Bab 5: Discrete Fourier Transform dan FFT
|
|
|
- Liani Dharmawijaya
- 9 tahun lalu
- Tontonan:
Transkripsi
1 BAB 5 Dicrt Fourir Traform da FFT Bab 5: Dicrt Fourir Traform da FFT Dicrt Fourir Traform DFT. Dfiii Tuua Blaar Prta dapat mdfiiia DFT, da mghitugya. Utu mlaua aalii frui dari iyal watu dirit maa prlu mdapata rprtai domai frui dari iyal yag biaaya diyataa dalam domai watu. DFT diguaa utu mlaua aalia frui dari iyal watu dirit. Po it DFT dimaa, - da, - DFT dihitug mgguaa pramaa : higga dimaa Ivr DFT IDFT mghitug mbali rprtai iyal watu dirit dari iyal yag diyataa dalam domai frui ω. dimaa aar dari uity Tuua Blaar Prta dapat mmadag DFT bagai traformai liir da pralia matri trhadap vtor. DFT da IDFT dapat uga dipadag bagai traformai liir atara da, adi V-
2 BAB 5 Dicrt Fourir Traform da FFT V- dimaa da maig-maig adalah vtor dga buah lm M M Jia diyataa matri [ ] i i w maa, poit DFT dapat diyataa dalam btu daga IDFT dapat dihitug ia trdapat ivr dari. it bila Cotoh: Hitug poit DFT dari iyal igat 6. Hubuga DFT dga Sptrum Tuua Blaar 3 Prta dapat mghubuga DFT dga drt Fourir utu iyal priodi. Miala p adalah iyal priodi dga prioda, maa dapat diyataa Igat 9 6 3
3 BAB 5 Dicrt Fourir Traform da FFT V-3 p C di maa p C bila ambil p utu, - atu prioda maa C yag tida lai adalah. Tuua Blaar Prta dapat mghubuga DFT dga ptrum dari iyal apriodi. Bila l p l p priodi dga priod l l l [ ] p l FT l / ω bila othrwi p ˆ maa [ ] ˆ / DFT FT ω adi ˆ p haya bila fiit duratio L maa ˆ higga IDFT {}
4 BAB 5 Dicrt Fourir Traform da FFT.3 Hubuga DFT Dga Traformai z Tuua Blaar 5 Prta dapat mghubuga DFT dga traformai z dari iyal Lagrag itrpolator. z z bila durai maa z z z z ω ω z ω z Lagrag Itrpolatio ω / Sifat DFT Tuua Blaar 6 Prta mgrti da dapat mmafaata ifat liir, priodi da imtri irular. Sifat liir : Jia da -DFT -DFT maa utu barag otata a da a ral atau ompl a. a. -DFT a. a. Sifat priodi : Jia -DFT maa utu mua utu mua Sifat imtri irular V-
5 BAB 5 Dicrt Fourir Traform da FFT 3 Filtr Mgguaa DFT Tuua Blaar 7 Prta dapat mlaua filtrig liir dga DFT, da mmbadigaya dga ovolui. ω h Hω y Yω ω Hω YωHωω Aumia FIR da Fiit duratio Lt :, < da L durai L h, < da M durai M Yω Hω ω durai : L M- Bila Yω diampl maa amplig haru L M - IDFT agar y y maa Y Y,, - ω ω Y H, zro paddig IDFT Y y,..., L M Cotoh : FIR : h {,, 3} {,,, } Cari output dga mgguaa DFT da IDFT L, M 3 6 Pilih 8 agar uai dga FFT H 7 8 V-5
6 BAB 5 Dicrt Fourir Traform da FFT H 3, 7 h 8 3,...,7 8 8,,...,7 IDFT H 6 H 3 H H 3 3 H H 5 3 H 6 H 7 3 Y H Y 36 Y Y Y Y Y Y6 - Y y 7 Y 8,,,7 y {,, 9,, 8, 3,, } zropad aibat 8 poit aa lbih uar dari ovolui ttapi aa mgutuga bila M > -3 aliaig tradi bila < M L - Tuua Blaar 8 V-6
7 BAB 5 Dicrt Fourir Traform da FFT Prta dapat mlaua filtrig liir dga DFT, utu iyal yag paag, mlalui mtoda ovrlap-av da ovrlap-add. Utu mlaua filtrig iyal paag dapat dilaua dga cara Bloc-by-Bloc - Ovrlap-av mthod - Ovrlap-odd mthod Aumi FIR durai M Blo durai L Aumi L >> M Mtoda ovrlap-av L M - poit DFT da IDFT M- L w Data Old w DFT Utu blo -m Yˆ H M M M,, L-, - IDFT h Zro Paddig yˆ m { yˆ m, yˆ m,..., yˆ m M, yˆ m M- poit L hail ovolui datag dari old data buag M,..., yˆ } H Utu blo m - ambil M- poit trahir di blo m utu diguaa bagai old data pada bagia briut - ulagi {,,,,, L-} Ovrlap-add Mthod DFT m Fat Fourir Traform FFT Tuua Blaar 9 Prta mgrti op FFT da buttrfly. Kbutuha alulai DFT co i V-7
