Bangun Ruang. 2s = s 2. 3s = s 3. Contoh Soal : Berapa Volume, luas dan keliling kubus di bawah ini?

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bangun Ruang. 2s = s 2. 3s = s 3. Contoh Soal : Berapa Volume, luas dan keliling kubus di bawah ini?"

Transkripsi

1 SD - Bangun Ruang. Kubus H G E F D C s A s B Cii-cii Kubus :. Jumlah bidang sisi ada 6 buah yang bebentuk buju sangka (ABCD, EFGH, ABFE, BCGF, CDHG, ADHE,). Mempunyai 8 titik sudut (A, B, C, D, E, F, G, H). Mempunyai usuk yang sama panjang (AB, CD, EF, GH, AE, BF, CG, DH, AD, BC, EH, FG) 4. Semua sudutnya siku-siku 5. Mempunyai 4 diagonal uang dan diagonal bidang (4 diagonal uang = gais AG, BH, CE, DF diagonal bidang = gais AC,BD,EG,FH,AH,DE,BG,CF,AF,BE,CH,DG) Volume (V) = s x s x s = s Luas (L) = 6 x s x s = 6 s Keliling = x s Panjang diagonal bidang = Panjang diagonal uang = s + s = s + s + s = s = s s = s Contoh Soal : Beapa Volume, luas dan keliling kubus di bawah ini? 6

2 SD - Jawab: diketahui panjang sisi kubus = 6 V = s = ( 6 ) = 6 L = 6 s = 6 x ( 6 ) = 6 Keliling = x s = x 6 = 7. Balok t p l Cii-cii Balok :. Alasnya bebentuk segi empat. Tedii dai usuk. Mempunyai 6 bidang sisi 4. Memiliki 8 titik sudut 5. Seluuh sudutnya siku-siku 6. Mempunyai 4 diagonal uang dan diagonal bidang Volume = p x l x t Luas = x {(pxl) + (pxt) + (lxt) } Keliling = 4 x (p+ l + t) Diagonal Ruang = p + l + t Contoh Soal : Beapa Volume, luas dan keliling balok di bawah ini? 5 0 6

3 SD - Jawab: Diketahui balok dengan p = 0 ; l = 6 dan t = 5 V = p x l x t = 0 x 6 x 5 = 00 L = x {(pxl) + (pxt) + (lxt) } = x {( ) } = x 40 Keliling = 4 x (p+ l + t) = 4 x = 48 = 80. Pisma Tegak segitiga siku-siku b a Cii-cii :. Tedii dai 6 titik sudut. Mempunyai 9 buah usuk Mempunyai 5 bidang sisi t Volume = Luas alas x tinggi Luas alas = x alas x tinggi p Luas = x (a x b) + (a x t) + (b x t) + (p x t) Contoh soal : Beapa volume dan luas pisma segitiga siku-siku di bawah ini? 4 Jawab : Volume = L alas x tinggi L alas = x alas x tinggi alas 7 = x x 4 = 6 Volume = 6 x 7 = 4 p =? Luas = x (a x b) + (a x t) + (b x t) + (p x t) = (a x b) + (a x t) + (b x t) + (p x t) p = + 4 = 5 = 5 Luas = (x4) + (x7) + (4x7) + (5x7) = = 94

4 SD Tabung / Silinde t Cii-cii:. Mempunyai usuk. Alas dan atapnya beupa lingkaan. Mempunyai bidang sisi ( bidang sisi lingkaan atas dan bawah, bidang selimut) Volume tabung = luas alas x tinggi Luas alas = luas lingkaan alas tabung = π x Volume tabung = π x x t π = =,4 7 Luas Selimut= π x x t Luas Pemukaan Tabung = x luas alas + Luas selimut tabung = x π x + π x x t = π ( + t ) Contoh soal : Sebuah tabung mempunyai jai jai dengan tinggi 6, Beapa Volume dan Luas tabung tsb? Jawab : Diketahui tabung dengan = dan t = 6 Volume = π x x t =,4 x ( ) x 6 = 69, 56 Luas = π ( + t ) = x,4 x ( + 6 ) = 8,84 x 9 = 69,56

5 SD Keucut Cii-cii :. Mempunyai bidang sisi ( bidang sisi lingkaan dan bidang sisi selimut) t s. Mempunyai usuk dan titik sudut Luas selimut = π x x s Luas alas = π x Luas Pemukaan keucut = Luas alas + Luas Selimut = π x + π x x s = π ( + s) Volume = x Luas alas x tinggi = x π x x t Contoh Soal : Sebuah keucut mempunyai jai-jai 4 dan tinggi 6. Beapa Volume keucut tsb? Jawab : Volume = x π x x t = x,4 x ( 4 ) x 6 = 00,48

6 SD Limas a. Limas Segitiga Cii-cii :. Alasnya bebentuk segitiga. Mempunyai 4 bidang sisi (alas dan sisi tegak). Mempunyai 6 usuk 4. Mempunyai 4 titik sudut Luas alas = alas x tinggi Volume = Luas alas x tinggi Luas = Luas alas + ( x luas tegak segitiga) Contoh soal : Luas suatu alas limas segitiga adalah dan tingginya 8. Beapakah volume dan luas limas segitiga tsb? Jawab: Diketahui luas alas = dan t = 8 V = Luas alas x tinggi = x x 8 = 56 b. Limas Segiempat E t A D Cii-cii :. Alasnya bebentuk segiempat (BCDE). Mempunyai 5 bidang sisi (BCDE, ABC, ACD,ABE, ADE). Mempunyai 5 titik sudut ( A, B,C,D,E) 4. Mempunyai 8 usuk (AB, AC,AD,AE,BC,CD,DE,BE) B C

7 SD - 7 Volume = Luas alas x tinggi Luas alas = p x l Luas = Luas Alas + (4 x Luas tegak segitiga) Contoh Soal : Beapa Volume limas di bawah ini? 9 Jawab : 7 Diketahui p = 7 ; l = dan t = 9 Luas Alas = p x l = Volume = Luas alas x tinggi = x x 9 = 6 7. Bola Cii-cii :. Hanya mempunyai bidang sisi. Tidak mempunyai sudut dan tidak mempunyai usuk

8 SD Volume = π Luas = 4 π Contoh Soal : Beapa Volume dan Luas bola, jika diketahui jai-jai bola adalah 7? Jawab : Diketahui jai jai bola = 7 ; π = 7 =,4 4 Volume = π 4 = x x ( 7 ) 7 4 = x x 49 = 47, Luas = 4 π = 4 x,4 x ( 7 ) = 65,44

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA 5 BAB II KAJIAN PUSTAKA 2.1. Kajian Teori 2.1.1. Pengertian Luas Permukaan Bangun Ruang Luas daerah permukaan bangun ruang adalah jumlah luas daerah seluruh permukaannya yaitu luas daerah bidang-bidang

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Pengajaran Berbantuan Komputer Perkembangan komputer baik dalam segi kuantitas, kualitas, maupun teknologinya cenderung sangat pesat belakangan ini. Hal ini menyebabkan semakin

