Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 1 BAB I PENDAHULUAN

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 1 BAB I PENDAHULUAN"

Transkripsi

1 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 1 BAB I PENDAHULUAN A. Latar Belakang Ada beberapa pendapat yang disampaikan para ahli mengenai definisi dari istilah matematika. Matematika didefinisikan berdasarkan isinya (Gold, 2008), objek yang dipelajari dalam matematika (Avigad, 2008), juga dapat didefinisikan sebagai suatu proses berfikir (Lewis, tth). Secara khusus, Reys, et al. (l998) mendefinisikan matematika sebagai pelajaran tentang pola dan hubungan, cara berfikir, seni yang bercirikan aturan dan konsistensi, bahasa yang menggunakan istilah-istilah dan simbol-simbol tertentu, dan juga sebagai suatu alat yang bermanfaat dalam kehidupan sehari-hari maupun membantu perkembangan ilmu pengetahan lainnya. Matematika dapat pula dipandang sebagai suatu struktur dari hubunganhubungan yang mengaitkan simbol-simbol. Berkaitan dengan hal ini, Ruseffendi mengemukakan bahwa matematika terbentuk sebagai hasil pemikiran manusia yang berhubungan dengan ide, proses dan penalaran (lsmail, l998). Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai peran penting dalam berbagai disiplin dan memajukan daya pikir manusia. Perkembangan pesat di bidang teknologi informasi dan komunikasi dewasa ini dildisi oleh perkembangan matematika di bidang teori bilangan, aljabar, analisis, teori peluang dan matematika diskrit. Untuk menguasai dan mencipta teknologi di masa depan diperlukan penguasaan matematika yang kuat sejak dini. Mata pelajaran Matematika perlu diberikan kepada semua peserta didik mulai dari sekolah dasar sampai perguruan tinggi untuk membekali peserta didik dengan kemampuan berpikir logis, analitis, sistematis, kritis, dan kreatif, serta kemampuan bekerjasama. Kompetensi tersebut diperlukan agar peserta didik dapat memiliki kemampuan memperoleh, mengelola, dan memanfaatkan informasi untuk bertahan hidup pada keadaan yang selalu berubah, tidak pasti, dan kompetitif.

2 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 2 Melalui proses berfikir yang disebut dengan logika deduktif, diperoleh suatu teorema-teorema (Allendoerfer, 1969). Teorema hasil proses berfikir ini merupakan suatu kesimpulan umum yang dapat dibuktikan (James & James, 1976). Definisi-definisi, aksioma-aksioma dan teorema-teorema ini merupakan kesatuan yang menyusun suatu konsep matematika. Objek matematika bersifat abstrak, yang saling berkorelasi membentuk konsep baru yang lebih kompleks (Skemp, l97l), dan tersusun secara hierarkis, konsep yang satu menjadi dasar untuk mempelajari konsep selanjutnya (Herman Hudoyo, 1988). Akhirnya konsep matematika yang ditemukan diterapkan kembali ke alam, dan manusia memanfaatkannya untuk memenuhi kebutuhan hidupnya. Berkaitan dengan diterapkannya konsep dalam matematika untuk memenuhi kebutuhan hidup manusia, matematika sering digunakan sebagai bahasa atau alat untuk menyelesaikan masalah, seperti masalah-masalah sosial, ekonomi, fisika, kimia, biologi dan teknik. Peran inilah yang menyebabkan matematika mendapat julukan sebagai ratunya ilmu (queen of science). Mengenai bagaimana seseorang menggunakan matematika untuk memecahkan masalah di berbagai bidang ilmu, tergantung pada kemampuan orang tersebut dalam menguasai matematika dan mampu menerapkannya. Matematika perlu dikomunikasikan dari satu orang kepada orang lain, atau dari satu generasi ke generasi selanjutnya agar dapat bermanfaat bagi orang atau generasi lain. Selain itu juga dapat bermanfaat bagi perkembangan matematika. Pembelajaran matematika di sekolah merupakan bagian dari komunikasi ini. Proses komunikasi ini merupakan bagian dari pendidikan matematika. Seperti yang dikemukakan James & James (1976), matematika terdiri dari tiga cabang utama, yakni: aljabar, geometri dan analisis. Ketiga cabang ini, dalam pembelajaran matematika, aljabar dipelajari oleh siswa terlebih dahulu pada pendidikan formal. Pada tingkat pendidikan sekolah dasar (SD/MI), konsep matematika yang dipelajari masih berkisar pada aljabar dan geometri. Pada tingkat sekolah menengah, materi yang dipelajari menjadi semakin kompleks, tidak hanya aljabar dan geometri saja, namun juga termasuk relasi dan fungsi yang merupakan bagian

3 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 3 dari analisis. Matematika tersusun secara hierarkis, konsep yang satu menjadi dasar untuk mempelajari konsep selanjutnya (Herman Hudoyo, 1988). Sifat ini menyebabkan penguasaan matematika siswa pada proses pembelajaran dipengaruhi oleh kemampuannya menguasai konsep matematika sebelumnya. Hal ini mengakibatkan kemampuan matematika siswa pada jenjang SMP dipengaruhi oleh penguasaan konsep matematika selama di sekolah dasar, dan penguasaan matematika di SMA dipengaruhi oleh penguasaan konsep matematika di SMP, begitu seterusnya. B. Tujuan Mata pelajaran Matematika bertujuan agar peserta didik memiliki kemampuan: 1. Memahami konsep matematika secara integral, menjelaskan keterkaitan antarkonsep dan mengaplikasikan antar konsep atau algoritma, secara tepat, luwes, akurat, efisien, dan tepat, dalam pemecahan masalah 2. Menggunakan penalaran pada pola dan sifat, melakukan manipulasi matematika dalam membuat generalisasi, menyusun bukti, atau menjelaskan gagasan dan pernyataan matematika 3. Memecahkan masalah yang meliputi kemampuan memahami masalah, merancang model matematika, menyelesaikan model dan menafsirkan solusi yang diperoleh 4. Mengomunikasikan gagasan dengan simbol, tabel, diagram, atau media lain untuk memperjelas keadaan atau masalah 5. Memiliki sikap menghargai kegunaan matematika dalam kehidupan, yaitu memiliki rasa ingin tahu, perhatian, dan minat dalam mempelajari matematika, serta sikap ulet dan percaya diri dalam pemecahan masalah

4 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 4 C. Petunjuk Mempelajari Modul Dalam mempelajari modul Matematika ini mahasiswa perlu memperhatikan hal-hal sebagai berikut: 1. Awali belajar dengan membaca doa belajar agar diberi pemahaman yang benar dan baik oleh Allah SWT 2. Bacalah dengan cermat pendahuluan modul ini sehingga memahami tujuan dan bagaimana mempelajari modul ini. 3. Bacalah uraian materi dalam modul ini, tdiilah kata-kata penting yang merupakan kunci dengan warna berbeda (strabello). 4. Pahami setiap konsep dalam uraian materi dengan mempelajari contoh-contohnya. Jika mengalami kesulitan dalam mempelajari modul ini, diskusikanlah dengan teman-teman atau dengan dosen. 5. Kerjakan soal-soal tes formatif yang tersedia pada setiap BAB dan periksa tingkat kemampuan dengan mencocokkan jawaban dengan kunci jawaban tes formatif. 6. Ulangilah pengerjaan tes formatif ini sampai benar-benar dapat mengerjakan semua soal-soal tes formatif ini dengan benar. Selamat Belajar, Semoga Sukses! KUNCI SUKSES: TEKUN, BERUSAHA SEMAMPU DAN DIIRINGI DO A

5 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 5 BANGUN DATAR A. Tujuan Pembelajaran BAB III pada modul ini membahas tentang pengertian geometri, keliling dan luas bangun datar, dan volume bangun datar yang dilengkapi dengan soal-soal up to date. Secara khusus setelah mempelajari modul ini, diharapkan dapat: 1. Memahami pengertian geometri 2. Memahami dan mampu menyelesaikan soal-soal keliling dan luas bangun datar 3. Memahami dan mampu menyelesaikan soal-soal volume bangun datar 4. Mampu membedakan keliling, luas bangun datar, dan volume bangun datar B. Isi Materi 1. Pengertian Geometri Kata geometri berasal dari bahasa Yunani yang berarti ukuran bumi. Maksudnya mencakup segala sesuatu yang ada di bumi. Geometri adalah ilmu yang membahas tentang hubungan antara titik, garis, sudut, bidang dan bangunbangun ruang. Mempelajari geometri penting karena geometri telah menjadi alat utama untuk mengajar seni berpikir. Dengan berjalannya waktu, geometri telah berkembang menjadi pengetahuan yang disusun secara menarik dan logis. Geometri terutama terdiri dari serangkaian pernyataan tentang titik-titik, garisgaris, dan bidang-bidang, dan juga planar (proyeksi bidang) dan benda-benda padat. Geometri dimulai dari istilah-istilah yang tidak terdefinisikan, definisidefinisi, aksioma-aksioma, postulat-postulat dan selanjutnya teorema-teorema. Berdasarkan sejarah, geometri telah mempunyai banyak penerapan yang sangat penting, misalnya dalam mensurvei tanah, pembangunan jembatan, pembangunan stasiun luar angkasa dan lain sebagainya Geometri adalah sistem pertama untuk memahami ide. Dalam geometri beberapa pernyataan sederhana diasumsikan, dan kemudian ditarik menjadi

