Department of Mathematics FMIPAUNS

Ukuran: px
Mulai penontonan dengan halaman:

Download "Department of Mathematics FMIPAUNS"

Transkripsi

1 Lecture 2: Metode Operator A. Metode Operator untuk Sistem Linear dengan Koefisien Konstan Pada bagian ini akan dibicarakan cara menentukan penyelesaian sistem persamaan diferensial linear dengan menggunakan metode operator diferensial. Sebelumnya akan dibicarakan terlebih dahulu tentang operator diferensial. Misalkan x fungsi dari t yang mempunyai turunan sampai tingkat n. Operator diferensial (terhadap t), ditulis dengan D, didefinisikan sebagai operasi penurunan terhadap t. Dalam hal ini turunan x terhadap t ditulis dengan Dx, dengan kata lain: Dx: =. Secara umum turunan tingkat n (n = 1,2,...) dari x terhadap t akan dinyatakan dengan D x, yaitu D x, n = 1,2, Dengan notasi di atas, ekspresi diferensial linear order 2 dengan koefisien konstan, yaitu a + a + a x = F(t) dapat dinyatakan dengan a D x + a Dx + a x = F(t) (a D + a D + a )x = F(t) Contoh 1. Tentukan penyelesaian umum sistem + x 6y = e + 2 2x 6y = t dengan metode operator diferensial. (D 1)x + (D 6)y = e (D 2)x + (2D 6)y = t Selanjutnya, dikerjakan dengan metode eliminasi: (i) Mencari x(t): Menyamakan koefisien y, yaitu operator (2D 6) dan (D 6) masing-masing diaplikasikan pada persamaan perta-ma dan kedua, maka diperoleh: (2D 6)(D 1)x + (2D 6)(D 6)y = (2D 6)e (D 6)(D 2)x + (D 6)(2D 6)y = (D 6)t

2 (ii) [(2D 6)(D 1) (D 6)(D 2)]x = (2D 6)e (D 6)t [2D 8D + 6 (D 8D + 12)]x = 6e 6e 1 + 6t (D 6)x = 6 1 x = c e + c e t +. Mencari y(t): Menyamakan koefisien x, yaitu operator (D 2) dan (D 1) masing-masing diaplikasikan pada persamaan pertama dan kedua, maka diperoleh: (D 2)(D 1)x + (D 2)(D 6)y = (D 2)e (D 1)(D 2)x + (D 1)(2D 6) y = (D 1)t [(D 2)(D 6) (D 1)(2D 6)]y = (D 2)e (D 1)t [D 8D + 12 (2D 8D + 6)]y = 3e 2e 1 + t ( D + 6)y = e + 1 (D 6)y = e t + 1 y = k e + k e +. Selanjutnya, dicari hubungan antara c 1, c 2 dengan k 1, k 2. Dari proses di atas diperoleh x = c e + c e t + y = k e + k e +. Oleh karena itu, = c 6e 6c e 1 = k 6e k 6e e +. Selanjutnya disubstitusikan ke dalam salah satu persamaan pada sistem persamaan, misal persamaan pertama: + x 6y = e c 6e 6c e 1 + k 6e k 6e e + c e + c e t + 6 k e + k e + = e3t 6 1c + 6 6k e c k e = 0

3 Jadi supaya persamaan di atas dipenuhi, haruslah: Diperoleh 6 1c + 6 6k = c k = 0 k = c = c k = c = c. Jadi, penyelesaian sistem persamaan di atas : x = c e + c e t + y = c e + c e +, dengan c dan c konstanta-konstanta sebarang. Contoh 2. Tentukan penyelesaian umum sistem x + 8y = 2 dengan metode operator diferensial. (2D 3)x 2Dy = t (2D + 3)x + (2D + 8)y = 2 Selanjutnya, dikerjakan dengan metode eliminasi: (i) Mencari x(t): Menyamakan koefisien y, yaitu operator (2D + 8) dan 2D masingmasing diaplikasikan pada persamaan pertama dan kedua, maka diperoleh: (2D + 8)(2D 3)x (2D + 8)2Dy = (2D + 8)t 2D(2D + 3)x + 2D(2D + 8)y = 2D2 Apabila persamaan pertama ditambah persamaan kedua, maka [(2D + 8)(2D 3) + 2D(2D + 3)]x = (2D + 8)t + 2D2 [4D + 10D 24 + (4D + 6D)]x = 2 + 8t (8D + 16D 24)x = 8t + 2 (D + 2D 3)x = t + x = c e + c e.