Lebih terperinci

LEMBAR AKTIVITAS SISWA DIMENSI TIGA (WAJIB)

LEMBAR AKTIVITAS SISWA DIMENSI TIGA (WAJIB) Nama Siswa Kelas LEMBAR AKTIVITAS SISWA DIMENSI TIGA (WAJIB) 5. Diagonal Ruang adalah Ruas garis yang menghubungkan dua titik : sudut yang saling berhadapan dalam satu ruang. : Kompetensi Dasar (KURIKULUM

Lebih terperinci

Daftar Nilai Ketuntasan Siswa Pra Siklus No Nama KKM Nilai Keterangan 1 Era Susanti Tuntas 2 Nuri Safitri Belum Tuntas 3 Aldo Kurniawan

Daftar Nilai Ketuntasan Siswa Pra Siklus No Nama KKM Nilai Keterangan 1 Era Susanti Tuntas 2 Nuri Safitri Belum Tuntas 3 Aldo Kurniawan 34 35 Daftar Nilai Ketuntasan Siswa Pra Siklus No Nama KKM Nilai Keterangan 1 Era Susanti 60 80 Tuntas 2 Nuri Safitri 60 45 Belum Tuntas 3 Aldo Kurniawan 60 75 Tuntas 4 Anggi Septiana 60 70 Tuntas 5 Desi

Lebih terperinci

Siswa dapat menyebutkan dan mengidentifikasi bagian-bagian lingkaran

Siswa dapat menyebutkan dan mengidentifikasi bagian-bagian lingkaran KISI-KISI PENULISAN SOAL DAN URAIAN ULANGAN KENAIKAN KELAS Jenis Sekolah Penulis Mata Pelajaran Jumlah Soal Kelas Bentuk Soal AlokasiWaktu Acuan : SMP/MTs : Gresiana P : Matematika : 40 nomor : VIII (delapan)

Lebih terperinci

Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 1 BAB I PENDAHULUAN

Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 1 BAB I PENDAHULUAN Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 1 BAB I PENDAHULUAN A. Latar Belakang Ada beberapa pendapat yang disampaikan para ahli mengenai definisi dari istilah matematika. Matematika didefinisikan

Lebih terperinci

KUBUS DAN BALOK. Kata-Kata Kunci: unsur-unsur kubus dan balok jaring-jaring kubus dan balok luas permukaan kubus dan balok volume kubus dan balok

KUBUS DAN BALOK. Kata-Kata Kunci: unsur-unsur kubus dan balok jaring-jaring kubus dan balok luas permukaan kubus dan balok volume kubus dan balok 8 KUBUS DAN BALOK Perhatikan benda-benda di sekitar kita. Dalam kehidupan sehari-hari kita sering memanfaatkan benda-benda seperti gambar di samping, misalnya kipas angin, video cd, dan kardus bekas mainan.

Lebih terperinci

1. Titik, Garis dan Bidang Dalam Ruang. a. Defenisi. Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol

1. Titik, Garis dan Bidang Dalam Ruang. a. Defenisi. Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol 1. Titik, Garis dan Bidang Dalam Ruang a. Defenisi Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol Titik digambarkan dengan sebuah noktah dan penamaannya menggunakan

Lebih terperinci

Bab. Bangun Ruang Sisi Lengkung. A. Tabung B. Kerucut C. Bola

Bab. Bangun Ruang Sisi Lengkung. A. Tabung B. Kerucut C. Bola Bab Sumbe: www.contain.ca Bangun Ruang Sisi Lengkung Di Sekolah Dasa, kamu telah mengenal bangun-bangun uang sepeti tabung, keucut, dan bola. Bangun-bangun uang tesebut akan kamu pelajai kembali pada bab

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Kajian Pustaka Berdasarkan penelitian yang dilakukan oleh Rini Fatmawati dengan judul Peningkatan Pembelajaran Melalui Model Pembelajaran Picture and Picture pada Pokok Bahasan

Lebih terperinci

Materi W9a GEOMETRI RUANG. Kelas X, Semester 2. A. Kedudukan Titik, Garis dan Bidang dalam Ruang.

Materi W9a GEOMETRI RUANG. Kelas X, Semester 2. A. Kedudukan Titik, Garis dan Bidang dalam Ruang. Materi W9a GEOMETRI RUANG Kelas X, Semester 2 A. Kedudukan Titik, Garis dan Bidang dalam Ruang www.yudarwi.com A. Kedudukan Titik, Garis dan bidang dalam Ruang (1) Kedudukan Titik dan titik Titik berimpit

Lebih terperinci

MODUL MATEMATIKA. Geometri Dimensi Tiga. Maylisa Handayani,S.Pd. Penyusun: MAT. 06. Geometri Dimensi Tiga

MODUL MATEMATIKA. Geometri Dimensi Tiga. Maylisa Handayani,S.Pd. Penyusun: MAT. 06. Geometri Dimensi Tiga MODUL MATEMATIKA Geometri Dimensi Tiga Penyusun: Maylisa Handayani,S.Pd MAT. 06. Geometri Dimensi Tiga i Kata Pengantar Puji sukur kami haturkan ke hadirat Tuhan Yang Maha Esa atas segala karunianya, sehingga

Lebih terperinci

LAMPIRAN 1 RPP SIKLUS 1 DENGAN MODEL PEMBELAJARAN KOOPERATIF TIPE THINK PAIR SHARE

LAMPIRAN 1 RPP SIKLUS 1 DENGAN MODEL PEMBELAJARAN KOOPERATIF TIPE THINK PAIR SHARE LAMPIRAN 1 RPP SIKLUS 1 DENGAN MODEL PEMBELAJARAN KOOPERATIF TIPE THINK PAIR SHARE 108 RENCANA PELAKSANAAN PEMBELAJARAN SIKLUS 1 MODEL PEMBELAJARAN KOOPERATIF TIPE THINK PAIR SHARE Satuan Pendidikan Mata

Lebih terperinci

LEMBAR KERJA SISWA KE-3

LEMBAR KERJA SISWA KE-3 LEMBAR KERJA SISWA KE-3 Mata Pelajaran : Matematika Pokok Bahasan : Dimensi Tiga Kelas / Semester : X / 2 Pertemuan Ke : 4 dan 5 Alokasi Waktu : 4 jam ( 4 x 45 menit ) C. Menggambar Kubus dan Balok 01.

Lebih terperinci

Bangun yang memiliki sifat-sifat tersebut disebut...

Bangun yang memiliki sifat-sifat tersebut disebut... 1. Perhatikan sifat-sifat bangun ruang di bawah ini: i. Memiliki 6 sisi yang sama atau kongruen ii. Memiliki 12 rusuk yang sama panjang Bangun yang memiliki sifat-sifat tersebut disebut... SD kelas 6 -

Lebih terperinci

- - BANGUN RUANG SISI LENGKUNG

- - BANGUN RUANG SISI LENGKUNG - - BANGUN RUANG SISI LENGKUNG - - Modul ini singkon dengan Aplikasi Andoid, Download melalui Play Stoe di HP Kamu, ketik di pencaian sbllengkung Jika Kamu kesulitan, Tanyakan ke tento bagaimana caa downloadnya.

