Bab 6: Analisa Spektrum
|
|
|
- Yuliana Agusalim
- 9 tahun lalu
- Tontonan:
Transkripsi
1 BAB Aalisa Spetrum Bab : Aalisa Spetrum Aalisa Spetrum Dega DFT Tujua Belajar Peserta dapat meghubuga DFT dega spetrum dari sial hasil samplig sial watu otiue. -poit DFT dari sial x adalah Xω ag diealuasi pada freuesi-freuesi ω π/ utu,,,- Cotoh : Sial dega durasi sepajag L diberia sebagai beriut :, L x laia Trasformasi Fourier dari sial ii adalah L L jωl jω jω e si ωl jω L X ω x e e e jω e si ω pi 9 7 pi/ Xomega 5 -pi/ pi/ pi pi/ pi omega -pi pi/ pi pi/ pi Gambar. : Karateristi magituda da fasa hasil trasformasi Fourier -poit DFT dari sial diatas adalah L jπl j πl e si πl X e jπl e si π jπ e L pi/ pi pi/ pi pi/ pi pi/ pi VI-
2 BAB Aalisa Spetrum pi/ pi pi/ pi - pi/ pi pi/ pi Gambar. : Magituda da fasa -poit DFT utu 5 da Tujua Belajar Peserta dapat melaua aalisa spetrum dega DFT, termasu osep widowig Utu meghitug spetrum sial, bai sial watu otiu maupu sial watu disrit, maa perlu dietahui besara sial setiap saat. amu, secara pratis, ita megamati sial haa dalam selag watu tertetu. Aibata, spetrum sial harus dideati megguaa sejumlah data ag berhigga. Misala,. x a t ati aliasig filter samplig x a L samples B F s B. Durasi x a t T o T dimaa T /F s emampua membedaa freuesi terbatas e F F s bila x a t lebih pajag dari T o, tetapi ita "memasa" diri megguaa blo sebesar L samples, maa guaa widow ω berdurasi L xˆ x ω L misal ω laia maa x ˆ berdurasi L, guaa pada DFT Misala x megadug freuesi tuggal ω x cos ω maa trasformasi Fourier x dapat diataa X ˆ ω [ ω ω + ω + ω ] VI-
3 BAB Aalisa Spetrum dimaa ω adalah trasformasi Fourier dari seue widow, dimaa utu rectagular widow si ωl / ω e si ω / jω l / ω Tujua Belajar Peserta megerti ero paddig da persamaa/perbedaa aibata dibadig dega meaia poit DFT. Xˆ dihitug megguaa DFT. Jia diigia meghitug -poits DFT dimaa > L maa dapat dilaua ero paddig, aitu dega meisipa sejumlah L xˆ }. Gambar dibawah memperlihata magituda spetrum buah ol pada seue { utu L5 da. Seperti terlihat pada gambar tersebut, spetrum ω Xˆ tida terloalisir pada satu freuesi tetapi meebar e seluruh rage freuesi. Jadi, daa dari sial x ag sebeluma terosetrasi pada satu freuesi searag tersebar e seluruh rage freuesi, atau disebut leaage. L, pi/ pi pi/ pi Tujua Belajar Peserta dapat meguragi ebocora spetrum spetral leaage idowig, selai meebaba esalaha estimasi spetrum sial area leaage, juga meguragi resolusi spetrum. Misala terdapat sial terdiri dari dua freuesi : x cosω + cosω dega megguaa widowig, maa xˆ ω x dimaa trasformasi Fouriera adalah : X ω ω ω + ω ω + ω + ω + ω + [ ] ω VI-
4 BAB Aalisa Spetrum Zero crossig ω terjadi pada ω π/l, bila ω -ω < π/l maa terjadi oerlap pada ω-ω da ω-ω, jia ω -ω π/l maa mucul lobe. Jadi emampua meresolusi garis spetrum ditetua oleh lebar mai-lobe dari widow. Cotoh : x cos.π + cos.π + cos.π Terdapat dua freuesi ag salig berdeata, aitu.π da.π. Kedua freuesi tida bisa dipisaha megguaa L5 da L5, edua freuesi baru terpisah megguaa L. Utu meguragi ebocora dapat diguaa widow w dega side-lobe ag redah ag beraibat mai-lobe melebar resolusi meigat. Bila spetrum widow relatif sempit dibadig Xω maa efe smoothig ecil, sebalia bila spetrum widow relatif lebar maa efe ω lebih domia sehigga harus dihidari. Cotoh : π aig idow cos L ω L otherwise ag diguaa pada sial seperti diatas. Perhatia gambar dibawah, megguaa aig widow. VI-
