Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II

Ukuran: px
Mulai penontonan dengan halaman:

Download "Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II"

Transkripsi

1 Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II [MA4]

2 PDB Orde II Bentuk umum : y + p(x)y + g(x)y = r(x) p(x), g(x) disebut koefisien jika r(x) = 0, maka Persamaan Differensial diatas disebut homogen, sebaliknya disebut non homogen. Persamaan Differensial Biasa linier orde dua homogen dengan koefisien konstan, memiliki bentuk umum : y + ay + by = 0 dimana a, b merupakan konstanta sebarang.

3 Solusi Homogen Diketahui y + ay + by = 0 Misalkan y=e rx Persamaannya berubah menjadi r + ar + b = 0, sebuah persamaan kuadrat. Jadi kemungkinan akarnya ada 3 yaitu:. Akar real berbeda (r,r ; dimana r r ) Memiliki solusi basis y = e r x dan y = e r x dan mempunyai solusi umum y = C e r x + C e r x 3

4 Solusi Homogen. Akar real kembar (r,r ; dimana r = r =r ) Memiliki solusi basis y = e r x dan y =x e r x dan mempunyai solusi umum y = C e r x + C x e r x 3.Akar kompleks kojugate (r = u + wi, r = u wi) Memiliki solusi basis y = e ux cos wx; dan y = e ux sin wx dan mempunyai solusi umum y = e ux ( C cos wx + C sin wx ) 4

5 Contoh soal. y + 5y + 6y = 0 Persamaan karakteristiknya: ( r + ) ( r + 3 ) = 0 r = - atau r = -3 maka solusinya : y = C e - x + C e -3x. y + 6y + 9y = 0 Persamaan karakteristiknya: ( r + 3 ) ( r + 3 ) = 0 r = r = -3 maka solusinya : y = C e -3x + C x e -3x 3. y + 4y = 0 Persamaan karakteristiknya: r + 4 = 0 ± 4..4 r = = ± i maka solusinya : y = C cos x + C sin x 5

6 Latihan. y 3y -4y=0. y 9y=0 3. y + 4y=0 4. y +y =0 5. y 4y + 4y=0 6. y + 3y 4y=0 7. y + 9y= 0 8. y + y =0 9. y 4y=0, y=4, y =0 bila x=0 0. y 5y + 6y=0, y=, y =0 bila x=0 6

7 Persamaan Differensial non homogen Bentuk umum: dengan r(x) 0 y + p(x)y + g(x)y = r(x) Solusi total : y = y h + y p Dimana y h = solusi P D homogen y p = solusi P D non homogen Menentukan y p. Metode koefisien tak tentu. Metode variasi parameter 7

8 Metode koefisien tak tentu pilihlah y p yang serupa dengan r(x), lalu substitusikan ke dalam persamaan. r(x) = e mx r(x) y p = A e mx y p r(x) = X n y p = A n X n + A n- X n- +.+A X + A 0 r(x) = sin wx y p = A cos wx + B sin wx r(x) =cos wx y p = A cos wx + B sin wx r(x) = e ux sin wx y p = e ux (A cos wx + B sin wx ) R(x) =e ux cos wx y p = e ux (A cos wx + B sin wx ) Ctt: Solusi Parsial tidak boleh muncul pada solusi homogennya. Jika hal ini terjadi, kalikan solusi khususnya dengan faktor x atau x sehingga tidak memuat lagi solusi homogennya. 8

9 Contoh. y 3y + y = e -x Jawab: Persamaan karakteristiknya: r 3r + = 0 (r )(r ) = 0 Sehingga didapat r = dan r = Jadi solusi homogennya adalah y h = C e x + C e x Untuk y p dipilih y p = A e -x y p =-A e -x y p = A e -x KemudianmasukankePD diatas: A e -x + 3 A e -x + A e -x = e -x 6 A e -x = e -x A = /6 Jadi solusi umum PD di atas adalah y = C e x + C e x + /6 e -x 9

10 Contoh. y 3y + y = cos x Jawab: Persamaan karakteristiknya: r 3 r + = 0 (r ) (r ) = 0 Sehingga didapat r = dan r = Jadi solusi homogennya adalah y h = C e x + C e x Untuk y p dipilih y p = A cos x + B sin x y p = -A sinx + B cos x KemudianmasukankePD diatas: y p = -A cosx B sin x (-A cos x B sin x) 3(-A sin x + B cos x)+(a cos x +B sin x)= cos x (-A-3B+A) cos x + (-B+3A+B) sin x= cos x (-3B + A) cos x + (3A+B) sin x= cos x -3B + A = dan 3A+B= 0 0

11 Contoh (no. Lanjutan) Didapat A = /0 dan B = -3/0 Jadi solusi umum PD di atas adalah y = C e x + C e x + (/0) cos x (3/0) sin x 3. y 3y + y = e -x + cos x Jawab: Dari contoh dan didapat, solusi umumnya adalah y = C e x + C e x + (/6) e -x + (/0) cos x (3/0) sin x

12 Contoh 4. y 3y + y = e x, y(0)=, y (0)=- Jawab: Persamaan karakteristiknya: r 3 r + = 0 (r )(r ) = 0 Sehingga didapat r = dan r = Jadi solusi homogennya adalah y h = C e x + C e x Untuk y p dipilih y p = A x e x y p = A e x + A x e x KemudianmasukankePD diatas: y p = A e x + A x e x Ae x +Axe x 3(Ae x + Axe x ) + Axe x = e x -A e x = e x A = - Jadi solusi umum PD di atas adalah y = C e x + C e x xe x

