PD Orde 2 Lecture 3. Rudy Dikairono

Ukuran: px
Mulai penontonan dengan halaman:

Download "PD Orde 2 Lecture 3. Rudy Dikairono"

Transkripsi

1 PD Orde Lecture 3 Rudy Dikairono

2 Today s Outline PD Orde Linear Homogen PD Orde Linear Tak Homogen Metode koefisien tak tentu Metode variasi parameter

3 Beberapa Pengelompokan Persamaan Diferensial

4 Order of ODE s

5 PD Orde Linear Homogen Bentuk umum persamaan diferensial linear orde '' y + p( x) y + q( x) y ' r( x) Bentuk umum persamaan diferensial linear homogen orde y '' ' + p( x) y + q( x) y 0

6 PD Orde Linear Homogen y '' ' + p( x) y + q( x) y 0 Dengan rx ' rx y e, y re, Dengan substitusi, didapatkan y '' r e rx r e rx + p( re rx ) + q( e rx ) 0 e rx ( r + pr + q) r + pr + q 0 0 Persamaan bantu

7 Penyelesaian umum persamaan bantu r + pr + q 0 1 r1 ( p + p 4q) 1 r ( p p 4q) Terdapat 3 kemungkinan penyelesaian yang mungkin.

8 Penyelesaian dengan kemungkinan 1 Jika r 1 dan r adalah akar-akar riil berlainan dari persamaan bantu, maka penyelesaian umum dari: y '' 1 ' + a y + a y adalah: r1 x y C e C e r x

9 Penyelesaian dengan kemungkinan Jika r 1 dan r adalah akar-akar kembar dari persamaan bantu, maka penyelesaian umum dari: y '' 1 ' + a y + a y 0 adalah: y C e rx + C 1 xe rx

10 Penyelesaian dengan kemungkinan 3 Jika persamaan bantu memiliki akar-akar bilangan kompleks, a + bi dan a bi, maka penyelesaian umum dari: y '' ' + a1 y + a y 0 adalah: y C e e 1 ( a+ bi) x C e + + C C ax bix ( 1 e ( a bi) x e bix )

11 ) sin cos ( sin ) ( )cos ( ) sin cos sin cos ( bx B bx A e y bx i C C bx C C e y bx C i bx C bx C i bx C e y ax ax ax

12 Contoh1: Tentukanlah penyelesaian umum dari persamaan: y + 7 y ' + 1y '' 0 Penyelesaian: ( r r r 1 + 7r + 3)( r 3, ) 0 r -4 y C e 1 3x + C e 4x

13 Contoh: Tentukanlah penyelesaian umum dari persamaan: Penyelesaian: ' ' ' + y y y 3 0 3) ( 0 3) 3)( ( r r r r r r r x x xe C C e y

14 Contoh3: Tentukanlah penyelesaian umum dari persamaan: y '' 4 y ' + 13y Penyelesaian: y r r 1 0 4r Ae x i, r cos3x 0 + Be 3i x sin 3x

15 PD Orde Linear Tak Homogen Persamaan Diferensial dikatakan linear jika dapat ditulis menjadi: dimana p,q, dan r adalah fungsi kontinyu dari x. Dan dikatakan homogen jika r(x) 0; Dan jika r(x) / 0, maka persamaan PD tersebut dikatakan tidak homogen.

16 Penyelesaian untuk persamaan (1) adalah: y p adalah penyelesaian partikular untuk (1)

17 Untuk menyelesaikan y h dilakukan dengan penyelesaian PD homogen. Untuk penyelesaian y p dilakukan dengan dua cara yaitu: Metode koefisien tak tentu Metode variasi parameter

18 Metode Koefisien Tak Tentu Rubah (1) menjadi: Pilih bentuk penyelesain y p berdasarkan bentuk r(x) sesuai tabel berikut:

19 Metode ini mempunyai 3 aturan: 1. Jika r(x) dalam (4) masuk dalam tabel, maka y p dapat diselesaikan berdasarkan nilai tabel yang sesuai.. Jika salah satu fungsi dari y p adalah suatu penyelesaian terhadap penyelesaian homogen, maka kalikan penyelesaian y p dengan x (atau dengan x jika persamaan homogennya adalah akar kembar). 3. Jika r(x) adalah penjumlahan dari fungsifungsi pada kolom pertama, maka penyelesaian yp adalah penjumlahan dari kolom ke dua.

20 Contoh aturan 1 Selesaikan persamaan berikut: Penyelesaian: Penyelesaian umum untuk y h adalah: r(x) 0.001x

21 Dengan substitusi didapatkan Berdasarkan tabel

22 Penyelesaian untuk initial value

23

24 Contoh Aturan Selesaikan persamaan berikut: Penyelesaian: Penyelesaian homogen

25 Penyelesaian non homogen Berdasarkan tabel, persamaan sebelah kanan e -1.5x menghasilkan Ce -1.5x. Tetapi fungsi ini juga merupakan penyelesaian untuk y h (akar kembar), sehingga kita kalikan dengan x. Dengan substitusi kita dapatkan: Dengan membandingkan koefisien x, x 1, x 0 kita dapatkan C -10, C -5.

26 Penyelesaian untuk initial value

27

28 Contoh Aturan 3 Selesaikan persamaan berikut: Penyelesaian: Penyelesaian homogen Penyelesaian non homogen

29 Substitusi ke dalam persamaan diferensial kita dapatkan

30 Substitusi ke dalam persamaan diferensial kita dapatkan: Persamaan 1

31 Persamaan Didapatkan Hasil akhir

32 Penyelesaian untuk initial value

33

34 Metode Variasi Parameter Persamaan linear non homogen Untuk r(x) yang tidak ada dalam tabel metode koefisien tak tentu, dapat diselesaikan dengan metode Lagrange Dimana y1 dan y adalah penyelesaian homogen dari (1). Dan W adalah Wornskian dari y1 dan y.

