentuk tabel dan grafik memberikan kemudahan bagi kita untuk menggambarkan data dan membuat kesimpulan terhadap sifat data. Namun tabel dan grafik belum

Lebih terperinci

STAND N AR R K OMP M E P T E EN E S N I:

STAND N AR R K OMP M E P T E EN E S N I: Silabus Matematika Kelas XI IPS Smester 1 STANDAR KOMPETENSI: Menggunakan aturan statistika, kaidah pencacahan, dan sifat- sifat peluang dalam pemecahan masalah. u Kompetensi Dasar 1.1 Membaca data dalam

Lebih terperinci

SATUAN ACARA TUTORIAL (SAT) Mata Kuliah : Statistika Dasar/PAMA 3226 SKS : 3 SKS Tutorial : ke-1 Nama Tutor : Adi Nur Cahyono, S.Pd., M.Pd.

SATUAN ACARA TUTORIAL (SAT) Mata Kuliah : Statistika Dasar/PAMA 3226 SKS : 3 SKS Tutorial : ke-1 Nama Tutor : Adi Nur Cahyono, S.Pd., M.Pd. Tutorial : ke-1 Nama Tutor : a. Menjelaskan pengertian statistik; b. Menjelaskan pengertian statistika; c. Menjelaskan pengertian data statistik; d. Menjelaskan contoh macam-macam data; e. Menjelaskan

Lebih terperinci

DESKRIPSI DATA. sekumpulan data yang sudah dikumpulkan. Ukuran pemusatan dibagi menjadi dua yaitu:

DESKRIPSI DATA. sekumpulan data yang sudah dikumpulkan. Ukuran pemusatan dibagi menjadi dua yaitu: DESKRIPSI DATA A. Ukuran Pemusatan Ukuran pemusatan ini digunakan untuk memudahkan peneliti dalam membuat deskripsi sekumpulan data yang sudah dikumpulkan. Ukuran pemusatan dibagi menjadi dua yaitu: rata-rata

Lebih terperinci

STATISTIK. Rahma Faelasofi

STATISTIK. Rahma Faelasofi STATISTIK Rahma Faelasofi 1 BAB 3 VARIABILITAS Pengertian Jangkauan Mean deviasi Standar deviasi 2 Pengertian Pengukuran penyebaran adalah pengukuran tingkat penyebaran nilai dalam suatu kumpulan data

Lebih terperinci

UKURAN NILAI SENTRAL&UKURAN PENYEBARAN. Tita Talitha, MT

UKURAN NILAI SENTRAL&UKURAN PENYEBARAN. Tita Talitha, MT UKURAN NILAI SENTRAL&UKURAN PENYEBARAN Tita Talitha, MT DISTRIBUSI FREKWENSI PENGERTIAN distribusi frekwensi adalah suatu tabel dimana banyaknya kejadian / frekwensi didistribusikan ke dalam kelas-kelas

Lebih terperinci

RANCANGAN AKTIVITAS TUTORIAL (RAT)

RANCANGAN AKTIVITAS TUTORIAL (RAT) RANCANGAN AKTIVITAS TUTORIAL (RAT) Nama Mata Kuliah/ sks/ Kode : Statistika Dasar/ 3/ PAMA 3226 Nama Tutor/ NPP : Adi Nur Cahyono, S.Pd., M.Pd./088201206 Deskripsi Singkat Mata Kuliah : Mata kuliah ini

Lebih terperinci

Statistika Materi 3 UKURAN PEMUSATAN. Nilai Tunggal yang mewakili Karakteristik Sekumpulan data. Hugo Aprilianto, M.Kom

Statistika Materi 3 UKURAN PEMUSATAN. Nilai Tunggal yang mewakili Karakteristik Sekumpulan data. Hugo Aprilianto, M.Kom Statistika Materi 3 UKURAN PEMUSATAN Nilai Tunggal yang mewakili Karakteristik Sekumpulan data UKURAN PEMUSATAN Adalah nilai tunggal yang mewakili suatu kumpulan data dan menunjukkan karakteristik dari

Lebih terperinci

PENS. Probability and Random Process. Topik 2. Statistik Deskriptif. Prima Kristalina Maret 2016

PENS. Probability and Random Process. Topik 2. Statistik Deskriptif. Prima Kristalina Maret 2016 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 2. Statistik Deskriptif Prima Kristalina Maret 2016 1 Outline [2][1] 1. Penyajian Data o Tabel

Lebih terperinci

Kenapa Data Harus Diringkas?