8 BAB 5 Dicrt Fourir Traform da FFT ara r I bia brilai ompl, maa R I. R r co. I R i I i I co prlu valuai trigoomtric fuctio ral multiplicatio - ral additio umlah idig addrig oprator Srig dibut O Guaa fata : imtri utu ma omputai Fat algorithm trdia utu r, r, r v di maa {r } prim Tuua Blaar Prta dapat mlaa FFT Radi- dimai dalam watu. Radi- FFT] - Kau huu r r r r r v - R radi- FFT v Dcimatio i Tim FFT. f,,..., f bagi quc f da f diprolh mlalui dimai f, f F F V-8
9 BAB 5 Dicrt Fourir Traform da FFT.,,, - v m m amu /, maa m f m m m odd m f m m m m m F F,,... di maa F : / poit DFT dari f m F : / poit DFT dari f m Kara F da F priodi, dga prioda /, F / F da F / F Juga, maa F F, /- F F, /- Bila G F G F G G poit DFT G G Lauta f V V f f poit poit f F V f poit V f poit V V poit V-9
10 BAB 5 Dicrt Fourir Traform da FFT F F F V V poit V V poit V V poit di maa v V / DFT poit Olog i i Ilutrai utu 8 ampl V f {, } V f {, } V f {, 5} V f 3 {3, 7} Tuua Blaar Prta dapat mlaa FFT Radi- dimai dalam frui. V-
Respon Frekuensi pada FIR Filter. Oleh:Tri Budi Sanrtoso ITS
Rpo Frui pada FIR Filtr Olh:Tri Budi Sartoo Lab Siyal,, EEPIS-ITS ITS 1 Rpo iuoida pada itm FIR Suatu itm FIR diyataa: y[ ] b x[ ] h[ ] x[ ] 0 0 (1 Siyal iput cara umum mrupaa btu ompl dirit x[ ] x[ A
Transformasi Z Materi :
4 Trasformasi Z Matri : Dfiisi Trasformasi Darah Kovrgsi (Rgio of Covrgc) Diagram Pol Zro Sifat Trasformasi Trasformasi dalam Btu Poliomial Rasioal Fugsi Sistm atau Fugsi Trasfr H() dari Sistm Liir Tida
ANALISIS CEPSTRUM SINYAL SUARA
MAKALAH ANALII CEPTRUM INYAL UARA Disusu Ol: NENI ARYANI L2F 300 543 JURUAN TEKNIK ELEKTRO FAKULTA TEKNIK UNIVERITA DIPONEGORO E M A R A N G 2 0 0 2 DAFTAR II JUDUL... 1 ABTRAK... 1 1. Pdaulua.... 1 2.
Bab 6: Analisa Spektrum
BAB Aalisa Spetrum Bab : Aalisa Spetrum Aalisa Spetrum Dega DFT Tujua Belajar Peserta dapat meghubuga DFT dega spetrum dari sial hasil samplig sial watu otiue. -poit DFT dari sial x adalah Xω ag diealuasi
b. peluang terjadinya peristiwa yang diperhatikan mendekati nol (p 0). c. perkalian n.p =, sehingga p = /n.
0 DISTRIBUSI POISSO Distribusi Poisso ii diprolh dari distribusi biomial, apabila dalam distribusi biomial brlau syarat-syarat sbagai briut: a. baya pgulaga sprimya sagat bsar ( ). b. pluag trjadiya pristiwa
Penggunaan Transformasi z
Pegguaa Trasformasi pada Aalisa Respo Freuesi Sistem FIR Oleh: Tri Budi Satoso E-mail:[email protected] Lab Siyal,, EEPIS-ITS ITS /3/6 osep pemiira domais of represetatio Domai- discrete time:
Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS
Bab 5 Siyal da Sistem Watu Disrit Oleh: Tri Budi Satoso Laboratorium Siyal, EEPIS-ITS Materi: Represetasi matemati pada siyal watu disrit, domai watu da freuesi pada suatu siyal watu disrit, trasformasi
BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C.
BAB II LANDASAN TEORI Pada bab ii aa dibahas teori teori yag meduug metode upper level set sca statistics, atara lai peubah aca, distribusi gamma, fugsi gamma, fugsi lielihood, da uji rasio lielihood.