6 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 6 pernyataan-pernyataan yang lebih kompleks. Sistem seperti ini disebut sistem deduktif. Geometri mengenalkan tentang ide konsekuensi deduktif dan logika yang dapat digunakan sepanjang hidup. Dalam mendefinisikan sebuah kata, pertama digunakan kata yang lebih sederhana kemudian kata yang lebih sederhana ini pada gilirannya didefinisikan menjadi kata yang lebih sederhana lagi, sehingga pada akhirnya, proses tersebut akan berakhir. Pada beberapa tingkatan, definisi harus menggunakan sebuah kata yang artinya sudah sangat jelas, ini dikarenakan agar artinya diterima tanpa memerlukan definisi lagi, dengan kata lain dapat disebut dengan istilah tak terdefinisikan (undefined term). Garis dan bidang merupakan salah satu contoh dari istilah tak terdefinisikan yang menjadi pijakan awal dari geometri, sehingga konsep garis dan bidang sering digunakan dalam geometri. Misalnya adalah perpotongan dari dua bidang akan menghasilkan sebuah garis yang terletak pada dua bidang yang saling berpotongan. Kubus, balok dan lain sebagainya merupakan kumpulan dari bidang bidang. Dari contoh di atas dapat dipahami bahwa garis dan bidang merupakan faktor dasar geometri, tentunya dengan tidak melupakan bahwa titik juga merupakan dasar dari geometri 2. Keliling dan Luas Bangun-Bangun Geometri a. Bujur sangkar (Persegi sama sisi) Suatu bangunan segi empat yang keempat sisinya sama panjang dan keempat sudutnya siku-siku. Seperti Gambar 1 berikut ini s s Gambar 1. Bangun persegi Panjang : AB = BC = CD = DA, Karena panjang sisi-sisinya sama maka keliling persegi dinyatakan dengan

7 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 7 K = AB + BC + CD + DA Rumus keliling dan luas persegi adalah: K = 4s L = s x s L = s 2 Contoh : Tentukan keliling dan luas dari sebuah persegi yang mempunyai sisi 5 cm! Penyelesaian : K = 4s = 4.5 = 20 cm L = s x s = 5 x 5 = 25 cm 2 b. Persegi panjang Suatu bangunan segi empat yang kedua sisi yang berhadapan sama panjang dan keempat sudutnya siku-siku. Seperti Gambar 2 berikut p l Gambar 2. Bangun persegi panjang Panjang : AB = CD (p = panjang) BC = DA (l = lebar) Rumus keliling dan luaas persegi panjang adalah: K = 2p +2l K = 2(p + l) L = p x l

8 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 8 Contoh : Tentukan keliling dan luas dari sebuah persegi panjang yang mempunyai panjang 8 cm dan lebar 4 cm! Penyelesaian : K = 2(p + l) = 2(8 + 4) = 2(12) = 24 cm L = p x l = 8 x 4 = 32 cm 2 c. Segitiga Segitiga adalah suatu bangun datar yang jumlah sudutnya dan dibentuk dengan cara menghubungkan tiga buah titik yang tidak segaris dalam satu bidang. Jenis-jenis Segitiga : 1). Segitiga Sama Sisi Segitiga sama sisi yaitu segitiga yang ketiga sisinya sama panjang seperti Gambar 3 berikut ini. s t s s D Gambar 3. Bangun segitiga sama sisi Panjang AB = BC =CA A = B = C = 60 0

9 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 9 A + B + C = K = AB + BC + AC Rumus : K = 3s L = 1.(AB). (CD) 2 L = 1 2.a.t 2). Segitiga Sama Kaki Segitiga sama kaki yaitu segitiga yang mempunyai dua sudut yang sama dan dua buah sisi yang sama seperti Gambar 4 berikut ini Gambar 4. Bangun segitiga sama kaki Panjang AC = CB Sudut A = B A + B + C = K = AB + BC + AC 3). Segitiga Siku-siku Segitiga yang salah satu sudutnya 90 seperti Gambar 5 berikut ini

10 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 10 A = 90 0 K = AB + BC + AC Gambar 5. Bangun segitiga siku-siku 4). Segitiga Sembarang Segitiga Sembarang seperti Gambar 6 berikut ini a Gambar 6. Bangun segitiga sembarang - Ketiga sisinya tidak sama panjang ( AB BC AC ) - Ketiga sudutnya tidak sama besar ( A B C ) - A + B + C = K = AB + BC + AC Rumus : K = 3s L = 1.(AB). (CD) 2 L = 1 2.a.t

11 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 11 Contoh: Tentukan keliling dari sebuah segitiga yang mempunyai sisi 6 cm! dan Tentukan luas dari sebuah segitiga yang mempunyai panjang alas 8 cm dan tingginya 4cm! Penyelesaian : 1. K = 3s = 3.6 = 18 cm 2. L = 1.a.t 2 = =16 cm 2 d. Jajaran Genjang Jajaran Genjang mempunyai dua pasang sisi yang saling sejajar seperti Gambar 7 berikut ini p D C l t l A E p B Rumus : Gambar 7. Bangun jajaran genjang K = 2(p + l) L = a.t Contoh : Tentukan keliling dan luas dari sebuah jajaran genjang yang mempunyai panjang alas 6 cm, lebar 4 cm dan tinggi 3 cm! Penyelesaian : K = 2(p + l) = 2(6 + 4) = 2(10) = 20 cm

12 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 12 L = a.t = 6 x 3 = 18 cm 2 e. Layang-layang Layang-layang dua pasang sisinya sama panjang seperti Gambar 8 berikut ini C D l p B A Gambar 8. Bangun layang-layang Rumus : K = AB + BC + CD + DA L = 1 2.l.p Contoh : Tentukan luas dari sebuah layang-layang yang mempunyai panjang diagonal 9 cm dan lebar diagonal 8 cm! Penyelesaian : L = 1 2.l.p = = 36 cm 2

13 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 13 f. Trapesium Trapesium hanya memiliki sepasang sisi yang sejajar seperti Gambar 9 berikut ini D C t A B Gambar 9. Bangun trapesium Rumus : K = AB + BC + CD + DA L = 1.t.(AB + CD) 2 Contoh : Tentukan luas dari sebuah trapesium yang mempunyai P 1 = 8 cm, P 2 = 13 cm dan tinggi 6 cm! Penyelesaian : L = 1 2.t.(P 1 + P 2 ) = (8 + 13) 2 = 63 cm 2 g. Lingkaran Bentuk lingkaran diperoleh dengan menentukan tempat kedudukan atau himpunan semua titik-titik yang berjarak tetap terhadap sebuah titik seperti Gambar 10 berikut ini r Gambar 10. Bangun lingkaran

14 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 14 Rumus : K = 2 r L = r 2 Contoh : Tentukan keliling dan luas dari sebuah lingkaran yang mempunyai diameter 60 cm! Penyelesaian : K = 2..r = = 60 cm 2 L = r 2 =.30 2 = 900 cm 2 3. Volume Bangun-Bangun Geometri Macam-Macam Bangun Ruang geometri yang dibahas dalam modul ini adalah: 1). Kubus, 2). Balok, 3). Prisma tegak segitiga siku siku, 4). Tabung, 5). Kerucut, 6). Limas, 7). Bola. Pembahasan disajikan sebagai berikut: a. Kubus Gambar kubus seperti Gambar 11 berikut ini Gambar 11. Bangun kubus

15 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 15 a. Ciri - ciri Kubus : 1. Jumlah bidang sisi ada 6 buah yang berbentuk bujur sangkar (ABCD, EFGH, ABFE, BCGF, CDHG, ADHE,) 2. Mempunyai 8 titik sudut (A, B, C, D, E, F, G, H) 3. Mempunyai 12 rusuk yang sama panjang (AB, CD, EF, GH, AE, BF, CG, DH, AD, BC, EH, FG) 4. Semua sudutnya siku-siku 5. Mempunyai 4 diagonal ruang dan 12 diagonal bidang (4 diagonal ruang = garis AG, BH, CE, DF dan 12 diagonal bidang = garisac, BD, EG, FH, AH, DE, BG, CF, AF, BE, CH, DG) b. Rumus-rumus penting pada kubus Diagonal Bidang = a 2 Diagonal Bidang = a 3 Luas permukaan = 6a 2 Volume = a 3 1 Jarak C terhadap BDG a 3 1 Jarak ACH terhadap BEG a 3 2 Jarak E terhadap BDG a Contoh soal: sebuah kubus ABCD.EFGH memiliki panjang sisi 5 cm, maka volume kubus tersebut adalah Jawab. Kubus dengan s = 5 cm Volume kubus = a 3 = 5 3 = 125 cm 3

16 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 16 b. Balok Gambar balok seperti Gambar 12 berikut ini Gambar 12. Bangun balok a. Ciri-ciri Balok : 1. Alasnya berbentuk segi empat 2. Terdiri dari 12 rusuk dan mempunyai 6 bidang sisi 4. Memiliki 8 titik sudut 5. Seluruh sudutnya siku-siku 6. Mempunyai 4 diagonal ruang dan 12 diagonal bidang b. Rumus-rumus penting pada balok: Panjang semua rusuk balok :4 (p l t) Panjang diagonal sisi balok d 1, d 2, d 3 : d 1 = p 2 + l 2, d 2 = p 2 + t 2, d 3 = l 2 + t 2 Panjang diagonal ruang balok :d Luas sisi balok = 2pl + 2pt + 2lt Luas bidang diagonal p 2 l 2 t 2 cm : L 1 = t p 2 + l 2, L 2 = p l 2 + t 2 L 2 = l p 2 + t 2 Volume = p l t Contoh soal. Sebuah balok berukuran panjang = 10 cm, lebar 5 cm dan tinggi 3 cm. berapakah volume balok tersebut?