35 Contoh Selesaikan persamaan berikut: Penyelesaian: Penyelesaian basis homogennya adalah Wornskian

36 Dari () kita dapatkan Hasil akhirnya

37 Ide dari metode ini Penyelesaian umum PD adalah

38 Kita substitusikan yp dan turunannya berdasarkan (5), (7) dan (8) ke dalam (1) y1 dan y adalah penyelesaian homogen persamaan di atas berubah menjadi

39 dan persamaan (6) Untuk menghilangkan v kita kalikan (9a) dengan y dan (9b) dengan y dan ditambahkan, sehingga kita dapatkan

40 Untuk menghilangkan u kita kalikan (9a) dengan y 1 dan (9b) dengan y 1 dan ditambahkan, sehingga kita dapatkan

41 dan kita dapatkan dan dengan integrasi kita dapatkan Kita masukkan persamaan ini ke (5) kita dapatkan ().

42 Thank you

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO Metode Koefisien Tak Tentu untuk Penyelesaian Persamaan Diferensial Linier Tak Homogen orde-2 Solusi PD pada PD Linier Tak Homogen ditentukan dari solusi umum PD Linier Homogen dan PD Linier Tak Homogen.

Lebih terperinci

BAB IV PERSAMAAN TAKHOMOGEN

BAB IV PERSAMAAN TAKHOMOGEN BAB IV PERSAMAAN TAKHOMOGEN Kompetensi Mahasiswa mampu 1. Menentukan selesaian khusus PD tak homogen dengan metode koefisien tak tentu 2. Menentukan selesaian khusus PD tak homogen dengan metode variasi

Lebih terperinci

BAB III PD LINIER HOMOGEN

BAB III PD LINIER HOMOGEN BAB III PD LINIER HOMOGEN Kompetensi Mahasiswa diharapkan. Mampu menentukan selesaian umum dari PD linier homogen orde dua dengan jenis akarakar karakteristik yang berbeda-beda. Memahami pengertian kebebaslinieran

Lebih terperinci

Bab 15. Interaksi antar dua spesies (Model Kerjasama)

Bab 15. Interaksi antar dua spesies (Model Kerjasama) Bab 15. Interaksi antar dua spesies (Model Kerjasama) Dalam hal ini diberikan dua spesies yang hidup bersama dalam suatu habitat tertutup. Kita ketahui bahwa terdapat beberapa jenis hubungan interaksi

Lebih terperinci

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah.

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah. POLINOM (SUKU BANYAK) Standar Kompetensi: Menggunakan aturan suku banyak dalam penyelesaian masalah. Kompetensi Dasar: 1. Menggunakan algoritma pembagian suku banyak untuk menentukan hasil bagi dan sisa

Lebih terperinci

REKAYASA GEMPA GETARAN BEBAS SDOF. Oleh Resmi Bestari Muin

REKAYASA GEMPA GETARAN BEBAS SDOF. Oleh Resmi Bestari Muin MODUL KULIAH REKAYASA GEMPA Minggu ke 3 : GETARAN BEBAS SDOF Oleh Resmi Bestari Muin PRODI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL dan PERENCANAAN UNIVERSITAS MERCU BUANA 010 DAFTAR ISI DAFTAR ISI i III GERAK

Lebih terperinci

Suku Banyak. A. Pengertian Suku Banyak B. Menentukan Nilai Suku Banyak C. Pembagian Suku Banyak D. Teorema Sisa E. Teorema Faktor

Suku Banyak. A. Pengertian Suku Banyak B. Menentukan Nilai Suku Banyak C. Pembagian Suku Banyak D. Teorema Sisa E. Teorema Faktor Bab 5 Sumber: www.in.gr Setelah mempelajari bab ini, Anda harus mampu menggunakan konsep, sifat, dan aturan fungsi komposisi dalam pemecahan masalah; menggunakan konsep, sifat, dan aturan fungsi invers

Lebih terperinci

Pengintegralan Fungsi Rasional

Pengintegralan Fungsi Rasional Pengintegralan Fungsi Rasional Ahmad Kamsyakawuni, M.Kom Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember 25 Maret 2014 Pengintegralan Fungsi Rasional 1 Pengintegralan Fungsi Rasional 2

Lebih terperinci

Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah :

Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah : 1. Terdapat sebuah fungsi H yang memetakan dari himpunan bilangan asli ke bilangan asli lainnya dengan ketentuan sebagai berikut. Misalkan akan dicari nilai fungsi H jika x=38. 38 terdiri dari 3 puluhan

Lebih terperinci

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER BAB 3 PENYELESAIAN PERSAMAAN NON LINIER 3.. Permasalahan Persamaan Non Linier Penyelesaian persamaan non linier adalah penentuan akar-akar persamaan non linier.dimana akar sebuah persamaan f(x =0 adalah

Lebih terperinci

Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir

Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir Jenis-jenis fungsi dan fungsi linier Hafidh Munawir Diskripsi Mata Kuliah Memperkenalkan unsur-unsur fungsi ialah variabel bebas dan variabel terikat, koefisien, dan konstanta, yang saling berkaitan satu

Lebih terperinci

Catatan Kuliah KALKULUS II BAB V. INTEGRAL

Catatan Kuliah KALKULUS II BAB V. INTEGRAL BAB V. INTEGRAL Anti-turunan dan Integral TakTentu Persamaan Diferensial Sederhana Notasi Sigma dan Luas Daerah di Bawah Kurva Integral Tentu Teorema Dasar Kalkulus Sifat-sifat Integral Tentu Lebih Lanjut

Lebih terperinci

BAB III PEMBAHASAN. 3.1 Solusi Partikulir Masalah Nilai Awal Persamaan Saint Venant 2D

BAB III PEMBAHASAN. 3.1 Solusi Partikulir Masalah Nilai Awal Persamaan Saint Venant 2D BAB III PEMBAHASAN 3.1 Solusi Partikulir Masalah Nilai Awal Persamaan Saint Venant 2D Pada penyelesaian masalah nilai awal persamaan Saint Venant dua dimensi dikerjakan dengan langkah penyelesaian di momentum

Lebih terperinci

Penyelesaian. n Persamaan. Metode Tabel Metode Biseksi Metode Regula Falsi

Penyelesaian. n Persamaan. Metode Tabel Metode Biseksi Metode Regula Falsi Penyelesaian n Persamaan Non Linier 1 Pengantar Penyelesaian Pers. Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Muhammad Zen S. Hadi, ST. MSc. Pengantar Penyelesaian Persa amaan Non Linier

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI

F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI Fungsi Fungsi ialah suatu bentuk hubungan matematis yang menyatakan hubungan ketergantungan (hubungan fungsional) antara satu variabel dengan variabel lain.