Lebih terperinci

BANGUN RUANG SISI LENGKUNG

BANGUN RUANG SISI LENGKUNG MGMP MATEMATIKA SMP KOTA MALANG BANGUN RUANG SISI LENGKUNG MODUL/BAHAN AJAR KELAS 9 PENYUSUN Ds.WIJANARKO EDITOR ANIK SUJIATI,S.Pd. MM BANGUN RUANG SISI LENGKUNG BAB 2BANGUN RUANG SISI LENGKUNG Setelah

Lebih terperinci

DAFTAR ISI PRAKATA DAFTAR ISI KATA KATA MOTIVASI TUJUAN PEMBELAJARAN KUBUS DAN BALOK

DAFTAR ISI PRAKATA DAFTAR ISI KATA KATA MOTIVASI TUJUAN PEMBELAJARAN KUBUS DAN BALOK PRAKATA Puji syukur penulis panjatkan kepada Tuhan Yang Maha Esa karena buku ini dapat diselesaikan. Buku ini penulis hadirkan sebagai panduan bagi siswa dalam mempelajari salah satu materi matematika.

Lebih terperinci

SOAL BANGUN RUANG. a. 1000 dm 3 b. 600 dm 3 c. 400 dm 3 d. 100 dm 3 e. 10 dm 3

SOAL BANGUN RUANG. a. 1000 dm 3 b. 600 dm 3 c. 400 dm 3 d. 100 dm 3 e. 10 dm 3 SOAL BANGUN RUANG Soal Pilihan Ganda 1. Diketahui kubus dengan panjang diagonal sisi 5 2 meter, luas permukaan kubus tersebut adalah a. 5 m 2 b. 25 m 2 c. 100 m 2 d. 150 m 2 e. 250 m 2 2. Dikeatui bak

Lebih terperinci

1. AB = 16 cm, CE = 8 cm, BD = 5 cm, CD = 3 cm. Tentukan panjang EF! 20 PEMBAHASAN : BCD : Lihat ABE : Lihat AFE : Lihat

1. AB = 16 cm, CE = 8 cm, BD = 5 cm, CD = 3 cm. Tentukan panjang EF! 20 PEMBAHASAN : BCD : Lihat ABE : Lihat AFE : Lihat 1. AB = 1, CE = 8, BD =, CD =. Tentukan panjang EF! 0 BCD : ABE : BC BC BC CD BC 4 BD 9 1 AB 1 BE 144 AE 4 8 AE 0 AE AE EF EF 0 AFE : AE AF 0 0 EF EF 400 400 800 . Keliling ABC = 4, Luas ABC = 4. Tentukan

Lebih terperinci

Materi W9b GEOMETRI RUANG. Kelas X, Semester 2. B. Menggambar dan Menghitung jarak.

Materi W9b GEOMETRI RUANG. Kelas X, Semester 2. B. Menggambar dan Menghitung jarak. Materi W9b GEOMETRI RUANG Kelas X, Semester 2 B. Menggambar dan Menghitung jarak www.yudarwi.com B. Menggambar dan Menghitung Jarak Jarak dua objek dalam dimensi tiga adalah jarak terpendek yang ditarik

Lebih terperinci

Keliling dan Luas Bangun Datar

Keliling dan Luas Bangun Datar SD - 1 Keliling dan Luas angun Data 1. uju Sangka (Pesegi sama sisi) sisi Panjang: = C = CD = D sisi sisi RUMUS : Luas = sisi x sisi Keliling = 4 x sisi ( sisi + sisi + sisi + sisi) D sisi C 1. eapa luas

Lebih terperinci

MAT. 06. Geometri Dimensi Tiga

MAT. 06. Geometri Dimensi Tiga MAT. 06. Geometri Dimensi Tiga i Kode MAT. 06 Geometri Dimensi Tiga BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN

Lebih terperinci

SOAL-SOAL UJIAN NASIONAL MATEMATIKA SMP/MTs TAHUN PELAJARAN 2009/2010

SOAL-SOAL UJIAN NASIONAL MATEMATIKA SMP/MTs TAHUN PELAJARAN 2009/2010 SOAL-SOAL UJIAN NASIONAL MATEMATIKA SMP/MTs TAHUN PELAJARAN 2009/2010 1. Hasil dari 8 + ( 3 x 4) ( 6 : 3) adalah... A. 6 B. 2 C. -2 D. -6 BAB I BILANGAN BULAT dan BILANGAN PECAHAN 8 + ( 3 x 4) ( 6 : 3)

Lebih terperinci

Antiremed Kelas 12 Matematika

Antiremed Kelas 12 Matematika Antiremed Kelas Matematika 04- Diagonal Ruang, Diagonal Bidang, Bidang Diagonal. Doc. Name: KARMATWJB040 Version : 0-09 halaman 0. Diketahui kubus ABCD,EFGH dengan panjang rusuk. Jika P titik HG,Q titik

Lebih terperinci

CATATAN LAPANGAN OPTIMALISASI PENGGUNAAN STRATEGI TWO STAY TWO STRAY UNTUK MENINGKATKAN KEAKTIFAN DAN KEBERANIAN BELAJAR MATEMATIKA SISWA

CATATAN LAPANGAN OPTIMALISASI PENGGUNAAN STRATEGI TWO STAY TWO STRAY UNTUK MENINGKATKAN KEAKTIFAN DAN KEBERANIAN BELAJAR MATEMATIKA SISWA Lampiran 1 79 CATATAN LAPANGAN OPTIMALISASI PENGGUNAAN STRATEGI TWO STAY TWO STRAY UNTUK MENINGKATKAN KEAKTIFAN DAN KEBERANIAN BELAJAR MATEMATIKA SISWA (PTK Bagi Siswa Kelas VIIIE SMP Negeri 2 Banyudono

Lebih terperinci

PEMBAHASAN SOAL UN MATEMATIKA SMP 2010 KODE B P48

PEMBAHASAN SOAL UN MATEMATIKA SMP 2010 KODE B P48 PEMBAHASAN SOAL UN MATEMATIKA SMP 010 KODE B P48 1. Pada awal Januari 009 koperasi Rasa Sayang mempunyai modal sebesar Rp5.000.000,00. Seluruh modal tersebut dipinjamkan kepada anggotanya selama 10 bulan

Lebih terperinci

Bangun Ruang (2)_soal Kelas 4 SD. 1. Unsur pada bangun ruang kubus yang berjumlah 8 adalah... A. Titik sudut B. Bidang sisi C. Rusuk D.