13 Contoh Kita punya y(0)= dan y (0)=- y = C e x + C e x x e x =C +C y = C e x + C e x e x xe x Didapat C =-, dan C = 0=C +C Jadi solusi khusus PD di atas adalah y = e x + e x x e x 3

14 Latihan. y 3y -4y=3x +. y 9y=x+ 3. y 3y 4y=e x 4. y + 4y= sin x 5. y 3y -4y=e -x 6. y + 4y= cos x 7. y +y =3x + 8. y 4y + 4y=e x 9. y + 3y 4y=3x + 0. y + 9y= sin 3x+e x. y + y =e x + 3x. y 4y=4 sinx, y=4, y =0 bila x=0 3. y 5y + 6y=e x, y=, y =0 bila x=0 4

15 Metode Variasi Parameter Metode ini digunakan untuk memecahkan persamaanpersamaan yang tidak dapat diselesaikan dengan menggunakan metode koefisien tak tentu. Persamaan Differensial orde dua non homogen y + a y + b y = r(x) memiliki solusi total : y = y h + y p misal y p = u y + v y dimana u = u(x) ; v = v(x) maka y p = u y + u y + v y + v y pilih u dan v sehingga : u y + v y = 0.(*) 5

16 Metode Variasi Parameter y p = u y + v y y p = u y + u y + v y + vy Substitusikan y p, y p, y p ke dalam persamaan awal sehingga di dapatkan : u y + u y + v y + vy + a (u y + v y )+ b ( u y + v y ) = r(x) u ( y + a y + b y ) + v ( y + a y + b y ) + u y + v y = r (x) u y + v y = r (x).(**) 6

17 Metode Variasi Parameter Eleminasi (*) dan (**) di peroleh : u y + v y = 0 u y + v y = r (x) dengan aturan cramer diperoleh 0 r(x) y' y r(x) ' = u = dx y y W y ' y y u Keterangan: W = ' y y y' y' y y' r(x) y r(x) ' = v = dx y y W y ' y 0 v ' 7

18 Contoh. y + y = tan x Jawab: Persamaan karakteristiknya: r + = 0 r = ± i Jadi solusi homogennya adalah y h = C cos x + C sin x Untuk y p dipilih y p = u y + v y dengan y = cos x y = sin x y = - sin x y = cos x W= y y y y =cos x+sin x = Sehingga diperoleh sin x tan x sin u = dx = x dx cos x = cos x dx cos x (sec = x cos x) dx 8

19 Contoh (Lanjutan) + = sec x dx cos x dx = ln sec x + tan x + sin x Sedangkan, cos x tan x v = dx = sin x dx = cos x Jadi solusi non homogen didapat y p = = ( ln sec x + tan x ) cos x + sin x cos x sin x cos x ( ln sec x + tan x ) cos x Jadi solusi umum dari persamaan diferensial di atas y = C cos x + C sin x + ( ln sec x tan x ) cos x 9

20 Contoh. y +9y = sec 3x Jawab: Persamaan karakteristiknya: r + 9 = 0 r = ± 3 i Jadi solusi homogennya adalah y h = C cos 3x + C sin 3x Untuk y p dipilih y p = u y + v y dengan y = cos 3x y = sin 3x y = -3 sin 3x y = 3 cos 3x W= y y y y =3cos 3x+3 sin 3x =3 Sehingga diperoleh sin 3xsec 3x u = dx = 3 sec3x tan 3x dx 3 = 9 sec 3x 0

21 Contoh (Lanjutan) Sedangkan, cos 3xsec 3x v = dx = sec 3x dx = ln sec3x + tan 3x Jadi solusi non homogen didapat y p = sec3x cos3x + ( ln sec3x + tan 3x ) sin 3x 9 9 y p = + ( ln sec3x + tan 3x ) sin 3x 9 9 Jadi solusi umum dari persamaan diferensial di atas y = C cos3x + C sin 3x ( ln sec3x tan 3x ) sin x

22 Latihan. y + y = cosec x cot x. y + y = cot x x e 3. y 3 y + y = x e + x e 4. y + 4 y + 4 y = x 5. y + 4 y = 3 cosec x 6. y + 4 y = 3 cosec x 7. 4 y + y = sec (x/) x e 8. y y + y = + x

23 Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Penggunaan PD Orde II [MA4]

24 Penerapan dalam Rangkaian Listrik Perhatikan suatu rangkaian (gambar samping) dengan sebuah tahanan (R ohm), dan sebuah kumparan (L Henry) dan sebuah kapasitor (C farad) dalam rangkaian seri dengan sumber gaya elektromotif yang menyediakan suatu voltase E(t) volt pada saat t. Hukum Kirchhoff untuk kasus ini, muatan Q pada kapasitor, diukur dalam coulomb, memenuhi d Q dq L + R + Q = dt dt C E() t 4

25 Arus (Lanjutan) I = dq dt, diukur dalam ampere, memenuhi persamaan yang diperoleh dengan pendiferensialan persamaan di atas terhadap t, yaitu L d I dt + R di dt + C I = E' () t 5

26 Contoh Tentukan muatan Q dan arus I sebagai fungsi dari waktu t dari suatu rangkaian RLC dengan R = 6 ohm, L = 0,0 henry, C = x 0-4 farad dan E = Volt dengan diasumsikan saat awal arus dan muatannya adalah nol (pada waktu saklar S ditutup) Jawab Dari hukum kirchhoff, tentang rangkaian RLC didapat 0,0 Q" + 6 Q' Q = Atau bisa disederhanakan Q" Q' Q = 600 6