17 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 17 Jawab: diketahui balok dengan p = 10 cm, l = 5 cm, t = 3cm Volume balok = p l t = 10 X 5 X 3 = 150 cm 3 c. Prisma Tegak segitiga siku-siku ini Gambar prisma tegak segitiga siku siku seperti Gambar 13 berikut Gambar 13. Bangun prisma tegak segitiga siku-siku a. Ciri-ciri prisma tegak segitiga siku siku: 1. Terdiri dari 6 titik sudut 2. Mempunyai 9 buah rusuk 3 Mempunyai 5 bidang sisi b. Rumus-rumus penting pada Prisma tegak segitiga siku siku Luas sisi prisma : jumlah panjang rusuk alas x tinggi + luas 2 tutup Volume prisma : luas alas x tinggi Contoh Soal prisma 1. Sebuah prisma segitiga tegak alasnya berbentuk segitiga siku-siku, dengan panjang rusuk alasnya 4 cm, 3 cm, 5 cm dengan tinggi prisma 10 cm. Hitunglah: a. Volume prisma b. Luas permukaan prisma

18 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 18 Penyelesaian a. Luas segitiga = 1 x alas x tinggi 2 = 1 2 = 1 2 x 4 cm x 3 cm x 12 = 6 cm2 b. Luas selubung prisma = t ( r1 + r2 + r3) = [(4 x 10) + (5 x 10) + (3 x 10)] = ( ) = 120 cm 2 c. Volume Prisma Segitiga = Luas alas x tinggi = 6 x 10 cm = 60 cm 3 d. Luas permukaan prisma = Luas alas + luas atas + luas selubungnya = = 132 cm 2 d. Tabung / Silinder Gambar tabung / silinder seperti Gambar 14 berikut ini r t Gambar 14. Bangun tabung/silinder a. Ciri-ciri tabung / silinder: 1. Mempunyai 2 rusuk 2. Alas dan atapnya berupa lingkaran 3. Mempunyai 3 bidang sisi ( 2 bidang sisi lingkaran atas dan bawah, 1 bidang selimut)

19 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 19 b. Rumus-rumus penting pada tabung / silinder: Volume tabung = luas alas x tinggi Luas alas = luas lingkaran alas tabung = π x r 2 Dengan π = 22 7 atau 3,14 Jadi Volume tabung = π x r 2 xt Luas Permukaan Tabung = 2 x luas alas + Luas selimut tabung = 2 π r π r t = 2 π r r + t Contoh: Sebuah tabung dengan r=21cm dan tinggi 75 cm, maka berapa volume? Jawab: Volume Tabung = π r² t = = = = cm 2 Contoh soal : Suatu tabung tanpa tutup dengan jari-jari alas 6 cm dan tingginya 10 cm. Jika π = 3,14 maka luas tabung tanpa tutup adalah,,, Jawab: Tabung tanpa tutup maka : L = πr πrt atau L = πr (r + 2t) = 3,14. 6 ( ) = 18,84 ( 26) = 489,84 cm 2

20 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 20 e. Kerucut Gambar kerucut seperti Gambar 15 berikut ini t s r Gambar 15. Bangun kerucut a. Ciri-ciri kerucut: 1. Punya 2 bidang sisi (1 bidang sisi lingkaran & 1 bidang sisi selimut) 2. Mempunyai 2 rusuk dan 1 titik sudut b. Rumus-rumus penting pada kerucut Luas selimut = π x r x s Luas alas = π x π 2 Luas Permukaan kerucut = Luas alas + Luas Selimut = π x π 2 + π x r x s = π r (r + s) Volume = 1 Luas alas x tinggi 3 =1 π x 3 r2 x t Contoh soal. Suatu bandul timah dibentuk dari kerucut dan setengah bola dengan jari-jari 21 cm. Jari-jari alas kerucut 21 cm dan tingginya 28 cm. Maka volume bandul timah itu adalah... Jawab: Volume bandul = Volum Kerucut + Volum ½ bola V kerucut = 1/3 πr 2 t = 1/3 x 22/7 x 21x21x 28 = 22 x 3 x7 x 28 = cm3 V ½ Bola = 2/3 πr 3 = 2/3 x 22/7 x 21 x21 x21 = 2 x 7 x22 x 3 x 21

21 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 21 = cm3 Jadi volum bandul = = cm3 f. Limas 1). Limas Segitiga Gambar limas segitiga seperti Gambar 16 berikut ini Gambar 16. Bangun limas segitiga a. Ciri-ciri Limas segitiga: 1. Alasnya berbentuk segitiga 2. Mempunyai 4 bidang sisi (alas dan 3 sisi tegak) 3. Mempunyai 6 rusuk dan mempunyai 4 titik sudut b. Rumus-rumus penting pada Limas segitiga Luas alas = alas x tinggi Volume = Luas alas x tinggi Luas = Luas alas + (3 x luas tegak segitiga) 2). Limas Segiempat Gambar limas segiempat seperti Gambar 17 berikut ini Gambar 17. Bangun limas segiempat

22 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 22 a. Ciri-ciri limas segiempat: 1. Alasnya berbentuk segiempat (BCDE) 2. Mempunyai 5 bidang sisi (BCDE, ABC, ACD,ABE, ADE) 3. Mempunyai 5 titik sudut ( A, B,C,D,E) 4. Mempunyai 8 rusuk (AB, AC,AD,AE,BC,CD,DE,BE) b. Rumus limas segiempat Volume Limas = 1 Luas alas x tinggi 3 Contoh soal. Sebuah limas memiliki sisi alas 8 cm dan tingginya 21 cm maka volume limas tersebut adalah Jawab. Diketahui limas sisi alas 8 cm dan tingginya 21 cm Volume limas = 1 Luas alas x tinggi 3 = 1 X 3 82 X 21 = 448 cm3 g. Bola Gambar bola seperti Gambar 18 berikut ini r Gambar 18. Bangun bola a. Ciri-ciri bola: 1. Hanya mempunyai 1 bidang sisi 2. Tidak mempunyai sudut dan tidak mempunyai rusuk

23 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 23 b. Rumus bola Volume = 4 3 π r3 Luas = 4 π r 2 Contoh soal. Sebuah bola dimasukkan ke dalam tabung, diameter bola sama dengan diameter tabung = 12 cm, tinggi tabung = 20 cm dan π = 3,14, maka volume tabung di luar bola adalah... Jawab: Volum tabung diluar bola = V tabung V bola = πr 2 t 4/3 πr 3 = (3,14 x 36 x 20) (4/3 x 3,14 x 6 3 ) = 2260,8-904,32 = 1.356,48

24 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 24 C. Ringkasan Materi 1. Keliling dan Luas Bangun Datar No Nama Bangun Keliling Luas 1 Bujur sangkar (Persegi sama sisi) K = 4s L = s 2 2 Persegi panjang K = 2(p + l) L = p x l 3 Segitiga K = 3s (samasisi) 1 L =.a.t 2 4 Jajaran Genjang K = 2(p + L = a.t l) 5 Layang-layang L 1 =.l.p 2 6 Trapesium K = AB + BC + CD + DA 1 L =.t.(ab + 2 CD) 7 Lingkaran K = 2 r L = r 2 2. Volume Bangun Ruang Geometri NO Nama Bangun Volume 1 Kubus Volume = a 3 2 Balok Volume p l t 3 Prisma Tegak segitiga siku-siku Volume prisma : luas alas x tinggi 4 Tabung / Silinder Volume tabung = π x r 2 xt 5 Kerucut Volume = Luas alas x tinggi =π x π 2 x t 6 Limas segitiga Volume = Luas alas x tinggi 7 Limas Segiempat Volume Limas = ⅓ Luas alas x tinggi 8 Bola Volume = 4 π r3 3

25 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 25 D. Latihan Soal 1. Sebuah proyektil peluru terdiri dari bagian berbentuk silinder dengan panjang 10 mm dan diameter 6 mm. Pada salah satu ujungnya berbentuk setengah bola, pada ujung lain berbentuk kerucut dengan tinggi 4 mm. Hitunglah luas permukaannya! 4 mm 10 mm A. 254,32 mm 2 B. 508,68 mm 2 C. 510,88 mm 2 D. 608,68 mm 2 2. Sebuah kap lampu dengan atap yang tertutup terbuat dari bahan tertentu seperti tampak pada gambar. Tentukan luas bahan yang diperlukan untuk membuat kap lampu tersebut! 20 cm 12 cm 30 cm A cm 2 B cm 2 C cm 2 D cm 2 3. Tentukan luas permukaan bahan yang diperlukan untuk membuat pipa saluran udara dari plat seng berdiameter 42 cm dan panjang 2 m (dalam m 2 ) A. 2,64 m 2 B. 2,74 m 2 C. 2,84 m 2 D. 3,00 m 2

26 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI E 15 cm F 12 cm G H Prisma ABC.DEF dengan AC = 10 cm, AB = 6 cm dan AD = 12 cm.tentukan luas permukaan prisma ABC.DEF! A 5 cm B 6 cm D 5 cm C A. 296 cm 2 B. 396 cm 2 C. 480 cm 2 D. 492 cm 2 5. Tentukan luas permukaan limas terpancung persegi di bawah ini! 6 cm 13 cm 16 cm A. 620 cm 2 B. 720 cm 2 C. 820 cm 2 D. 920 cm 2