Transformasi Fourier Waktu Diskrit
Praktikum Isyarat da Sistm Topik 5 Trasformasi ourir Waktu Diskrit Tuua Mahasiswa dapat mtuka da mgguaka trasformasi ourir waktu diskrit dalam aalisa suatu sistm LTI Mahasiswa dapat mgguaka MATLAB sbagai
Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit
Siyal da Sistem Watu Disrit ET 35 Pegolaha Siyal Watu Disrit EL 5155 Pegolaha Siyal Watu Disrit Effria Yati Hamid 1 2 Siyal da Sistem Watu Disrit 2.1 Siyal Watu Disrit 2.1.1 Pegertia Siyal Watu Disrit
Gambar 3.1Single Channel Multiple Phase
BAB III MODEL ANTRIAN PADA PEMBUATAN SIM C. Sigle Chael Multiple Phase Sistem atria sigle chael multiple phase merupaa sistem atria dimaa pelagga yag tiba, dapat memasui sistem dega megatri di tempat yag
MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE TIGA.
MDIFIKASI METDE NEWTN DENGAN KEKNVERGENAN RDE TIGA Fby Satrya HP ), Agusi ), Musraii ) [email protected] ) Mahasiswa Program Studi S Matmatia ) Dos Matmatia, Jurusa Matmatia Faultas Matmatia da Ilmu Pgtahua
JURNAL TEKNOLOGI TECHNOSCIENTIA ISSN: Vol. 5 No. 1 Agustus 2012
JUNL TKNOLOGI TCHNOSCINTI ISSN: 979-845 Vol. 5 No. gutu PNPN PNMPTN NILI IGN INFINIT SISTM SINGUL P PNYLSIN PSMN POLINOMIL MTIKS NTUK [ ] X + Y U) Kri Suryowati Yudi Styawa Jurua Matmatia Ititut Sai da
Transformasi Laplace 8/3/2013. Analisis Rangkaian Listrik Di Kawasan s. Pengantar. Isi. Transformasi Laplace
Sudarya Sudirham alii agaia iri Di awaa Pgaar ia lah mliha bahwa aalii di awaa far lbih drhaa dibadiga dga aalii di awaa wau ara ida mlibaa ramaa difrial mlaia ramaa-ramaa alabar biaa. a ai aalii rbu rbaa
Transformasi Laplace. Analisis Rangkaian Listrik Di Kawasan s 7/23/2013. Pengantar. Isi
7 Sudaryao Sudirham alii agaia iri Di awaa Pgaar ia lah mliha bahwa aalii di awaa faor lbih drhaa dibadiga dga aalii di awaa wau ara ida mlibaa ramaa difrial mlaia ramaa-ramaa alabar biaa. a ai aalii rbu
Representasi sinyal dalam impuls
Represetasi siyal dalam impuls Represetasi siyal dalam impuls adalah siyal yag diyataa sebagai fugsi dari impuls atau sebagai umpula dari impuls-impuls. Sembarag siyal disret dapat diyataa sebagai pejumlaha
Aplikasi Metode Matrix Cascade Pada Perhitungan Koefisien Pantul Gelombang Suara Bawah Air Untuk Dasar Laut Miring
Apliasi tod atri Cascad Pada Prhituga Kofisi Patul Glombag Suara Bawah Air Utu Dasar aut irig Day Friyadi da Irsa Somatri Brodjogoro Program Studi Ti Klauta, Istitut Tologi Badug (Email : [email protected])
SISTEM PENGOLAHAN ISYARAT. Kuliah 6 Transformasi Fourier Diskret
TKE 43 SISTEM PEGOLAHA ISYARAT Kuliah 6 Tafomai Foui Dik Idah Suilawai, S.T., M.Eg. Pogam Sudi Tkik Elko Fakula Tkik da Ilmu Komu Uivia Mcu Buaa Yogyakaa 9 KULIAH 6 SISTEM PEGOLAHA ISYARAT TRASFORMASI
TEORI ANTRIAN. Elemen Dasar Model Antrian. Distribusi Poisson dan eksponensial. =, t 0, dimana E { t}
Elm Dasar Modl Atria. TEORI ANTRIAN Aktor utama customr da srvr. Elm dasar :. distribusi kdataga customr.. distribusi waktu playaa. 3. disai fasilitas playaa (sri, parall atau jariga). 4. disipli atria
Bab 16 Integral di Ruang-n
Catata Kuliah MA3 Kalulus Elemeter II Oi Neswa,Ph.D., Departeme Matematia-ITB Bab 6 Itegral di uag- Itegral Gada atas persegi pajag Itegral Berulag Itegral Gada atas Daerah sebarag Itegral Gada Koordiat
x x x1 x x,..., 2 x, 1
0.4 Variasi Kaoi amel Da Korelasi Kaoi amel amel aca dari observasi ada masig-masig variabel dari ( + q) variabel (), () daat digabuga edalam (( + q) ) data matris,,..., dimaa (0-5) Adau vetor rata-rata