Kenapa Data Harus Diringkas? 1 Kenapa Data Harus Diringkas? Agar data berguna, pengamatan yang diperoleh harus disusun dalam bentuk yang lebih terorganisir. Peringkasan data akan memudahkan pengambilan kesimpulan Peringkasan data

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN Topik Bahasan : Membahas Silabus Perkuliahan Tujuan Umum : Mahasiswa Mengetahui Komponen Yang Perlu Dipersiapkan Dalam Matakuliah Ini satu kali Tujuan 1 Menjelaskan tentang Mengakomodasi berbagai masukan

Lebih terperinci

DIAGRAM SERABI S-2 dan S-3 SMU S-1

DIAGRAM SERABI S-2 dan S-3 SMU S-1 DIAGRAM SERABI S-2 dan S-3 SMU S-1 Dapat menyajikan berbagai pecahan dalam bentuk jumlah Setiap pecahan atau sektor memperlihatkan unsur tertentu Dapat dibuat pada bidang datar atau mirip tablet yang rebah

Lebih terperinci

Ukuran Pusat Data Rata-rata Hitung Median Mode. Ukuran Lokasi Data Kuartil Desil Persentil. Rata-rata terimbang Rata-rata geometrik

Ukuran Pusat Data Rata-rata Hitung Median Mode. Ukuran Lokasi Data Kuartil Desil Persentil. Rata-rata terimbang Rata-rata geometrik Ukuran Pusat Data Rata-rata Hitung Median Mode Ukuran Lokasi Data Kuartil Desil Persentil Rata-rata terimbang Rata-rata geometrik Rata-rata Hitung = rata-rata sampel = rata-rata populasi 1. Rata-rata dari

Lebih terperinci

STATISTIKA 2 11/20/2015. B. Menghitung Ukuran Data dari Data Berkelompok. Peta Konsep. B. Menghitung Ukuran Data dari Data Berkelompok

STATISTIKA 2 11/20/2015. B. Menghitung Ukuran Data dari Data Berkelompok. Peta Konsep. B. Menghitung Ukuran Data dari Data Berkelompok /0/0 Peta Konsep Jurnal Datar Hadir Materi B Materi Umum STATISTIKA Kelas XI, Semester Pemusatan Statistika Letak Data Tunggal Penyebaran SoalLatihan B. Menghitung Data dari Data Berkelompok Pemusatan

Lebih terperinci

By Syarifah Hikmah JS. MK Statistika (MAM 4137)

By Syarifah Hikmah JS. MK Statistika (MAM 4137) By Syarifah Hikmah JS MK Statistika (MAM 4137) Daftar Isi Wilayah/Rentang Deviasi rata-rata terhadap nilai tengah Ragam Simpangan baku Ukuran Statistik Untuk menjelaskan ciri-ciri data yang penting maka

Lebih terperinci

PENGANTAR STATISTIK JR113. Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI Pertemuan 6

PENGANTAR STATISTIK JR113. Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI Pertemuan 6 PENGANTAR STATISTIK JR113 Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI 2008 Pertemuan 6 MODUS Modus (Mo) adalah sebuah ukuran untuk menyatakan fenomena yang paling banyak terjadi atau

Lebih terperinci

Tabel 7-1 Rata-rata hitung hasil test mata kuliah statistik deskriptif kelompok A dan B. A B

Tabel 7-1 Rata-rata hitung hasil test mata kuliah statistik deskriptif kelompok A dan B. A B A. Pengukuran Penyebaran (Dispersi) 1. Pengertian Tentang Disperse. Digunakan untuk menunjukkan keadaan berikut : a. Gambaran variabilitas data Yang dimaksud dengan variabilitas data adalah suatu ukuran

Lebih terperinci

SILABUS. Kegiatan Pembelajaran Teknik. Memahami cara memperoleh data yang baik, menentukan jenis dan ukuran data, serta memeriksa, dan menyusun data.