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA PEMBAHASAN UN SMA TAHUN PELAJARAN 009/00 MATEMATIKA PROGRAM STUDI IPA PEMBAHAS :. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. PPPPTK MATEMATIKA 00 . Perhatikan

Lebih terperinci

MEKANIKA KUANTUM DALAM TIGA DIMENSI

MEKANIKA KUANTUM DALAM TIGA DIMENSI MEKANIKA KUANTUM DALAM TIGA DIMENSI Sebelumnya telah dibahas mengenai penerapan Persamaan Schrödinger dalam meninjau sistem kuantum satu dimensi untuk memperoleh fungsi gelombang serta energi dari sistem.

Lebih terperinci

Konsep Deret & Jenis-jenis Galat

Konsep Deret & Jenis-jenis Galat Metode Numerik (IT 402) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana Bagian 2 Konsep Deret & Jenis-jenis Galat ALZ DANNY WOWOR 1. Pengatar Dalam Kalkulus, deret sering digunakan untuk

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 8: Bentuk Tak Tentu d

MA1201 KALKULUS 2A (Kelas 10) Bab 8: Bentuk Tak Tentu d MA1201 KALKULUS 2A (Kelas 10) Bab 8: dan Do maths and you see the world ? Pengantar Bentuk tak tentu? Bentuk apa? Bentuk tak tentu yang dimaksud adalah bentuk limit dengan nilai seolah-olah : 0 0 ; ; 0

Lebih terperinci

Untai Elektrik I. Untai Orde Tinggi & Frekuensi Kompleks. Dr. Iwan Setyawan. Fakultas Teknik Universitas Kristen Satya Wacana. Untai 1. I.

Untai Elektrik I. Untai Orde Tinggi & Frekuensi Kompleks. Dr. Iwan Setyawan. Fakultas Teknik Universitas Kristen Satya Wacana. Untai 1. I. Untai Elektrik I Untai Orde Tinggi & Frekuensi Kompleks Dr. Iwan Setyawan Fakultas Teknik Universitas Kristen Satya Wacana Pada bagian sebelumnya, dibahas untai RC dan RL dengan hanya satu elemen penyimpan

Lebih terperinci

4. Himpunan penyelesaian dari sistem persamaan linear x + y = 5 dan x - 2y = -4 adalah... A.{ (1, 4) }

4. Himpunan penyelesaian dari sistem persamaan linear x + y = 5 dan x - 2y = -4 adalah... A.{ (1, 4) } 1. Diketahui himpunan P = ( bilangan prima kurang dari 13 ) Banyak himpunan bagian dari P adalah... 5 25 10 32 P = {Bilangan prima kurang dari 13} = {2, 3, 5, 7, 11} n(p) = 5 2. Dari diagram Venn di bawah,

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari

BAB 2 LANDASAN TEORI. Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari BAB 2 LANDASAN TEORI 21 Analisis Komponen Utama 211 Pengantar Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari tulisan Karl Pearson pada tahun 1901 untuk peubah non-stokastik Analisis

Lebih terperinci

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian :

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian : 1. Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm C. 26 cm B. 52 cm D. 13 cm 2. Gambar disamping adalah persegi panjang. Salah satu sifat persegi panjang adalah

Lebih terperinci

Hendra Gunawan. 5 Februari 2014

Hendra Gunawan. 5 Februari 2014 MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 5 Februari 2014 Bab Sebelumnya 7. Teknik Pengintegralan 7.1 Aturan Dasar Pengintegralan 7.2 Pengintegralan Parsial il 7.3 Integral Trigonometrik

Lebih terperinci

Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4

Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4 1. Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4 D. (8-2 ) cm B. (4 - ) cm E. (8-4 ) cm C. (4-2 ) cm Jawaban : E Diketahui segitiga sama kaki = AB = AC Misalkan : AB = AC = a

Lebih terperinci

BAB V APLIKASI PD TINGKAT DUA

BAB V APLIKASI PD TINGKAT DUA BAB V APLIKASI PD TINGKAT DUA Tujuan Instruksional: Mampu membuat model PD pada Sistem Gerak Mampu memahami klasifikasi Sistem Gerak Mampu membuat model dan penyelesaian PD pada klasifikasi Sistem Gerak

Lebih terperinci

KAJIAN MENGENAI SYARAT CUKUP POLYNOMIAL KROMATIK GRAF TERHUBUNG MEMILIKI AKAR-AKAR KOMPLEKS

KAJIAN MENGENAI SYARAT CUKUP POLYNOMIAL KROMATIK GRAF TERHUBUNG MEMILIKI AKAR-AKAR KOMPLEKS KAJIAN MENGENAI SYARAT CUKUP POLYNOMIAL KROMATIK GRAF TERHUBUNG MEMILIKI AKAR-AKAR KOMPLEKS STUDY ON SUFFICIENT CONDITION FOR THE CHROMATIC POLYNOMIAL OF CONNECTED GRAPH HAS COMPLEX ROOTS Yuni Dewi Purnama

Lebih terperinci

ANALISA SINYAL DAN SISTEM TE 4230

ANALISA SINYAL DAN SISTEM TE 4230 ANALISA SINYAL DAN SISTEM TE 430 TUJUAN: Sinyal dan Sifat-sifat Sinyal Sistem dan sifat-sifat Sisterm Analisa sinyal dalam domain Waktu Analisa sinyal dalam domain frekuensi menggunakan Tools: Transformasi