Bangun Ruang (2)_soal Kelas 4 SD. 1. Unsur pada bangun ruang kubus yang berjumlah 8 adalah... A. Titik sudut B. Bidang sisi C. Rusuk D. Bangun Ruang (2)_soal Kelas 4 SD 1. Unsur pada bangun ruang kubus yang berjumlah 8 adalah.... A. Titik sudut B. Bidang sisi C. Rusuk D. Diagonal sisi 2. Perhatikan gambar berikut! Bangun ruang di atas

Lebih terperinci

Bangun Ruang dan Bangun Datar

Bangun Ruang dan Bangun Datar Bab 8 Bangun Ruang dan Bangun Datar Mari memahami sifat bangun ruang sederhana dan hubungan antar bangun datar. Bangun Ruang dan Bangun Datar 205 206 Ayo Belajar Matematika Kelas IV A. Bangun Ruang Sederhana

Lebih terperinci

Modul Matematika X IPA Semester 2 Dimensi Tiga

Modul Matematika X IPA Semester 2 Dimensi Tiga Modul Matematika X IPA Semester Dimensi Tiga Tahun Pelajaran 0 05 SMA Santa Angela Jl. Merdeka No. Bandung Dimensi Tiga X IPA Sem /0-05 Peta Konsep Pengertian titik, garis, dan bidang Titik terhadap garis

Lebih terperinci

PEMBAHASAN SOAL UN MATEMATIKA SMP (KODE A) TAHUN PELAJARAN 2009/2010

PEMBAHASAN SOAL UN MATEMATIKA SMP (KODE A) TAHUN PELAJARAN 2009/2010 PEMBAHASAN SOAL UN MATEMATIKA SMP (KODE A) TAHUN PELAJARAN 009/00 PEMBAHAS: Th. Widyantini Wiworo Untung Trisna Suwaji Yudom Rudianto Sri Purnama Surya Nur Amini Mustajab Choirul Listiani PEMBAHASAN SOAL

Lebih terperinci

LAMPIRAN 1 SURAT IJIN DAN SURAT KETERANGAN PENELITIAN

LAMPIRAN 1 SURAT IJIN DAN SURAT KETERANGAN PENELITIAN LAMPIRAN 119 120 LAMPIRAN 1 SURAT IJIN DAN SURAT KETERANGAN PENELITIAN 120 121 122 123 124 LAMPIRAN 2 JADWAL PENELITIAN DAN JURNAL MAGANG 124 125 126 127 128 LAMPIRAN 3 HASIL VALIDASI DAN TINGKAT KESUKARAN

Lebih terperinci

LAMPIRAN 1 SURAT IJIN DAN SURAT KETERANGAN PENELITIAN

LAMPIRAN 1 SURAT IJIN DAN SURAT KETERANGAN PENELITIAN LAMPIRAN 119 120 LAMPIRAN 1 SURAT IJIN DAN SURAT KETERANGAN PENELITIAN 120 121 122 123 124 LAMPIRAN 2 JADWAL PENELITIAN DAN JURNAL MAGANG 124 125 126 127 128 LAMPIRAN 3 HASIL VALIDASI DAN TINGKAT KESUKARAN

Lebih terperinci

BAB II KAJIAN TEORI. berbagai metode sehingga siswa dapat melakukan kegiatan belajar secara

BAB II KAJIAN TEORI. berbagai metode sehingga siswa dapat melakukan kegiatan belajar secara BAB II KAJIAN TEORI A. Kajian Teori 1. Pembelajaran Matematika di SMP Menurut Sugihartono (2012: 81), pembelajaran adalah suatu upaya yang dilakukan secara sengaja oleh pendidik untuk menyampaikan ilmu

Lebih terperinci

Lampiran 1. Kisi-Kisi Soal Siklus I dan Siklus II

Lampiran 1. Kisi-Kisi Soal Siklus I dan Siklus II 62 Lampiran 1 Kisi-Kisi Soal Siklus I dan Siklus II 63 Kisi-kisi soal Siklus I Sekolah : SDN 1 Krobokan Mata Pelajaran : Matematika Kelas/ Semester : 5/ II A. Standar Kompetensi : 6. Memahami sifat-sifat

Lebih terperinci

PAKET 4. Paket : 4. No Soal Jawaban 1 Luas Segiempat PQRS pada gambar di bawah ini adalah. A. 120 cm 2 B. 216 cm 2 C. 324 cm 2 D. 336 cm 2 E.

PAKET 4. Paket : 4. No Soal Jawaban 1 Luas Segiempat PQRS pada gambar di bawah ini adalah. A. 120 cm 2 B. 216 cm 2 C. 324 cm 2 D. 336 cm 2 E. PAKET 4 Jumlah Soal : 0 soal Kompetensi :. Bangun Datar. Trigonometri. Bangun Ruang 4. Barisan dan Deret Compile By : Syaiful Hamzah Nasution No Soal Jawaban Luas Segiempat PQRS pada gambar di bawah ini

Lebih terperinci

. A.M. A. Titik, Garis, dan Bidang BANGUN GEOMETRI

. A.M. A. Titik, Garis, dan Bidang BANGUN GEOMETRI A. Titik, Garis, dan Bidang BANGUN GEOMETRI Suatu titik menyatakan letak atau posisi dari sesuatu yang tidak mempunyai ukuran, maka titik tidak mempunyai ukuran. Dikatakan bahwa titik berdimensi nol (tak

Lebih terperinci

Materi W9c GEOMETRI RUANG. Kelas X, Semester 2. C. Menggambar dan Menghitung Sudut.

Materi W9c GEOMETRI RUANG. Kelas X, Semester 2. C. Menggambar dan Menghitung Sudut. Materi W9c GEOMETRI RUANG Kelas X, Semester C. Menggambar dan Menghitung Sudut www.yudarwi.com C. Menggambar dan Menghitung Sudut Sudut dalam dimensi tiga adalah sudut antara garis dan garis, garis dan

Lebih terperinci

Lampiran 1 80

Lampiran 1 80 79 L A M P I R A N Lampiran 1 80 Lampiran 2 81 Lampiran 3 82 Lampiran 4 83 84 Lampiran 5 RENCANA PELAKSANAAN PEMBELAJARAN ( RPP ) PROBLEM BASED LEARNING BERBANTUAN MEDIA BANGU DATAR PEMBELAJARAN SIKLUS

Lebih terperinci

DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP TRYOUT UN menit

DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP TRYOUT UN menit DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP P.15 TRYOUT UN 2013 Mata Pelajaran Matematika Hari/Tanggal Waktu 120 menit 1. Hasil dari -15 + (-12 : 3) adalah... a -19 b -11 c -9 d 9 2. Hasil

Lebih terperinci

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT 1. MEMBAGI GARIS a. Membagi garis menjadi 2 bagian yang sama panjang Membagi garis menjadi 2 bagian yang sama panjang menggunakan jangka dapat diikuti melalui

Lebih terperinci

UN SMP 2011 MATEMATIKA

UN SMP 2011 MATEMATIKA UN SMP 011 MATEMATIKA Kode Soal Doc. Name: UNSMP011MAT999 Version: 01-10 halaman 1 01. Perhatikan gambar di atas, nilai q (A) 68 (B) 55 (C) 48 (D) 5 0. Ibu membeli 40 kg gula pasir, gula itu akan dijual