4 (ii) Mencari y(t): Menyamakan koefisien x, yaitu operator (2D + 3) dan (2D 3) masing-masing diaplikasikan pada persamaan pertama dan kedua, maka diperoleh: (2D + 3)(2D 3)x (2D + 3)2Dy = (2D + 3)t (2D 3)(2D + 3)x + (2D 3)(2D + 8)y = (2D 3)2 [ (2D + 3)2Dy (2D 3)(2D + 8)]y = (2D + 3) (2D 3)2 [ 4D 6D (4D + 10D 24)]y = 2 + 3t + 6 ( 8D 16D + 24)y = 3t + 8 (D + 2D 3)y = 1 y = k e + k e + t +. Selanjutnya, dicari hubungan antara c 1, c 2 dengan k 1, k 2. Dari proses di atas diperoleh x = c e + c e y = k e + k e + t +. Oleh karena itu, = c e 3c e = k e 3k e +. Selanjutnya disubstitusikan ke dalam salah satu persamaan pada sistem persamaan, misal persamaan pertama: c e 3c e 2 k e 3k e + 3 c e + c e = t ( c 2k )e + ( 9c + 6k )e = 0 Jadi supaya persamaan di atas dipenuhi, haruslah: c 2k = 0 dan 9c + 6k = 0 Diperoleh k = c dan k = c. Jadi, penyelesaian sistem persamaan di atas : x = c e + c e y = c e + c. e + t +. dengan c dan c konstanta-konstanta sebarang.

5 B. Cara Alternatif Dalam hal ini x dicari dengan cara yang sama seperti di atas. Sedangkan untuk mencari y, dilakukan prosedur alternatif berikut. Pertama-tama dilakukan eliminasi semua suku yang memuat turunan y dari sistem, sehingga didapat suatu relasi yang memuat y, x dan atau turunan-turunan dari x, tetapi tidak memuat turunan-turunan dari y. Karena x sudah diketahui, maka dengan mensubstitusikan x dan atau turunan-turunan dari x ke dalam relasi tersebut akan didapat persamaan linear dengan satu variabel y. Contoh 3. Tentukan penyelesaian umum sistem x + 8y = 2 dengan prosedur alternatif. (2D 3)x 2Dy = t (2D + 3)x + (2D + 8)y = 2 Pada Contoh 2 (dengan cara yang sama) telah diperoleh x = c e + c e, dengan c dan c konstanta sebarang. Diperoleh juga = c e 3c e. Selanjutnya, akan ditentukan y dengan prosedur alternatif. Jika persamaan pertama ditambah persamaan kedua (agar Dy hilang) diperoleh [(2D 3) + (2D + 3)]x + [ 2D + (2D + 8)]y = t + 2 4Dx + 8y = t + 2 yang tidak memuat turunan dari y, yaitu Dy. Sehingga diperoleh 4 c e 3c e + 8y = t + 2 8y = 4c e + 12c e + + t + 2 8y = 4c e + 12c e + t + y = c e + c. e + t +. Jadi, penyelesaian sistem persamaan di atas : x = c e + c e y = c e + c. e + t +. dengan c dan c konstanta-konstanta sebarang.

BAB I PENGERTIAN DASAR

BAB I PENGERTIAN DASAR BAB I PENGERTIAN DASAR Kompetensi Dasar: Menjelaskan pengertian dan klasifikasi dari persamaan diferensial serta beberapa hal yang terkait. Indikator: a. Menjelaskankan pengertian persamaan diferensial.

Lebih terperinci

Kuliah PD. Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu.

Kuliah PD. Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu. Kuliah PD Pertemuan ke-1: Motivasi: 1. Mekanika A. Hukum Newton ke-: Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu. Misalkan F: gaya, m: massa benda, a: percepatan,

Lebih terperinci

BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan :

BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan : BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Bentuk Persamaan Linear Tingkat Tinggi : ( ) Diasumsikan adalah kontinu (menerus) pada interval I. Persamaan linear tingkat tinggi

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Konsep Dasar dan Pembentukan (Differential : Basic Concepts and Establishment ) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

BAB III PERSAMAAN DIFERENSIAL LINIER

BAB III PERSAMAAN DIFERENSIAL LINIER BAB III PERSAMAAN DIFERENSIAL LINIER Bentuk umum PD orde-n adalah PD yang tidak dapat dinyatakan dalam bentuk di atas dikatakan tidak linier. Contoh: Jika F(x) pada persamaan (3.1) sama dengan nol maka

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial Orde Satu Jurusan Matematika FMIPA-Unud Senin, 18 Desember 2017 Orde Satu Daftar Isi 1 Pendahuluan 2 Orde Satu Apakah Itu? Solusi Pemisahan Variabel Masalah Gerak 3 4 Orde Satu Pendahuluan Dalam subbab

Lebih terperinci

Catatan Kuliah KALKULUS II BAB V. INTEGRAL

Catatan Kuliah KALKULUS II BAB V. INTEGRAL BAB V. INTEGRAL Anti-turunan dan Integral TakTentu Persamaan Diferensial Sederhana Notasi Sigma dan Luas Daerah di Bawah Kurva Integral Tentu Teorema Dasar Kalkulus Sifat-sifat Integral Tentu Lebih Lanjut

Lebih terperinci

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI Yuni Yulida Program Studi Matematika FMIPA Unlam Universitas Lambung Mangkurat Jl. Jend. A. Yani km. 36