Lebih terperinci

Kata-kata Motivasi ^^

Kata-kata Motivasi ^^ 1 Kata-kata Motivasi ^^ Barang siapa merintis jalan mencari ilmu maka Allah akan memudahkan baginya jalan ke surga. (HR. Muslim) Tak ada rahasia untuk manggapai sukses Sukses itu dapat terjadi karena persiapan,

Lebih terperinci

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009 SOAL UJIAN NASIONAL PROGRAM STUDI IPA ( kode P 4 ) TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh

Lebih terperinci

Fungsi, Persamaaan, Pertidaksamaan

Fungsi, Persamaaan, Pertidaksamaan Fungsi, Persamaaan, Pertidaksamaan Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 9 Agustus 004 di PPPG Matematika Oleh: Drs. Markaban, M.Si. Widyaiswara PPPG

Lebih terperinci

MAT. 05. Relasi dan Fungsi

MAT. 05. Relasi dan Fungsi MAT. 05. Relasi dan Fungsi i Kode MAT. 05 Relasi dan fungsi BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN

Lebih terperinci

3 OPERASI HITUNG BENTUK ALJABAR

3 OPERASI HITUNG BENTUK ALJABAR OPERASI HITUNG BENTUK ALJABAR Pada arena balap mobil, sebuah mobil balap mampu melaju dengan kecepatan (x + 10) km/jam selama 0,5 jam. Berapakah kecepatannya jika jarak yang ditempuh mobil tersebut 00

Lebih terperinci

BAB IV PRINSIP-PRINSIP KONVEKSI

BAB IV PRINSIP-PRINSIP KONVEKSI BAB IV PRINSIP-PRINSIP KONVEKSI Aliran Viscous Berdasarkan gambar 1 dan, aitu aliran fluida pada pelat rata, gaa viscous dijelaskan dengan tegangan geser τ diantara lapisan fluida dengan rumus: du τ µ

Lebih terperinci

Darpublic Nopember 2013 www.darpublic.com

Darpublic Nopember 2013 www.darpublic.com Darpublic Nopember 0 www.darpublic.com. Integral () (Integral Tak Tentu) Sudaryatno Sudirham Dalam bab sebelumnya kita telah mengenal macam-macam perhitungan integral. Salah satu cara mudah untuk menghitung

Lebih terperinci

ALJABAR. Al-Khwarizi adalah ahli matematika dan ahlli astronomi yang termasyur yang tinggal di bagdad(irak) pada permulaan abad ke-9

ALJABAR. Al-Khwarizi adalah ahli matematika dan ahlli astronomi yang termasyur yang tinggal di bagdad(irak) pada permulaan abad ke-9 ALJABAR Al-Khwarizi adalah ahli matematika dan ahlli astronomi yang termasyur yang tinggal di bagdad(irak) pada permulaan abad ke-9 Aljabar adalah salah satu cabang penting dalam matematika. Kata aljabar

Lebih terperinci

PUSAT TEKNOLOGI INFORMASI DAN KOMUNIKASI PENDIDIKAN KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

PUSAT TEKNOLOGI INFORMASI DAN KOMUNIKASI PENDIDIKAN KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT TEKNOLOGI INFORMASI DAN KOMUNIKASI PENDIDIKAN KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN 2011 PETUNJUK PENGISIAN RPP Berikut ini panduan langkah-langkah pengisian template RPP. Jika pengguna sebagai guru

Lebih terperinci

Ruang Hasil Kali Dalam

Ruang Hasil Kali Dalam Ruang Hasil Kali Dalam Hasil Kali Dalam dan Norm Wono Setya Budhi KKAG FMIPA ITB v 0.1 Maret 2015 Wono Setya Budhi (KKAG FMIPA ITB) Ruang Hasil Kali Dalam v 0.1 Maret 2015 1 / 12 Pada bab ini kita akan

Lebih terperinci

fx-991id PLUS Pedoman Pemakaian

fx-991id PLUS Pedoman Pemakaian N fx-991id PLUS Pedoman Pemakaian Situs Pendidikan CASIO di Seluruh Dunia http://edu.casio.com FORUM PENDIDIKAN CASIO http://edu.casio.com/forum/ RJA527845-001V01 Isi Informasi Penting...2 Contoh Pengoperasian...2

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 SINYAL DASAR ATAU FUNGSI SINGULARITAS Sinyal dasar atau fungsi singularitas adalah sinyal yang dapat digunakan untuk menyusun atau mempresentasikan sinyal-sinyal yang lain. Sinyal-sinyal

Lebih terperinci

Representasi Ruang Sinyal

Representasi Ruang Sinyal Representasi Ruang Sinyal Galdita A. Chulafak, 33024-TI Aditya Rizki Yudiantika, 33045-TI Udi Hartono, 33317-TI Jurusan Teknik Elektro dan Teknologi Informasi, Fakultas Teknik UGM, Yogyakarta Bab ini mendiskusikan

Lebih terperinci

BAB II VEKTOR DAN GERAK DALAM RUANG

BAB II VEKTOR DAN GERAK DALAM RUANG BAB II VEKTOR DAN GERAK DALAM RUANG 1. KOORDINAT CARTESIUS DALAM RUANG DIMENSI TIGA SISTEM TANGAN KANAN SISTEM TANGAN KIRI RUMUS JARAK,,,, 16 Contoh : Carilah jarak antara titik,, dan,,. Solusi :, Persamaan

Lebih terperinci

Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini.

Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini. . INVERS MTRIKS Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini. a. RNK MTRIKS Matriks tak nol dikatakan mempunyai rank r jika paling

Lebih terperinci

BAB III Penerapan PDB orde satu

BAB III Penerapan PDB orde satu BAB III Penerapan PDB orde satu Tujuan Instruksional: Mampu memahami dan menyelesaikan trayektori orthogonal Mampu memahami pembuatan model Persamaan Diferensial pada rangkaian RL dan RC seri Mampu menyelesaiakan

Lebih terperinci

BAB VI. PENGGUNAAN INTEGRAL. Departemen Teknik Kimia Universitas Indonesia

BAB VI. PENGGUNAAN INTEGRAL. Departemen Teknik Kimia Universitas Indonesia BAB VI. PENGGUNAAN INTEGRAL Departemen Teknik Kimia Universitas Indonesia BAB VI. PENGGUNAAN INTEGRAL Luas Daerah di Bidang Volume Benda Pejal di Ruang: Metode Cincin Metode Cakram Metode Kulit Tabung

Lebih terperinci

itrimegah Online Trading Simple Manual Book Web Trader & Mobile Trader

itrimegah Online Trading Simple Manual Book Web Trader & Mobile Trader itrimegah Online Trading Simple Manual Book Web Trader & Mobile Trader Contents Website Trading Page and Order Execution Quick Menu and Quick Order Placing Order, Amend and Withdraw Order Charting Portfolio

Lebih terperinci

KESTABILAN TITIK TETAP MODEL PENULARAN PENYAKIT TIDAK FATAL

KESTABILAN TITIK TETAP MODEL PENULARAN PENYAKIT TIDAK FATAL Jurnal Matematika UNAND Vol. 2 No. 3 Hal. 58 65 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KESTABILAN TITIK TETAP MODEL PENULARAN PENYAKIT TIDAK FATAL AKHIRUDDIN Program Studi Matematika, Fakultas

Lebih terperinci

DIKTAT MEKANIKA KEKUATAN MATERIAL

DIKTAT MEKANIKA KEKUATAN MATERIAL 1 DIKTAT MEKANIKA KEKUATAN MATERIAL Disusun oleh: Asyari Darami Yunus Teknik Mesin Universitas Darma Persada Jakarta 010 KATA PENGANTAR Untuk memenuhi buku pegangan dalam perkuliahan, terutama yang menggunakan

Lebih terperinci

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011 LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memerebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 0 PENYISIHAN II PERORANGAN LCCM TINGKAT SMP x. I. x x II. x x x 6 x III. x x 6

Lebih terperinci

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI LAMPIRAN 5 BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI Laporan 2 Pelaksanaan OSN-PERTAMINA 2012 69 Olimpiade Sains Nasional Pertamina 2012 Petunjuk : 1. Tuliskan secara lengkap Nama, Nomor

Lebih terperinci

TKS-4101: Fisika. KULIAH 3: Gerakan dua dan tiga dimensi J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA

TKS-4101: Fisika. KULIAH 3: Gerakan dua dan tiga dimensi J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA TKS-4101: Fisika KULIAH 3: Gerakan dua dan tiga dimensi Dosen: Tim Dosen Fisika Jurusan Teknik Sipil FT-UB 1 Gerak 2 dimensi lintasan berada dalam

Lebih terperinci

Bab 2 Pengenalan Tentang Sistem

Bab 2 Pengenalan Tentang Sistem Bab 2 Pengenalan Tentang Sistem Tujuan: Siswa mampu menggambarkan konsep dasar sebuah sistem, sifat-sifat dasar sistem dan pengertian sistem waktu diskrit. Siswa mampu membedakan sistem waktu kontinyu

Lebih terperinci

v adalah kecepatan bola A: v = ωr. Dengan menggunakan I = 2 5 mr2, dan menyelesaikan persamaanpersamaan di atas, kita akan peroleh: ω =

v adalah kecepatan bola A: v = ωr. Dengan menggunakan I = 2 5 mr2, dan menyelesaikan persamaanpersamaan di atas, kita akan peroleh: ω = v adalah kecepatan bola A: v = ωr. ω adalah kecepatan sudut bola A terhadap sumbunya (sebenarnya v dapat juga ditulis sebagai v = d θ dt ( + r), tetapi hubungan ini tidak akan kita gunakan). Hukum kekekalan

Lebih terperinci

BAB 3 : INVERS MATRIKS

BAB 3 : INVERS MATRIKS BAB 3 : INVERS MATRIKS PEMBAGIAN MATRIKS DAN INVERS MATRIKS Pada aljabar biasa, bila terdapat hubungan antara 2 besaran a dengan x sedemikian sehingga ax1, maka dikatakan x adalah kebalikan dari a dan

Lebih terperinci

Komputasi untuk Sains dan Teknik

Komputasi untuk Sains dan Teknik Komputasi untuk Sains dan Teknik Supriyanto Suparno ( Website: http://supriyanto.fisika.ui.edu ) ( Email: supri@fisika.ui.ac.id atau supri92@gmail.com ) Edisi III Revisi terakhir tgl: 30 Agustus 2009 Departemen

Lebih terperinci

BAB I PENGANTAR MATEMATIKA EKONOMI

BAB I PENGANTAR MATEMATIKA EKONOMI BAB I PENGANTAR MATEMATIKA EKONOMI 1.1 Matematika Ekonomi Aktivitas ekonomi merupakan bagian dari kehidupan manusia ribuan tahun yang lalu. Kata economics berasal dari kata Yunani klasik yang artinya household

Lebih terperinci

CARA MENENTUKAN HASIL AKAR PANGKAT TIGA

CARA MENENTUKAN HASIL AKAR PANGKAT TIGA CARA MENENTUKAN HASIL AKAR PANGKAT TIGA Oleh : Paini, A.Ma.Pd. SDN 1 Karangan Kabupaten Trenggalek Jawa Timur Dalam kehidupan sehari-hari muncul berbagai macam masalah. Masalah-masalah tersebut dapat diselesaikan

Lebih terperinci

SILABUS INDIKATOR MATERI PEMBELAJARAN KEGIATAN PEMBELAJARAN PENILAIAN KHARAKTER

SILABUS INDIKATOR MATERI PEMBELAJARAN KEGIATAN PEMBELAJARAN PENILAIAN KHARAKTER SILABUS NAMA SEKOLAH : SMK Negeri 1 Surabaya MATA PELAJARAN : MATEMATIKA (Kelompok Teknologi Informasi) KELAS / SEMESTER : X / 1 STANDAR : Memecahkan masalah berkaitan dengan konsep operasi bilangan riil