Lebih terperinci

BAB II KAJIAN TEORI. Morgan, dkk (dalam Walgito, 2004: 167) memberikan definisi mengenai

BAB II KAJIAN TEORI. Morgan, dkk (dalam Walgito, 2004: 167) memberikan definisi mengenai 1 BAB II KAJIAN TEORI 2.1 Hakikat Belajar Matematika Morgan, dkk (dalam Walgito, 2004: 167) memberikan definisi mengenai belajar yaitu: Learning can be defined as any relatively permanent change in behavior

Lebih terperinci

Lampiran 1.Surat Izin Uji Coba Instrumen Dan Penelitian

Lampiran 1.Surat Izin Uji Coba Instrumen Dan Penelitian 89 Lampiran 1.Surat Izin Uji Coba Instrumen Dan Penelitian 90 91 Lampiran 2 Surat Keterangan Telah Melakukan Penelitian 92 93 Lampiran 3.RPP Siklus 1 RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Sekolah : SD

Lebih terperinci

SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT

SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT Pilihan 1. Pada gambar berikut, tali busur ditunjukkan oleh A. AO B. CO C. BO D. BC 2. Panjang jari jari suatu

Lebih terperinci

PAKET 1 Berilah tanda silang (x) pada huruf A, B, C atau D di depan jawaban yang benar! 1. Hasil dari ( ) : (-8 + 6) adalah. a. -6 b. -5 c.

PAKET 1 Berilah tanda silang (x) pada huruf A, B, C atau D di depan jawaban yang benar! 1. Hasil dari ( ) : (-8 + 6) adalah. a. -6 b. -5 c. PAKET 1 Berilah tanda silang (x) pada huruf A, B, C atau D di depan jawaban yang benar! 1. Hasil dari (- + 11) : (-8 + 6) adalah. a. -6 b. -5 c. 5 d. 6. Pak Budi pada awal bulan menabung uang di koperasi

Lebih terperinci

Rencana Pelaksanaan Pembelajaran (RPP) Siklus I

Rencana Pelaksanaan Pembelajaran (RPP) Siklus I Lampiran 92 93 94 95 96 LAMPIRAN 3 Rencana Pelaksanaan Pembelajaran (RPP) Siklus I Satuan Pendidikan Mata Pelajaran Kelas / Semester Tema / Topik Alokasi waktu : SD Negeri Noborejo 01 Salatiga : Matematika

Lebih terperinci

MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : GEOMETRI

MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : GEOMETRI MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : GEOMETRI STANDAR KOMPETENSI LULUSAN. Memahami bangun datar, bangun ruang, garis sejajar, dan sudut, serta menggunakannya dalam

Lebih terperinci

K13 Revisi Antiremed Kelas 12 Matematika

K13 Revisi Antiremed Kelas 12 Matematika K Revisi Antiremed Kelas Matematika Geometri Bidang Ruang - Latihan Soal Doc. Name: RKARMATWJB00 Version : 0-0 halaman 0. Diketahui kubus ABCD,EFGH dengan panjang rusuk. Jika P titik HG,Q titik tengah

Lebih terperinci

BAB II KAJIAN TEORI. Pembelajaran sebagai proses belajar yang dibangun oleh guru untuk

BAB II KAJIAN TEORI. Pembelajaran sebagai proses belajar yang dibangun oleh guru untuk BAB II KAJIAN TEORI A. Pembelajaran Matematika Pembelajaran sebagai proses belajar yang dibangun oleh guru untuk mengembangkan kreativitas berpikir yang dapat meningkatkan kemampuan berpikir siswa, serta

Lebih terperinci

(Dengan Pendekatan Vektor) Oleh: Murdanu, M.Pd.

(Dengan Pendekatan Vektor) Oleh: Murdanu, M.Pd. (Dengan Pendekatan Vektor) Oleh: Muru, M.Pd. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA PROGRAM STUDI MATEMATIKA TAHUN AKADEMIK /. Diberikan

Lebih terperinci

50 LAMPIRAN NILAI SISWA SOAL INSTRUMEN Nama : Kelas : No : BERILAH TANDA SILANG (X) PADA JAWABAN YANG DIANGGAP BENAR! 1. Persegi adalah.... a. Bangun segiempat yang mempunyai empat sisi dan panjang

Lebih terperinci

LAMPIRAN 1. Surat Ijin Observasi dan Penelitian Skripsi

LAMPIRAN 1. Surat Ijin Observasi dan Penelitian Skripsi 64 LAMPIRAN 1 Surat Ijin Observasi dan Penelitian Skripsi 65 LAMPIRAN 2 Surat Ijin Uji Validitas Soal LAMPIRAN 4 66 67 RENCANA PELAKSANAAN PEMBELAJARAN (RPP) SIKLUS I Mata Pelajaran : Matematika Kelas/Semester

Lebih terperinci

PEMANTAPAN UJIAN NASIONAL Kerjakan dengan sungguh-sungguh dengan kejujuran hati!

PEMANTAPAN UJIAN NASIONAL Kerjakan dengan sungguh-sungguh dengan kejujuran hati! PEMANTAPAN UJIAN NASIONAL 203 Kerjakan dengan sungguh-sungguh dengan kejujuran hati!. Hasil dari (-5 7) : 4 x (-5) + 8 adalah. A. -26 B. -23 C. 23 D. 26 2. Perbandingan banyak kelereng Taris dan Fauzan

Lebih terperinci

Rencana Pelaksanaan Pembelajaran (RPP) I. Standar Kompetensi 6. Memahami sifat-sifat bangun dan hubungan antar bangun ruang

Rencana Pelaksanaan Pembelajaran (RPP) I. Standar Kompetensi 6. Memahami sifat-sifat bangun dan hubungan antar bangun ruang Rencana Pelaksanaan Pembelajaran (RPP) Satuan Pendidikan : SD N 05 Sendangharjo Mata Pelajaran : Matematika Kelas/semester : V / 2 Alokasi Waktu : 2 X Pertemuan I. Standar Kompetensi 6. Memahami sifat-sifat

Lebih terperinci

Geometri Ruang (Dimensi 3)

Geometri Ruang (Dimensi 3) Geometri Ruang (Dimensi 3) Beberapa Benda Ruang Yang Beraturan Kubus Tabung volume = a³ luas = 6a² rusuk kubus = a panjang diagonal = a 2 panjang diagonal ruang = a 3 r = jari-jari t = tinggi volume =

Lebih terperinci

Bab 7. Bangun Ruang Sisi Datar. Standar Kompetensi. Memahami sifat-sifat kubus, balok, prisma, limas dan bagian-bagiannya serta menentukan ukurannya