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Homogen & Non Homogen Tk. n (Differential: Linier Homogen & Non Homogen Orde n) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

Pengantar Metode Perturbasi Bab 4. Ekspansi Asimtotik pada Persamaan Diferensial Biasa

Pengantar Metode Perturbasi Bab 4. Ekspansi Asimtotik pada Persamaan Diferensial Biasa Pengantar Metode Perturbasi Bab 4. Ekspansi Asimtotik pada Persamaan Diferensial Biasa Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 454 KAPITA SELEKTA MATEMATIKA TERAPAN II Semester

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci

BAB PDB Linier Order Satu

BAB PDB Linier Order Satu BAB 1 Konsep Dasar 1 BAB PDB Linier Order Satu BAB 3 Aplikasi PDB Order Satu 3 BAB 4 PDB Linier Order Dua Untuk memulai pembahasan ini terlebih dahulu akan ditinjau beberapa teorema tentang konsep umum

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL BIASA

BAB II PERSAMAAN DIFERENSIAL BIASA BAB II PERSAMAAN DIFERENSIAL BIASA Tujuan Pembelajaran Umum: 1 Mahasiswa mampu memahami konsep dasar persamaan diferensial 2 Mahasiswa mampu menggunakan konsep dasar persamaan diferensial untuk menyelesaikan

Lebih terperinci

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Sesi XII Differensial e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 PENDAHULUAN Persamaan diferensial

Lebih terperinci

Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik. Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas

Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik. Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 672 Topik dalam Matematika Terapan Semester Ganjil 2016/2017 Pendahuluan Metode perturbasi

Lebih terperinci

APLIKASI FUNGSI LINIER DALAM BIDANG EKONOMI FUNGSI PERMINTAAN & PENAWARAN. Oleh : Agus Arwani, SE, M.Ag.

APLIKASI FUNGSI LINIER DALAM BIDANG EKONOMI FUNGSI PERMINTAAN & PENAWARAN. Oleh : Agus Arwani, SE, M.Ag. APLIKASI FUNGSI LINIER DALAM BIDANG EKONOMI FUNGSI PERMINTAAN & PENAWARAN Oleh : Agus Arwani, SE, M.Ag. FUNGSI PERMINTAAN Q dx,t = ƒ (P x,t, P y,t, Y t, P e X,t+1,S t ) Dimana Q dx,t = Jumlah produk X

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

JENIS JENIS FUNGSI 2. Gambar. Jenis Fungsi. mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x a n x n

JENIS JENIS FUNGSI 2. Gambar. Jenis Fungsi. mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x a n x n Telkom University Alamanda JENIS JENIS FUNGSI1 JENIS JENIS FUNGSI 2 Jenis Fungsi Gambar 1. FUNGSI POLINOM mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x 2 + + a n x n 2.

Lebih terperinci

PERSAMAAN DIFERENSIAL

PERSAMAAN DIFERENSIAL PERSAMAAN DIFERENSIAL ii Persamaan Diferensial iii iv Persamaan Diferensial PERSAMAAN DIFERENSIAL Oleh : S.B Waluya Edisi Pertama Cetakan Pertama, 2006 Hak Cipta 2006 pada penulis, Hak Cipta dilindungi

Lebih terperinci

TINJAUAN PUSTAKA. Jika y = f(x) dengan f(x) adalah suatu fungsi yang terdiferensialkan terhadap

TINJAUAN PUSTAKA. Jika y = f(x) dengan f(x) adalah suatu fungsi yang terdiferensialkan terhadap II. TINJAUAN PUSTAKA 2.1 Diferensial Jika y = f(x) dengan f(x) adalah suatu fungsi yang terdiferensialkan terhadap variabel bebas x, maka dy adalah diferensial dari variabel tak bebas (terikat) y, yang

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Pada Bidang Bentuk Vektor dari KALKULUS MULTIVARIABEL II (Minggu ke-9) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Pada Bidang Bentuk Vektor dari 1 Definisi Daerah Sederhana x 2 Pada Bidang

Lebih terperinci

Integral Tak Tentu. Modul 1 PENDAHULUAN

Integral Tak Tentu. Modul 1 PENDAHULUAN Modul 1 Integral Tak Tentu M PENDAHULUAN Drs. Hidayat Sardi, M.Si odul ini akan membahas operasi balikan dari penurunan (pendiferensialan) yang disebut anti turunan (antipendiferensialan). Dengan mengikuti

Lebih terperinci

Suku Banyak Chebyshev

Suku Banyak Chebyshev Bab 3 Suku Banyak Chebyshev Suku banyak Chebyshev, yang diberi nama oleh Pafnuty Chebyshev, merupakan suatu deret dari suku banyak ortogonal yang dapat dituliskan secara rekursif. Suku banyak ini dibedakan

Lebih terperinci

OPERATOR & UNGKAPAN. Contoh operator : a + b Simbol + merupakan operator untuk melakukan operasi penjumlahan dari kedua operandnya ( yaitu a dan b ).