5 BAB Aalisa Spetrum Meghitug DFT Dega batua Filter Tujua Belajar 5 Peserta dapat meghitug DFT dega batua filter liier da diterapa dalam asus Goertel Algorithm utu DMTF. Algoritma Goertel memafaata sifat periodi sudut fasa { } sehigga perhituga DFT dapat diataa sebagai operasi liear filterig dega resoator pada ω π/ Karea, maa dapat diguaa sebagai fator pegali, sehigga X m x m m m m x m m bila x m h m h u m x m xm tuggu sampai m VI-5
6 BAB Aalisa Spetrum VI- X Ctt. x + - Utu meghidari bilaga omples aibat, buat omplex cojugate sehigga cos + π X x log bai utu M alues iput real cos + π sehigga cuup meghitug cos + π
Penggunaan Transformasi z
Pegguaa Trasformasi pada Aalisa Respo Freuesi Sistem FIR Oleh: Tri Budi Satoso E-mail:[email protected] Lab Siyal,, EEPIS-ITS ITS /3/6 osep pemiira domais of represetatio Domai- discrete time:
Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS
Bab 5 Siyal da Sistem Watu Disrit Oleh: Tri Budi Satoso Laboratorium Siyal, EEPIS-ITS Materi: Represetasi matemati pada siyal watu disrit, domai watu da freuesi pada suatu siyal watu disrit, trasformasi
Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka
oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu
Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka
oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu
Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit
Siyal da Sistem Watu Disrit ET 35 Pegolaha Siyal Watu Disrit EL 5155 Pegolaha Siyal Watu Disrit Effria Yati Hamid 1 2 Siyal da Sistem Watu Disrit 2.1 Siyal Watu Disrit 2.1.1 Pegertia Siyal Watu Disrit
3. Integral (3) (Integral Tentu)
Darublic www.darublic.com. Itegral () (Itegral Tetu).. Luas Sebagai Suatu Itegral. Itegral Tetu Itegral tetu meruaa itegral ag batas-batas itegrasia jelas. Kose dasar dari itegral tertetu adalah luas bidag
BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan
BAB LADASA TEORI Teorema Shao-yquist meyataa agar tida ada iformasi yag hilag etia pecuplia siyal, maa ecepata pecuplia harus miimal dua ali dari lebar pita siyal tersebut. Pada ebayaa apliasi, termasu
BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C.
BAB II LANDASAN TEORI Pada bab ii aa dibahas teori teori yag meduug metode upper level set sca statistics, atara lai peubah aca, distribusi gamma, fugsi gamma, fugsi lielihood, da uji rasio lielihood.
Representasi sinyal dalam impuls
Represetasi siyal dalam impuls Represetasi siyal dalam impuls adalah siyal yag diyataa sebagai fugsi dari impuls atau sebagai umpula dari impuls-impuls. Sembarag siyal disret dapat diyataa sebagai pejumlaha
Gambar 3.1Single Channel Multiple Phase
BAB III MODEL ANTRIAN PADA PEMBUATAN SIM C. Sigle Chael Multiple Phase Sistem atria sigle chael multiple phase merupaa sistem atria dimaa pelagga yag tiba, dapat memasui sistem dega megatri di tempat yag
BAB II LANDASAN TEORI. persamaan yang mengandung diferensial. Persamaan diferensial
5 BAB II LANDASAN TEORI A. Persamaa Diferesial Dari ata persamaa da diferesial, dapat diliat bawa Persamaa Diferesial beraita dega peelesaia suatu betu persamaa ag megadug diferesial. Persamaa diferesial
BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE)
BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) 5.1. Pembagit Radom Variate Disrit Suatu Radom Variate diartia sebagai ilai suatu radom variate yag mempuyai distribusi tertetu. Utu megambil
Bab 16 Integral di Ruang-n
Catata Kuliah MA3 Kalulus Elemeter II Oi Neswa,Ph.D., Departeme Matematia-ITB Bab 6 Itegral di uag- Itegral Gada atas persegi pajag Itegral Berulag Itegral Gada atas Daerah sebarag Itegral Gada Koordiat
1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama.