Lebih terperinci

EDISI REVISI 2014 MATEMATIKA. SMA/MA SMK/MAK Kelas. Semester 1

EDISI REVISI 2014 MATEMATIKA. SMA/MA SMK/MAK Kelas. Semester 1 EDISI REVISI 04 MATEMATIKA SMA/MA SMK/MAK Kelas X Semester Hak Cipta 04 pada Kementerian Pendidikan dan Kebudayaan Dilindungi Undang-Undang MILIK NEGARA TIDAK DIPERDAGANGKAN Disklaimer: Buku ini merupakan

Lebih terperinci

Contents. 1. PERSONALISE & My page 2. QUICK MENU 3. order submission 4. Market info 5. portfolio 6. NEWS & RESEARCH

Contents. 1. PERSONALISE & My page 2. QUICK MENU 3. order submission 4. Market info 5. portfolio 6. NEWS & RESEARCH Contents 1. PERSONALISE & My page 2. QUICK MENU 3. order submission 4. Market info 5. portfolio 6. NEWS & RESEARCH 1 Personalise Setting Menu ini menunjukkan cara untuk mengatur Hot Keys dan menyimpannya

Lebih terperinci

Gambar 5.27. Penentuan sudut dalam pada poligon tertutup tak. terikat titik tetap P 3 P 2 P 5 P 6 P 7

Gambar 5.27. Penentuan sudut dalam pada poligon tertutup tak. terikat titik tetap P 3 P 2 P 5 P 6 P 7 A Δ P P 3 3 4 P4 P Δ 5 P 5 6 8 P 6 P 8 7 Gambar 5.7. Penentuan sudut dalam pada poligon tertutup tak terikat titik tetap P 7 3 P 3 P 4 4 P P P 5 5 P 6 P 8 6 8 P 7 Gambar 5.8. Penentuan sudut luar pada

Lebih terperinci

UN SMA IPA 2010 Matematika

UN SMA IPA 2010 Matematika UN SMA IPA 00 Matematika Kode Soal P0 Doc. Name: UNSMAIPA00MATP0 Doc. Version : 0-0 halaman 0. Akar-akar persamaan kuadrat x² + (a - ) x + =0 adalah α dan β. Jika a > 0 maka nilai a =. 8 x 0. Diketahui

Lebih terperinci

METODE ITERASI OPTIMAL TANPA TURUNAN BERDASARKAN BEDA TERBAGI ABSTRACT

METODE ITERASI OPTIMAL TANPA TURUNAN BERDASARKAN BEDA TERBAGI ABSTRACT METODE ITERASI OPTIMAL TANPA TURUNAN BERDASARKAN BEDA TERBAGI Amelia Riski, Putra. Supriadi 2, Agusni 2 Mahasiswa Program Studi S Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas

Lebih terperinci

KORELASI DAN REGRESI LINIER SEDERHANA

KORELASI DAN REGRESI LINIER SEDERHANA KORELASI DAN REGRESI LINIER SEDERHANA 1. Pendahuluan Istilah "regresi" pertama kali diperkenalkan oleh Sir Francis Galton pada tahun 1886. Galton menemukan adanya tendensi bahwa orang tua yang memiliki

Lebih terperinci

BAB II. REGRESI LINIER SEDERHANA

BAB II. REGRESI LINIER SEDERHANA .1 Pendahuluan BAB II. REGRESI LINIER SEDERHANA Gejala-gejala alam dan akibat atau faktor yang ditimbulkannya dapat diukur atau dinyatakan dengan dua kategori yaitu fakta atau data yang bersifat kuantitatif

Lebih terperinci

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain BAB III RUANG VEKTOR R DAN R 3 Bab ini membahas pengertian dan operasi ektor-ektor. Selain operasi aljabar dibahas pula operasi hasil kali titik dan hasil kali silang dari ektor-ektor. Tujuan Instruksional

Lebih terperinci

METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Mahrani 1, M. Imran, Agusni 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

Distribusi Normal. Statistika (MAM 4137) Syarifah Hikmah JS

Distribusi Normal. Statistika (MAM 4137) Syarifah Hikmah JS Distribusi Normal Statistika (MAM 4137) Syarifah Hikmah JS Outline Kurva normal Luas daerah di bawah kurva normal Penerapan sebaran normal DISTRIBUSI NORMAL model distribusi kontinyu yang paling penting

Lebih terperinci

RANCANGAN ACAK LENGKAP (RAL)

RANCANGAN ACAK LENGKAP (RAL) RANCANGAN ACAK LENGKAP (RAL) Oleh: Ir. Sri Nurhatika M.P Jurusan Biologi Fakultas MAtematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya 2010 RANCANGAN ACAK LENGKAP (RAL) Penggunaan

Lebih terperinci

Pertemuan 1 HIMPUNAN. a.himpunan Kosong Ǿ adalah himpunan yang mempunyai nol anggota(tidak mempunyai elemen.)

Pertemuan 1 HIMPUNAN. a.himpunan Kosong Ǿ adalah himpunan yang mempunyai nol anggota(tidak mempunyai elemen.) Pertemuan 1 HIMPUNAN 1.3.1. Definisi a.himpunan Kosong Ǿ adalah himpunan yang mempunyai nol anggota(tidak mempunyai elemen.) b. Misalkan nєν Himpunan S dikatakan mempunyai n anggota jika ada suatu fungsi

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1 Desain Penelitian Tabel 3.1 Desain Penelitian Tujuan Desain Penelitian Penelitian Jenis dan Metode Unit Analisis Time Horizon Penelitian T-1 Asosiatif/survey Organisasi-Departemen

Lebih terperinci

B. Persoalan Batasan Campuran

B. Persoalan Batasan Campuran B. Persoalan Batasan Campuran Tempat kerajinan membuat tas kantor dan tas kulit. Laba tas kantor $ 400 dan laba tas koper $ 200. Tempat kerajinan tersebut harus menyediakan untuk pelanggan 30 tas setiap

Lebih terperinci

9. K omunikasi Bukti Bukti Secara Visual

9. K omunikasi Bukti Bukti Secara Visual 9. Komunikasi Bukti Bukti Secara 9. Komunikasi Bukti Bukti Secara Visual Pembaca akan menilai kualitas dari penelitian anda berdasarkan pentingnya klaim anda dan kekuatan dari argumen anda Sebelumnya,