27 Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 27 E. Kunci Jawaban No Jawaban 1. B 2. A 3. A 4. D 5. C

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA 5 BAB II KAJIAN PUSTAKA 2.1. Kajian Teori 2.1.1. Pengertian Luas Permukaan Bangun Ruang Luas daerah permukaan bangun ruang adalah jumlah luas daerah seluruh permukaannya yaitu luas daerah bidang-bidang

Lebih terperinci

Dimensi 3. Penyusun : Deddy Sugianto, S.Pd

Dimensi 3. Penyusun : Deddy Sugianto, S.Pd YAYASAN PENDIDIKAN KARTINI NUSANTARA SEKOLAH MENENGAH ATAS (SMA) KARTINI I JAKARTA 2009 Dimensi 3 Penyusun : Deddy Sugianto, S.Pd YAYASAN PENDIDIKAN KARTINI NUSANTARA SEKOLAH MENENGAH ATAS (SMA) KARTINI

Lebih terperinci

Siswa dapat menyebutkan dan mengidentifikasi bagian-bagian lingkaran

Siswa dapat menyebutkan dan mengidentifikasi bagian-bagian lingkaran KISI-KISI PENULISAN SOAL DAN URAIAN ULANGAN KENAIKAN KELAS Jenis Sekolah Penulis Mata Pelajaran Jumlah Soal Kelas Bentuk Soal AlokasiWaktu Acuan : SMP/MTs : Gresiana P : Matematika : 40 nomor : VIII (delapan)

Lebih terperinci

KTSP Perangkat Pembelajaran SMP/MTs, KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) Mapel Matematika kls VII s/d IX. 1-2

KTSP Perangkat Pembelajaran SMP/MTs, KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) Mapel Matematika kls VII s/d IX. 1-2 KTSP Perangkat Pembelajaran SMP/MTs, PERANGKAT PEMBELAJARAN STANDAR KOMPETENSI DAN KOMPETENSI DASAR Mata Pelajaran Satuan Pendidikan Kelas/Semester : Matematika. : SMP/MTs. : VII s/d IX /1-2 Nama Guru

Lebih terperinci

Daftar Nilai Ketuntasan Siswa Pra Siklus No Nama KKM Nilai Keterangan 1 Era Susanti Tuntas 2 Nuri Safitri Belum Tuntas 3 Aldo Kurniawan

Daftar Nilai Ketuntasan Siswa Pra Siklus No Nama KKM Nilai Keterangan 1 Era Susanti Tuntas 2 Nuri Safitri Belum Tuntas 3 Aldo Kurniawan 34 35 Daftar Nilai Ketuntasan Siswa Pra Siklus No Nama KKM Nilai Keterangan 1 Era Susanti 60 80 Tuntas 2 Nuri Safitri 60 45 Belum Tuntas 3 Aldo Kurniawan 60 75 Tuntas 4 Anggi Septiana 60 70 Tuntas 5 Desi

Lebih terperinci

LEMBAR AKTIVITAS SISWA DIMENSI TIGA (WAJIB)

LEMBAR AKTIVITAS SISWA DIMENSI TIGA (WAJIB) Nama Siswa Kelas LEMBAR AKTIVITAS SISWA DIMENSI TIGA (WAJIB) 5. Diagonal Ruang adalah Ruas garis yang menghubungkan dua titik : sudut yang saling berhadapan dalam satu ruang. : Kompetensi Dasar (KURIKULUM

Lebih terperinci

43. Mata Pelajaran Matematika untuk Sekolah Menengah Pertama Luar Biasa Tunarungu (SMPLB B)

43. Mata Pelajaran Matematika untuk Sekolah Menengah Pertama Luar Biasa Tunarungu (SMPLB B) 43. Mata Pelajaran Matematika untuk Sekolah Menengah Pertama Luar Biasa Tunarungu (SMPLB B) A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai

Lebih terperinci

09. Mata Pelajaran Matematika A. Latar Belakang B. Tujuan

09. Mata Pelajaran Matematika A. Latar Belakang B. Tujuan 09. Mata Pelajaran Matematika A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai peran penting dalam berbagai disiplin dan memajukan daya pikir

Lebih terperinci

41. Mata Pelajaran Matematika untuk Sekolah Menengah Pertama (SMP)/Madrasah Tsanawiyah (MTs)

41. Mata Pelajaran Matematika untuk Sekolah Menengah Pertama (SMP)/Madrasah Tsanawiyah (MTs) 41. Mata Pelajaran Matematika untuk Sekolah Menengah Pertama (SMP)/Madrasah Tsanawiyah (MTs) A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai

Lebih terperinci

Bangun Ruang. 2s = s 2. 3s = s 3. Contoh Soal : Berapa Volume, luas dan keliling kubus di bawah ini?

Bangun Ruang. 2s = s 2. 3s = s 3. Contoh Soal : Berapa Volume, luas dan keliling kubus di bawah ini? SD - Bangun Ruang. Kubus H G E F D C s A s B Cii-cii Kubus :. Jumlah bidang sisi ada 6 buah yang bebentuk buju sangka (ABCD, EFGH, ABFE, BCGF, CDHG, ADHE,). Mempunyai 8 titik sudut (A, B, C, D, E, F, G,

Lebih terperinci

41. Mata Pelajaran Matematika untuk Sekolah Menengah Pertama (SMP)/Madrasah Tsanawiyah (MTs)

41. Mata Pelajaran Matematika untuk Sekolah Menengah Pertama (SMP)/Madrasah Tsanawiyah (MTs) 41. Mata Pelajaran Matematika untuk Sekolah Menengah Pertama (SMP)/Madrasah Tsanawiyah (MTs) A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai

Lebih terperinci

Geometri (bangun ruang)

Geometri (bangun ruang) Geometri (bangun ruang) 9.1 BENTUK DASAR BANGUN RUANG 1. Kubus Luas = 6s2 Vol = s3 (s = panjang sisi) 2. Balok Luas = 2 x (p.l + p.t + l.t) Vol = p.l.t 3. Prisma Luas = 2 x l. alas + selimut Vol = luas

Lebih terperinci

08. Mata Pelajaran Matematika A. Latar Belakang B. Tujuan

08. Mata Pelajaran Matematika A. Latar Belakang B. Tujuan 08. Mata Pelajaran Matematika A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai peran penting dalam berbagai disiplin dan memajukan daya pikir

Lebih terperinci

BAB I PENDAHULUAN A. Latar belakang Masalah Rini Apriliani, 2013

BAB I PENDAHULUAN A. Latar belakang Masalah Rini Apriliani, 2013 BAB I PENDAHULUAN A. Latar belakang Masalah Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai peran penting dalam berbagai disiplin dan memajukan daya pikir manusia.

Lebih terperinci

37. Mata Pelajaran Matematika untuk Sekolah Dasar (SD)/Madrasah Ibtidaiyah (MI)

37. Mata Pelajaran Matematika untuk Sekolah Dasar (SD)/Madrasah Ibtidaiyah (MI) 37. Mata Pelajaran Matematika untuk Sekolah Dasar (SD)/Madrasah Ibtidaiyah (MI) A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai peran penting

Lebih terperinci

Modul Matematika X IPA Semester 2 Dimensi Tiga

Modul Matematika X IPA Semester 2 Dimensi Tiga Modul Matematika X IPA Semester Dimensi Tiga Tahun Pelajaran 0 05 SMA Santa Angela Jl. Merdeka No. Bandung Dimensi Tiga X IPA Sem /0-05 Peta Konsep Pengertian titik, garis, dan bidang Titik terhadap garis

Lebih terperinci

41. Mata Pelajaran Matematika untuk Sekolah Dasar Luar Biasa Tunalaras (SDLB-E)

41. Mata Pelajaran Matematika untuk Sekolah Dasar Luar Biasa Tunalaras (SDLB-E) 41. Mata Pelajaran Matematika untuk Sekolah Dasar Luar Biasa Tunalaras (SDLB-E) A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai peran penting

Lebih terperinci

Geometri Ruang (Dimensi 3)

Geometri Ruang (Dimensi 3) Geometri Ruang (Dimensi 3) Beberapa Benda Ruang Yang Beraturan Kubus Tabung volume = a³ luas = 6a² rusuk kubus = a panjang diagonal = a 2 panjang diagonal ruang = a 3 r = jari-jari t = tinggi volume =

Lebih terperinci

Inisiasi 2 Geometri dan Pengukuran

Inisiasi 2 Geometri dan Pengukuran Inisiasi 2 Geometri dan Pengukuran Apa kabar Saudara? Semoga Anda dalam keadaan sehat dan semangat selalu. Selamat berjumpa pada inisiasi kedua pada mata kuliah Pemecahan Masalah Matematika. Kali ini topik

Lebih terperinci

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2010/2011

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2010/2011 Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2010/2011 1. Diketahui A = 7x + 5 dan B = 2x 3. Nilai A B adalah A. -9x +2 B. -9x +8 C. -5x + 2 D. -5x +8 BAB II BENTUK ALJABAR A B = -7x

Lebih terperinci

BAB II KAJIAN TEORI. diungkapkan kembali oleh siswa. 1. siswa adalah kemampuan yang ada pada diri siswa untuk menerima,

BAB II KAJIAN TEORI. diungkapkan kembali oleh siswa. 1. siswa adalah kemampuan yang ada pada diri siswa untuk menerima, BAB II KAJIAN TEORI A. Retensi Siswa 1. Pengertian Retensi Siswa Retensi siswa berasal dari kata retensi dan siswa. Dari kedua kata tersebut digabungkan memiliki pengertian menjadi kemampuan siswa untuk

Lebih terperinci

Materi W9b GEOMETRI RUANG. Kelas X, Semester 2. B. Menggambar dan Menghitung jarak.