Darublic www.darublic.com 1. Itegral (1) (Macam Itegral, Pedeata Numeri) Sudarato Sudirham Dalam bab sebeluma, ita memelajari salah satu bagia utama alulus, aitu alulus diferesial. Beriut ii ita aa membahas
MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK. Masalah 1 Terdapat berapa carakah kita dapat memilih 2 baju dari 20 baju yang tersedia?
Kartia Yuliati, SPd, MSi MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK Masalah Terdapat berapa caraah ita dapat memilih baju dari 0 baju yag tersedia? Cara Misala baju diberi omor dari sampai
MODUL BARISAN DAN DERET
MODUL BARISAN DAN DERET SEMESTER 2 Muhammad Zaial Abidi Persoal Blog http://meetabied.wordpress.com BAB I. PENDAHULUAN A. Desripsi Dalam modul ii, ada aa mempelajari pola bilaga, barisa, da deret diidetifiasi
MACAM-MACAM TEKNIK MEMBILANG
0 MACAM-MACAM TEKNIK MEMBILANG ATURAN PERKALIAN Beriut ii diberia sebuah dalil tetag peetua baya susua yag palig sederhaa dalam suatu permasalaha yag beraita dega peluag. Dalil 2.1: ATURAN PERKALIAN SECARA
Sifat-sifat Fungsi Karakteristik dari Sebaran Geometrik
Sifat-sifat Fugsi Karateristi dari Sebara Geometri Dodi Deviato Jurusa Matematia, Faultas MIPA, Uiversitas Adalas Kamus Limau Mais, Padag 563, Sumatera Barat, Idoesia Abstra Fugsi arateristi dari suatu
MAKALAH TEOREMA BINOMIAL
MAKALAH TEOREMA BINOMIAL Disusu utu memeuhi tugas mata uliah Matematia Disrit Dose Pegampu : Dr. Isaii Rosyida, S.Si, M.Si Rombel B Kelompo 2 1. Wihdati Martalya (0401516006) 2. Betha Kuria S. (0401516012)
BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain.
BARIAN DAN DERET A. Barisa Barisa adalah uruta bilaga yag memilii atura tertetu. etiap bilaga pada barisa disebut suu barisa yag dipisaha dega lambag, (oma). Betu umum barisa:,, 3, 4,, dega: = suu pertama
TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS
Jural Matematia Vol.6 No. November 6 [ 5 : ] TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS Ooy Rohaei Jurusa Matematia, UNISBA, Jala Tamasari No, Badug,6, Idoesia
BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi
BAB III TAKSIRA PROPORSI POPULASI JIKA TERJADI ORESPO Dalam bab ii aa dibaas peasira proporsi populasi jia terjadi orespo da dilaua allba sebaya t ali. Selai itu, juga aa dibaas peetua uura sampel yag
Bab 7 Penyelesaian Persamaan Differensial
Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala
Perluasan Uji Kruskal Wallis untuk Data Multivariat
Statistia, Vol. No., Mei Perluasa Uji Krusal Wallis utu Data Multivariat TETI SOFIA YANTI Program Studi Statistia, Uiversitas Islam Badug, Jl. Purawarma No. Badug. E-mail: [email protected] ABSTAK Adaia
PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)
PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP A. ISIAN SINGKAT SELEKSI TINGKAT PROPINSI TAHUN 011 BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT 1. Jia x adalah jumlah 99 bilaga gajil terecil yag lebih besar