27 Contoh Persamaan karakteristiknya adalah r r = 0 Diperoleh akar akar persamaannya : Solusi homogen : Q r = 400 ± 300i ( C 300t + C sin t) 400 t Qh = e cos 300 Dengan menggunakan metode koefisien tak tentu, dengan mengambil Q p = A, di dapat 3 =,4 x 0 Q p Jadi solusi umumnya adalah ( C cos 300t + C sin 300t ) t =,4 x 0 + e 7

28 Rangkaian RLC Dengan memasukkan syarat awal Q(0) =0 dan I(0)=0 maka diperoleh C =,4 x 0 Q = dan Jadi solusi khususnya adalah C = 3, x 0 (,4 cos 300t + 3, sin 300t ) [ e ] 400 t,4 Dengan pendiferensialan diperoleh I( t) = Q'( t) = e 400t sin300t 3 8

29 Latihan. Hitunglah kuat arus yang mengalir dalam suatu rangkaian RLC dengan nilai R = 00 ohm, L = 0, henry, C = 0-3 farad yang dihubungkan dengan sumber tegangan E(t) = 55 sin 377 t dengan diasumsikan pada saat awal arus dan muatannya adalah nol.. Tentukan muatan Q sebagai fungsi dari waktu t yang mengalir dalam suatu rangkaian RC dengan R = 0 6 ohm, C = 0-6 farad dan sumber tegangannya konstan dengan E = Volt dan diasumsikan saat awal muatannya adalah nol. 9

30 Latihan 3. Hitunglah muatan dan kuat arus I yang mengalir dalam suatu rangkaian RLC dengan nilai R = 000 ohm, L = 3,5 henry, C = x 0-6 farad yang dihubungkan dengan sumber tegangan E(t) = 0 sin 377t dengan diasumsikan pada saat awal arus dan muatannya adalah nol. 4. Tentukan kuat arus I sebagai fungsi dari waktu t yang mengalir dalam suatu rangkaian LC dengan L = 0 - Henry, C = 0-7 farad dan sumber tegangannya konstan dengan E = 0 Volt dan diasumsikan saat awal muatan dan arusnya adalah nol. 30

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Persamaan Diferensial Orde II

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Persamaan Diferensial Orde II Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika Persamaan Diferensial Orde II PDB Orde II Bentuk umum : y + p(x)y + g(x)y = r(x) p(x), g(x) disebut koefisien jika r(x) = 0, maka

Lebih terperinci

Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE 2

Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE 2 Nurdininta Athari PERSAMAAN DIFFERENSIAL ORDE 2 2 PDB ORDE II Bentuk umum : + p() + g() = r() p(), g() disebut koefisien jika r() = 0, maka Persamaan Differensial diatas disebut homogen, sebalikna disebut

Lebih terperinci

MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO. Mohamad Sidiq

MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO. Mohamad Sidiq MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO REFERENSI E-BOOK REFERENSI ONLINE SOS Mathematics http://www.sosmath.com/diffeq/diffeq.html Wolfram Research Math World http://mathworld.wolfram.com/ordinarydifferentialequation.h

Lebih terperinci

PERSAMAAN DIFERENSIAL LINIER NON HOMOGEN

PERSAMAAN DIFERENSIAL LINIER NON HOMOGEN LINIER NON HOMOGEN Contoh PD linier non homogen orde 2. Bentuk umum persamaan PD Linier Non Homogen Orde 2, adalah sebagai berikut : y + f(x) y + g(x) y = r(x) ( 2-35) Solusi umum y(x) akan didapatkan

Lebih terperinci

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui.

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. 1 Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. Jika persamaan diferensial memiliki satu peubah tak bebas maka disebut Persamaan Diferensial

Lebih terperinci

Hendra Gunawan. 25 April 2014

Hendra Gunawan. 25 April 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 5 April 014 Kuliah yang Lalu 15.11 Persamaan Diferensial Linear Orde, Homogen 15. Persamaan Diferensial Linear Orde, Tak Homogen 15.3 Penggunaan Persamaan

Lebih terperinci

BAB I PENDAHULUAN. Kompetensi

BAB I PENDAHULUAN. Kompetensi BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU

BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU PDB orde satu dapat dinyatakan dalam: atau dalam bentuk: = f(x, y) M(x, y) + N(x, y) = 0 Penyelesaian PDB orde satu dengan integrasi secara langsung Jika

Lebih terperinci

BAB I PENDAHULUAN. Kompetensi

BAB I PENDAHULUAN. Kompetensi BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU

BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU PDB orde satu dapat dinyatakan dalam: atau dalam bentuk: Penyelesaian PDB orde satu dengan integrasi secara langsung Jika PDB dapat disusun dalam bentuk,

Lebih terperinci

PERSAMAAN DIFFERENSIAL LINIER

PERSAMAAN DIFFERENSIAL LINIER PERSAMAAN DIFFERENSIAL LINIER Persamaan Differensial Linier Pengertian : Suatu persamaan differensial orde satu dikatakan linier jika persamaan tersebut dapat dituliskan sbb: y + p x y = r(x) (1) linier

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I 1. Pendahuluan Pengertian Persamaan Diferensial Metoda Penyelesaian -contoh Aplikasi 1 1.1. Pengertian Persamaan Differensial Secara Garis Besar Persamaan

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Homogen Tk. 2 (Differential: Linier Homogen Orde 2) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya PD linier homogen orde 2 Bentuk

Lebih terperinci

BAB IV PERSAMAAN TAKHOMOGEN

BAB IV PERSAMAAN TAKHOMOGEN BAB IV PERSAMAAN TAKHOMOGEN Kompetensi Mahasiswa mampu 1. Menentukan selesaian khusus PD tak homogen dengan metode koefisien tak tentu 2. Menentukan selesaian khusus PD tak homogen dengan metode variasi