OPERATOR & UNGKAPAN. Contoh operator : a + b Simbol + merupakan operator untuk melakukan operasi penjumlahan dari kedua operandnya ( yaitu a dan b ). OPERATOR & UNGKAPAN 3.1 PENGERTIAN OPERATOR DAN UNGKAPAN atau tanda operasi adalah suatu tanda atau simbol yang biasa dilibatkan dalam program untuk melakukan suatu operasi atau manipulasi. Operasi atau

Lebih terperinci

Persamaan Di erensial Orde-2

Persamaan Di erensial Orde-2 oki neswan FMIPA-ITB Persamaan Di erensial Orde- Persamaan diferensial orde-n adalah persamaan yang melibatkan x; y; dan turunan-turunan y; dengan yang paling tinggi adalah turunan ke-n: F x; y; y ; y

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I dan Fungsi Implisit dan Fungsi Implisit Statistika FMIPA Universitas Islam Indonesia dan Fungsi Implisit Ingat kembali aturan rantai pada fungsi satu peubah! Jika y = f (x(t)), di mana baik f maupun t

Lebih terperinci

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan 6, 1 (2.52) Berdasarkan persamaan (2.52), maka untuk 0 1 masing-masing memberikan persamaan berikut:, 0,0, 0, 1,1, 1. Sehingga menurut persamaan (2.51) persamaan (2.52) diperoleh bahwa fungsi, 0, 1 masing-masing

Lebih terperinci

PERSAMAAN DIFERENSIAL BIASA ORDE SATU

PERSAMAAN DIFERENSIAL BIASA ORDE SATU PERSAMAAN DIFERENSIAL BIASA ORDE SATU Definisi: Persamaan diferensial adalah suatu hubungan yang terdapat antara suatu variabel independen x, suatu variabel dependen y, dan satu atau lebih turunan y terhadap

Lebih terperinci

Q dx,t = ƒ (P x,t, P y,t, Y t, P e X,t+1,S t )

Q dx,t = ƒ (P x,t, P y,t, Y t, P e X,t+1,S t ) FUNGSI PERMINTAAN Q dx,t = ƒ (P x,t, P y,t, Y t, P e X,t+1,S t ) DimanaQ dx,t = Jumlah produk X yang dibeli/diminta oleh konsumsi dalam periode t. P x,t = Harga produk X dalam periode t. P y,t t = Harga

Lebih terperinci

dy = f(x,y) = p(x) q(y), dx dy = p(x) dx,

dy = f(x,y) = p(x) q(y), dx dy = p(x) dx, 5. Persamaan Diferensian Dengan Variabel Terpisah Persamaan diferensial berbentuk y = f(), dengan f suatu fungsi kontinu pada suatu interval real, dapat dicari penyelesaiannya dengan cara mengintegralkan

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Pendahuluan, Persamaan Diferensial Orde-1 Toni Bakhtiar Departemen Matematika IPB September 2012 Toni Bakhtiar (m@thipb) PDB September 2012 1 / 37 Pendahuluan Konsep Dasar Beberapa

Lebih terperinci

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU Sistem persamaan linear orde/ tingkat satu memiliki bentuk standard : = = = = = = = = = + + + + + + + + + + Diasumsikan koefisien = dan fungsi adalah menerus

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Tujuan Instruksional: Mampu memahami definisi Persamaan Diferensial Mampu memahami klasifikasi Persamaan Diferensial Mampu memahami bentuk bentuk solusi Persamaan

Lebih terperinci

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( ) II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan

Lebih terperinci

BAB III Diferensial. Departemen Teknik Kimia Universitas Indonesia

BAB III Diferensial. Departemen Teknik Kimia Universitas Indonesia BAB III Diferensial Departemen Teknik Kimia Universitas Indonesia BAB III. TURUNAN Kecepatan Sesaat dan Gradien Garis Singgung Turunan dan Hubungannya dengan Kekontinuan Aturan Dasar Turunan Notasi Leibniz

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Transformasi Laplace Salah satu cara untuk menganalisis gejala peralihan (transien) adalah menggunakan transformasi Laplace, yaitu pengubahan suatu fungsi waktu f(t) menjadi

Lebih terperinci

Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk Kasus Pemangsa Tergantung Sebagian pada Mangsa

Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk Kasus Pemangsa Tergantung Sebagian pada Mangsa Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk asus Pemangsa Tergantung Sebagian pada Mangsa Ipah Junaedi 1, a), Diny Zulkarnaen 2, b) 3, c), dan Siti Julaeha 1, 2, 3 Jurusan Matematika,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan.

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas mengenai dasar teori untuk menganalisis simulasi kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. 2.1 Persamaan Diferensial Biasa

Lebih terperinci

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO Metode Koefisien Tak Tentu untuk Penyelesaian Persamaan Diferensial Linier Tak Homogen orde-2 Solusi PD pada PD Linier Tak Homogen ditentukan dari solusi umum PD Linier Homogen dan PD Linier Tak Homogen.