1) Leptokurtik Merupakan distribusi yang memiliki puncak relatif tinggi
Statisti Desriptif Keruciga atau Kurtosis Pegertia Kurtosis Peguura urtosis (peruciga) sebuah distribusi teoritis adaalaya diamaam peguura eses (excess) dari sebuah distribusi Sebearya urtosis bisa diaggap
SISTEM LINIER. Oleh : Kholistianingsih, S.T., M.Eng. lts 1
SISTEM LINIER Oleh : Kholistiaigsih, S.T., M.Eg. lts 1 2 Isyarat Waktu Diskrit di kawasa waktu. 2.1 Represetasi Isyarat Waktu Diskrit 2.2 Klasifikasi Rutu 2.3 Rutu rutu Dasar 2.4 Operasi di kawasa waktu
Bab 5: Discrete Fourier Transform dan FFT
BAB 5 Dicrt Fourir Traform da FFT Bab 5: Dicrt Fourir Traform da FFT Dicrt Fourir Traform DFT. Dfiii Tuua Blaar Prta dapat mdfiiia DFT, da mghitugya. Utu mlaua aalii frui dari iyal watu dirit maa prlu
Kuliah 9 Filter Digital
TEKNIK PENGOLAHAN ISYARAT DIGITAL Kuliah 9 Filter Digital Idah Susilawati, S.T.,.Eg. Progra Studi Tei Eletro Progra Studi Tei Iforatia Faultas Tei da Ilu Koputer Uiversitas ercu Buaa Yogaarta 9 Kuliah
METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM09
METODE NUMERIK UNTUK SIMULASI Pemodela & Simulasi TM09 Metode Numerik ( Metode umerik dpt diklasiikasika mjd:. Metode satu-lagka atau sigle-step. Metode multistep Metode sigle-step Pada metode ii, utuk
KOMPUTASI ALIRAN FLUIDA DINAMIK DENGAN CITRA DIGITAL DAN PIV (PARTICLE IMAGE VELOCIMETRY), KHUSUSNYA DALAM APLIKASI NUKLIR. Muhammad Arifin Sanusi *
KOMPUTASI ALIRA FLUIDA DIAMIK DEGA CITRA DIGITAL DA PIV PARTICLE IMAGE VELOCIMETRY KHUSUSYA DALAM APLIKASI UKLIR Muhammad Arifi Sausi * ABSTRAK KOMPUTASI ALIRA FLUIDA DIAMIK DEGA CITRA DIGITAL DA PIV PARTICLE
SIMULASI MODEL RLC BERBANTUAN MS EXCEL ASSISTED RLC MODEL SIMULATION MS EXCEL
SIMULASI MODEL RLC BERBANTUAN MS EXCEL ASSISTED RLC MODEL SIMULATION MS EXCEL Edag Habiuddi (Staf Pegajar UP MKU Politei Negeri Badug (Email : [email protected] ABSTRAK Sistem ragaia listri RLC seri
Tugas Akhir (SI-40Z1) Evaluasi Perbandingan Konsep Desain Dinding Geser Tahan Gempa Berdasarkan SNI Beton Bab III Studi Kasus BAB III STUDI KASUS
BAB III STUDI KASUS. Sistem Strutur Prototipe Pada tugas ahir ii aa dilaua evaluasi hasil desai didig geser dega dua osep desai ag berbeda aitu osep desai berdasara gaa dalam da osep desai apasitas. Strutur
PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR
Jural Tei da Ilmu Komputer PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR Budi Marpaug Faultas Tei da Ilmu Komputer Jurusa Tei Idustri
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI.1 Risio Operasioal.1.1 Defiisi Dewasa ii risio operasioal semai diaui sebagai salah satu fator uci yag perlu dielola da dicermati oleh para pelau usaha, hususya di bidag jasa euaga.