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Non Homogen Tk. 2 (Differential: Linier Non Homogen Orde 2) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Solusi umum merupakan jumlah

Lebih terperinci

PEMBENTUKAN MODEL RANGKAIAN LISTRIK

PEMBENTUKAN MODEL RANGKAIAN LISTRIK PEMBENTUKAN MODEL RANGKAIAN LISTRIK Pada sub bab ini akan membahas tentang sistem listrik. Pembahasan ini berperan sebagai suatu contoh yang mengesankan dari kenyataan penting, bahwa sistem fisis yang

Lebih terperinci

MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE DUA

MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE DUA MATERI MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE DUA 1 Tujuan 1. Dapat menyelesaikan persamaan diferensial orde dua.. Dapat menyelesaikan suatu Sistem Linier dengan menggunakan metode Eliminasi atau

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 2 - II

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 2 - II PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE - II.Persamaan Homogen dengan Koefisien Konstan Suatu persamaan linier homogen y + ay + by = 0 (1) mempunyai koefisien a dan b adalah konstan. Persamaan ini mempunyai

Lebih terperinci

Persamaan Di erensial Orde-2

Persamaan Di erensial Orde-2 oki neswan FMIPA-ITB Persamaan Di erensial Orde- Persamaan diferensial orde-n adalah persamaan yang melibatkan x; y; dan turunan-turunan y; dengan yang paling tinggi adalah turunan ke-n: F x; y; y ; y

Lebih terperinci

MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE SATU

MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE SATU MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE SATU 1 Persamaan diferensial orde satu Persamaan diferensial menyatakan hubungan dinamik antara variabel bebas dan variabel tak bebas, maksudnya

Lebih terperinci

PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari

PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE I Nurdininta Athari Definisi PERSAMAAN DIFERENSIAL Persamaan diferensial adalah suatu persamaan ang memuat satu atau lebih turunan fungsi ang tidak diketahui. Jika persamaan

Lebih terperinci

INTEGRAL TAK TENTU 1

INTEGRAL TAK TENTU 1 INTEGRAL TAK TENTU 1 Rumus umum integral b a f (x) dx F(x) =lambang integral f(x) = integran (fungsi yg diintegralkan) a dan b = batas pengintegralan a = batas bawah b = batas atas dx = faktor pengintegral

Lebih terperinci

PD Orde 2 Lecture 3. Rudy Dikairono

PD Orde 2 Lecture 3. Rudy Dikairono PD Orde Lecture 3 Rudy Dikairono Today s Outline PD Orde Linear Homogen PD Orde Linear Tak Homogen Metode koefisien tak tentu Metode variasi parameter Beberapa Pengelompokan Persamaan Diferensial Order

Lebih terperinci

TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 2016/2017

TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 2016/2017 A. Pengantar Persamaan Diferensial TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 016/017 1. Tentukan hasil turunan dari fungsi sebagai berikut: a. f() = c e b. f() = c cos k + c sin k c.

Lebih terperinci

HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL

HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL Dra.Sri Rejeki Dwi Putranti, M.Kes. Fakultas Teknik - Universitaas Yos Soedarso Surabaya Email : riccayusticia@gmail.com Abstrak Hubungan antara Differensial dan

Lebih terperinci

BAB 2 PERSAMAAN DIFFERENSIAL BIASA

BAB 2 PERSAMAAN DIFFERENSIAL BIASA BAB 2 BIASA 2.1. KONSEP DASAR Persamaan Diferensial (PD) Biasa adalah persamaan yang mengandung satu atau beberapa penurunan y (varibel terikat) terhadap x (variabel bebas) yang tidak spesifik dan ditentukan

Lebih terperinci

PENYELESAIAN MODEL RANGKAIAN LISTRIK RL DAN RC SERI Oleh: 1 Ir. SIGIT KUSMARYANTO, M.Eng.

PENYELESAIAN MODEL RANGKAIAN LISTRIK RL DAN RC SERI Oleh: 1 Ir. SIGIT KUSMARYANTO, M.Eng. PENYELESAIAN MODEL RANGKAIAN LISTRIK RL DAN RC SERI Oleh: 1 Ir. SIGIT KUSMARYANTO, M.Eng. 1 Teknik Elektro, http://sigitkus@ub.ac.id Pengantar: Modul ini menjelaskan pemodelan rangkaian listrik RL dan

Lebih terperinci

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA Persamaan Diferensial Biasa 1. PDB Tingkat Satu (PDB) 1.1. Persamaan diferensial 1.2. Metode pemisahan peubah dan PD koefisien fungsi homogen 1.3. Persamaan

Lebih terperinci

perpindahan, kita peroleh persamaan differensial berikut :

perpindahan, kita peroleh persamaan differensial berikut : 1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan

Lebih terperinci

BAB PDB Linier Order Satu

BAB PDB Linier Order Satu BAB 1 Konsep Dasar 1 BAB PDB Linier Order Satu BAB 3 Aplikasi PDB Order Satu 3 BAB 4 PDB Linier Order Dua Untuk memulai pembahasan ini terlebih dahulu akan ditinjau beberapa teorema tentang konsep umum

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x, y) pada = {(x, y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Homogen & Non Homogen Tk. n (Differential: Linier Homogen & Non Homogen Orde n) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

K13 Revisi Antiremed Kelas 12 Fisika

K13 Revisi Antiremed Kelas 12 Fisika K13 Revisi Antiremed Kelas 12 Fisika Listrik Arus Bolak-balik - Soal Doc. Name: RK13AR12FIS0401 Version: 2016-12 halaman 1 01. Suatu sumber tegangan bolak-balik menghasilkan tegangan sesuai dengan fungsi