Lebih terperinci

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui.

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. 1 Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. Jika persamaan diferensial memiliki satu peubah tak bebas maka disebut Persamaan Diferensial

Lebih terperinci

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui

Lebih terperinci

ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR

ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 05, No. 2 (2016), hal 103-112 ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Birmansyah 1, Khozin Mu tamar 2, M. Natsir 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Banyak sekali masalah terapan dalam ilmu teknik, ilmu fisika, biologi, dan lain-lain yang telah dirumuskan dengan model matematika dalam bentuk pesamaan

Lebih terperinci

Pertemuan Minggu ke Keterdiferensialan 2. Derivatif berarah dan gradien 3. Aturan rantai

Pertemuan Minggu ke Keterdiferensialan 2. Derivatif berarah dan gradien 3. Aturan rantai Pertemuan Minggu ke-10 1. Keterdiferensialan 2. Derivatif berarah dan gradien 3. Aturan rantai 1. Keterdiferensialan Pada fungsi satu peubah, keterdiferensialan f di x berarti keujudan derivatif f (x).

Lebih terperinci

MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE DUA

MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE DUA MATERI MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE DUA 1 Tujuan 1. Dapat menyelesaikan persamaan diferensial orde dua.. Dapat menyelesaikan suatu Sistem Linier dengan menggunakan metode Eliminasi atau

Lebih terperinci

II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)]

II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)] II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)] Suatu sistem persamaan diferensial dinyatakan sebagai berikut: A adalah matriks koefisien konstan

Lebih terperinci

Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada

Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada 5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal

Lebih terperinci

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa teori dasar yang digunakan sebagai landasan pembahasan pada bab III. Beberapa teori dasar yang dibahas, diantaranya teori umum tentang persamaan

Lebih terperinci

II. Persamaan Keadaan

II. Persamaan Keadaan II. ersamaan Keadaan Bahasan entang:.1. ersamaan keadaan gas ideal dan diagram -v-.. endekatan persamaan keadaan gas real.3. Ekspansi dan Kompresibilitas.4. Konstanta kritis gas van der Waals.5. Hubungan

Lebih terperinci

MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE SATU

MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE SATU MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE SATU 1 Persamaan diferensial orde satu Persamaan diferensial menyatakan hubungan dinamik antara variabel bebas dan variabel tak bebas, maksudnya

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial ii Persamaan Diferensial Daftar Isi iii iv Persamaan Diferensial PERSAMAAN DIFERENSIAL Oleh : S.B Waluya Edisi Pertama Cetakan Pertama, 2006 Hak Cipta 2006 pada penulis, Hak Cipta dilindungi undang-undang.

Lebih terperinci

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA Persamaan Diferensial Biasa 1. PDB Tingkat Satu (PDB) 1.1. Persamaan diferensial 1.2. Metode pemisahan peubah dan PD koefisien fungsi homogen 1.3. Persamaan

Lebih terperinci

Variabel Banyak Bernilai Real 1 / 1

Variabel Banyak Bernilai Real 1 / 1 Fungsi Variabel Banyak Bernilai Real Turunan Parsial dan Turunan Wono Setya Budhi KK Analisis dan Geometri, FMIPA ITB Variabel Banyak Bernilai Real 1 / 1 Turunan Parsial dan Turunan Usaha pertama untuk

Lebih terperinci

matematika WAJIB Kelas X SISTEM PERSAMAAN LINEAR TIGA VARIABEL (SPLTV) K-13 A. Definisi Sistem Persamaan Linear Tiga Variabel

matematika WAJIB Kelas X SISTEM PERSAMAAN LINEAR TIGA VARIABEL (SPLTV) K-13 A. Definisi Sistem Persamaan Linear Tiga Variabel K-13 Kelas X matematika WAJIB SISTEM PERSAMAAN LINEAR TIGA VARIABEL (SPLTV) TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi sistem persamaan

Lebih terperinci

I. Sistem Persamaan Diferensial Linier Orde 1 (Review)

I. Sistem Persamaan Diferensial Linier Orde 1 (Review) I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 () I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 / 6 Teori Umum Bentuk umum sistem persamaan diferensial linier orde satu

Lebih terperinci

Bab 15. Interaksi antar dua spesies (Model Kerjasama)

Bab 15. Interaksi antar dua spesies (Model Kerjasama) Bab 15. Interaksi antar dua spesies (Model Kerjasama) Dalam hal ini diberikan dua spesies yang hidup bersama dalam suatu habitat tertutup. Kita ketahui bahwa terdapat beberapa jenis hubungan interaksi

Lebih terperinci

6 Sistem Persamaan Linear

6 Sistem Persamaan Linear 6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus

Lebih terperinci

SISTEM DINAMIK LINEAR KOEFISIEN KONSTAN. Caturiyati Jurusan Pendidikan Matematika FMIPA Universitas Negeri Yogyakarta (UNY)