SILABUS. Kegiatan Pembelajaran Teknik. Memahami cara memperoleh data yang baik, menentukan jenis dan ukuran data, serta memeriksa, dan menyusun data. SILABUS NAMA SEKOLAH : MATA PELAJARAN : Matematika KELAS : XII STANDAR KOMPETENSI : Menerapkan aturan konsep statistika dalam pemecahan masalah. KODE KOMPETENSI : 10 ALOKASI WAKTU : 52 x 45 Kompetensi

Lebih terperinci

STATISTIKA 4 UKURAN LETAK

STATISTIKA 4 UKURAN LETAK TUJUAN STATISTIKA 4 UKURAN LETAK MODUL 4 Melatih berfikir dan bernalar secara logis dan kritis serta mengembangkan aktifitas, kreatifitas dalam memecahkan masalah serta mampu mengkomunikasikan ide dan

Lebih terperinci

Probabilitas dan Statistika Analisis Data Lanjut. Adam Hendra Brata

Probabilitas dan Statistika Analisis Data Lanjut. Adam Hendra Brata Probabilitas dan Analisis Lanjut Adam Hendra Brata Tunggal Populasi adalah sebagai sekumpulan data yang mengidentifikasi suatu fenomena. Sampel adalah sekumpulan data yang diambil atau diseleksi dari suatu

Lebih terperinci

TUGAS II STATISTIKA. Oleh. Butsiarah / 15B Kelas B PROGRAM STUDI PENDIDIKAN TEKNOLOGI DAN KEJURUAN PROGRAM PASCASARJANA

TUGAS II STATISTIKA. Oleh. Butsiarah / 15B Kelas B PROGRAM STUDI PENDIDIKAN TEKNOLOGI DAN KEJURUAN PROGRAM PASCASARJANA TUGAS II STATISTIKA Oleh Butsiarah / 15B20020 Kelas B PROGRAM STUDI PENDIDIKAN TEKNOLOGI DAN KEJURUAN PROGRAM PASCASARJANA UNIVERSITAS NEGERI MAKASSAR 2015 1. Penelitian terhadap nilai mahasiswa S1 Jurusan

Lebih terperinci

BAB III UKURAN TENGAH DAN DISPERSI

BAB III UKURAN TENGAH DAN DISPERSI BAB III UKURAN TENGAH DAN DISPERSI Dalam pembicaraan yang lalu kita telah mempresentasikan data dalam bentuk tabel dan grafik yang bertujuan meringkaskan dan menggambarkan data kuantitatif, untuk mendapatkan

Lebih terperinci

STATISTIKA DESKRIPTIF. Tendensi Sentral & Ukuran Dispersi

STATISTIKA DESKRIPTIF. Tendensi Sentral & Ukuran Dispersi STATISTIKA DESKRIPTIF Tendensi Sentral & Ukuran Dispersi Statistik dan Statistika Statistik : nilai-nilai ukuran data yang mudah dimengerti. Contoh : statistik liga sepak bola Indonesia Statistika : ilmu

Lebih terperinci

Pengukuran Statistik Deskriptif UKURAN PUSAT, UKURAN VARIASI DAN UKURAN POSISI

Pengukuran Statistik Deskriptif UKURAN PUSAT, UKURAN VARIASI DAN UKURAN POSISI Pengukuran Statistik Deskriptif UKURAN PUSAT, UKURAN VARIASI DAN UKURAN POSISI Besral: Departemen Biostatistik dan Kependudukan Fakultas Kesehatan Masyarakat Universitas Indonesia, 2012 SAP Statistika

Lebih terperinci

STATISTIKA. Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah

STATISTIKA. Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah 1 SMA SANTA ANGELA STATISTIKA Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah Kompetensi Dasar : Membaca data dalam bentuk tabel dan

Lebih terperinci

KATA PENGANTAR. Kelapa Dua, September Tim Litbang

KATA PENGANTAR. Kelapa Dua, September Tim Litbang KATA PENGANTAR Puji syukur kami panjatkan kepada Tuhan Yang Maha Esa atas limpahan rahmat dan karunia-nya sehingga modul praktikum Statistika 1 materi ukuran statistik ini dapat terselesaikan. Modul praktikum

Lebih terperinci

SATUAN ACARA TUTORIAL (SAT) Tutorial ke : 1 Kode/ Nama Mata Kuliah : PAMA 3225 / Statistika Dasar

SATUAN ACARA TUTORIAL (SAT) Tutorial ke : 1 Kode/ Nama Mata Kuliah : PAMA 3225 / Statistika Dasar Tutorial ke : 1 : 3 Kompetensi Umum : Setelah mempelajari bahan ajar matakuliah ini diharapkan mahasiswa 1. Memahami pengetahuan dasar statistika. 2. Memahami tehnik penyajian data dalam bentuk tabel.