Lebih terperinci

Hendra Gunawan. 23 April 2014

Hendra Gunawan. 23 April 2014 MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 23 April 2014 Kuliah ang Lalu 13.11 Integral Lipat Dua atas Persegi Panjang 13.2 Integral Berulang 13.3 33Integral Lipat Dua atas Daerah Bukan

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Listrik Arus Bolak Balik - Latihan Soal Doc. Name: AR12FIS0699 Version: 2011-12 halaman 1 01. Suatu sumber tegangan bolak-balik menghasilkan tegangan sesuai dengan fungsi: v =140

Lebih terperinci

Bab 7 Persamaan Differensial Non-homogen

Bab 7 Persamaan Differensial Non-homogen Bab 7 Persamaan Differensial Non-homogen Persamaan Differensial Orde- Non Homogen Bentuk hukum : d y dy + p( ) + Q( ) y R( ) (*) Dimana, P(), Q(), dan R() dapat juga berwujud suatu leoust Solusinya : y

Lebih terperinci

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

TEKNIK PENGINTEGRALAN

TEKNIK PENGINTEGRALAN TEKNIK PENGINTEGRALAN KALKULUS S- Teknik Industri Outline Integral Parsial Integral Fungsi Trigonometri Substitusi Trigonometri Integral Fungsi Rasional . Integral Parsial Formula Integral Parsial : u

Lebih terperinci

MODUL MATEMATIKA TEKNIK

MODUL MATEMATIKA TEKNIK MODUL MATEMATIKA TEKNIK Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA 2011 Linear

Lebih terperinci

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L) DERET FOURIER Bila f adalah fungsi periodic yang berperioda p, maka f adalah fungsi periodic. Berperiode n, dimana n adalah bilangan asli positif (+). Untuk setiap bilangan asli positif fungsi yang didefinisikan

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

RANGKAIAN ARUS BOLAK-BALIK.

RANGKAIAN ARUS BOLAK-BALIK. Arus Bolak-balik RANGKAIAN ARUS BOLAK-BALIK. Dalam pembahasan yang terdahulu telah diketahui bahwa generator arus bolakbalik sebagai sumber tenaga listrik yang mempunyai GGL : E E sinω t Persamaan di atas

Lebih terperinci

Jl. Ir. M. Putuhena, Kampus Unpatti, Poka-Ambon 2 ABSTRAK

Jl. Ir. M. Putuhena, Kampus Unpatti, Poka-Ambon   2 ABSTRAK Jurnal Barekeng Vol. 8 No. 1 Hal. 39 43 (2014) APLIKASI METODE RUNGE KUTTA ORDE EMPAT PADA PENYELESAIAN RANGKAIAN LISTRIK RLC Application of Fourth Order Runge Kutta methods on Completion of the Electrical

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Persamaan diferensial adalah suatu hubungan yang terdapat antara suatu variabel independen, suatu variabel dependen, dan satu atau lebih turunan dari

Lebih terperinci

Bab 7 Persamaan Differensial Orde-2 Non Homogen

Bab 7 Persamaan Differensial Orde-2 Non Homogen Metode Matematika Astronomi- Bab 7 Persamaan Differensial Orde- Non Homogen 7. Persamaan Differensial Orde- Homogen 0 Bentuk Umum a b cy ab, dan c konstanta, persamaan ini dapat juga ditulis sebagai :

Lebih terperinci

BAB III PD LINIER HOMOGEN

BAB III PD LINIER HOMOGEN BAB III PD LINIER HOMOGEN Kompetensi Mahasiswa diharapkan. Mampu menentukan selesaian umum dari PD linier homogen orde dua dengan jenis akarakar karakteristik yang berbeda-beda. Memahami pengertian kebebaslinieran

Lebih terperinci

16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5.

16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5. 6. INTEGRAL A. Integral Tak Tentu. dx = x + c. a dx = a dx = ax + c. x n dx = n+ x n+ + c. sin ax dx = a cos ax + c 5. cos ax dx = a sin ax + c 6. sec ax dx = a tan ax + c 7. [ f(x) ± g(x) ] dx = f(x)

Lebih terperinci

BAB III PERSAMAAN DIFERENSIAL LINIER

BAB III PERSAMAAN DIFERENSIAL LINIER BAB III PERSAMAAN DIFERENSIAL LINIER Bentuk umum PD orde-n adalah PD yang tidak dapat dinyatakan dalam bentuk di atas dikatakan tidak linier. Contoh: Jika F(x) pada persamaan (3.1) sama dengan nol maka

Lebih terperinci

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018 Kalkulus 2 Teknik Pengintegralan ke - 1 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 36 Daftar

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

4. Dibawah ini persamaan diferensial ordo dua berderajat satu adalah

4. Dibawah ini persamaan diferensial ordo dua berderajat satu adalah Pilihlah jawaban yang benar dengan cara mencakra huruf didepan jawaban yang saudara anggap benar pada lembar jawaban 1. Dibawah ini bentuk persamaan diferensial biasa linier homogen adalah a. y + xy =

Lebih terperinci

Untai Elektrik I. Untai Orde Tinggi & Frekuensi Kompleks. Dr. Iwan Setyawan. Fakultas Teknik Universitas Kristen Satya Wacana. Untai 1. I.

Untai Elektrik I. Untai Orde Tinggi & Frekuensi Kompleks. Dr. Iwan Setyawan. Fakultas Teknik Universitas Kristen Satya Wacana. Untai 1. I. Untai Elektrik I Untai Orde Tinggi & Frekuensi Kompleks Dr. Iwan Setyawan Fakultas Teknik Universitas Kristen Satya Wacana Pada bagian sebelumnya, dibahas untai RC dan RL dengan hanya satu elemen penyimpan

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Konsep Dasar dan Pembentukan (Differential : Basic Concepts and Establishment ) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

Pertemuan Kesatu. Matematika III. Oleh Mohammad Edy Nurtamam, S.Pd., M.Si. Page 1.