Bab 7. Bangun Ruang Sisi Datar. Standar Kompetensi. Memahami sifat-sifat kubus, balok, prisma, limas dan bagian-bagiannya serta menentukan ukurannya Bab 7 Bangun Ruang Sisi Datar Standar Kompetensi Memahami sifat-sifat kubus, balok, prisma, limas dan bagian-bagiannya serta menentukan ukurannya Kompetensi Dasar 4.1 Menentukan unsur dan bagian-bagian

Lebih terperinci

Januari Februari 2013

Januari Februari 2013 Lampiran 1 Jadwal Penelitian RINCIAN WAKTU dan PELAKSANAAN KEGIATAN PENELITIAN No. Kegiatan 1. Penyusunan dan pengajuan proposal 2. Mengurus izin penelitian 3. Persiapan penelitian 4. Pelaksanaan siklus

Lebih terperinci

BANGUN RUANG BAHAN BELAJAR MANDIRI 5

BANGUN RUANG BAHAN BELAJAR MANDIRI 5 BAHAN BELAJAR MANIRI 5 BANGUN RUANG PENAHULUAN untuk membantu calon guru dan guru Sekolah dasar dalam memahami konsep geometri bangun ruang, bidang empat (limas), bidang enam (prisma), dan bangun ruang

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Siklus I

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Siklus I 74 Lampiran 1 75 Lampiran 2 76 Lampiran 3 77 78 Lampiran 4 RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Siklus I Satuan Pendidikan Mata Pelajaran Kelas/Semester Materi Pembelajaran Alokasi Waktu Pertemuan :

Lebih terperinci

PAKET 5 1. Hasil dari 4 5 2, 6 adalah B C D.

PAKET 5 1. Hasil dari 4 5 2, 6 adalah B C D. 1 3 1. Hasil dari 4 5 2, 6 adalah... 2 4 A. 13 7 B. 17 7 C. 13 12 D. 17 12 2. Operasi @ artinya kalikan bilangan pertama dengan dua, kemudian kurangilah hasilnya dengan tiga kali bilangan kedua. Nilai

Lebih terperinci

LEMBAR AKTIVITAS SISWA DIMENSI TIGA Ruas garis PQ Ruas garis QR Garis PQ = garis QR (karena bila diperpanjang akan mewakili garis yang sama)

LEMBAR AKTIVITAS SISWA DIMENSI TIGA Ruas garis PQ Ruas garis QR Garis PQ = garis QR (karena bila diperpanjang akan mewakili garis yang sama) Nama Siswa Kelas LEMBAR AKTIVITAS SISWA DIMENSI TIGA Ruas garis PQ Ruas garis QR : Garis PQ = garis QR (karena bila diperpanjang akan : mewakili garis yang sama) A. PENGERTIAN TITIK, GARIS DAN BIDANG Titik,

Lebih terperinci

LAMPIRAN 1 RPP Siklus I

LAMPIRAN 1 RPP Siklus I 76 77 LAMPIRAN 1 RPP Siklus I 78 RENCANA PELAKSANAAN PEMBELAJARAN ( RPP ) SIKLUS 1 Sekolah : SD N 2 SELODOKO Mata Pelajaran : Matematika Kelas/Semester : V/ 2 Pertemuan Ke : 1-3 Alokasi Waktu : 6 x 35

Lebih terperinci

Jadwal Pelaksanaan Penelitian Kelas Eksperimen (X-5) dan Kelas Kontrol (X-4) SMA Negeri 2 Purworejo. No Hari, Tanggal Jam ke- Kelas Materi

Jadwal Pelaksanaan Penelitian Kelas Eksperimen (X-5) dan Kelas Kontrol (X-4) SMA Negeri 2 Purworejo. No Hari, Tanggal Jam ke- Kelas Materi Lampiran 1 Jadwal Pelaksanaan Penelitian Kelas Eksperimen (X-5) dan Kelas Kontrol (X-4) SMA Negeri 2 Purworejo No Hari, Tanggal Jam ke- Kelas Materi 1 Selasa, 31 Mei 2016 3 4 X-4 Pretest 2 Selasa, 31 Mei

Lebih terperinci

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2010/2011

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2010/2011 Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2010/2011 1. Diketahui A = 7x + 5 dan B = 2x 3. Nilai A B adalah A. -9x +2 B. -9x +8 C. -5x + 2 D. -5x +8 BAB II BENTUK ALJABAR A B = -7x

Lebih terperinci

KEGIATAN BELAJAR II SUDUT ANTARA GARIS DAN BIDANG

KEGIATAN BELAJAR II SUDUT ANTARA GARIS DAN BIDANG KEGIATAN BELAJAR II SUDUT ANTARA GARIS DAN BIDANG A. Pengantar g h 1 h 3 h 2 H Gambar 2.1 Pada Gambar 2 (ii) mana yang dimaksud sudut antara garis g dan bidang H? Sudut antara g dengan h 1, h 2, h 3, atau

Lebih terperinci

Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12

Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12 Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12 Tim Pembahas : Th. Widyantini Untung Trisna Suwaji Wiworo Choirul Listiani Estina Ekawati Nur Amini Mustajab PPPPTK Matematika Yogyakarta

Lebih terperinci

GAMBAR TEKNIK PROYEKSI ISOMETRI. Gambar Teknik Proyeksi Isometri

GAMBAR TEKNIK PROYEKSI ISOMETRI. Gambar Teknik Proyeksi Isometri GAMBAR TEKNIK PROYEKSI ISOMETRI Gambar Teknik i halaman ini sengaja dibiarkan kosong Gambar Teknik ii Daftar Isi Daftar Isi... iii... 1 1 Pendahuluan... 1 2 Sumbu, Garis, dan Bidang Isometri... 2 3 Skala

Lebih terperinci

Matematika Semester V

Matematika Semester V Created By Nur Zakyah Muin,S.Pd Page 1 DIMENSI TIGA KOMPETENSI DASAR Mengidentifikasi bangun ruang dan unsur-unsurnya Menghitung luas permukaan bangun ruang Menerapkan konsep volum bangun ruang Menentukan

Lebih terperinci

LAMPIRAN C PERANGKAT PEMBELAJARAN

LAMPIRAN C PERANGKAT PEMBELAJARAN LAMPIRAN C PERANGKAT PEMBELAJARAN 1. LKS 2. RPP SMP Sesuai KTSP TENTANG LKS INI BANGUN RUANG LKS ini hadir guna memenuhi kebutuhan bahan ajar bermutu dengan bahasa yang sederhana dan mudah difahami sehingga

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) 58 Lampiran 1 59 Lampiran 2 60 61 Lampiran 3 RENCANA PELAKSANAAN PEMBELAJARAN (RPP) SIKLUS I Nama Sekolah : SDN Karangduren 4 Mata Pelajaran : Matematika Kelas/Semester : 4/II Alokasi Waktu : 4 x 35 menit

Lebih terperinci

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI Segitiga 1. Beberapa sifat yang berlaku pada segitiga adalah : Jumlah sudut-sudut sembarang segitiga adalah 180 0 Pada segitiga ABC berlaku AC = BC B = A