Lebih terperinci

Statistika I. Pertemuan 2 & 3 Statistika Dasar (Basic( Ari Wibowo, MPd Prodi PAI Jurusan Tarbiyah STAIN Surakarta. Konsep Peubah

Statistika I. Pertemuan 2 & 3 Statistika Dasar (Basic( Ari Wibowo, MPd Prodi PAI Jurusan Tarbiyah STAIN Surakarta. Konsep Peubah Statistika I Pertemuan & 3 Statistika Dasar (Basic( Statistic) Ari Wibowo, MPd Prodi PAI Jurusan Tarbiyah STAIN Surakarta Konsep Peubah Definisi Peubah merupakan karakteristik dari objek yang sedang diamati,

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 1:,, Statistika FMIPA Universitas Islam Indonesia Data Populasi dan Sampel Menurut Websters New World Dictionary, data berarti sesuatu yang diketahui atau dianggap. Dengan demikian, data dapat memberikan

Lebih terperinci

MINGGU KE- III: UKURAN NILAI SENTRAL

MINGGU KE- III: UKURAN NILAI SENTRAL MINGGU KE- III: UKURAN NILAI SENTRAL Tujuan Instruksinal Umum : 1. Mahasiswa memahami apa yang dimaksud dengan nilai sentral 2. Mahasiswa memahami guna dari perhitungan nilai sentral 3. Mahasiswa dapat

Lebih terperinci

Statistik Dasar. 1. Pendahuluan Persamaan Statistika Dalam Penelitian. 2. Penyusunan Data Dan Penyajian Data

Statistik Dasar. 1. Pendahuluan Persamaan Statistika Dalam Penelitian. 2. Penyusunan Data Dan Penyajian Data Statistik Dasar 1. Pendahuluan Persamaan Statistika Dalam Penelitian 2. Penyusunan Data Dan Penyajian Data 3. Ukuran Tendensi Sentral, Ukuran Penyimpangan 4. Momen Kemiringan 5. Distribusi Normal t Dan

Lebih terperinci

UKURAN-UKURAN NILAI PUSAT

UKURAN-UKURAN NILAI PUSAT UKURAN-UKURAN NILAI PUSAT Nilai tunggal yang dinilai dapat mewakili keseluruhan nilai dalam data dianggap sebagai rata-rata (averages). Nilai rata-rata dihitung bedasarkan keseluruhan nilai yang terdapat

Lebih terperinci

PERTEMUAN 2 STATISTIKA DASAR MAT 130

PERTEMUAN 2 STATISTIKA DASAR MAT 130 PERTEMUAN 2 STATISTIKA DASAR MAT 130 Data 1. Besaran Statistika berbicara tentang data dalam bentuk besaran (dimensi) Besaran adalah sesuatu yang dapat dipaparkan secara jelas dan pada prinsipnya dapat

Lebih terperinci

UNIVERSITAS NEGERI MALANG FAKULTAS ILMU KEOLAHRAGAAN JURUSAN ILMU KESEHATAN MASYARAKAT

UNIVERSITAS NEGERI MALANG FAKULTAS ILMU KEOLAHRAGAAN JURUSAN ILMU KESEHATAN MASYARAKAT UKURAN PEMUSATAN MAKALAH UNTUK MEMENUHI TUGAS MATAKULIAH Dasar-dasar Biostatistik Deskriptif Yang dibina oleh Bapak Dr. Saichudin, M.Kes Ibu dr. Anindya, S.Ked Oleh : Derada Imanadani 130612607847/2013

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA

SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB II STATISTIKA Dr. Djadir, M.Pd. Dr. Ilham Minggi, M.Si Ja faruddin,s.pd.,m.pd. Ahmad Zaki, S.Si.,M.Si Sahlan Sidjara, S.Si.,M.Si