Pertemuan Kesatu. Matematika III. Oleh Mohammad Edy Nurtamam, S.Pd., M.Si. Page 1. Pertemuan Kesatu Matematika III Oleh Mohammad Edy Nurtamam, S.Pd., M.Si Page 1 Materi 1. Persamaan Diferensial Orde I Pengenalan bentuk dasar Pers. Diff. Orde I. Definisi Derajat,Orde. Konsep Pemisahan

Lebih terperinci

PENYELESAIAN MODEL RANGKAIAN LISTRIK ORDE-2 Oleh: Ir. Sigit Kusmaryanto, M.Eng

PENYELESAIAN MODEL RANGKAIAN LISTRIK ORDE-2 Oleh: Ir. Sigit Kusmaryanto, M.Eng PENYELESAIAN MODEL RANGKAIAN LISTRIK ORDE-2 Oleh: Ir. Sigit Kusmaryanto, M.Eng Dua fenomena fisik berbeda (yaitu: sistem gerak benda pada pegas dan rangkaian listrik) menghasilkan model persamaan matematika

Lebih terperinci

BAB I PENGERTIAN DASAR

BAB I PENGERTIAN DASAR BAB I PENGERTIAN DASAR Kompetensi Dasar: Menjelaskan pengertian dan klasifikasi dari persamaan diferensial serta beberapa hal yang terkait. Indikator: a. Menjelaskankan pengertian persamaan diferensial.

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci

Sudaryatno Sudirham. Integral dan Persamaan Diferensial

Sudaryatno Sudirham. Integral dan Persamaan Diferensial Sudaratno Sudirham Integral dan Persamaan Diferensial Bahan Kuliah Terbuka dalam format pdf tersedia di www.buku-e.lipi.go.id dalam format pps beranimasi tersedia di www.ee-cafe.org Bahasan akan mencakup

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Tujuan Instruksional: Mampu memahami definisi Persamaan Diferensial Mampu memahami klasifikasi Persamaan Diferensial Mampu memahami bentuk bentuk solusi Persamaan

Lebih terperinci

Persamaan Differensial Biasa

Persamaan Differensial Biasa Bab 7 cakul fi5080 by khbasar; sem1 2010-2011 Persamaan Differensial Biasa Dalam banyak persoalan fisika, suatu topik sering dinyatakan dalam bentuk perubahan (laju perubahan). Telah disinggung sebelumnya

Lebih terperinci

INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP

INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP A. Soal dan Pembahasan. ( x ) dx... Jawaban : INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP ( x) dx x dx x C x C x x C. ( x 9) dx... x Jawaban : ( x 9) dx. (x x 9) dx x 9x C x x x. (x )(x + ) dx =.

Lebih terperinci

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan

Lebih terperinci

MODUL FISIKA. TEGANGAN DAN ARUS BOLAK-BALIK (AC) DISUSUN OLEH : NENIH, S.Pd SMA ISLAM PB. SOEDIRMAN

MODUL FISIKA. TEGANGAN DAN ARUS BOLAK-BALIK (AC) DISUSUN OLEH : NENIH, S.Pd SMA ISLAM PB. SOEDIRMAN MODUL ISIKA TEGANGAN DAN ARUS BOLAK-BALIK (AC) DISUSUN OLEH : NENIH, S.Pd SMA ISLAM PB. SOEDIRMAN TEGANGAN DAN ARUS BOLAK-BALIK (AC) 1. SUMBER TEGANGAN DAN ARUS BOLAK-BALIK Sumber tegangan bolak-balik

Lebih terperinci

Gambar 3. (a) Diagram fasor arus (b) Diagram fasor tegangan

Gambar 3. (a) Diagram fasor arus (b) Diagram fasor tegangan RANGKAIAN ARUS BOLAK-BALIK Arus bolak-balik atau Alternating Current (AC) yaitu arus listrik yang besar dan arahnya yang selalu berubah-ubah secara periodik. 1. Sumber Arus Bolak-balik Sumber arus bolak-balik

Lebih terperinci

Keep running VEKTOR. 3/8/2007 Fisika I 1

Keep running VEKTOR. 3/8/2007 Fisika I 1 VEKTOR 3/8/007 Fisika I 1 BAB I : VEKTOR Besaran vektor adalah besaran yang terdiri dari dua variabel, yaitu besar dan arah. Sebagai contoh dari besaran vektor adalah perpindahan. Sebuah besaran vektor

Lebih terperinci

integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2.

integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2. integral 13.1 PENGERTIAN INTEGRAL Untuk itu, coba tentukan turunan fungsi berikut. Perhatikan bahwa fungsi ini memiliki bentuk umum 6 2. Jadi, turunan fungsi = 2 =2 3. Setiap fungsi ini memiliki turunan

Lebih terperinci

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use INTISARI KALKULUS 2 Penyusun: Drs. Warsoma Djohan M.Si. Program Studi Matematika - FMIPA Institut Teknologi Bandung Januari 200 Pengantar Kalkulus & 2 merupakan matakuliah wajib tingkat pertama bagi semua

Lebih terperinci

E = = (1,80 x 10 5 N/C )( 4π )(0,50 m) 2 = 5,652 x 10 5 Nm 2 /C

E = = (1,80 x 10 5 N/C )( 4π )(0,50 m) 2 = 5,652 x 10 5 Nm 2 /C PERTEMUAN KE 5 1. Fluks listrik melalui sebuah bola Sebuah muatan titik positif q = 5,0 μc dikelilingi oleh sebuah bola dengan jari-jari 0,50 m yang berpusat pada muatan itu. Berapa fluks listrik yang