Lebih terperinci

Beberapa Benda Ruang Yang Beraturan

Beberapa Benda Ruang Yang Beraturan Beberapa Benda Ruang Yang Beraturan Kubus Tabung rusuk kubus = a volume = a³ panjang diagonal bidang = a 2 luas = 6a² panjang diagonal ruang = a 3 r = jari-jari t = tinggi volume = π r² t luas = 2πrt Prisma

Lebih terperinci

Lampiran 1 Jadwal Pertemuan

Lampiran 1 Jadwal Pertemuan LAMPIRAN 57 58 Lampiran 1 Jadwal Pertemuan No Hari/Tanggal Kegiatan Tempat 1 Senin, 11 April 2016 Siklus I,pertemuan I SDN Kumpulrejo 03 2 Sabtu, 16 April 2016 Siklus I,pertemuan II SDN Kumpulrejo 03 3

Lebih terperinci

Bangun Ruang dan Unsur-unsurnya (1)

Bangun Ruang dan Unsur-unsurnya (1) Modul 1 Bangun Ruang dan Unsur-unsurnya (1) Drs. A. Sardjana, M.Pd. PENDAHULUAN G eometri merupakan cabang Matematika yang mempelajari titik, garis, bidang dan benda-benda ruang serta sifat-sifatnya, ukuran-ukurannya

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL MATEMATIKA SMP/MTs TAHUN PELAJARAN 2014/2015-TANGGAL 5 Mei 2015

SOAL DAN PEMBAHASAN UJIAN NASIONAL MATEMATIKA SMP/MTs TAHUN PELAJARAN 2014/2015-TANGGAL 5 Mei 2015 SOAL DAN PEMBAHASAN UJIAN NASIONAL MATEMATIKA SMP/MTs TAHUN PELAJARAN 04/05-TANGGAL 5 Mei 05. Dalam kompetisi matematika, setiap jawaban benar diberi nilai 4, salah dan tidak dijawab. Dari 40 soal yang

Lebih terperinci

PEMANTAPAN UJIAN NASIONAL Kerjakan dengan sungguh-sungguh dengan kejujuran hati!

PEMANTAPAN UJIAN NASIONAL Kerjakan dengan sungguh-sungguh dengan kejujuran hati! PEMANTAPAN UJIAN NASIONAL 2013 Kerjakan dengan sungguh-sungguh dengan kejujuran hati! 1. Hasil dari (-5 7) : 4 x (-5) + 8 adalah. A. -26 B. -23 C. 23 D. 26 (-5 7) : 4 x (-5) + 8 = -12 : 4 x (-5) + 8 =

Lebih terperinci

19. VEKTOR. 2. Sudut antara dua vektor adalah θ. = a 1 i + a 2 j + a 3 k; a. a =

19. VEKTOR. 2. Sudut antara dua vektor adalah θ. = a 1 i + a 2 j + a 3 k; a. a = 19. VEKTOR A. Vektor Secara Geometri 1. Ruas garis berarah AB = b a. Sudut antara dua vektor adalah θ 3. Bila AP : PB = m : n, maka: B. Vektor Secara Aljabar a1 1. Komponen dan panjang vektor: a = a =

Lebih terperinci

GEOMETRI BAB II BANGUN RUANG SISI LENGKUNG

GEOMETRI BAB II BANGUN RUANG SISI LENGKUNG Maemaika Kelas IX Semese Maei Bangun Ruang Sisi Lengkung GEOMETRI BB II BNGUN RUNG SISI LENGKUNG. Pengeian dan Unsu-unsu Tabung, Keucu, dan Bola. Tabung Tabung adalah bangun uang yang dibaasi oleh dua

Lebih terperinci

A. Standar Kompetensi : 8. Memahami sifat bangun ruang sederhana dan hubungan antar bangun datar

A. Standar Kompetensi : 8. Memahami sifat bangun ruang sederhana dan hubungan antar bangun datar 86 87 88 89 RENCANA PELAKSANAAN PEMBELAJARAN ( RPP ) Sekolah : SD N Kemiri 1 Mata Pelajaran : Matematika Kelas/semester : IV (Empat) /2 (dua) Alokasi waktu : 6 x 35 menit (3 kali pertemuan) A. Standar

Lebih terperinci

C. B dan C B. A dan D

C. B dan C B. A dan D 1. Perhatikan Himpunan di bawah ini! A = {bilangan prima kurang dari 11} B = {x < x 11, x bilangan ganjil} C = {semua faktor dari 12} D = {bilangan genap antara 2 dan 14} Himpunan di atas yang ekuivalen

Lebih terperinci

MATA KULIAH PROYEKSI & PERSPEKTIF

MATA KULIAH PROYEKSI & PERSPEKTIF SEMESTER GASAL 2010 MATA KULIAH PROYEKSI & PERSPEKTIF Oleh: Dwi Retno Sri Ambarwati, M.Sn JURUSAN PENDIDIKAN SENI RUPA Company FBS UNY PROYEKSI Definisi Gambar Proyeksi adalah gambar bayangan atau konstruksi

Lebih terperinci

SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P18) 1. Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut

SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P18) 1. Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut Kode: P8 MATEMATIKA IX SMP SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P8). Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut (A) 7 dan. (C) 8 dan 8. dan 7. (D) 8 dan

Lebih terperinci

SOAL LATIHAN UKK MATEMATIKA KELAS VIII

SOAL LATIHAN UKK MATEMATIKA KELAS VIII SOAL LATIHAN UKK MATEMATIKA KELAS VIII SOAL PILIHAN GANDA 1. Perhatikan gambar berikut. Daerah yang diarsir disebut... a. juring b. busur c. tembereng d. tali busur 2. Perhatikan kembali lingkaran pada

Lebih terperinci

>> SOAL MATEMATIKA SMA KELAS X SEMESTER 2 << ( 100 SOAL MATEMATIKA )

>> SOAL MATEMATIKA SMA KELAS X SEMESTER 2 << ( 100 SOAL MATEMATIKA ) >> SOAL MATEMATIKA SMA KELAS X SEMESTER > Pilihlah jawaban yang benar! Soal nomor samai 60 tentang Trigonometri:. Cos 0 o senilai dengan. cos 0 o cos 0 o sin 0 o cos 0 o sin

Lebih terperinci

TRYOUT UAS SMT GANJIL 2015

TRYOUT UAS SMT GANJIL 2015 TRYOUT UAS SMT GANJIL 201 1. Himpunan penyelesaian dari SPLDV dibawah ini adalah... 3x 2y = x + 3y = 2 A. (, -2 ) B. ( 2, - ) C. ( -2, ) D. ( -2, - ) E. ( -, 2 ) 2. Tentukan himpunan penyelesaian SPL TV

Lebih terperinci

BAB II KAJIAN TEORI. diungkapkan kembali oleh siswa. 1. siswa adalah kemampuan yang ada pada diri siswa untuk menerima,