B a b 1 I s y a r a t
34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat
Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif
Megaji Perbedaa Diagoalisasi Matris Atas Field da Matris Atas Rig Komutatif Teorema : Jia A adalah matris x maa eryataa eryataa beriut eivale satu sama lai : a A daat didiagoalisasi b A memuyai vetor eige
METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT
METODE NUMERIK TKM4104 Kuliah ke- DERET TAYLOR DAN ANALISIS GALAT DERET TAYLOR o Deret Taylor adalah alat yag utama utuk meuruka suatu metode umerik. o Deret Taylor bergua utuk meghampiri ugsi ke dalam
Gerak Brown Fraksional dan Sifat-sifatnya
SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 06 S - 3 Gera Brow Frasioal da Sifat-sifatya Chataria Ey Murwaigtyas, Sri Haryatmi, Guardi 3, Herry P Suryawa 4,,3 Uiversitas Gadjah Mada,4 Uiversitas
MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng
MODUL 1.03 DINMIK PROSES Ole : Ir. Tatag Kusmara, M.Eg LBORTORIUM OPERSI TEKNIK KIMI JURUSN TEKNIK KIMI UNIVERSITS SULTN GENG TIRTYS CILEGON BNTEN 2008 2 Modul 1.03 DINMIK PROSES I. Pedaulua Dalam bidag
METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM07
METODE NUMERIK UNTUK SIMULASI Pemodela & Simulasi TM07 Metode Numerik ( Metode umerik dpt diklasiikasika mjd:. Metode satu-lagka atau sigle-step. Metode multistep Metode sigle-step Pd metode ii, utuk meetuka
MA1201 MATEMATIKA 2A Hendra Gunawan
MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas
BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)
BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu
Teorema Nilai Rata-rata
Nilai Kus Prihatoso April 27, 2012 Yogyakarta Nilai Suatu Fugsi Masih igatkah ada tetag ilai rata-rata dari sekmpula bilaga? Berapakah ilai rata-rata dari sebayak bilaga y 1, y 2,..., y? Nilai Suatu Fugsi
STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran
KTSP & K-3 matemata K e l a s XI STATISTIKA: UKURAN PENYEBARAN DATA Tujua Pembelajara Setelah mempelajar mater, amu dharapa meml emampua berut.. Memaham defs uura peyebara data da jes-jesya.. Dapat meetua
Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes
eluag uatu Kejadia, Kaidah ejumlaha, eluag ersyarat, Kaidah eralia da Kaidah aiyes.eluag uatu Kejadia Defiisi : eluag suatu ejadia adalah jumlah peluag semua titi otoh dalam. Dega demiia : 0 (), ( ) =
Penyelesaian Persamaan Non Linier
Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode
Sistem Bilangan Kompleks (Bagian Ketiga)
Sistem Bilaga Kompleks (Bagia Ketiga) Supama Jurusa Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:[email protected], [email protected] (Pertemua Miggu III) Outlie 1 Akar Bilaga Kompleks 2 Akar
6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi
6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0
GRAFIKA
6 5 7 3 6 3 3 GRAFIKA 3 6 57 08 0 9 5 9 385 946 5 3 30 0 8 9 5 9 3 85 946 5 ANALISA REAL Utu uliah (pegatar) aalisa real yag dilegapi dega program MATLAB Dr. H.A. Parhusip G R A F I K A Peerbit Tisara
STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS
STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS (Tati Octavia et al.) STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS Tati Octavia Dose Faultas
I. DERET TAKHINGGA, DERET PANGKAT
I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da
PEMBUKTIAN SIFAT RUANG BANACH PADA D(K)
JMP : Volume 4 Nomor 1, Jui 2012, hal. 41-50 PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga [email protected] ABSTRACT. I this
BAB 6 NOTASI SIGMA, BARISAN DAN DERET
BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat
Hendra Gunawan. 12 Februari 2014
MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg
MODUL BARISAN DAN DERET
MODUL BARISAN DAN DERET KELAS XII. IPS SEMESTER I Oleh : Drs. Pudjul Prijoo ( http://vidyagata.wordpress.co ) SMA NEGERI 6 Jala Mayje Sugoo 58 Malag Telp./Fax : (034) 75036 E-Mail : [email protected]
1.1 METODE PENGEMBANGAN PENDEKATAN RATA- RATA SAMPEL UNTUK PROGRAM STOKASTIK DUA TAHAP. Faridawaty Marpaung. Abstrak
METODE PEGEMBAGA PEDEKATA RATA- RATA SAMPEL UTUK PROGRAM STOKASTIK DUA TAHAP Faridawaty Marpaug Abstra Peelitia ii megemuaa metode pegembaga pedeata rata rata sampel utu program stoasti dua tahap. Metodologi
Pendekatan Matematika Model Ekonomi Makro
Vol. 2 No.1 1-7 Juli 2005 Pedeata Matematia Model Eoomi Maro Jer uuma Abtra Model matematia diberia utu mejelaa eomea dalam duia eoomi maro eperti modal/apital teaa erja peetahua iovai dalam riet da peembaaa.
UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI
UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI 35475 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI SARJANA MATEMATIKA DEPOK
Aplikasi Interpolasi Bilinier pada Pengolahan Citra Digital
Aplikasi Iterpolasi Biliier pada Pegolaha Citra Digital Veriskt Mega Jaa - 35408 Program Studi Iformatika Sekolah Tekik Elektro da Iformatika Istitut Tekologi Badug, Jl. Gaesha 0 Badug 403, Idoesia [email protected]
PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK
PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK Oleh, Edag Cahya M.A. Jrsa Pedidia Matematia FPMIPA UPI Badg Jl. Dr. Setiabdi 9 Badg E-mail [email protected] Abstra Tlisa ii mejelasa prisip masimm
Oleh: Bambang Widodo, SPd SMA Negeri 9 Yogyakarta
Oleh: Bambag Widodo, SPd SMA Negeri 9 Yogyakarta PETA KONSEP Prisip Superposisi Liier Sefase π π beda faseya : 0,2, 4,. beda litasa : 0,,2, 3,. terjadi iterferesi Kostruktif/ salig meguatka, amplitudo
Metode Perhitungan Grafik Dalam Geolistrik Tahanan Jenis Bumi Dengan Derajat Pendekatan Satu
Metode Perhituga Grafi.. P. Maurug Metode Perhituga Grafi Dalam Geolistri Tahaa Jeis Bumi Dega Derajat Pedeata Satu Posma Maurug Jurusa Fisia, FMIPA Uiversitas Lampug Jl. S. Brojoegoro No. Badar Lampug
TEOREMA INTEGRAL CAUCHY. Drs. GIM TARIGAN Fakultas Matematika dan Ilmu Pengetahuan Alam Jurusan Matematika Universitas Sumatera Utara
TEOREMA INTEGRAL AUHY rs. GIM TARIGAN Faultas Matematia da Ilmu Pegetahua Alam Jurusa Matematia Uiversitas umatera Utara PENAHULUAN alam tulisa ii daat ita lihat bahwa teorema Gree daat membutia erbedaa
PENGHALUSAN DERAU PADA PENERIMAAN SINYAL VIDEO TELEVISI BERWARNA MENGGUNAKAN METODE WAVELET
PENGHALUSAN DERAU PADA PENERIMAAN SINYAL VIDEO TELEVISI BERWARNA MENGGUNAKAN METODE WAVELET Bledug Kusuma P. * Fathul Qodir *, Nurul Qhomariyah ** * Tei Eletro FT Uiversitas Muhammadiyah Yogyaarta Jala
MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH
MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bitaro Sektor 7, Bitaro Jaa Tagerag Selata 154 PENDAHULUAN Megapa mempelajari kekuata taah? Keamaa
BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara
BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula
Probabilitas dan Statistika Korelasi dan Regresi. Adam Hendra Brata
Probabilitas da Statistika da Adam Hedra Brata Dua Peubah Acak dua perubah acah X da Y dega rata-rata da diberika oleh rumus : E(XY) - - - Sifat Sifat Sifat kovariasi utuk X da Y diskrit : f(, ) f(, )
BAHAN AJAR DIKLAT GURU MATEMATIKA
BAHAN AJAR DIKLAT GURU MATEMATIKA DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN 005 DAFTAR ISI Kata Pegatar.. i Daftar Isi...