Lebih terperinci

KUMPULAN RUMUS MATEMATIKA UNTUK SMP SESUAI DENGAN STANDAR KOMPETENSI LULUSAN UJIAN NASIONAL TAHUN PELAJARAN 2009/2010

KUMPULAN RUMUS MATEMATIKA UNTUK SMP SESUAI DENGAN STANDAR KOMPETENSI LULUSAN UJIAN NASIONAL TAHUN PELAJARAN 2009/2010 Rumus-rumus Matematika 1 Sesuai SKL UN 2010 KUMPULN RUMUS MTMTIK UNTUK SMP SSUI NGN STNR KOMPTNSI LULUSN UJIN NSIONL THUN PLJRN 2009/2010 SKL Nomor 1 : Menggunakan konsep operasi hitung dan sifat-sifat

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Salah satu tahapan dalam pengadaan jaring kontrol GPS adalah desain jaring. Desain jaring digunakan untuk mendapatkan jaring yang optimal. Terdapat empat tahapan dalam

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam perkembangan zaman yang semakin modern ini data adalah sesuatu yang sangat dibutuhkan baik individu, instansi, organisasi dan perusahaan. Sebuah perusahaan sangat

Lebih terperinci

BAB V TRANSFORMASI 2D

BAB V TRANSFORMASI 2D BAB V TRANSFORMASI 2D OBJEKTIF : Pada Bab ini mahasiswa mempelajari tentang : Transformasi Dasar 2D 1. Translasi 2. Rotasi 3. Scalling Transformasi Lain 1. Refleksi 2. Shear TUJUAN DAN SASARAN: Setelah

Lebih terperinci

TEKNIK PENGUKURAN LISTRIK

TEKNIK PENGUKURAN LISTRIK TEKNIK PENGUKURAN LISTRIK ELK-DAS.16 20 JAM Penyusun : TIM FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAHDEPARTEMEN

Lebih terperinci

17. SOAL-SOAL PROGRAM LINEAR

17. SOAL-SOAL PROGRAM LINEAR 17. SOAL-SOAL PROGRAM LINEAR EBTANAS2000 1. Himpunan penelesaian sistem pertidaksamaan 5x + 10 2x + 8 2 x = 2 titik (2,0 titk potong dengan sumbu jika x = 0 = 10 titik (0,10 daerah 5x + 10 berada pada

Lebih terperinci

PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO. Oky Dwi Nurhayati, ST, MT email: okydn@undip.ac.id

PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO. Oky Dwi Nurhayati, ST, MT email: okydn@undip.ac.id PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO Oky Dwi Nurhayati, ST, MT email: okydn@undip.ac.id Kinerja yang perlu ditelaah pada algoritma: beban komputasi efisiensi penggunaan memori Yang perlu

Lebih terperinci

Analisis Perpindahan (displacement) dan Kecepatan Sudut (angular velocity) Mekanisme Empat Batang Secara Analitik Dengan Bantuan Komputer

Analisis Perpindahan (displacement) dan Kecepatan Sudut (angular velocity) Mekanisme Empat Batang Secara Analitik Dengan Bantuan Komputer Analisis Perpindahan (displacement) dan Kecepatan Sudut (angular velocity) Mekanisme Empat Batang Secara Analitik Dengan Bantuan Komputer Oegik Soegihardjo Dosen Fakultas Teknologi Industri Jurusan Teknik

Lebih terperinci

REGRESI LINEAR SEDERHANA

REGRESI LINEAR SEDERHANA REGRESI LINEAR SEDERHANA DAN KORELASI 1. Model Regresi Linear 2. Penaksir Kuadrat Terkecil 3. Prediksi Nilai Respons 4. Inferensi Untuk Parameter-parameter Regresi 5. Kecocokan Model Regresi 6. Korelasi

Lebih terperinci

PERTIDAKSAMAAN LINEAR SATU VARIABEL. Sumber: Dok. Penerbit

PERTIDAKSAMAAN LINEAR SATU VARIABEL. Sumber: Dok. Penerbit 4 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR SATU VARIABEL Sumber: Dok. Penerbit Pernahkah kalian berbelanja alat-alat tulis? Kamu berencana membeli 10 buah bolpoin, sedangkan adikmu membeli 6 buah bolpoin dengan

Lebih terperinci

Analisis ARCH dan GARCH menggunakan EViews

Analisis ARCH dan GARCH menggunakan EViews Analisis ARCH dan GARCH menggunakan EViews Pada bagian ini akan dikemukakan penggunaan EViews untuk analisis ARCH dan GARCH. Penggunaan EViews kali ini lebih ditekankan dengan memanfaatkan menumenu yang

Lebih terperinci

10/14/2012. Gas Nyata. Faktor pemampatan (kompresi), Z. Faktor Kompresi, Z. TERMODINAMIKA KIMIA (KIMIA FISIK 1 ) Sistem Gas Nyata

10/14/2012. Gas Nyata. Faktor pemampatan (kompresi), Z. Faktor Kompresi, Z. TERMODINAMIKA KIMIA (KIMIA FISIK 1 ) Sistem Gas Nyata 10/14/01 Jurusan Kimia - FMIA Universitas Gadjah Mada (UGM) ERMODINAMIKA KIMIA (KIMIA FISIK 1 ) Sistem Gas Nyata Gas Nyata engamatan bahwa gas-gas nyata menyimpang dari hukum gas ideal terutama sangat

Lebih terperinci

KONSEP FREKUENSI SINYAL WAKTU KUNTINYU & WAKTU DISKRIT

KONSEP FREKUENSI SINYAL WAKTU KUNTINYU & WAKTU DISKRIT KONSEP FREKUENSI SINYAL WAKTU KUNTINYU & WAKTU DISKRIT Sinyal Sinusoidal Waktu Kontinyu T=/F A A cos X Acos Ft a 0 t t Sinyal dasar Eksponensial dng α imajiner X Ae a j t Ω = πf adalah frekuensi dalam