MODUL E LEARNING SEKSI -9 MATA KULIAH : KALKULUS LANJUT KODE MATA KULIAH : INF 221 : 5099 : DRA ENDANG SUMARTINAH,MA
MODUL E LEARNING SEKSI -9 MATA KULIAH : KALKULUS LANJUT KODE MATA KULIAH : INF DOSEN : 5099 : DRA ENDANG SUMARTINAH,MA TUJUAN MATA KULIAH : A.URAIAN DAN TUJUAN MATA KULIAH : Mahasiswa mmplajari Fugsi a
MOMEN AKUMULASI DARI SUATU ANUITAS AWAL DENGAN TINGKAT BUNGA ACAK
MOMEN KUMULSI DRI SUTU NUITS WL DENGN TINGKT BUNG CK ri Fatmawati *, Johae Kho, ziha Mahaiwa Proram S Matematia Doe JuruaMatematia Faulta Matematia da Ilmu Peetahua lam Uiverita Riau Kampu Bia Widya 89
RANGKUMAN MATERI ALAT OPTIK
RANGKUAN ATERI ALAT OPTIK Priip Huyg Dari uatu umbr cahaya, tiap aat lalu trbtuk muka glmbag / wavrt (tmpat kduduka titik-titik yag aya ama). Titik-titik pada muka glmbag ii brtidak bagai umbr titik (wavlt)
FUNGSI RASIONAL DAN EKSPANSI FRAKSI PARSIAL (EFP)
UNGSI RASIONAL DAN EKSPANSI RAKSI PARSIAL (EP) Ap Namuokhma Juua Tkik Elko Uivia Jdal Achmad Yai Mach EL Siyal da Sim Tuua Blaa : mgahui buk poliomial aau pamaa uku bayak dalam vaiabl mghiug aka-aka poliomial
BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE)
BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) 5.1. Pembagit Radom Variate Disrit Suatu Radom Variate diartia sebagai ilai suatu radom variate yag mempuyai distribusi tertetu. Utu megambil
BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi
BAB III TAKSIRA PROPORSI POPULASI JIKA TERJADI ORESPO Dalam bab ii aa dibaas peasira proporsi populasi jia terjadi orespo da dilaua allba sebaya t ali. Selai itu, juga aa dibaas peetua uura sampel yag
KOMPUTASI DAN DINAMIKA FLUIDA
KOMPUTASI DAN DINAMIKA FLUIDA TUGAS Olh RIRIN SISPIYATI NIM : 006003 Program Studi Matmatia INSTITUT TEKNOLOGI BANDUNG 009 Ercis 40 Ta as initial spctrum a bloc function nonzro for ½. Animat th initial
METODE PENGUKURAN FERTILITAS
Diisi Pua Aa Kotiu Pua aa iataa otiu jia F P apat ugsi sara ( ( iyataa sagai ( ( F u u R ga : R aala ugsi yag tritgrala. Fugsi isut ugsi pata pluag ari. [Gritt a Stirzar 199] Nilai Harapa Diisi Nilai Harapa
BAB 1 HAMPIRAN TAYLOR DAN ANALISIS GALAT
Catata Kuliah EL Aalisis Numrik BAB HAMPIRAN TAYLOR DAN ANALISIS GALAT. Pgatar Mtod Numrik Ktika kita mylsaika prsamaa-prsamaa matmatika di maa torma-tormaya masih dapat ditrapka, solusi aalitik atau solusi
BAB 2 SOLUSI NUMERIK PERSAMAAN
BAB SOLUSI NUMERIK PERSAMAAN Dalam sais da rkayasa, kita srigkali harus mcari akar solusi dari prsamaa f 0. Jika f mrupaka fugsi poliomial liar atau kuadratis, solusi ksakya mudah utuk didapatka kara rumusya
MAKALAH TEOREMA BINOMIAL
MAKALAH TEOREMA BINOMIAL Disusu utu memeuhi tugas mata uliah Matematia Disrit Dose Pegampu : Dr. Isaii Rosyida, S.Si, M.Si Rombel B Kelompo 2 1. Wihdati Martalya (0401516006) 2. Betha Kuria S. (0401516012)
MODUL BARISAN DAN DERET
MODUL BARISAN DAN DERET SEMESTER 2 Muhammad Zaial Abidi Persoal Blog http://meetabied.wordpress.com BAB I. PENDAHULUAN A. Desripsi Dalam modul ii, ada aa mempelajari pola bilaga, barisa, da deret diidetifiasi
TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS
Jural Matematia Vol.6 No. November 6 [ 5 : ] TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS Ooy Rohaei Jurusa Matematia, UNISBA, Jala Tamasari No, Badug,6, Idoesia
InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 1, No.2, September 2012
IfiityJual Ilmiah Pogam Studi Matematia STKIP Siliwagi Badug, Vol, No., Septembe HIMPUNAN KOMPAK PADA RUANG METRIK Oleh : Cee Kustiawa Juusa Pedidia Matematia FPMIPA Uivesitas Pedidia Idoesia [email protected]
Jurnal MIPA 37 (1): (2014) Jurnal MIPA.