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Darmawijoyo Persamaan Diferensial Biasa Suatu Pengantar FKIP-UNSRI Untuk istriku tercinta Nelly Efrina dan anak-anakku tersayang, Yaya, Haris, dan Oji. Pendahuluan Buku Persamaan Diferensial Suatu Pengantar

Lebih terperinci

Teknik pengintegralan: Integral parsial (Integral by part)

Teknik pengintegralan: Integral parsial (Integral by part) Teknik pengintegralan: Integral parsial (Integral by part) Kalkulus 2 Nanang Susyanto Departemen Matematika FMIPA UGM 06 Februari 2017 NS (FMIPA UGM) Teknik pengintegralan 06/02/2017 1 / 14 Mari mengingat

Lebih terperinci

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Sesi XII Differensial e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 PENDAHULUAN Persamaan diferensial

Lebih terperinci

R +1 R= UR V+1 R= ( ) R +1 R= ( )

R +1 R= UR V+1 R= ( ) R +1 R= ( ) Penyelesaian Model Rangkaian Listrik orde-2 Dua fenomena fisik berbeda (yaitu: sistem gerak benda pada pegas dan rangkaian listrik) menghasilkan model persamaan matematika dan solusi yang sama. Perilaku

Lebih terperinci

MASALAH SYARAT BATAS (MSB)

MASALAH SYARAT BATAS (MSB) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo PENDAHULUAN MODEL KABEL MENGGANTUNG DEFINISI MSB Persamaan diferensial (PD) dikatakan berdimensi 1 jika domainnya berupa himpunan bagian pada R 1.

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

Penerapan Bilangan Kompleks pada Rangkaian RLC

Penerapan Bilangan Kompleks pada Rangkaian RLC Penerapan Bilangan Kompleks pada Rangkaian RLC Hishshah Ghassani - 354056 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 0 Bandung 403, Indonesia

Lebih terperinci

BAB 2 PDB Linier Order Satu 2

BAB 2 PDB Linier Order Satu 2 BAB 1 Konsep Dasar 1 BAB 2 PDB Linier Order Satu 2 BAB 3 Aplikasi PDB Order Satu 3 BAB 4 PDB Linier Order Dua 4 BAB 5 Aplikasi PDB Order Dua 5 BAB 6 Sistem PDB 6 BAB 7 PDB Nonlinier dan Kesetimbangan 7

Lebih terperinci

e. muatan listrik menghasilkan medan listrik dari... a. Faraday d. Lenz b. Maxwell e. Hertz c. Biot-Savart

e. muatan listrik menghasilkan medan listrik dari... a. Faraday d. Lenz b. Maxwell e. Hertz c. Biot-Savart 1. Hipotesis tentang gejala kelistrikan dan ke-magnetan yang disusun Maxwell ialah... a. perubahan medan listrik akan menghasilkan medan magnet b. di sekitar muatan listrik terdapatat medan listrik c.

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 5: Separasi Variabel untuk Persamaan Panas Orde Satu - Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Review

Lebih terperinci

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO Metode Koefisien Tak Tentu untuk Penyelesaian Persamaan Diferensial Linier Tak Homogen orde-2 Solusi PD pada PD Linier Tak Homogen ditentukan dari solusi umum PD Linier Homogen dan PD Linier Tak Homogen.

Lebih terperinci

Rangkaian Arus Bolak Balik. Rudi Susanto

Rangkaian Arus Bolak Balik. Rudi Susanto Rangkaian Arus Bolak Balik Rudi Susanto Arus Searah Arahnya selalu sama setiap waktu Besar arus bisa berubah Arus Bolak-Balik Arah arus berubah secara bergantian Arus Bolak-Balik Sinusoidal Arus Bolak-Balik

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL BIASA

BAB II PERSAMAAN DIFERENSIAL BIASA BAB II PERSAMAAN DIFERENSIAL BIASA Tujuan Pembelajaran Umum: 1 Mahasiswa mampu memahami konsep dasar persamaan diferensial 2 Mahasiswa mampu menggunakan konsep dasar persamaan diferensial untuk menyelesaikan

Lebih terperinci

BAB 7 INDUKSI ELEKTROMAGNET

BAB 7 INDUKSI ELEKTROMAGNET BAB 7 INDUKSI ELEKTROMAGNET Induksi Elektromagnetik Hasil Yang harus anda capai Menerapkan konsep kelistrikan dan kemagnetan berbagai penyelesaian masalah dan produk teknologi Setelah mempelajari Bab ini

Lebih terperinci

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use INTISARI KALKULUS Penyusun: Drs. Warsoma Djohan M.Si. Program Studi Matematika - FMIPA Institut Teknologi Bandung Januari 010 Pengantar Kalkulus 1 & merupakan matakuliah wajib tingkat pertama bagi semua

Lebih terperinci

BAB 2 PDB Linier Order Satu 2.1 PDB Linier Order Satu Homogen PDB order satu dapat dinyatakan dalam atau dalam bentuk derivatif = f(x y) dx M(x y)dx +

BAB 2 PDB Linier Order Satu 2.1 PDB Linier Order Satu Homogen PDB order satu dapat dinyatakan dalam atau dalam bentuk derivatif = f(x y) dx M(x y)dx + BAB 1 Konsep Dasar 1 BAB 2 PDB Linier Order Satu 2.1 PDB Linier Order Satu Homogen PDB order satu dapat dinyatakan dalam atau dalam bentuk derivatif = f(x y) dx M(x y)dx + N(x y) = 0 (2.1) 2.1.1 PDB Eksak