Lebih terperinci

SOAL STATISTIKA KELAS XI Oleh: Erni Kundiarsih

SOAL STATISTIKA KELAS XI Oleh: Erni Kundiarsih SOAL STATISTIKA KELAS XI Oleh: Erni Kundiarsih MATEMATIKANET.COM Data berikut untuk soal nomor 1 4 Nilai ulangan harian matematika dari 14 orang siswa yang diambil secara acak adalah 7, 5, 8, 6, 7, 8,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Data Data adalah bentuk jamak dari datum, yang dapat diartikan sebagai informasi yang diterima yang bentuknya dapat berupa angka, kata-kata, atau dalam bentuk lisan dan tulisan

Lebih terperinci

By : Hanung N. Prasetyo

By : Hanung N. Prasetyo theory STATISTIKA DESKRIPTIF By : Hanung N. Prasetyo UKURAN PEMUSATAN Nilai tunggal yang mewakili semua data atau kumpulan pengamatan dimana nilai tersebut menunjukkan pusat data. Yang termasuk ukuran

Lebih terperinci

Metode Penelitian Kuantitatif Aswad Analisis Deskriptif

Metode Penelitian Kuantitatif Aswad Analisis Deskriptif Analisis Deskriptif Tanpa mengurangi keterumuman, pembahasan analisis deskriptif kali ini difokuskan kepada pembahasan tentang Ukuran Pemusatan Data, dan Ukuran Penyebaran Data Terlebih dahulu penting

Lebih terperinci

Silabus NAMA SEKOLAH : MATA PELAJARAN : Matematika

Silabus NAMA SEKOLAH : MATA PELAJARAN : Matematika Silabus NAMA SEKOLAH : MATA PELAJARAN : Matematika KELAS : XI STANDAR KOMPETENSI : Menentukan kedudukan jarak, dan besar sudut yang melibatkan titik, garis dan bidang dalam ruang dimensi dua KODE KOMPETENSI

Lebih terperinci

Soal, Kartu Soal, Kisi-kisi Soal

Soal, Kartu Soal, Kisi-kisi Soal Ulangan Tengah Semester Ganjil SMA Negeri 1 Ponorogo TA 00/010 Soal, Kartu Soal, Kisi-kisi Soal Bentuk Soal : Uraian Jl. Budi Utomo 1 Ponorogo Telp. 4114 E-mail: Ganesa@smazapo.sch.id Web: www.smazapo.sch.id

Lebih terperinci

MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA

MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA AMIYELLA ENDISTA SKG.MKM Email : amiyella.endista@yahoo.com Website : www.berandakami.wordpress.com Perhitungan Nilai Gejala Pusat Mean Median Modus Range

Lebih terperinci

STATISTIK DESKRIPTIF. Penyajian Data, ukuran Pemusatan Data, Ukuran Penyebaran Data

STATISTIK DESKRIPTIF. Penyajian Data, ukuran Pemusatan Data, Ukuran Penyebaran Data STATISTIK DESKRIPTIF Penyajian Data, ukuran Pemusatan Data, Ukuran Penyebaran Data 1. Statisitik Deskriptif 2. Penyajian Data 3. Ukuran Pemusatan Data 4. Ukuran Penyebaran Data Materi Pokok Indikator Setelah

Lebih terperinci

Statistika Pendidikan

Statistika Pendidikan Statistika Pendidikan Statistika adalah metode ilmiah yang mempelajari pengumpulan, pengaturan, perhitungan, penggambaran dan penganalisisan data, serta penarikan kesimpulan yang valid berdasarkan penganalisisan

Lebih terperinci

UKURAN PENYEBARAN DATA

UKURAN PENYEBARAN DATA UKURAN PENYEBARAN DATA HERDIAN S.Pd., M.Pd. SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER (STMIK) PRINGSEWU UKURAN PENYEBARAN DATA Selain ukuran pemusatan data dan ukuran letak data, ada juga yang

Lebih terperinci

Ukuran Penyebaran Suatu ukuran baik parameter atau statistik untuk mengetahui seberapa besar penyimpangan data dengan nilai rata-rata hitungnya.

Ukuran Penyebaran Suatu ukuran baik parameter atau statistik untuk mengetahui seberapa besar penyimpangan data dengan nilai rata-rata hitungnya. UKURAN PENYEBARAN 1 Bab 4 PENGANTAR Ukuran Penyebaran Suatu ukuran baik parameter atau statistik untuk mengetahui seberapa besar penyimpangan data dengan nilai rata-rata hitungnya. Ukuran penyebaran membantu

Lebih terperinci

STATISTIKA INDUSTRI I. Agustina Eunike, ST., MT., MBA.