SISTEM DINAMIK LINEAR KOEFISIEN KONSTAN. Caturiyati Jurusan Pendidikan Matematika FMIPA Universitas Negeri Yogyakarta (UNY) 1 SISTEM DINAMIK LINEAR KOEFISIEN KONSTAN Caturiyati Jurusan Pendidikan Matematika FMIPA Universitas Negeri Yogyakarta (UNY) Abstrak Dalam artikel ini, konsep sistem dinamik linear disajikan dengan sistem

Lebih terperinci

TURUNAN. Ide awal turunan: Garis singgung. Kemiringan garis singgung di titik P: lim. Definisi

TURUNAN. Ide awal turunan: Garis singgung. Kemiringan garis singgung di titik P: lim. Definisi TURUNAN Ide awal turunan: Garis singgung Tali busur c +, f c + Garis singgung c, f c c P h c+h f c + f c Kemiringan garis singgung di titik P: f c + f c lim Definisi Turunan fungsi f adalah fungsi lain

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x, y) pada = {(x, y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang

Lebih terperinci

disebut Persamaan Diferensial Parsial (PDP).

disebut Persamaan Diferensial Parsial (PDP). Persamaan Diferensial Febrizal, MT Pendahuluan Persamaandiferensial i merupakan persamaan yang berkaitan dengan turunan dari suatu fungsi atau memuat suku suku dari fungsi tersebut dan atau turunannya.

Lebih terperinci

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D Keadaan Stasioner Pada pembahasan sebelumnya mengenai fungsi gelombang, telah dijelaskan bahwa potensial dalam persamaan

Lebih terperinci

Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada

Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada 5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal adanya

Lebih terperinci

II. LANDASAN TEORI. Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Definisi 2 (Sistem Persamaan Diferensial Biasa Taklinear)

II. LANDASAN TEORI. Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Definisi 2 (Sistem Persamaan Diferensial Biasa Taklinear) 3 II. LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Biasa Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Misalkan suatu sistem persamaan diferensial biasa dinyatakan sebagai = + ; =, R (1) dengan

Lebih terperinci

f (a) = laju perubahan y = f(x) pada x = a = turunan pertama y=f(x) pada x = a

f (a) = laju perubahan y = f(x) pada x = a = turunan pertama y=f(x) pada x = a Nama Siswa Kelas : : aasdaa. PENGERTIAN DIFERENSIAL (TURUNAN) Turunan fungsi atau diferensial didefinisikan sebagai laju perubahan fungsi sesaat dan dinotasikan f (x). LEMBAR AKTIVITAS SISWA DIFFERENSIAL

Lebih terperinci

1 King s Learning. Nama Siswa. Kelas KOMPETENSI DASAR: x = 4. Untuk x = 4 disubstitusikan ke persamaan (1) 4 y = 2 y = 4 2. y = 2

1 King s Learning. Nama Siswa. Kelas KOMPETENSI DASAR: x = 4. Untuk x = 4 disubstitusikan ke persamaan (1) 4 y = 2 y = 4 2. y = 2 Nama Siswa Kelas : : KOMPETENSI DASAR: 3.3 Mendeskripsikan konsep sistem persamaan linier dua dan tiga variable serta pertidaksamaan linier dua variabel dan mampu menerapkan berbagai strategi yang efektif

Lebih terperinci

III PEMBAHASAN. Berdasarkan persamaan (2.15) dan persamaan (2.16), fungsi kontinu dan masing-masing sebagai berikut : dan = 3

III PEMBAHASAN. Berdasarkan persamaan (2.15) dan persamaan (2.16), fungsi kontinu dan masing-masing sebagai berikut : dan = 3 8 III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode iterasi variasi untuk menyelesaikan suatu persamaan diferensial integral Volterra orde satu yang terdapat pada masalah osilasi berpasangan.

Lebih terperinci

PD Orde 2 Lecture 3. Rudy Dikairono

PD Orde 2 Lecture 3. Rudy Dikairono PD Orde Lecture 3 Rudy Dikairono Today s Outline PD Orde Linear Homogen PD Orde Linear Tak Homogen Metode koefisien tak tentu Metode variasi parameter Beberapa Pengelompokan Persamaan Diferensial Order

Lebih terperinci

digunakan untuk menyelesaikan integral seperti 3

digunakan untuk menyelesaikan integral seperti 3 Bab Teknik Pengintegralan BAB TEKNIK PENGINTEGRALAN Rumus-rumus dasar integral tak tertentu yang diberikan pada bab hanya dapat digunakan untuk mengevaluasi integral dari fungsi sederhana dan tidak dapat

Lebih terperinci

Hendra Gunawan. 16 Oktober 2013

Hendra Gunawan. 16 Oktober 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 16 Oktober 2013 Latihan (Kuliah yang Lalu) 1. Diketahui g(x) = x 3 /3, x є [ 2,2]. Hitung nilai rata rata g pada [ 2,2] dan tentukan c є ( 2,2)

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

MASALAH SYARAT BATAS (MSB)

MASALAH SYARAT BATAS (MSB) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo PENDAHULUAN MODEL KABEL MENGGANTUNG DEFINISI MSB Persamaan diferensial (PD) dikatakan berdimensi 1 jika domainnya berupa himpunan bagian pada R 1.