Lebih terperinci

digunakan untuk menyelesaikan integral seperti 3

digunakan untuk menyelesaikan integral seperti 3 Bab Teknik Pengintegralan BAB TEKNIK PENGINTEGRALAN Rumus-rumus dasar integral tak tertentu yang diberikan pada bab hanya dapat digunakan untuk mengevaluasi integral dari fungsi sederhana dan tidak dapat

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial Orde Satu Jurusan Matematika FMIPA-Unud Senin, 18 Desember 2017 Orde Satu Daftar Isi 1 Pendahuluan 2 Orde Satu Apakah Itu? Solusi Pemisahan Variabel Masalah Gerak 3 4 Orde Satu Pendahuluan Dalam subbab

Lebih terperinci

Rangkaian Listrik Arus dan Tegangan AC Sinusoidal dan Phasor

Rangkaian Listrik Arus dan Tegangan AC Sinusoidal dan Phasor Rangkaian Listrik Arus dan Tegangan AC Sinusoidal dan Phasor Alexander Sadiku edited by Agus Virgono Ir. MT. & Randy E. Saputra Prodi S1-Sistem Komputer Fakultas Teknik Elektro Universitas Telkom - 2016

Lebih terperinci

Rangkaian Listrik II

Rangkaian Listrik II Rangkaian Listrik II OLEH : Ir. Rachman Hasibuan dan Naemah Mubarakah,ST file:///d /E-Learning/Rangkaian%20listrik%20II/Bahan%20Buku/Rangkaian%20Listrik.htm (1 of 216)5/8/2007 3:26:21 PM Departemen Teknik

Lebih terperinci

HAMBATAN & ARUS LISTRIK MINGGU KE-6 2 X PERTEMUAN

HAMBATAN & ARUS LISTRIK MINGGU KE-6 2 X PERTEMUAN HAMBATAN & ARUS LISTRIK MINGGU KE-6 2 X PERTEMUAN Arus: Aliran muatan Arus rata-rata I av : Muatan ΔQ yang mengalir melalui luas A dalam waktu Δt Arus sesaat : limit Δt 0 darii av Satuan arus: Coulomb/sekon

Lebih terperinci

Pecahan Parsial (Partial Fractions)

Pecahan Parsial (Partial Fractions) oki neswan (fmipa-itb) Pecahan Parsial (Partial Fractions) Diberikan fungsi rasional f (x) p(x) q(x) f (x) r(x) : Jika deg p deg q; maka r (x) ^p (x) q(x) ; dengan deg r < deg q: p (x) q (x) r (x) ^p (x)

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL ORDE SATU

BAB II PERSAMAAN DIFERENSIAL ORDE SATU BAB II PERSAMAAN DIFERENSIAL ORDE SATU Kompetensi Mahasiswa diharapkan: 1. Mengenali bentuk PD orde satu dengan variabel terpisah dan tak terpisah.. Dapat mengubah bentuk PD tak terpisah menjadi terpisah

Lebih terperinci

ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2

ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2 ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2 Arus bolak-balik adalah arus yang arahnya berubah secara bergantian. Bentuk arus bolakbalik yang paling sederhana adalah arus sinusoidal. Tegangan yang mengalir

Lebih terperinci

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( ) II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan

Lebih terperinci

Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35

Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35 Bab 16 Grafik LIMIT dan TURUNAN Matematika SMK, Bab 16: Limit dan 1/35 Grafik Pada dasarnya, konsep limit dikembangkan untuk mengerjakan perhitungan matematis yang melibatkan: nilai sangat kecil; Matematika

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan Waktu

Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryatno Sudirham nalisis Rangkaian Listrik Di Kawasan Waktu 2 Sudaryatno Sudirham, nalisis Rangkaian Listrik (1) BB 6 Hukum-Hukum Dasar Pekerjaan analisis pada suatu rangkaian linier yang parameternya

Lebih terperinci

Kalkulus Diferensial week 09. W. Rofianto, ST, MSi

Kalkulus Diferensial week 09. W. Rofianto, ST, MSi Kalkulus Diferensial week 09 W. Rofianto, ST, MSi Tingkat Perubahan Rata-rata Jakarta Km 0 jam Bandung Km 140 Kecepatan rata-rata s t 140Km jam 70Km / jam Konsep Diferensiasi Bentuk y/ disebut difference

Lebih terperinci

Diferensial dan Integral

Diferensial dan Integral Open Course Diferensial dan Integral Oleh: Sudaratno Sudirham Pengantar Setelah kita mempelajari fungsi dan grafik, ang merupakan bagian pertama dari kalkulus, berikut ini kita akan membahas bagian kedua

Lebih terperinci

BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL

BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL Bila persamaan diferensial linear homogen memiliki koefisien constant maka persamaan tersebut dapat diselesaikan dengan metoda aljabar (seperti yang

Lebih terperinci

MENGGUNAKAN METODE TRANSFORMASI LAPLACE. Kristo Dantes Lingga 1, Abil Mansyur 2.

MENGGUNAKAN METODE TRANSFORMASI LAPLACE. Kristo Dantes Lingga 1, Abil Mansyur 2. STUDI PENYELESAIAN PERSAMAAN DIFERENSIAL MENGGUNAKAN METODE TRANSFORMASI LAPLACE Kristo Dantes Lingga 1, Abil Mansyur 2 1 Mahasiswa Program Studi Matematika, FMIPA, Universitas Negeri Medan e-mail: krizhto.lingga@gmail.com

Lebih terperinci