STATISTIKA INDUSTRI I. Agustina Eunike, ST., MT., MBA. STATISTIKA INDUSTRI I Agustina Eunike, ST., MT., MBA. PERTEMUAN-1 DATA Data Hasil pengamatan pada suatu populasi Untuk mendapatkan informasi yang akurat Pengumpulan data Pengolahan data Penyajian data

Lebih terperinci

KWARTIL, DESIL DAN PERSENTIL

KWARTIL, DESIL DAN PERSENTIL KWARTIL, DESIL DA PERSETIL 1. KWARTIL Kwartil merupakan nilai yang membagi frekuensi distribusi data menjadi empat kelompok yang sama besar. Dengan kata lain kwartil merupakan nilai yang membagi tiaptiap

Lebih terperinci

FAKULTAS KEGURUAN DAN ILMU PENDIDIKIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

FAKULTAS KEGURUAN DAN ILMU PENDIDIKIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON S T A T I S T I K A Oleh : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS KEGURUAN DAN ILMU PENDIDIKIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010 Wijaya : Statistika 0 I. PENDAHULUAN Statistika adalah

Lebih terperinci

Ukuran Nilai Sentral

Ukuran Nilai Sentral Ukuran Nilai Sentral Nilai Sentral Pengertian Nilai Sentral Nilai sentral suatu rangkaian data adalah nilai dalam rangkaian data yang dapat mewakili data tersebut. Suatu rangkaian data biasanya memiliki

Lebih terperinci

Penyimpulan data numerik & kategorik. Elsa Roselina Dewi Gayatri

Penyimpulan data numerik & kategorik. Elsa Roselina Dewi Gayatri Penyimpulan data numerik & kategorik Elsa Roselina Dewi Gayatri P. data numerik Tendensi sentral (mean, median, modus) Hubungan mean, median, modus Ukuran variasi (range, interkuartil range, mean deviasi,

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kelas Matematika Data Tunggal Doc. Name: KARMATWJB00 Version: 0-0 halaman 0. Mean dari (x - ), (x - ), x, (x + ), (x + ), (x + ) (A) x + (B) x + 0, (C) x + (D) x - (E) x - 0, 0. Jumlah rataan

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kelas 11 Matematika Statistika - Data Tunggal - Set 2 Uraian Doc. Name: AR11MAT0108 Version : 2012-08 halaman 1 01. Hitunglah mean, median, dan modus dari data berikut ini! (A) 43, 52, 54, 47,

Lebih terperinci

1.0 Distribusi Frekuensi dan Tabel Silang

1.0 Distribusi Frekuensi dan Tabel Silang ANALISIS DESKRIPTIF 1.0 Distribusi Frekuensi dan Tabel Silang 1.1 Pengantar Statistik deskriptif Statistika deskriptif adalah bidang statistika yang mempelajari tatacara penyusunan dan penyajian data yang

Lebih terperinci

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada.

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Azimmatul Ihwah Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Ada cara yg lebih baik untuk menginterpretasi data yg

Lebih terperinci

UKURAN PENYEBARAN DATA

UKURAN PENYEBARAN DATA Pertemuan keempat UKURAN PENYEBARAN DATA Ukuran penyebaran data digunakan untuk melengkapi deskripsi dari sifat-sifat sekelompok data, terutama dalam membandingkan sifat-sifat yang dimiliki oleh masing-masing

Lebih terperinci

Setelah mempelajari bahan ajar ini diharapkan Anda dapat:

Setelah mempelajari bahan ajar ini diharapkan Anda dapat: D. Pembelajaran 4 1. Silabus N o STANDAR KOMPE TENSI Menerapk an aturan konsep statistika dalam pemecaha n masalah KOMPE TENSI DASAR Mengidenti fikasi pengerti-an statistik, statistika, populasi dan sampel

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB II STATISTIKA

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB II STATISTIKA SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB II STATISTIKA Dr. Djadir, M.Pd. Dr. Ilham Minggi, M.Si Ja aruddin,s.pd.,m.pd. Ahmad Zaki, S.Si.,M.Si Sahlan Sidjara, S.Si.,M.Si