Lebih terperinci

METODE BEDA HINGGA dan PENGANTAR PEMROGRAMAN

METODE BEDA HINGGA dan PENGANTAR PEMROGRAMAN Praktikum m.k Model dan Simulasi Ekosistem Hari / Tanggal : Nilai METODE BEDA HINGGA dan PENGANTAR PEMROGRAMAN Nama : NIM : Oleh PROGRAM STUDI ILMU KELAUTAN FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

Lebih terperinci

Sainstech. Dalam. Membuat. Tahap 2: Total Siswa. Jul. Mei. Mar. Feb. Apr. Jun PLC. Rata rata

Sainstech. Dalam. Membuat. Tahap 2: Total Siswa. Jul. Mei. Mar. Feb. Apr. Jun PLC. Rata rata Sainstech Unisma Bekasi Pertemuan 8 (Grafik 2 y axis dan link antar sheet) Bagian 1 : Membuat Grafik dengan 2 y axis Penjelasan singkat : Dalam latihan ini akan dilakukan pembuatan grafik yang menampilkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Teori dan Fungsi Produksi Produksi sering diartikan sebagai penciptaan guna, yaitu kemampuan barang dan jasa untuk memenuhi kebutuhan manusia.produksi dalam hal ini mencakup

Lebih terperinci

PENGGUNAAN WORKSPACE DALAM ORDER BOOK

PENGGUNAAN WORKSPACE DALAM ORDER BOOK PENGGUNAAN WORKSPACE DALAM ORDER BOOK 1. Mengaktifkan Trading Mode. Klik Cust (Customized) pilih/conteng TRADING MODE yang terletak di dekat bawah screen gambar 1a: Trading Mode tidak aktif gambar 1b:

Lebih terperinci

MEBUAT POSTER ILMIAH DENGAN MICROSOFT OFFICE DALAM WAKTU 15 MENIT.!!!!

MEBUAT POSTER ILMIAH DENGAN MICROSOFT OFFICE DALAM WAKTU 15 MENIT.!!!! MEBUAT POSTER ILMIAH DENGAN MICROSOFT OFFICE DALAM WAKTU 15 MENIT.!!!! Publikasi ilmiah merupakan suatu hal yang wajib dilakukan oleh seorang peneliti. Banyak sekali jenis jenis publikasi yang dapat dilakukan

Lebih terperinci

AKAR-AKAR POLINOMIAL SEPARABEL SEBAGAI PEMBENTUK PERLUASAN NORMAL

AKAR-AKAR POLINOMIAL SEPARABEL SEBAGAI PEMBENTUK PERLUASAN NORMAL AKAR-AKAR POLINOMIAL SEPARABEL SEBAGAI PEMBENTUK PERLUASAN NORMAL (Oleh: Sulastri Daruni, Bayu Surarso, Bambang Irawanto) Abstrak Misalnya F adalah lapangan perluasan dari lapangan K dan f(x) adalah polinomial

Lebih terperinci

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor Matematika Lanjut 1 Vektor Ruang Vektor Matriks Determinan Matriks Invers Sistem Persamaan Linier Transformasi Linier 1 Dra. D. L. Crispina Pardede, DE. Referensi [1]. Yusuf Yahya, D. Suryadi. H.S., gus

Lebih terperinci

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN KULIAH-4 Modul Pembelajaran Matematika Kelas X semester 1 Modul Pembelajaran Matematika Kelas X semester 1 FUNGSI DAN GRAFIKNYA PERTIDAKSAMAAN Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan

Lebih terperinci

Abstrak/Ringkasan. A.Pendahuluan. Judul Artikel Tabel Distribusi Frekuensi. Bimo Prasetyo 4115122250 Prasetyobimo95@yahoo.co.id

Abstrak/Ringkasan. A.Pendahuluan. Judul Artikel Tabel Distribusi Frekuensi. Bimo Prasetyo 4115122250 Prasetyobimo95@yahoo.co.id Judul Artikel Tabel Distribusi Frekuensi Bimo Prasetyo 4115122250 Prasetyobimo95@yahoo.co.id http://prasetyobimo95@yahoo.co.id Lisensi Dokumen: Seluruh dokumen di StatistikaPendidikan.Com dapat digunakan,

Lebih terperinci

UJI ASUMSI KLASIK DENGAN SPSS 16.0. Disusun oleh: Andryan Setyadharma

UJI ASUMSI KLASIK DENGAN SPSS 16.0. Disusun oleh: Andryan Setyadharma UJI ASUMSI KLASIK DENGAN SPSS 16.0 Disusun oleh: Andryan Setyadharma FAKULTAS EKONOMI UNIVERSITAS NEGERI SEMARANG 2010 1. MENGAPA UJI ASUMSI KLASIK PENTING? Model regresi linier berganda (multiple regression)

Lebih terperinci

Memanfaatkan Wolfram Alpha Free untuk Pembelajaran Matematika Bagian I: Secara Online. Marfuah, M.T marfuah@p4tkmatematika.org

Memanfaatkan Wolfram Alpha Free untuk Pembelajaran Matematika Bagian I: Secara Online. Marfuah, M.T marfuah@p4tkmatematika.org Memanfaatkan Wolfram Alpha Free untuk Pembelajaran Matematika Bagian I: Secara Online Marfuah, M.T marfuah@p4tkmatematika.org Satu lagi aplikasi gratis yang dapat dimanfaatkan untuk pembelajaran matematika,

Lebih terperinci

Kode MK/ Matematika Diskrit

Kode MK/ Matematika Diskrit Kode MK/ Matematika Diskrit TEORI GRAF 1 8/29/2014 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 2 8/29/2014 1 TEORI GRAF Tujuan Mahasiswa memahami konsep

Lebih terperinci

Hisab Awal Bulan Syawwal 1434 H

Hisab Awal Bulan Syawwal 1434 H Hisab Awal Bulan Sistem Ephemeris 1 Hisab Awal Bulan Syawwal 1434 H Kota Penentuan Brisbane Lintang tempat (φ) = 27 28' 45 LS Bujur tempat (λ) = 153 1 ' 40 BT Tinggi tempat =... 10 meter di atas laut 0.

Lebih terperinci