Materi W9b GEOMETRI RUANG. Kelas X, Semester 2. B. Menggambar dan Menghitung jarak. Materi W9b GEOMETRI RUANG Kelas X, Semester 2 B. Menggambar dan Menghitung jarak www.yudarwi.com B. Menggambar dan Menghitung Jarak Jarak dua objek dalam dimensi tiga adalah jarak terpendek yang ditarik

Lebih terperinci

Materi W9a GEOMETRI RUANG. Kelas X, Semester 2. A. Kedudukan Titik, Garis dan Bidang dalam Ruang.

Materi W9a GEOMETRI RUANG. Kelas X, Semester 2. A. Kedudukan Titik, Garis dan Bidang dalam Ruang. Materi W9a GEOMETRI RUANG Kelas X, Semester 2 A. Kedudukan Titik, Garis dan Bidang dalam Ruang www.yudarwi.com A. Kedudukan Titik, Garis dan bidang dalam Ruang (1) Kedudukan Titik dan titik Titik berimpit

Lebih terperinci

MODUL MATEMATIKA. Geometri Dimensi Tiga. Maylisa Handayani,S.Pd. Penyusun: MAT. 06. Geometri Dimensi Tiga

MODUL MATEMATIKA. Geometri Dimensi Tiga. Maylisa Handayani,S.Pd. Penyusun: MAT. 06. Geometri Dimensi Tiga MODUL MATEMATIKA Geometri Dimensi Tiga Penyusun: Maylisa Handayani,S.Pd MAT. 06. Geometri Dimensi Tiga i Kata Pengantar Puji sukur kami haturkan ke hadirat Tuhan Yang Maha Esa atas segala karunianya, sehingga

Lebih terperinci

37. Mata Pelajaran Matematika untuk Sekolah Dasar (SD)/Madrasah Ibtidaiyah (MI)

37. Mata Pelajaran Matematika untuk Sekolah Dasar (SD)/Madrasah Ibtidaiyah (MI) 37. Mata Pelajaran Matematika untuk Sekolah Dasar (SD)/Madrasah Ibtidaiyah (MI) A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai peran penting

Lebih terperinci

PAKET 4. Paket : 4. No Soal Jawaban 1 Luas Segiempat PQRS pada gambar di bawah ini adalah. A. 120 cm 2 B. 216 cm 2 C. 324 cm 2 D. 336 cm 2 E.

PAKET 4. Paket : 4. No Soal Jawaban 1 Luas Segiempat PQRS pada gambar di bawah ini adalah. A. 120 cm 2 B. 216 cm 2 C. 324 cm 2 D. 336 cm 2 E. PAKET 4 Jumlah Soal : 0 soal Kompetensi :. Bangun Datar. Trigonometri. Bangun Ruang 4. Barisan dan Deret Compile By : Syaiful Hamzah Nasution No Soal Jawaban Luas Segiempat PQRS pada gambar di bawah ini

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN KELAS EKSPERIMEN

RENCANA PELAKSANAAN PEMBELAJARAN KELAS EKSPERIMEN 97 RENCANA PELAKSANAAN PEMBELAJARAN KELAS EKSPERIMEN Nama Sekolah : SMP Negeri 29 Bandung Mata Pelajaran : Matematika Kelas/Semester : VIII/II (Genap) Alokasi Waktu : 2 x 40 menit (1 pertemuan) A. Standar

Lebih terperinci

50 LAMPIRAN NILAI SISWA SOAL INSTRUMEN Nama : Kelas : No : BERILAH TANDA SILANG (X) PADA JAWABAN YANG DIANGGAP BENAR! 1. Persegi adalah.... a. Bangun segiempat yang mempunyai empat sisi dan panjang

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Pengajaran Berbantuan Komputer Perkembangan komputer baik dalam segi kuantitas, kualitas, maupun teknologinya cenderung sangat pesat belakangan ini. Hal ini menyebabkan semakin

Lebih terperinci

LAMPIRAN 1 SURAT IJIN DAN SURAT KETERANGAN PENELITIAN

LAMPIRAN 1 SURAT IJIN DAN SURAT KETERANGAN PENELITIAN LAMPIRAN 119 120 LAMPIRAN 1 SURAT IJIN DAN SURAT KETERANGAN PENELITIAN 120 121 122 123 124 LAMPIRAN 2 JADWAL PENELITIAN DAN JURNAL MAGANG 124 125 126 127 128 LAMPIRAN 3 HASIL VALIDASI DAN TINGKAT KESUKARAN

Lebih terperinci

KUBUS DAN BALOK. Kata-Kata Kunci: unsur-unsur kubus dan balok jaring-jaring kubus dan balok luas permukaan kubus dan balok volume kubus dan balok

KUBUS DAN BALOK. Kata-Kata Kunci: unsur-unsur kubus dan balok jaring-jaring kubus dan balok luas permukaan kubus dan balok volume kubus dan balok 8 KUBUS DAN BALOK Perhatikan benda-benda di sekitar kita. Dalam kehidupan sehari-hari kita sering memanfaatkan benda-benda seperti gambar di samping, misalnya kipas angin, video cd, dan kardus bekas mainan.

Lebih terperinci

Kegiatan Belajar 1 HAKIKAT MATEMATIKA

Kegiatan Belajar 1 HAKIKAT MATEMATIKA Kegiatan Belajar 1 HAKIKAT MATEMATIKA A. Pengantar Matematika merupakan salah satu bidang studi yang dijarkan di SD. Seorang guru SD yang akan mengajarkan matematika kepada siswanya, hendaklah mengetahui

Lebih terperinci

empat8geometri - - GEOMETRI - - Geometri 4108 Matematika BANGUN RUANG DAN BANGUN DATAR

empat8geometri - - GEOMETRI - - Geometri 4108 Matematika BANGUN RUANG DAN BANGUN DATAR - - GEOMETRI - - Modul ini singkron dengan Aplikasi Android, Download melalui Play Store di HP Kamu, ketik di pencarian empat8geometri Jika Kamu kesulitan, Tanyakan ke tentor bagaimana cara downloadnya.

Lebih terperinci

CATATAN LAPANGAN OPTIMALISASI PENGGUNAAN STRATEGI TWO STAY TWO STRAY UNTUK MENINGKATKAN KEAKTIFAN DAN KEBERANIAN BELAJAR MATEMATIKA SISWA

CATATAN LAPANGAN OPTIMALISASI PENGGUNAAN STRATEGI TWO STAY TWO STRAY UNTUK MENINGKATKAN KEAKTIFAN DAN KEBERANIAN BELAJAR MATEMATIKA SISWA Lampiran 1 79 CATATAN LAPANGAN OPTIMALISASI PENGGUNAAN STRATEGI TWO STAY TWO STRAY UNTUK MENINGKATKAN KEAKTIFAN DAN KEBERANIAN BELAJAR MATEMATIKA SISWA (PTK Bagi Siswa Kelas VIIIE SMP Negeri 2 Banyudono

Lebih terperinci

DAFTAR ISI PRAKATA DAFTAR ISI KATA KATA MOTIVASI TUJUAN PEMBELAJARAN KUBUS DAN BALOK

DAFTAR ISI PRAKATA DAFTAR ISI KATA KATA MOTIVASI TUJUAN PEMBELAJARAN KUBUS DAN BALOK PRAKATA Puji syukur penulis panjatkan kepada Tuhan Yang Maha Esa karena buku ini dapat diselesaikan. Buku ini penulis hadirkan sebagai panduan bagi siswa dalam mempelajari salah satu materi matematika.

Lebih terperinci

MATEMATIKA (Paket 2) Waktu : 120 Menit

MATEMATIKA (Paket 2) Waktu : 120 Menit MATEMATIKA (Paket 2) Waktu : 20 Menit (025) 77 2606 Website : Pilihlah jawaban yang paling tepat!. Hasil dari A. B. D. 8 5 8 2 2 8 2 adalah. 2. Hasil dari A. B. D. 8 adalah.. Bentuk sederhana dari A. 2

Lebih terperinci

SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1

SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1 SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1 1. Perhatikan gambar di bawah ini! http://primemobile.co.id/assets/uploads/materi/123/1701_5.png Dari bangun datar di atas, maka sifat bangun

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam kehidupan sehari-hari manusia tidak pernah terlepas dari matematika. Matematika merupakan ilmu universal yang mendasari berbagai perkembangan teknologi

Lebih terperinci

Pembahasan Matematika SMP IX

Pembahasan Matematika SMP IX Pembahasan Matematika SMP IX Matematika SMP Kelas IX Bab Pembahasan dan Kunci Jawaban Ulangan Harian Pokok Bahasan : Kesebangunan Kelas/Semester : IX/ A. Pembahasan soal pilihan ganda. Bangun yang tidak

Lebih terperinci

1. Titik, Garis dan Bidang Dalam Ruang. a. Defenisi. Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol

1. Titik, Garis dan Bidang Dalam Ruang. a. Defenisi. Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol 1. Titik, Garis dan Bidang Dalam Ruang a. Defenisi Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol Titik digambarkan dengan sebuah noktah dan penamaannya menggunakan