Karakteristik Dinamik Elemen Sistem Pengukuran
Karakteristik Diamik Eleme Sistem Pegukura Kompetesi, RP, Materi Kompetesi yag diharapka: Mahasiswa mampu merumuskaka karakteristik diamik eleme sistem pegukura Racaga Pembelajara: Miggu ke Kemampua Akhir
Model Antrian Multi Layanan
Jural Gradie Vol. No. Juli : 8- Model Atria Multi Layaa Sisa Yosmar Jurusa Matematia, Faultas Matematia da Ilmu egetahua Alam, Uiversitas Begulu, Idoesia Diterima 9 April; Disetujui 8 Jui Abstra - Salah
BAB 3 PENYELESAIAN PERSAMAAN DIFFERENSIAL BIASA
BAB PENYELESAIAN PERSAMAAN DIFFERENSIAL BIASA Meode Euler Meode Euler adala Meode ampira palig sederaa uu meelesaia masala ilai awal: ( Biasaa diasumsia bawa peelesaia ( dicari pada ierval erbaas ag dieaui
BAB II TINJAUAN PUSTAKA. membahas distribusi normal dan distribusi normal baku, penaksir takbias μ dan σ,
BAB II TINJAUAN PUSTAKA.1 Pedahulua Dalam peulisa materi poo dari sripsi ii diperlua beberapa teori-teori yag meduug, yag mejadi uraia poo pada bab ii. Uraia dimulai dega membahas distribusi ormal da distribusi
Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5
Mata Kuliah : Matematia Disrit Program Studi : Tei Iformatia Miggu e : 5 KOMBINATORIAL PENDAHULUAN Persoala ombiatori bua merupaa persoala baru dalam ehidupa yata. Baya persoala ombiatori sederhaa telah
WAKILAN DIAGRAMATIK UNTUK TEORI USIKAN DALAM MEKANIKA KUANTUM. M Farchani Rosyid Dwi Satya Palupi. Jurusan Fisika, FMIPA, UGM.
Prosidig Semiar Nasioal Peelitia, Pedidia, da Peerapa MIPA Faultas MIPA, Uiversitas Negeri Yogyaarta, 6 Mei 9 WAKILAN DIAGRAMATIK UNTUK TEORI USIKAN DALAM MEKANIKA KUANTUM M Farchai Rosyid Dwi Satya Palupi
PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL
PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL Ahma Sya roi, M Natsir, Eag Lily E-mail: Arolativa@yahoocom Mahasiswa Program S Matematia Dose Jurusa Matematia
BAB 2 LANDASAN TEORI. Statistika merupakan salah satu cabang penegtahuan yang paling banyak mendapatkan
BAB LANDASAN TEORI. Pegertia Regresi Statistika merupaka salah satu cabag peegtahua yag palig bayak medapatka perhatia da dipelajari oleh ilmua dari hamper semua bidag ilmu peegtahua, terutama para peeliti
LAMPIRAN 1 PEMBENTUKAN FUNGSI PERIODIZER
LAMPIRAN LAMPIRAN PEMBENUKAN FUNGSI PERIODIZER Fugsi p c x x, merupaka fugsi garis lurus simetris dega variabel bebas x, mejadi fugsi dasar pembetuka gelombag sawtooth. Fugsi p c x ii yag aka disubstitusi
Penulis: Penilai: Editor: Ilustrator: Dra. Puji Iryanti, M.Sc. Ed. Al. Krismanto, M.Sc. Sri Purnama Surya, S.Pd, M.Si. Fadjar N. Hidayat, S.Si.,M.Ed.
PAKET FASILITASI PEMBERDAYAAN KKG/MGMP MATEMATIKA Pembelajara Barisa, Deret Bilaga da Notasi Sigma di SMA Peulis: Dra. Puji Iryati, M.Sc. Ed. Peilai: Al. Krismato, M.Sc. Editor: Sri Purama Surya, S.Pd,
BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI
BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas
KORELASI POLISERIAL UNTUK PENDUGAAN PARAMETER STRUCTURAL EQUATION MODELING
Kode Maalah M- KORELASI POLISERIAL UNTUK PENDUGAAN PARAMETER STRUCTURAL EQUATION MODELING SEM Oleh : Nur Rusliah Prof. Dr. Dra. Susati Liuwih, M.Stat Dra. Kartia Fitriasari, M.Si. ABSTRAK Structural Equatio
MASALAH DISTRIBUSI BOLA KE DALAM WADAH SEBAGAI FUNGSI ATAU KUMPULAN FUNGSI
Vol. 11, No. 1, 45-55, Juli 2014 MASALAH DISTRIBUSI BOLA KE DALAM WADAH SEBAGAI FUNGSI ATAU KUMPULAN FUNGSI Fauziah Baharuddi 1, Loey Haryato 2, Nurdi 3 Abstra Peulisa ii bertujua utu medapata perumusa
RUANG BARISAN MUSIELAK-ORLICZ. Oleh: Encum Sumiaty dan Yedi Kurniadi
RUANG BARISAN USIELAK-ORLICZ Oleh: Ecu Suiat da Yedi Kuriadi Disapaia pada Seiar Nasioal ateatia ada taggal 8 Deseber 2008, di Jurusa edidia ateatia FIA UI JURUSAN ENDIDIKAN ATEATIKA FAKULTAS ENDIDIKAN
BAB IV PERHITUNGAN HARGA PREMI BERDASARKAN FUNGSI PERMINTAAN PADA TITIK KESETIMBANGAN
BAB IV PERHITUNGAN HARGA PREMI BERDASARKAN FUNGSI PERMINTAAN PADA TITIK KESETIMBANGAN Berdasaran asumsi batasan interval pada bab III, untu simulasi perhitungan harga premi pada titi esetimbangan, maa
kesimpulan yang didapat.