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Definisi KALKULUS MULTIVARIABEL II (Minggu ke-7) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Definisi 1 Definisi 2 ontoh Soal Definisi Integral Garis Fungsi f K R 2 R di Sepanjang Kurva

Lebih terperinci

BAB IV HITUNG DIFERENSIAL

BAB IV HITUNG DIFERENSIAL BAB IV HITUNG DIFERENSIAL (Pertemuan ke 5 s/d 8) PENDAHULUAN Diskripsi singkat Pada bab ini dibahas tentang derivatif macam-macam fungsi, yaitu fungsi aljabar, fungsi trigonometri, fungsi logaritma, fungsi

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Titik Tetap dan Sistem Linear Toni Bakhtiar Departemen Matematika IPB Oktober 2012 Toni Bakhtiar (m@thipb) PDB Oktober 2012 1 / 31 Titik Tetap SPD Mandiri dan Titik Tetap Tinjau

Lebih terperinci

Modul 05 Persamaan Linear dan Persamaan Linear Simultan

Modul 05 Persamaan Linear dan Persamaan Linear Simultan Modul 05 Persamaan Linear dan Persamaan Linear Simultan 5.1. Persamaan Linear Persamaan adalah pernyataan kesamaan antara dua ekspresi aljabar yang cocok untuk bilangan nilai variable tertentu atau variable

Lebih terperinci

ENERGI POTENSIAL. dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga

ENERGI POTENSIAL. dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga ENERGI POTENSIAL 1. Pendahuluan Energi potensial merupakan suatu bentuk energi yang tersimpan, yang dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga potensial tidak dapat dikaitkan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Persamaan diferensial adalah suatu hubungan yang terdapat antara suatu variabel independen, suatu variabel dependen, dan satu atau lebih turunan dari

Lebih terperinci

BAB 2 PDB Linier Order Satu 2

BAB 2 PDB Linier Order Satu 2 BAB 1 Konsep Dasar 1 BAB 2 PDB Linier Order Satu 2 BAB 3 Aplikasi PDB Order Satu 3.1 Masalah Dalam Mekanik Misal 4x adalah perubahan jarak yang ditimbulkan benda bergerak selama waktu 4t maka kecepatan

Lebih terperinci

Notasi turunan. Penggunaan turunan. 6. Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah.

Notasi turunan. Penggunaan turunan. 6. Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah. Turunan fungsi adalah fungsi lain dari suatu fungsi sebelumnya misalkan fungsi f menjadi f' TURUNAN Notasi turunan y' atau f'(x) atau dy/dx fungsi naik Penggunaan turunan fungsi turun persamaan garis singgung

Lebih terperinci

1/32 FISIKA DASAR (TEKNIK SIPIL) KINEMATIKA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta

1/32 FISIKA DASAR (TEKNIK SIPIL) KINEMATIKA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta 1/32 FISIKA DASAR (TEKNIK SIPIL) KINEMATIKA Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Definisi KINEMATIKA Kinematika adalah cabang ilmu fisika yang

Lebih terperinci

f (a) = laju perubahan y = f(x) pada x = a = turunan pertama y=f(x) pada x = a

f (a) = laju perubahan y = f(x) pada x = a = turunan pertama y=f(x) pada x = a LEMBAR AKTIVITAS SISWA DIFFERENSIAL (TURUNAN) Nama Siswa : y f(a h) f(a) x (a h) a Kelas : Kompetensi Dasar (KURIKULUM 2013): 3.21 Memahami konsep turunan dengan menggunakan konteks matematik atau konteks

Lebih terperinci

FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU ABSTRACT

FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU ABSTRACT FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU Syofia Deswita 1, Syamsudhuha 2, Agusni 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu

Lebih terperinci

= + atau = - 2. TURUNAN 2.1 Definisi Turunan fungsi f adalah fungsi yang nilainya di setiap bilangan sebarang c di dalam D f diberikan oleh

= + atau = - 2. TURUNAN 2.1 Definisi Turunan fungsi f adalah fungsi yang nilainya di setiap bilangan sebarang c di dalam D f diberikan oleh JURUSAN PENDIDIKAN MATEMATIKA FPMIPA-UPI BANDUNG HAND OUT TURUNAN DAN DIFERENSIASI OLEH: FIRDAUS-UPI 0716 1. GARIS SINGGUNG 1.1 Definisi Misalkan fungsi f kontinu di c. Garis singgung ( tangent line )