Lebih terperinci

Beberapa Benda Ruang Yang Beraturan

Beberapa Benda Ruang Yang Beraturan Beberapa Benda Ruang Yang Beraturan Kubus Tabung rusuk kubus = a volume = a³ panjang diagonal bidang = a 2 luas = 6a² panjang diagonal ruang = a 3 r = jari-jari t = tinggi volume = π r² t luas = 2πrt Prisma

Lebih terperinci

Evaluasi Belajar Tahap Akhir Nasional Tahun 1986 Matematika

Evaluasi Belajar Tahap Akhir Nasional Tahun 1986 Matematika Evaluasi Belajar Tahap Akhir Nasional Tahun 986 Matematika EBTANAS-SMP-86-0 Himpunan faktor persekutuan dari dan 0 {,,, 6} {,, 6} {, } {6} EBTANAS-SMP-86-0 Bilangan 0,0000 jika ditulis dalam bentuk baku.0

Lebih terperinci

Lampiran 1.1 Surat Izin Penelitian

Lampiran 1.1 Surat Izin Penelitian LAMPIRAN 1 Lampiran 1.1 Surat Izin Penelitian Lampiran 1.2 Surat Keterangan Telah Melaksanakan Penelitian Lampiran 1.3 Surat Permohonan Validasi (Validator I) Lampiran 1.4 Surat Permohonan Validasi (Validator

Lebih terperinci

51. Mata Pelajaran Matematika Kelompok Teknologi, Kesehatan dan Pertanian untuk Sekolah Menengah Kejuruan (SMK)/Madrasah Aliyah Kejuruan (MAK) A.

51. Mata Pelajaran Matematika Kelompok Teknologi, Kesehatan dan Pertanian untuk Sekolah Menengah Kejuruan (SMK)/Madrasah Aliyah Kejuruan (MAK) A. 51. Mata Pelajaran Matematika Kelompok Teknologi, Kesehatan dan Pertanian untuk Sekolah Menengah Kejuruan (SMK)/Madrasah Aliyah Kejuruan (MAK) A. Latar Belakang Matematika merupakan ilmu universal yang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Kajian Pustaka Berdasarkan penelitian yang dilakukan oleh Rini Fatmawati dengan judul Peningkatan Pembelajaran Melalui Model Pembelajaran Picture and Picture pada Pokok Bahasan

Lebih terperinci

MAT. 06. Geometri Dimensi Tiga

MAT. 06. Geometri Dimensi Tiga MAT. 06. Geometri Dimensi Tiga i Kode MAT. 06 Geometri Dimensi Tiga BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN

Lebih terperinci

GAMBAR TEKNIK PROYEKSI ISOMETRI. Gambar Teknik Proyeksi Isometri

GAMBAR TEKNIK PROYEKSI ISOMETRI. Gambar Teknik Proyeksi Isometri GAMBAR TEKNIK PROYEKSI ISOMETRI Gambar Teknik i halaman ini sengaja dibiarkan kosong Gambar Teknik ii Daftar Isi Daftar Isi... iii... 1 1 Pendahuluan... 1 2 Sumbu, Garis, dan Bidang Isometri... 2 3 Skala

Lebih terperinci

SOAL-SOAL UJIAN NASIONAL MATEMATIKA SMP/MTs TAHUN PELAJARAN 2009/2010

SOAL-SOAL UJIAN NASIONAL MATEMATIKA SMP/MTs TAHUN PELAJARAN 2009/2010 SOAL-SOAL UJIAN NASIONAL MATEMATIKA SMP/MTs TAHUN PELAJARAN 2009/2010 1. Hasil dari 8 + ( 3 x 4) ( 6 : 3) adalah... A. 6 B. 2 C. -2 D. -6 BAB I BILANGAN BULAT dan BILANGAN PECAHAN 8 + ( 3 x 4) ( 6 : 3)

Lebih terperinci

SOAL BANGUN RUANG. a. 1000 dm 3 b. 600 dm 3 c. 400 dm 3 d. 100 dm 3 e. 10 dm 3

SOAL BANGUN RUANG. a. 1000 dm 3 b. 600 dm 3 c. 400 dm 3 d. 100 dm 3 e. 10 dm 3 SOAL BANGUN RUANG Soal Pilihan Ganda 1. Diketahui kubus dengan panjang diagonal sisi 5 2 meter, luas permukaan kubus tersebut adalah a. 5 m 2 b. 25 m 2 c. 100 m 2 d. 150 m 2 e. 250 m 2 2. Dikeatui bak

Lebih terperinci

B. Tujuan Mata pelajaran Matematika bertujuan agar peserta didik memiliki kemampuan sebagai berikut.

B. Tujuan Mata pelajaran Matematika bertujuan agar peserta didik memiliki kemampuan sebagai berikut. 49. Mata Pelajaran Matematika Kelompok Seni, Pariwisata, Sosial, Administrasi Perkantoran, dan Teknologi Kerumahtanggaan untuk Sekolah Menengah Kejuruan (SMK)/Madrasah Aliyah Kejuruan (MAK) A. Latar Belakang

Lebih terperinci

P 54 TRY OUT 4 UJIAN NASIONAL TAHUN PELAJARAN 2011/2012 MATEMATIKA (E-3) SMK KELOMPOK KEAHLIAN TEKNOLOGI, KESEHATAN DAN PERTANIAN UTAMA

P 54 TRY OUT 4 UJIAN NASIONAL TAHUN PELAJARAN 2011/2012 MATEMATIKA (E-3) SMK KELOMPOK KEAHLIAN TEKNOLOGI, KESEHATAN DAN PERTANIAN UTAMA TRY OUT 4 UJIAN NASIONAL TAHUN PELAJARAN 2011/2012 MATEMATIKA (E-3) SMK KELOMPOK KEAHLIAN TEKNOLOGI, KESEHATAN DAN PERTANIAN P 54 UTAMA SMK NEGERI 2 MAGELANG PROVINSI JAWA TENGAH TAHUN 2012 Mata Pelajaran

Lebih terperinci

Lampiran B1: Rencana Pelaksanaan Pembelajaran RENCANA PELAKSANAAN PEMBELAJARAN (RPP van Hiele) dimensi tiga.

Lampiran B1: Rencana Pelaksanaan Pembelajaran RENCANA PELAKSANAAN PEMBELAJARAN (RPP van Hiele) dimensi tiga. Lampiran B1: Rencana Pelaksanaan Pembelajaran RENCANA PELAKSANAAN PEMBELAJARAN (RPP van Hiele) Nama Sekolah Mata Pelajaran Kelas / Semester : SMA Negeri 1 Wundulako : Matematika : X / 2 (dua) Standar Kompetensi

Lebih terperinci

LEMBAR KERJA SISWA KE-3

LEMBAR KERJA SISWA KE-3 LEMBAR KERJA SISWA KE-3 Mata Pelajaran : Matematika Pokok Bahasan : Dimensi Tiga Kelas / Semester : X / 2 Pertemuan Ke : 4 dan 5 Alokasi Waktu : 4 jam ( 4 x 45 menit ) C. Menggambar Kubus dan Balok 01.

Lebih terperinci

Menghitung Luas dan Volume

Menghitung Luas dan Volume Bab 3 Menghitung Luas dan Volume Pada pembelajaran bab ini kamu akan memantapkan pemahaman kamu terhadap cara mengitung bangun datar, karena kamu telah mengenal dan mempelajari luas bangun datar, terutama

Lebih terperinci

Konfirmasi 3. Kegiatan Akhir

Konfirmasi 3. Kegiatan Akhir 94 (g) Guru membimbing siswa dalam proses penyusunan Mind Map. (h) Guru mengarahkan siswa agar tetap tenang dalam membuat Mind Map. (i) Guru meminta siswa untuk membuat Mind Map yang penuh kreasi sendiri

Lebih terperinci

SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT

SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT Pilihan 1. Pada gambar berikut, tali busur ditunjukkan oleh A. AO B. CO C. BO D. BC 2. Panjang jari jari suatu

Lebih terperinci

BANGUN RUANG BAHAN BELAJAR MANDIRI 5

BANGUN RUANG BAHAN BELAJAR MANDIRI 5 BAHAN BELAJAR MANIRI 5 BANGUN RUANG PENAHULUAN untuk membantu calon guru dan guru Sekolah dasar dalam memahami konsep geometri bangun ruang, bidang empat (limas), bidang enam (prisma), dan bangun ruang

Lebih terperinci

Unit 3 KONSEP DASAR GEOMETRI DAN PENGUKURAN. Edy Ambar Roostanto. Pendahuluan

Unit 3 KONSEP DASAR GEOMETRI DAN PENGUKURAN. Edy Ambar Roostanto. Pendahuluan Unit 3 KONSEP DASAR GEOMETRI DAN PENGUKURAN Edy Ambar Roostanto Pendahuluan P ada unit ini kita akan mempelajari beberapa konsep dasar dalam Geometri dan Pengukuran yang terdiri dari bangun datar geometri

Lebih terperinci

Lampiran 1 80

Lampiran 1 80 79 L A M P I R A N Lampiran 1 80 Lampiran 2 81 Lampiran 3 82 Lampiran 4 83 84 Lampiran 5 RENCANA PELAKSANAAN PEMBELAJARAN ( RPP ) PROBLEM BASED LEARNING BERBANTUAN MEDIA BANGU DATAR PEMBELAJARAN SIKLUS

Lebih terperinci

PAKET 1 Berilah tanda silang (x) pada huruf A, B, C atau D di depan jawaban yang benar! 1. Hasil dari ( ) : (-8 + 6) adalah. a. -6 b. -5 c.