Jural MIP 37 (1): 79-91 (014) Jural MIP http://oural.us.ac.id/u/id.php/jm ESENSI NILI DN EKTOR EIGEN DRI SUTU OPERTOR PD RUNG HILBERT KLSIK Wurato Jurusa Matmatia, FMIP, Uivrsitas Ngri Smarag, Idosia Ifo
BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan
BAB LADASA TEORI Teorema Shao-yquist meyataa agar tida ada iformasi yag hilag etia pecuplia siyal, maa ecepata pecuplia harus miimal dua ali dari lebar pita siyal tersebut. Pada ebayaa apliasi, termasu
SIFAT SIFAT TRANSFORMASI LINEAR DARI R KE R
SIF SIF RNSFORMSI LINER m DRI R KE R Diuu utuk memeuhi uga Mata Kuliah ljabar Liear Doe Pegampu : Dr. Suroo, M. Pd Diuu oleh : Kelompok. ge Chritie rii ( 84.55 ). dik Setyo Nugroho ( 84.65 ). Beti Lutvi
Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka
oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu
BAB I PENDAHULUAN. A. Latar Belakang Masalah
BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur
BAB 6 NOTASI SIGMA, BARISAN DAN DERET
BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat
Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka
oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu
4.3 Sampling dari distribusi normal dan estimasi likelihood maksimum
Hardwiyao Uomo 060545 4.3 Samlig dari disribusi ormal da simasi liklihood maksimum Liklihood ormal mulivaria Kia asumsika vkor,,..., dga mrrsasika saml acak dari oulasi ormal mulivaria dga raa-raa µ da
MACAM-MACAM TEKNIK MEMBILANG
0 MACAM-MACAM TEKNIK MEMBILANG ATURAN PERKALIAN Beriut ii diberia sebuah dalil tetag peetua baya susua yag palig sederhaa dalam suatu permasalaha yag beraita dega peluag. Dalil 2.1: ATURAN PERKALIAN SECARA
BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain.
BARIAN DAN DERET A. Barisa Barisa adalah uruta bilaga yag memilii atura tertetu. etiap bilaga pada barisa disebut suu barisa yag dipisaha dega lambag, (oma). Betu umum barisa:,, 3, 4,, dega: = suu pertama
Inflasi dan Indeks Harga I
PERTEMUAN 1 Iflasi da Ideks Harga I 1 1 TEORI RINGKAS A Pegertia Agka Ideks Agka ideks merupaka suatu kosep yag dapat memberika gambara tetag perubaha-perubaha variabel dari suatu priode ke periode berikutya
FUNCTIONALLY SMALL RIEMANN SUMS (FSRS) DAN ESSENTIALLY SMALL RIEMANN SUMS (ESRS) FUNGSI TERINTEGRAL HENSTOCKn. p )
βeta -ISSN: 85-5893 e-issn: 54-458 Vol. 3 No. (Noember), Hal. 79-89 βeta DOI: htt://dx.doi.org/.44/betajtm.v9i.7 FUNCTIONALLY SMALL RIMANN SUMS (FSRS) DAN SSNTIALLY SMALL RIMANN SUMS (SRS) FUNGSI TRINTGRAL
Sifat-sifat Fungsi Karakteristik dari Sebaran Geometrik
Sifat-sifat Fugsi Karateristi dari Sebara Geometri Dodi Deviato Jurusa Matematia, Faultas MIPA, Uiversitas Adalas Kamus Limau Mais, Padag 563, Sumatera Barat, Idoesia Abstra Fugsi arateristi dari suatu
Distribusi Sampel, Likelihood dan Penaksir
BAB 1 Distribusi Sampel, Likelihood da Peaksir 1.1 Sampel Acak Misalka X 1, X 2,..., X sampel acak berukura (radom sample of size ). Fugsi peluag -variat ya adalah f X1,X 2,,X (x 1, x 2,..., x ) = f Xi
Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif
Megaji Perbedaa Diagoalisasi Matris Atas Field da Matris Atas Rig Komutatif Teorema : Jia A adalah matris x maa eryataa eryataa beriut eivale satu sama lai : a A daat didiagoalisasi b A memuyai vetor eige
1) Leptokurtik Merupakan distribusi yang memiliki puncak relatif tinggi
Statisti Desriptif Keruciga atau Kurtosis Pegertia Kurtosis Peguura urtosis (peruciga) sebuah distribusi teoritis adaalaya diamaam peguura eses (excess) dari sebuah distribusi Sebearya urtosis bisa diaggap
INTEGRAL FOURIER. DISUSUN OLEH : Kelompok III (Tiga)
INTEGRA FOURIER DISUSUN OEH : Klompok III (Tiga). Maruah (7 6). Yusi Oktavia (7 45 ) 3. Widya Elvi AS (7 45) 4. Azar Saarudi (7 454) 5. Irmaati (7 455) Mata Kuliah Dos Pgasuh Klas : Matmatika ajuta : Fadli,
ANALISIS FREKUENSI SINYAL DAN SISTEM
AALISIS FREKUESI SIYAL DA SISTEM AALISIS FREKUESI SIYAL DA SISTEM Alisis Siyl dlm Sptrum Frusi Alisis frusi siyl wtu otiu Alisis frusi siyl wtu disrit Sift-sift trsformsi Fourir Domi frusi sistm LTI Sistm
MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng
MODUL 1.03 DINMIK PROSES Ole : Ir. Tatag Kusmara, M.Eg LBORTORIUM OPERSI TEKNIK KIMI JURUSN TEKNIK KIMI UNIVERSITS SULTN GENG TIRTYS CILEGON BNTEN 2008 2 Modul 1.03 DINMIK PROSES I. Pedaulua Dalam bidag
Institut Teknologi Sepuluh Nopember Surabaya. Karakteristik Sistem Orde Tinggi
Iiu Teologi Sepuluh Nopember Surabaya Karaerii Siem Orde Tiggi Maeri Cooh Soal Rigaa Laiha Aeme Maeri Cooh Soal Siem Orde Tiga Siem Orde Tiggi Rigaa Laiha Aeme Maeri Cooh Soal Rigaa Laiha Aeme Pada bagia
Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes
eluag uatu Kejadia, Kaidah ejumlaha, eluag ersyarat, Kaidah eralia da Kaidah aiyes.eluag uatu Kejadia Defiisi : eluag suatu ejadia adalah jumlah peluag semua titi otoh dalam. Dega demiia : 0 (), ( ) =
MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK. Masalah 1 Terdapat berapa carakah kita dapat memilih 2 baju dari 20 baju yang tersedia?
Kartia Yuliati, SPd, MSi MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK Masalah Terdapat berapa caraah ita dapat memilih baju dari 0 baju yag tersedia? Cara Misala baju diberi omor dari sampai
TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B.
TUGAS ANALISIS REAL LANJUT NOVEMBER 207 () (a) Jika b > 0, B > 0, da a b < A, buktika ab < ba. Kemudia buktika B a b < a + A b + B < A B. (b) Buktika [ 2 (a + b)] 2 2 (a2 + b 2 ). Kemudia tujukka bahwa
EFEKTIVITAS PEMBELAJARAN MATEMATIKA DENGAN MODEL QUANTUM TEACHING (QT) DITINJAU DARI KREATIVITAS BELAJAR SISWA KELAS VIII SMP N 2 TURI
EFEKTIVITAS PEMBELAJARAN MATEMATIKA DENGAN MODEL QUANTUM TEACING (QT) DITINJAU DARI KREATIVITAS BELAJAR SISWA KELAS VIII SMP N TURI Moita Dwiyai ), Ni Wahyu Utami ) Faultas Kgurua da Ilmu Pdidia Uivrsitas