Lebih terperinci

UKURAN PENYEBARAN DATA

UKURAN PENYEBARAN DATA UKURAN PENYEBARAN DATA STKIP SILIWANGI BANDUNG Sumber : 1.Sudjana. Budino dan Koster 3. Berbagai sumber LUVY S. ZANTHY 1 Ukuran Penyebaran Data (Ukuran Dispersi) Ukuran penyebaran data atau ukuran dispersi

Lebih terperinci

Uji Kompetensi Semester Akhir

Uji Kompetensi Semester Akhir I. Pilihan Ganda Jawaban: a 1. Uji Kompetensi Semester Akhir (1), (), dan (3) Statistika adalah cabang dari matematika terapan yang mempunyai cara-cara, maksudnya mengkaji/membahas, mengumpulkan, dan menyusun

Lebih terperinci

STATISTIKA 1. A. Ukuran Pemusatan Data 11/16/2015. Peta Konsep. A. Ukuran Pemusatan Data

STATISTIKA 1. A. Ukuran Pemusatan Data 11/16/2015. Peta Konsep. A. Ukuran Pemusatan Data //0 Jurnal Daftar Hadir Materi A Materi Umum STATISTIKA Kelas X, Semester Pemusatan Statistika Letak Penyebaran Peta Konsep Data Tunggal A. Pemusatan Data Pemusatan Letak Penyebaran SoalLatihan Menggambar

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kelas Matematika Statistika - Data Tunggal - Set Pilihan Ganda Doc. Name: ARMAT00 Version: 0-0 halaman 0. Mean dari (x - ), (x - ), x, (x + ), (x + ), (x + ) (A) x + (B) x + 0, (C) x + (D) x

Lebih terperinci

Nama Penulis pungkyrahmatika@gmail.com http:/statistikapendidikan.com. Abstrak/Ringkasan. Pendahuluan. Lisensi Dokumen:

Nama Penulis pungkyrahmatika@gmail.com http:/statistikapendidikan.com. Abstrak/Ringkasan. Pendahuluan. Lisensi Dokumen: UKURAN NILAI PUSAT DAN UKURAN DISPERSI Nama Penulis pungkyrahmatika@gmail.com http:/statistikapendidikan.com Lisensi Dokumen: Seluruh dokumen di StatistikaPendidikan.Com dapat digunakan, dimodifikasi dan

Lebih terperinci

STATISTIKA. A Pengertian Statistik dan Statistika. B Populasi dan Sampel. C Pengertian Data PENGERTIAN STATISTIKA, POPULASI, DAN SAMPEL

STATISTIKA. A Pengertian Statistik dan Statistika. B Populasi dan Sampel. C Pengertian Data PENGERTIAN STATISTIKA, POPULASI, DAN SAMPEL STATISTIKA PENGERTIAN STATISTIKA, POPULASI, DAN SAMPEL A Pengertian Statistik dan Statistika Statistik adalah kumpulan akta berbentuk angka yang disusun dalam datar atau tabel, yang menggambarkan suatu

Lebih terperinci

KISI KISI SOAL UJI COBA UJIAN NASIONAL TA MATEMATIKA SMK PROGRAM KEAHLIAN PARIWISATA MGMP MATEMATIKA SMK KABUPATEN CIANJUR

KISI KISI SOAL UJI COBA UJIAN NASIONAL TA MATEMATIKA SMK PROGRAM KEAHLIAN PARIWISATA MGMP MATEMATIKA SMK KABUPATEN CIANJUR KISI KISI SOAL UJI COBA UJIAN NASIONAL TA.008 009 MATEMATIKA SMK PROGRAM KEAHLIAN PARIWISATA MGMP MATEMATIKA SMK KABUPATEN CIANJUR A. Sub Kompetensi : PERBANDINGAN. Untuk membuat sebuah rumah dengan waktu

Lebih terperinci

A. PENYAJIAN DATA. Nama Dwi Willi Nita Wulan Dani. Tabel 3.1

A. PENYAJIAN DATA. Nama Dwi Willi Nita Wulan Dani. Tabel 3.1 A. PENYAJIAN DATA 1. Pengertian Data dan Statistika Statistika sangat erat kaitannya dengan data. Oleh karena itu, sebelum membahas mengenaistatistika, akan dijelaskan terlebih dahulu mengenai data. Data