BAB II KAJIAN TEORI. diungkapkan kembali oleh siswa. 1. siswa adalah kemampuan yang ada pada diri siswa untuk menerima, BAB II KAJIAN TEORI A. Retensi Siswa 1. Pengertian Retensi Siswa Retensi siswa berasal dari kata retensi dan siswa. Dari kedua kata tersebut digabungkan memiliki pengertian menjadi kemampuan siswa untuk

Lebih terperinci

01. Hasil dari ( ) : (-3-1) adalah. (A) -12 (B) -3 (C) 3 (D) 12

01. Hasil dari ( ) : (-3-1) adalah. (A) -12 (B) -3 (C) 3 (D) 12 0. Hasil dari (-8 + 30) : (-3 - ) (A) - (B) -3 (C) 3 (D) 0. Pada lomba matematika ditentukan untuk jawaban yang benar mendapatkan skor, jawaban salah mendapatkan skor, sedangkan bila tidak menjawab mendapat

Lebih terperinci

PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI. Oleh : Himmawati P.L

PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI. Oleh : Himmawati P.L PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI Oleh : Himmawati P.L Soal matematika yang diujikan di sekolah-sekolah maupun di Ujian Nasional pada umumnya dapat diselesaikan dengan cara-cara biasa.

Lebih terperinci

Rencana Pelaksanaan Pembelajaran (RPP) (Siklus I Tindakan 1) I. Standar Kompetensi Menentukan sifat bangun ruang dan hubungan antar bangun.

Rencana Pelaksanaan Pembelajaran (RPP) (Siklus I Tindakan 1) I. Standar Kompetensi Menentukan sifat bangun ruang dan hubungan antar bangun. Rencana Pelaksanaan Pembelajaran (RPP) (Siklus I Tindakan 1) Mata Pelajaran : Matematika Kelas / Semester : IV / 2 Pokok Bahasan : Sifat-Sifat Bangun Ruang Sub Pokok Bahasan : Sifat-Sifat Kubus Alokasi

Lebih terperinci

C. 30 Januari 2001 B. 29 Januari 2001

C. 30 Januari 2001 B. 29 Januari 2001 1. Notasi pembentuk himpunan dari B = {1, 4, 9} adalah... A. B = {x x kuadrat tiga bilangan asli yang pertama} B. B = {x x bilangan tersusun yang kurang dari 10} C. B = {x x kelipatan bilangan 2 dan 3

Lebih terperinci

1 Bilangan. 2 A. MACAM-MACAM BILANGAN B. SIFAT OPERASI PADA BILANGAN BULAT. b dan b 0. Contoh: 1 à a = 1 dan b = 4.

1 Bilangan. 2 A. MACAM-MACAM BILANGAN B. SIFAT OPERASI PADA BILANGAN BULAT. b dan b 0. Contoh: 1 à a = 1 dan b = 4. Matematika 1 Bilangan A. MACAM-MACAM BILANGAN 1. Bilangan Asli 1, 2, 3, 4, 5, 6,, dan seterusnya. 2. Bilangan Cacah 0, 1, 2, 3, 4, 5, 6, 7, dan seterusnya. 3. Bilangan Prima Bilangan prima yaitu bilangan

Lebih terperinci

LAMPIRAN 1 SURAT IJIN PENELITIAN

LAMPIRAN 1 SURAT IJIN PENELITIAN 115 LAMPIRAN 1 SURAT IJIN PENELITIAN 116 LAMPIRAN 2 SURAT KETERANGAN PENELITIAN 117 118 LAMPIRAN 3 RPP SIKLUS I RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Sekolah Dasar : SDN 3 KARANGWUNI Mata Pelajaran :

Lebih terperinci

1. Jika B = {bilangan prima kurang dari 13} maka jumlah himpunan penyelesaiannya... A. 4

1. Jika B = {bilangan prima kurang dari 13} maka jumlah himpunan penyelesaiannya... A. 4 1. Jika B = {bilangan prima kurang dari 13} maka jumlah himpunan penyelesaiannya... A. 4 C. 6 B. 5 D. 7 Kunci : B B = (bilangan prima kurang dan 13) Anggota himpunan B = (2, 3, 5, 7, 11) Sehingga banyaknya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 15 BAB II LANDASAN TEORI A. Matematika 1. Pengertian Matematika Matematika adalah salah satu ilmu yang sangat penting dalam dan untuk hidup kita. Banyak hal di sekitar kita yang selalu berhubungan dengan

Lebih terperinci

18. VEKTOR. 2. Sudut antara dua vektor adalah. a = a 1 i + a 2 j + a 3 k; a = 2. Penjumlahan, pengurangan, dan perkalian vektor dengan bilangan real:

18. VEKTOR. 2. Sudut antara dua vektor adalah. a = a 1 i + a 2 j + a 3 k; a = 2. Penjumlahan, pengurangan, dan perkalian vektor dengan bilangan real: 8. VEKTOR A. Vektor Secara Geometri. Ruas garis berarah AB = b a. Sudut antara dua vektor adalah. Bila AP : PB = m : n, maka: B. Vektor Secara Aljabar a. Komponen dan panjang vektor: a = a a a = a = a

Lebih terperinci

LAMPIRAN - LAMPIRAN 61

LAMPIRAN - LAMPIRAN 61 LAMPIRAN - LAMPIRAN 61 62 LAMPIRAN 1 Rpp Siklus 1 63 RENCANA PELAKSANAAN PEMBELAJARAN (RPP) SIKLUS I Sekolah : SD Negeri Rowoboni 02 Mata Pelajaran : Matematika Kelas/ Semester : IV / II Alokasi Waktu

Lebih terperinci

A B. Kedudukan titik, Garis dan bidang dalam bangun ruang. Pengertian titik

A B. Kedudukan titik, Garis dan bidang dalam bangun ruang. Pengertian titik Pengertian titik Kedudukan titik, Garis dan bidang dalam bangun ruang Suatu titik ditentukan oleh letaknya dan tidak mempunyai besaran. Sebuah titik dilukiskan dengan noktah dan biasanya dinotasikan dengan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN A. Hasil Penelitian A.1 Tahap Pendefinisian Tahap pendefinisian ini terdiri dari beberapa tahapan, yaitu analisis awal-akhir, analisis siswa, analisis tugas, analisis konsep,

Lebih terperinci

Penulis: Drs. Agus Suharjana, M.Pd. Penilai: Drs. Marsudi Rahardjo, M.Sc. Editor: Titik Sutanti, S.Pd.Si. Ilustrator Cahyo Sasongko, S.Sn.

Penulis: Drs. Agus Suharjana, M.Pd. Penilai: Drs. Marsudi Rahardjo, M.Sc. Editor: Titik Sutanti, S.Pd.Si. Ilustrator Cahyo Sasongko, S.Sn. PAKET FASILITASI PEMBERDAYAAN KKG/MGMP MATEMATIKA Mengenal Bangun Ruang dan Sifat-Sifatnya Penulis: Drs. Agus Suharjana, M.Pd. Penilai: Drs. Marsudi Rahardjo, M.Sc. Editor: Titik Sutanti, S.Pd.Si. Ilustrator

Lebih terperinci