SISTEM LINIER. Oleh : Kholistianingsih, S.T., M.Eng. lts 1
SISTEM LINIER Oleh : Kholistiaigsih, S.T., M.Eg. lts 1 2 Isyarat Waktu Diskrit di kawasa waktu. 2.1 Represetasi Isyarat Waktu Diskrit 2.2 Klasifikasi Rutu 2.3 Rutu rutu Dasar 2.4 Operasi di kawasa waktu
MENGUJI KEMAKNAAN SAMPEL TUNGGAL
MENGUJI KEMAKNAAN SAMPEL TUNGGAL 1.1 Uji Biomial 1. Uji esesuaia Chi Kuadrat 1.3 Uji Kesesuaia K-S 1.4 Uji Ideedesi Chi Kuadrat 1.5 Uji Pasti Fisher UJI BINOMIAL Meruaa uji roorsi dalam suatu oulasi Poulasi
Pendugaan Parameter 1
Topik Bahaa: Pedugaa Parameter 1 (Selag Pedugaa, Pedugaa Selag 1 Rata-Rata) Pertemua ke II 1 Ilutrai Statitika Ifereia : Mecakup emua metode yag diguaka utuk pearika keimpula atau geeraliai megeai populai
Mata Kuliah: Statistik Inferensial
STATISTIK INFERENSIAL Prof. Dr. H. Almadi Syahza, SE., MP Email: [email protected] PROGRAM STUDI PENDIDIKAN EKONOMI FKIP UNIVERSITAS RIAU DISTRIBUSI SAMPLING 2 Bagia I Statitik Iduktif Metode da Ditribui
Perluasan Uji Kruskal Wallis untuk Data Multivariat
Statistia, Vol. No., Mei Perluasa Uji Krusal Wallis utu Data Multivariat TETI SOFIA YANTI Program Studi Statistia, Uiversitas Islam Badug, Jl. Purawarma No. Badug. E-mail: [email protected] ABSTAK Adaia
MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM
MATEMATIKA BISNIS OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM BAB BARISAN DAN DERET A. BARISAN Barisa bilaga adalah susua bilaga yag diurutka meurut atura tertetu.betuk umum barisa bilaga a,
Uji apakah ada perbedaan signifikan antara mean masing-masing laboratorium. Gunakan α=0.05.
MA 8 STATISTIKA DASAR SEMESTER I /3 KK STATISTIKA, FMIPA ITB UJIAN AKHIR SEMESTER (UAS) Sei, Desember, 9.3.3 WIB ( MENIT) Kelas. Pegajar: Utriwei Mukhaiyar, Kelas. Pegajar: Sumato Wiotoharjo Jawablah pertayaa
ESTIMASI. Jika parameter populasi disimbolkan dengan θ maka θ yang tidak diketahui harganya ditaksir oleh harga
ESTIMASI Salah atu aek utuk mearik keimula megeai uatu oulai dega memakai amel yag diambil dari oulai terebut megguaka etimai (eakira) Jika arameter oulai diimbolka dega θ maka θ yag tidak diketahui hargaya
ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto
Tue 0/04/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato Estimasi : salah satu cara megemukaka peryataa iduktif (meyataka karakteristik populasi dega meggu aka karakteristik yag didapat dari cuplika).
BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang
BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya
BAB IV DESKRIPSI ANALISIS DATA
BAB IV DESKRIPSI ANALISIS DATA A. Dekripi Data Peelitia ii megguaka peelitia ekperime, ubyek peelitiaya dibedaka mejadi dua kela, yaitu kela kotrol da kela ekperime. Kela kotrol pada peelitia ii merupaka
BAHAN AJAR DIKLAT GURU MATEMATIKA
BAHAN AJAR DIKLAT GURU MATEMATIKA DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN 005 DAFTAR ISI Kata Pegatar.. i Daftar Isi...