Lebih terperinci

D. OPTIMISASI EKONOMI DENGAN KENDALA - Optimisasi dengan metode substitusi - Optimisasi dengan metode pengali lagrange

D. OPTIMISASI EKONOMI DENGAN KENDALA - Optimisasi dengan metode substitusi - Optimisasi dengan metode pengali lagrange OPTIMISASI EKONOMI Ari Darmawan, Dr. S.AB, M.AB Email: aridarmawan_fia@ub.ac.id A. PENDAHULUAN B. TEKNIK OPTIMISASI EKONOMI C. OPTIMISASI EKONOMI TANPA KENDALA - Hubungan Antara Nilai Total, Rata-rata

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II [MA4] PDB Orde II Bentuk umum : y + p(x)y + g(x)y = r(x) p(x), g(x) disebut koefisien jika r(x) = 0, maka Persamaan

Lebih terperinci

BAB IV PERSAMAAN TAKHOMOGEN

BAB IV PERSAMAAN TAKHOMOGEN BAB IV PERSAMAAN TAKHOMOGEN Kompetensi Mahasiswa mampu 1. Menentukan selesaian khusus PD tak homogen dengan metode koefisien tak tentu 2. Menentukan selesaian khusus PD tak homogen dengan metode variasi

Lebih terperinci

Relasi Rekursi. Definisi Relasi Rekursi

Relasi Rekursi. Definisi Relasi Rekursi Relasi Rekursi Definisi Relasi Rekursi Relasi rekursi adalah sebuah formula rekursif dimana setiap bagian dari suatu barisan dapat ditentukan menggunakan satu atau lebih bagian sebelumnya. Jika ak adalah

Lebih terperinci

II. TINJAUAN PUSTAKA. iterasi Picard di dalam persamaan diferensial orde pertama, perlu diketahui

II. TINJAUAN PUSTAKA. iterasi Picard di dalam persamaan diferensial orde pertama, perlu diketahui II. TINJAUAN PUSTAKA Untuk menuju ketahap pembahasan mengenai keberadaan dan ketunggalan dari iterasi Picard di dalam persamaan diferensial orde pertama, perlu diketahui beberapa bagian dari persamaaan

Lebih terperinci

INTERGRAL INTEGRAL TAK TENTU INTEGRAL SUBSTITUSI MENU

INTERGRAL INTEGRAL TAK TENTU INTEGRAL SUBSTITUSI MENU INTERGRAL OLEH : KELOMPOK 5 KETUA TEORI 1. I GEDE DIKA VIRGA SAPUTRA 2. I WAYAN HERMAWAN 3. EGI AZIKIN MAULANA KETUA SOAL 1. I MADE DUPI ANDIKA 2. I PUTU BAGUS MAHENDRA INTEGRAL TAK TENTU INTEGRAL SUBSTITUSI

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan.

BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan. BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan. Kriteria apa saa yang dapat digunakan untuk menentukan properti

Lebih terperinci

PRAKTIKUM 3 PAM 253 PERSAMAAN DIFERENSIAL BIASA

PRAKTIKUM 3 PAM 253 PERSAMAAN DIFERENSIAL BIASA PRAKTIKUM 3 PAM 253 PERSAMAAN DIFERENSIAL BIASA TOPIK: PERSAMAAN DIFERENSIAL BIASA ORDE DUA ========== Dalam praktikum ini selalu gunakan Worksheet Mode dengan tipe input Maple Notation ========== I. Pendahuluan

Lebih terperinci

BAB II ANALISIS KEMAMPUAN KOMUNIKASI MATEMATIS SISWA DALAM MATERI SISTEM PERSAMAAN LINEAR DUA VARIABEL

BAB II ANALISIS KEMAMPUAN KOMUNIKASI MATEMATIS SISWA DALAM MATERI SISTEM PERSAMAAN LINEAR DUA VARIABEL BAB II ANALISIS KEMAMPUAN KOMUNIKASI MATEMATIS SISWA DALAM MATERI SISTEM PERSAMAAN LINEAR DUA VARIABEL A. Analisis Pengertian analisis adalah penyelidikan terhadap suatu peristiwa (karangan, perbuatan

Lebih terperinci

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi Catatan Kuliah FI111 Fisika Dasar IA Pekan #8: Osilasi Agus Suroso update: 4 November 17 Osilasi atau getaran adalah gerak bolak-balik suatu benda melalui titik kesetimbangan. Gerak bolak-balik tersebut

Lebih terperinci

PDP linear orde 2 Agus Yodi Gunawan

PDP linear orde 2 Agus Yodi Gunawan PDP linear orde 2 Agus Yodi Gunawan Pada bagian ini akan dipelajari tiga jenis persamaan diferensial parsial (PDP) linear orde dua yang biasa dijumpai pada masalah-masalah dunia nyata, yaitu persamaan

Lebih terperinci

BAB I INTEGRAL TAK TENTU

BAB I INTEGRAL TAK TENTU BAB I INTEGRAL TAK TENTU TUJUAN PEMBELAJARAN: 1. Setelah mempelajari materi ini mahasiswa dapat menentukan pengertian integral sebagai anti turunan. 2. Setelah mempelajari materi ini mahasiswa dapat menyelesaikan

Lebih terperinci