PAKET 1 Berilah tanda silang (x) pada huruf A, B, C atau D di depan jawaban yang benar! 1. Hasil dari ( ) : (-8 + 6) adalah. a. -6 b. -5 c. PAKET 1 Berilah tanda silang (x) pada huruf A, B, C atau D di depan jawaban yang benar! 1. Hasil dari (- + 11) : (-8 + 6) adalah. a. -6 b. -5 c. 5 d. 6. Pak Budi pada awal bulan menabung uang di koperasi

Lebih terperinci

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2006/2007

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2006/2007 Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2006/2007 1. Dari ramalan cuaca kota-kota besar di dunia, tercatat suhu tertinggi dan terendah adalah sebagai berikut: Moskow: terendah -5

Lebih terperinci

BAB II KAJIAN PUSTAKA. tengah semester maupun ulangan akhir semester. Simbol untuk. mengetahui sejauh mana keberhasilan siswa dalam mengikuti kegiatan

BAB II KAJIAN PUSTAKA. tengah semester maupun ulangan akhir semester. Simbol untuk. mengetahui sejauh mana keberhasilan siswa dalam mengikuti kegiatan 7 BAB II KAJIAN PUSTAKA A. Landasan Teori 1. Prestasi Belajar Prestasi belajar merupakan hasil usaha belajar yang telah dicapai oleh siswa berdasarkan nilai-nilai yang diambil dari ulangan harian, ulangan

Lebih terperinci

Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12

Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12 Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12 Tim Pembahas : Th. Widyantini Untung Trisna Suwaji Wiworo Choirul Listiani Estina Ekawati Nur Amini Mustajab PPPPTK Matematika Yogyakarta

Lebih terperinci

44. Mata Pelajaran Matematika untuk Sekolah Menengah Atas (SMA)/ Madrasah Aliyah (MA)

44. Mata Pelajaran Matematika untuk Sekolah Menengah Atas (SMA)/ Madrasah Aliyah (MA) 44. Mata Pelajaran Matematika untuk Sekolah Menengah Atas (SMA)/ Madrasah Aliyah (MA) A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai peran

Lebih terperinci

(Dengan Pendekatan Vektor) Oleh: Murdanu, M.Pd.

(Dengan Pendekatan Vektor) Oleh: Murdanu, M.Pd. (Dengan Pendekatan Vektor) Oleh: Muru, M.Pd. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA PROGRAM STUDI MATEMATIKA TAHUN AKADEMIK /. Diberikan

Lebih terperinci

Standar Kompetensi : Memahami sifat-sifat tabung, kerucut dan bola serta menentukan ukurannya

Standar Kompetensi : Memahami sifat-sifat tabung, kerucut dan bola serta menentukan ukurannya Standar Kompetensi : Memahami sifat-sifat tabung, kerucut dan bola serta menentukan ukurannya Kompetensi Dasar : 1. Mengidentifikasi unsur-unsur tabung, kerucut dan bola 2. Menghitung luas selimut dan

Lebih terperinci

SOAL LATIHAN UKK MATEMATIKA KELAS VIII

SOAL LATIHAN UKK MATEMATIKA KELAS VIII SOAL LATIHAN UKK MATEMATIKA KELAS VIII SOAL PILIHAN GANDA 1. Perhatikan gambar berikut. Daerah yang diarsir disebut... a. juring b. busur c. tembereng d. tali busur 2. Perhatikan kembali lingkaran pada

Lebih terperinci

PEMBAHASAN SOAL UN MATEMATIKA SMP 2010 KODE B P48

PEMBAHASAN SOAL UN MATEMATIKA SMP 2010 KODE B P48 PEMBAHASAN SOAL UN MATEMATIKA SMP 010 KODE B P48 1. Pada awal Januari 009 koperasi Rasa Sayang mempunyai modal sebesar Rp5.000.000,00. Seluruh modal tersebut dipinjamkan kepada anggotanya selama 10 bulan

Lebih terperinci

I. PENDAHULUAN. Ilmu pengetahuan dan teknologi telah berkembang secara pesat sehingga cara berpikir

I. PENDAHULUAN. Ilmu pengetahuan dan teknologi telah berkembang secara pesat sehingga cara berpikir 1 I. PENDAHULUAN A. Latar Belakang Masalah Ilmu pengetahuan dan teknologi telah berkembang secara pesat sehingga cara berpikir manusia pun dituntut untuk semakin berkembang. Hal ini mewajibkan setiap individu

Lebih terperinci

MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : GEOMETRI

MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : GEOMETRI MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : GEOMETRI STANDAR KOMPETENSI LULUSAN. Memahami bangun datar, bangun ruang, garis sejajar, dan sudut, serta menggunakannya dalam

Lebih terperinci

1 C17. C. Rp B. Rp

1 C17. C. Rp B. Rp 1 C17 1. Joko ingin kuliah di Fakultas kedokteran UNAIR melalui SNMPTN jalur tulis. Dari 15 soal kemampuan dasar di hari pertama, Joko menjawab 5 soal benar dan soal tidak dijawab. Jika menjawab benar

Lebih terperinci

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM Mata Pelajaran Jenjang : Matematika : SMP / MTs MATA PELAJARAN Hari / Tanggal : Rabu, 9 April 009 Jam : 08.00 0.00 WAKTU PELAKSANAAN PETUNJUK UMUM. Isikan identitas Anda ke dalam Lembar Jawaban Ujian Nasional

Lebih terperinci

BAB 2 VOLUME DAN LUAS PERMUKAAN BANGUN RUANG SISI LENGKUNG

BAB 2 VOLUME DAN LUAS PERMUKAAN BANGUN RUANG SISI LENGKUNG BAB 2 VOLUME DAN LUAS PERMUKAAN BANGUN RUANG SISI LENGKUNG A. TABUNG Tabung adalah bangun ruang yang dibatasi oleh dua lingkaran yang berhadapan, sejajar, dan kongruen serta titik-titik pada keliling lingkaran

Lebih terperinci

Bangun yang memiliki sifat-sifat tersebut disebut...

Bangun yang memiliki sifat-sifat tersebut disebut... 1. Perhatikan sifat-sifat bangun ruang di bawah ini: i. Memiliki 6 sisi yang sama atau kongruen ii. Memiliki 12 rusuk yang sama panjang Bangun yang memiliki sifat-sifat tersebut disebut... SD kelas 6 -

Lebih terperinci

PENGERJAAN HITUNG BILANGAN BULAT

PENGERJAAN HITUNG BILANGAN BULAT M O D U L 1 PENGERJAAN HITUNG BILANGAN BULAT Standar Kompetensi : Melakukan operasi hitung bilangan bulat dalam pemecahan masalah Kompetensi Dasar : 1. Menggunakan sifat-sifat operasi hitung termasuk operasi

Lebih terperinci

Lampiran 1. Kisi-Kisi Soal Siklus I dan Siklus II

Lampiran 1. Kisi-Kisi Soal Siklus I dan Siklus II 62 Lampiran 1 Kisi-Kisi Soal Siklus I dan Siklus II 63 Kisi-kisi soal Siklus I Sekolah : SDN 1 Krobokan Mata Pelajaran : Matematika Kelas/ Semester : 5/ II A. Standar Kompetensi : 6. Memahami sifat-sifat

Lebih terperinci

LEMBAR AKTIVITAS SISWA DIMENSI TIGA Ruas garis PQ Ruas garis QR Garis PQ = garis QR (karena bila diperpanjang akan mewakili garis yang sama)

LEMBAR AKTIVITAS SISWA DIMENSI TIGA Ruas garis PQ Ruas garis QR Garis PQ = garis QR (karena bila diperpanjang akan mewakili garis yang sama) Nama Siswa Kelas LEMBAR AKTIVITAS SISWA DIMENSI TIGA Ruas garis PQ Ruas garis QR : Garis PQ = garis QR (karena bila diperpanjang akan : mewakili garis yang sama) A. PENGERTIAN TITIK, GARIS DAN BIDANG Titik,

Lebih terperinci

BAB I PENDAHULUAN. Salah satu upaya guru menciptakan suasana belajar yang menyenangkan

BAB I PENDAHULUAN. Salah satu upaya guru menciptakan suasana belajar yang menyenangkan 1 BAB I PENDAHULUAN A. Latar Belakang Masalah Salah satu upaya guru menciptakan suasana belajar yang menyenangkan yaitu dapat menarik minat, antusiasme siswa, dan memotivasi siswa agar senantiasa belajar

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : A SMP N Kalibagor Hasil dari 5 + [6 : ( )] adalah... Urutan pengerjaan operasi hitung A. 7 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung C. Pangkat ; Akar D.

Lebih terperinci

09. Mata Pelajaran Matematika

09. Mata Pelajaran Matematika 09. Mata Pelajaran Matematika A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai peran penting dalam berbagai disiplin dan mengembangkan daya

Lebih terperinci

Mengklasifikasikan obyek-obyek matematika Menyatakan kembali konsep matematika dengan bahasa sendiri. Menemukan contoh dari sebuah konsep

Mengklasifikasikan obyek-obyek matematika Menyatakan kembali konsep matematika dengan bahasa sendiri. Menemukan contoh dari sebuah konsep A. PEMAHAMAN MATEMATIS 1. Kisi-kisi soal Pemahaman Matematis Jenjang : SMP Mata Pelajaran : Matematika Kelas / Semester : IX / 1 Aspek Pemahaman Materi yang diukur Memberikan contoh dan bukan contoh dari

Lebih terperinci

Materi W9c GEOMETRI RUANG. Kelas X, Semester 2. C. Menggambar dan Menghitung Sudut.