MENENTUKAN INVERS DRAZIN DARI MATRIKS SINGULAR. Lisnilwati Khasanah 1 dan Bambang Irawanto 2. Jl.Prof.Soedarto, S.H Semarang 50275
ENENTUKN INVERS RZIN RI TRIKS SINGULR Lisilwati Khasaah da Babag Irawato Progra Studi ateatia FIP UNIP lprofsoedarto SH Searag 7 bstract sigular atri with size has a iverse be called razi iverse ad deoted
ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika
Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu
METODE NEWTON-STEFFENSEN DENGAN ORDE KEKONVERGENAN TIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR
METDE NEWTN-STEFFENSEN DENGN RDE KEKNVERGENN TIG UNTUK MENYELESIKN PERSMN NNLINER Fitiai, Joha Kho, Supiadi Puta Mahaiwa Pogam Studi S Matmatika FMIP Uivita Riau Do JuuaMatmatika FMIP Uivita Riau Fakulta
Aproksimasi Terbaik dalam Ruang Metrik Konveks
Aprosimasi Terbai dalam Ruag etri Koves Oleh : Suharsoo S Jurusa atematia FIPA Uiversitas Lampug Abstra asalah esistesi da etuggala aprosimasi terbai suatu titi dalam ruag berorm telah dipelajari oleh
Konvolusi pada Distribusi dengan Support Kompak
Prosidig SI MaNIs (Semiar Nasioal Itegrasi Matematia da Nilai Islami) Vol1, No1, Juli 2017, Hal 453-457 p-issn: 2580-4596; e-issn: 2580-460X Halama 453 Kovolusi pada Distribusi dega Support Kompa Cythia
TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE
Teorema Keovergea Fugsi Teritegral Hestoc(Aiswita) TORMA KKONVRGNAN FUNGSI TRINTGRAL HNSTOCK- KURZWIL SRNTAK DAN FUNGSI BRSIFAT LOCALLY SMALL RIMANN SUMS (LSRS) DARI RUANG UCLID K RUANG BARISAN Aiswita,
STATISTIKA SMA (Bag.1)
SMA - STATISTIKA SMA (Bag. A. DATA TUNGGAL. Ukura Pemusata : Terdapat ilai statistika yag dapat dimiliki oleh sekumpula data yag diperoleh yaitu : a. Rata-rata Rata-rata jumlah seluruh data bayakya data
Sistem Bilangan Kompleks (Bagian Ketiga)
Sistem Bilaga Kompleks (Bagia Ketiga) Supama Jurusa Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:[email protected], [email protected] (Pertemua Miggu III) Outlie 1 Akar Bilaga Kompleks 2 Akar
B a b 1 I s y a r a t
34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat
LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang
2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua
Elemen Dasar Model Antrian. Aktor utama customer dan server. Elemen dasar : 1.distribusi kedatangan customer. 2.distribusi waktu pelayanan. 3.
Eleme Dasar Model Atria. Aktor utama customer da server. Eleme dasar :.distribusi kedataga customer. 2.distribusi waktu pelayaa. 3.disai fasilitas pelayaa (seri, paralel atau jariga). 4.disipli atria (pertama
I. DERET TAKHINGGA, DERET PANGKAT
I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da
BAB III METODE PENELITIAN. dengan kemampuan berpikir kreatif dengan menggunakan dua model
3 BAB III METODE PENELITIAN A. Jei Peelitia Tujua peelitia ii yaki membadigka kemampua berpikir kriti dega kemampua berpikir kreatif dega megguaka dua model pembelajara yaitu model pembelajara berbai maalah
BAB 2. Teori Pendukung Lingkungan. Misalkan z. adalah suatu titik pada bidang dan r adalah bilangan nyata. positif. Lingkungan r bagi z
BAB Toi Pdukug.. Ligkuga Misalka z adalah suatu titik pada bidag da adalah bilaga yata positi. Ligkuga bagi z -ighbohood o z didiisika sbagai sluuh titik z pada bidag, sdmikia shigga z z < ; ditulis z,.
PERBANDINGAN ANTARA TAPIS KALMAN DAN TAPIS EKSPONENSIAL PADA SENSOR ACCELEROMETER DAN SENSOR GYROSCOPE
Sminar Naional nologi Informai & Komuniai rapan 20 (Smanti 20) ISBN 979-26-0255-0 PERBANDINGAN ANARA APIS KALMAN DAN APIS EKSPONENSIAL PADA SENSOR ACCELEROMEER DAN SENSOR GYROSCOPE Wahudi dan Wahu Widada
Pengujian Hipotesis untuk selisih dua nilai tengah populasi
Pegujia Hipotei utuk eliih dua ilai tegah populai Hipotei Hipotei atu arah: H 0 : - 0 v H : - < 0 H 0 : - 0 v H : - > 0 Hipotei dua arah: H 0 : - = 0 v H : - 0 Statitik uji z h ( ( ) ) 0 Formula klik diketahui
3. Integral (3) (Integral Tentu)
Darublic www.darublic.com. Itegral () (Itegral Tetu).. Luas Sebagai Suatu Itegral. Itegral Tetu Itegral tetu meruaa itegral ag batas-batas itegrasia jelas. Kose dasar dari itegral tertetu adalah luas bidag
JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN
JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat
I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983)
I PENDAHULUAN Latar Belaag Permasalaha ebiaa pemaea ia yag memberia eutuga masimum da berelauta (tida teradi epuaha dari populasi ia yag dipae) adalah hal yag sagat petig bagi idustri periaa Para ilmuwa
Barisan Dan Deret Arimatika
Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta
Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:
BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif
Distribution of the Difference of Two Independent Poisson Random Variables and Its Application to the Literate Population Data
Esata: Jural Imu-Ilmu MIA p. ISSN: 4-47. ISSN: 5-64 Distributio of th Diffrc of Two Idpdt oisso Radom Variabls ad Its Applicatio to th Litrat opulatio Data Atia Ahdia rogram Studi Statistia Uivrsitas Islam