Bab ii merupaka bab peutup yag merupaka hasil da kesimpula dari pembahasa serta sara peulis berdasarka kesimpula yag didapat. BAB LANDASAN TEORI. Kosep Dasar Peramala Peramala adalah kegiata utuk memperkiraka
Penerapan Algoritma Dijkstra dalam Pemilihan Trayek Bus Transjakarta
Peerapa Algoritma Dijstra dalam Pemiliha Traye Bus Trasjaarta Muhammad Yafi 504 Program Studi Tei Iformatia Seolah Tei Eletro da Iformatia Istitut Teologi Badug, Jl. Gaesha 0 Badug 40, Idoesia [email protected]
BAB 5 OPTIK FISIS. Prinsip Huygens : Setiap titik pada muka gelombang dapat menjadi sumber gelombang sekunder. 5.1 Interferensi
BAB 5 OPTIK FISIS Prisip Huyges : Setiap titik pada muka gelombag dapat mejadi sumber gelombag sekuder. 5. Iterferesi - Iterferesi adalah gejala meyatuya dua atau lebih gelombag, membetuk gelombag yag
Aproksimasi Terbaik dalam Ruang Metrik Konveks
Aprosimasi Terbai dalam Ruag etri Koves Oleh : Suharsoo S Jurusa atematia FIPA Uiversitas Lampug Abstra asalah esistesi da etuggala aprosimasi terbai suatu titi dalam ruag berorm telah dipelajari oleh
I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983)
I PENDAHULUAN Latar Belaag Permasalaha ebiaa pemaea ia yag memberia eutuga masimum da berelauta (tida teradi epuaha dari populasi ia yag dipae) adalah hal yag sagat petig bagi idustri periaa Para ilmuwa
Pendekatan Nilai Logaritma dan Inversnya Secara Manual
Pedekata Nilai Logaritma da Iversya Secara Maual Moh. Affaf Program Studi Pedidika Matematika, STKIP PGRI BANGKALAN [email protected] Abstrak Pada pegaplikasiaya, bayak peggua yag meggatugka masalah
BAB III MODEL KANAL WIRELESS
BAB III MODEL KANAL WIRELESS Pemahaman mengenai anal wireless merupaan bagian poo dari pemahaman tentang operasi, desain dan analisis dari setiap sistem wireless secara eseluruhan, seperti pada sistem
Nilai Eigen dan Vektor Eigen Matriks atas Aljabar Max-Plus Interval
Nilai Eige da Vetor Eige Matris atas Aljabar Max-Plus Iterval 2 M. Ady Rudhito, Sri Wahyui, 3 Ari Suparwato, ad 4 F. Susilo Mahasiswa S3 Mateatia FMIPA UGM da Staff Pegajar FKIP Uiversitas Saata Dhara
Konvolusi pada Distribusi dengan Support Kompak
Prosidig SI MaNIs (Semiar Nasioal Itegrasi Matematia da Nilai Islami) Vol1, No1, Juli 2017, Hal 453-457 p-issn: 2580-4596; e-issn: 2580-460X Halama 453 Kovolusi pada Distribusi dega Support Kompa Cythia
MENGUJI KEMAKNAAN SAMPEL TUNGGAL
MENGUJI KEMAKNAAN SAMPEL TUNGGAL 1.1 Uji Biomial 1. Uji esesuaia Chi Kuadrat 1.3 Uji Kesesuaia K-S 1.4 Uji Ideedesi Chi Kuadrat 1.5 Uji Pasti Fisher UJI BINOMIAL Meruaa uji roorsi dalam suatu oulasi Poulasi