Lebih terperinci

STATISTIKA DESKRIPTIF Dosen:

STATISTIKA DESKRIPTIF Dosen: LEMBAR TUGAS MAHASISWA (LTM) Mata Kuliah: STATISTIKA DESKRIPTIF Dosen: Nama NIM Kelas Jurusan Akademi : : : : : AKADEMI - AKADEMI BINA SARANA INFORMATIKA J A K A R T A C.2009 1 BAB I PENDAHULUAN Pertemuan

Lebih terperinci

Ledhyane Ika Harlyan Jurusan Pemanfaatan Sumberdaya Perikanan & Kelautan Universitas Brawijaya 2013

Ledhyane Ika Harlyan Jurusan Pemanfaatan Sumberdaya Perikanan & Kelautan Universitas Brawijaya 2013 UKURAN STATISTIK BAGI DATA Ledhyane Ika Harlyan Jurusan Pemanfaatan Sumberdaya Perikanan & Kelautan Universitas Brawijaya 2013 Konten Definisi: -Data dan Jenis Data -Parameter dan Statistik -Ukuran Statistik

Lebih terperinci

HARISON,S.Pd,M.Kom JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI PADANG

HARISON,S.Pd,M.Kom JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI PADANG HARISON,S.Pd,M.Kom JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI PADANG HOMOGEN DAN HETEROGEN DATA I. 50,50,50,50,50 II. 30,40,50,60,70 III.0,30,50,70,80 Ketiga kelompok data

Lebih terperinci

Pengukuran Kesehatan

Pengukuran Kesehatan 1 Pengukuran Kesehatan Ukuran Sentral: Mean atau Arithmetic Mean Median Modus Ukuran Variasi: Range Mean Deviasi Standar deviasi, Standar Error, 95%CI Coefisien Variasi Ukuran Posisi: Median Kuartil Desil

Lebih terperinci

Contoh: Pada data Tabel satu diperoleh range pada masing masing mata kuliah. adalah: Matakuliah Max min range A B C

Contoh: Pada data Tabel satu diperoleh range pada masing masing mata kuliah. adalah: Matakuliah Max min range A B C POKOK BAHASAN : Ukuran Penyebaran SUB POKOK BAHASAN : a. Range, b. RAK, c. SD, d. Varians, TIK : Mahasiswa dapat : a. Menjelaskan analisa deskriptif dengan ukuran penyebaran b. mampu melakukan analisa

Lebih terperinci

Pengertian Statistika (1) Statistika: Ilmu mengumpulkan, menata, menyajikan, menganalisis, dan menginterprestasikan data menjadi informasi untuk

Pengertian Statistika (1) Statistika: Ilmu mengumpulkan, menata, menyajikan, menganalisis, dan menginterprestasikan data menjadi informasi untuk Pengertian Statistika (1) Statistika: Ilmu mengumpulkan, menata, menyajikan, menganalisis, dan menginterprestasikan data menjadi informasi untuk membantu pengambilan keputusan yang efektif. Statistik:

Lebih terperinci

UKURAN DISPERSI (SEBARAN)DATA

UKURAN DISPERSI (SEBARAN)DATA Malim Muhammad, M.Sc. UKURAN DISPERSI (SEBARAN)DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DISPERSI

Lebih terperinci

STATISTIKA 3 UKURAN PENYEBARAN

STATISTIKA 3 UKURAN PENYEBARAN TUJUAN STATISTIKA UKURAN PENYEBARAN Melatih berfikir dan belajar secara logis dan kritis serta mengembangkan aktifitas, kreatifitas dalam memecahkan masalah serta mampu mengkomunikasikan ide dan gagasan

Lebih terperinci

STATISTIKA. Statistika : ilmu yang mempelajari tentang bagaimana mengambil data, mendeskripsikannya, dan menganalisnya untuk mendapatkan kesimpulan.

STATISTIKA. Statistika : ilmu yang mempelajari tentang bagaimana mengambil data, mendeskripsikannya, dan menganalisnya untuk mendapatkan kesimpulan. STATISTIKA Statistika : ilmu yang mempelajari tentang bagaimana mengambil data, mendeskripsikannya, dan menganalisnya untuk mendapatkan kesimpulan. Rata-rata Rata-rata dapat disebut juga rataan. Macam

Lebih terperinci