Materi W9c GEOMETRI RUANG. Kelas X, Semester 2. C. Menggambar dan Menghitung Sudut. Materi W9c GEOMETRI RUANG Kelas X, Semester C. Menggambar dan Menghitung Sudut www.yudarwi.com C. Menggambar dan Menghitung Sudut Sudut dalam dimensi tiga adalah sudut antara garis dan garis, garis dan

Lebih terperinci

BAB II KAJIAN TEORI. Morgan, dkk (dalam Walgito, 2004: 167) memberikan definisi mengenai

BAB II KAJIAN TEORI. Morgan, dkk (dalam Walgito, 2004: 167) memberikan definisi mengenai 1 BAB II KAJIAN TEORI 2.1 Hakikat Belajar Matematika Morgan, dkk (dalam Walgito, 2004: 167) memberikan definisi mengenai belajar yaitu: Learning can be defined as any relatively permanent change in behavior

Lebih terperinci

adalah. 7. Barisan aritmatika dengan suku ke-7 = 35 dan suku ke-13 = 53. Jumlah 27 suku pertama

adalah. 7. Barisan aritmatika dengan suku ke-7 = 35 dan suku ke-13 = 53. Jumlah 27 suku pertama MATEMATIKA (Paket ) Waktu : 20 Menit (025) 477 20 Website : Pilihlah jawaban yang paling tepat!. Ibu Aminah mempunyai untuk membuat gorengan diperlukan 7 2 kg tepung terigu. Untuk membuat roti diperlukan

Lebih terperinci

PEMANTAPAN UJIAN NASIONAL 2013 (SOAL DAN PENYELESAIAN)

PEMANTAPAN UJIAN NASIONAL 2013 (SOAL DAN PENYELESAIAN) PEMANTAPAN UJIAN NASIONAL 03 (SOAL DAN PENYELESAIAN) Kerjakan dengan sungguh-sungguh dan penuh kejujuran!. Dalam sebuah ruangan terdapat 5 baris kursi. Banyaknya kursi pada baris ke tiga terdapat 34 buah,

Lebih terperinci

BAB II KEMAMPUAN PENALARAN ADAPTIF MELALUI MODEL PROBLEM BASED LEARNING DALAM MATERI KUBUS DAN BALOK. 1. Pengertian Model Problem Based Learning

BAB II KEMAMPUAN PENALARAN ADAPTIF MELALUI MODEL PROBLEM BASED LEARNING DALAM MATERI KUBUS DAN BALOK. 1. Pengertian Model Problem Based Learning BAB II KEMAMPUAN PENALARAN ADAPTIF MELALUI MODEL PROBLEM BASED LEARNING DALAM MATERI KUBUS DAN BALOK A. Model Problem Based Learning 1. Pengertian Model Problem Based Learning Wena mendefinisikan problem

Lebih terperinci

09. Mata Pelajaran Matematika

09. Mata Pelajaran Matematika 09. Mata Pelajaran Matematika A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai peran penting dalam berbagai disiplin dan mengembangkan daya

Lebih terperinci

KUMPULAN SOAL MATEMATIKA SMP KELAS 8

KUMPULAN SOAL MATEMATIKA SMP KELAS 8 KUMPULAN SOAL MATEMATIKA SMP KELAS 8 Dirangkum oleh Moch. Fatkoer Rohman Website: http://fatkoer.co.cc http://zonamatematika.co,cc Email: fatkoer@gmail.com 009 Evaluasi Bab 1 Untuk nomor 1 sampai 5 pilihlah

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1 Pembahasan UN 0 A3 by Alfa Kristanti PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : A3 Hasil dari 5 + [6 : ( 3)] adalah... Urutan pengerjaan operasi hitung A. 7 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL MATEMATIKA SMP/MTs TAHUN PELAJARAN 2014/2015-TANGGAL 5 Mei 2015

SOAL DAN PEMBAHASAN UJIAN NASIONAL MATEMATIKA SMP/MTs TAHUN PELAJARAN 2014/2015-TANGGAL 5 Mei 2015 SOAL DAN PEMBAHASAN UJIAN NASIONAL MATEMATIKA SMP/MTs TAHUN PELAJARAN 04/05-TANGGAL 5 Mei 05. Dalam kompetisi matematika, setiap jawaban benar diberi nilai 4, salah dan tidak dijawab. Dari 40 soal yang

Lebih terperinci

Dari gambar jaring-jaring kubus di atas bujur sangkar nomor 6 sebagai alas, yang menjadi tutup kubus adalah bujur sangkar... A. 1

Dari gambar jaring-jaring kubus di atas bujur sangkar nomor 6 sebagai alas, yang menjadi tutup kubus adalah bujur sangkar... A. 1 1. Diketahui : A = { m, a, d, i, u, n } dan B = { m, e, n, a, d, o } Diagram Venn dari kedua himpunan di atas adalah... D. A B = {m, n, a, d} 2. Jika P = bilangan prima yang kurang dari Q = bilangan ganjil

Lebih terperinci

BAB II KAJIAN TEORI. berbagai metode sehingga siswa dapat melakukan kegiatan belajar secara

BAB II KAJIAN TEORI. berbagai metode sehingga siswa dapat melakukan kegiatan belajar secara BAB II KAJIAN TEORI A. Kajian Teori 1. Pembelajaran Matematika di SMP Menurut Sugihartono (2012: 81), pembelajaran adalah suatu upaya yang dilakukan secara sengaja oleh pendidik untuk menyampaikan ilmu

Lebih terperinci

PEMBAHASAN SOAL UN MATEMATIKA SMP (KODE A) TAHUN PELAJARAN 2009/2010

PEMBAHASAN SOAL UN MATEMATIKA SMP (KODE A) TAHUN PELAJARAN 2009/2010 PEMBAHASAN SOAL UN MATEMATIKA SMP (KODE A) TAHUN PELAJARAN 009/00 PEMBAHAS: Th. Widyantini Wiworo Untung Trisna Suwaji Yudom Rudianto Sri Purnama Surya Nur Amini Mustajab Choirul Listiani PEMBAHASAN SOAL

Lebih terperinci

SOAL dan Pembahasan UN Matematika SMP Tahun 2013

SOAL dan Pembahasan UN Matematika SMP Tahun 2013 SOAL dan Pembahasan UN Matematika SMP Tahun 2013 Jawab : Bilangan Bulat dan Pecahan 2 + 1 : 2 = 2 + ( 1 : 2 ) = + ( x ) = + = Jawabannya adalah A = = 3 = 3 Perbandingan Jumlah kelereng Bimo = x 70 = 28

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Matematika merupakan salah satu unsur dalam pendidikan. Dalam dunia pendidikan, matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern,

Lebih terperinci

Pertemuan ke 11. Segiempat Segiempat adalah bidang datar yang dibatasi oleh empat potong garis yang saling bertemu dan menutup D C

Pertemuan ke 11. Segiempat Segiempat adalah bidang datar yang dibatasi oleh empat potong garis yang saling bertemu dan menutup D C Pertemuan ke Segiempat Segiempat adalah bidang datar yang dibatasi oleh empat potong garis yang saling bertemu dan menutup D C B Empat persegi panjang d D E a c C B b B = CD dan B // CD D = BC dan D //

Lebih terperinci

LEMBAR AKTIVITAS SISWA DIMENSI TIGA (PEMINATAN)

LEMBAR AKTIVITAS SISWA DIMENSI TIGA (PEMINATAN) Nama Siswa Kelas : : Kompetensi Dasar (KURIKULUM 2013): LEMBAR AKTIVITAS SISWA DIMENSI TIGA (PEMINATAN) 3. Bidang Bidang (Bidang datar) merupakan kumpulan titik yang membentuk suatu luasan (bidang) datar

Lebih terperinci

MATEMATIKA. Pertemuan 2 N.A

MATEMATIKA. Pertemuan 2 N.A MATEMATIKA Pertemuan 2 N.A smile.akbar@yahoo.co.id Awali setiap aktivitas dengan membaca Basmallah Soal 1 (Operasi Bentuk Aljabar) Bentuk Sederhana dari adalah a. b. c. d. Pembahasan ( A ) Soal 2 (Pola

Lebih terperinci

LAMPIRAN 1 RPP SIKLUS 1 DENGAN MODEL PEMBELAJARAN KOOPERATIF TIPE THINK PAIR SHARE

LAMPIRAN 1 RPP SIKLUS 1 DENGAN MODEL PEMBELAJARAN KOOPERATIF TIPE THINK PAIR SHARE LAMPIRAN 1 RPP SIKLUS 1 DENGAN MODEL PEMBELAJARAN KOOPERATIF TIPE THINK PAIR SHARE 108 RENCANA PELAKSANAAN PEMBELAJARAN SIKLUS 1 MODEL PEMBELAJARAN KOOPERATIF TIPE THINK PAIR SHARE Satuan Pendidikan Mata

Lebih terperinci

BAB I PENDAHULUAN A. Latar belakang

BAB I PENDAHULUAN A. Latar belakang BAB I PENDAHULUAN A. Latar belakang Salah satu faktor penting bagi kemajuan suatu bangsa adalah pendidikan. Melalui pendidikan bangsa ini membebaskan masyarakat dari kebodohan dan keterpurukan serta dapat

Lebih terperinci