Kuliah 9 Filter Digital

Ukuran: px
Mulai penontonan dengan halaman:

Download "Kuliah 9 Filter Digital"

Transkripsi

1 TEKNIK PENGOLAHAN ISYARAT DIGITAL Kuliah 9 Filter Digital Idah Susilawati, S.T.,.Eg. Progra Studi Tei Eletro Progra Studi Tei Iforatia Faultas Tei da Ilu Koputer Uiversitas ercu Buaa Yogaarta 9

2 Kuliah 9 Tei Pegolaha Isarat Digital Tei Eletro UBY FILTER DIGITAL Filter erupaa aa uu ag egacu pada siste LTI utu elaua selesi freuesi. Dega deiia siste LTI watu-disret juga diseut filter digital. Ada dua jeis filter digital:. Filter FIR Fiite-duratio Ipulse Respose Taggapa Ipulse Durasierhigga Yaitu jia taggapa ipuls dari siste LTI epuai durasi ag erhigga. Dega deiia utu filter FIR aa h[] utu < da utu >. Filter FIR juga serig diseut filter o-reursif atau ovig average A filter.. Filter IIR Ifiite-duratio Ipulse Respose Taggapa Ipulse Durasi-taerhigga Yaitu jia taggapa ipuls dari siste LTI epuai durasi ag ta erhigga. Filter IIR juga serig diseut filter-reursif atau autoregresif AR filter. atla epuai fugsi utu ipleetasi filter FIR da IIR aitu filter. Tiga Elee Dasar Oleh area filter ag aa diahas adalah siste LTI, aa diperlua tiga elee dasar utu eggaara strutur filter digital, seperti ag diperlihata pada gaar-gaar eriut.. Adder Pejulah Elee ii epuai dua iput da satu output. Pejulaha tiga atau leih isarat dapat dilaua dua pejulah adder secara erturuta. Elee pejulah digaara s:

3 . ultiplier Gai atau Pegali Pegali erupaa elee dega satu iput da satu output. Peralia dega iasaa tida ditulisa secara esplisit. Elee pegali dega gai a digaara s:. Elee Tuda Dela Eleet Elee ii aa euda isarat ag elaluia seaa satu sapel. Biasaa diipleetasia egguaa register geser. Elee tuda dega digaara s: Strutur Filter IIR Fugsi siste filter IIR diataa s: N N N a a a A B H Dega da a adalah oefisie filter, da a.orde filter IIR adalah saa dega N jia a N. Persaaa diferesial persaaa eda utu filter IIR dapat diataa s: N a Terdapat eerapa cara ipleetasi filter IIR pada persaaa, aitu cara atau etu lagsug, etu asade, da etu paralel. Dega cara lagsug, persaaa eda pada persaaa diipleetasia egguala elee-elee tuda, pegali,

4 da elee pejulah. isala ahwa N 4, aa persaaa eda dapat diuraia s: 4 4 a a a a 4 4 Da dapat diipleetasia egguaa elee-elee dasar pegali, pejulah, da elee tuda seperti digaara pada gaar eriut. direct for I structure Tapa ahwa terdapat dua garis tuda ag erdeata satu saa lai da dihuuga oleh pegali dega gai. Dega deiia satu garis tuda dapat dihilaga da peghilaga ii egaraha pada strutur aois ag diseut strutur etu lagsug II direct for II structure. direct for II structure

5 Cotoh Filter IIR diataa dega fugsi s: H Gaara strutur etu lagsug I da II. Peelesaia H -. -, -, Direct for I structure -, -, -, Direct for II structure 4

6 Strutur Filter FIR Fugsi siste filter FIR diataa s: H... 4 Sehigga taggapa ipuls h adalah utu h utu ag lai Da persaaa diferesiala ejadi: ag erupaa ovolusi liier erhigga. Orde filter FIR adalah sedaga pajag filter adalah aitu saa dega julah oefisie ag ada. Strutur filter FIR selalu ersifat stail da relatif sederhaa jia diadiga dega strutur IIR. Leih jauh, filter FIR dapat diracag supaa epuai taggapa fase liier ag sagat erafaat dala eerapa apliasi tertetu. Terdapat eerapa strutur filter FIR, aitu:. Betu lagsug,. Betu asade,. Betu fase liier, da 4. Betu saplig freuesi. Dala peahasa ii haa aa dijelasa etu ag pertaa. isala pajag filter aitu filter FIR orde 4, aa persaaa 6 ejadi da strutur etu lagsuga diilustrasia pada gaar eriut.

7 Tapa ahwa persaaa 7 diipleetasia seagai garis tuda sadapa tapped dela lies area tida terdapat jalur upa ali atau feed ac. Cotoh Filter FIR diataa dega persaaa diferesial s: Tetua diagra lo strutur etu lagsug-a. Peelesaia Atau,,6,,, 4, 6, 7, 8,6 9., 6,,6 7,, 8,, 9,6 4,, Ada dapat ecoa eggaara diagra lo strutur etu lagsug-a sediri. 6

8 Soal H Gaara strutur etu lagsug I da II. 7

KULIAH 9 FILTER DIGITAL

KULIAH 9 FILTER DIGITAL KULIAH 9 FILTER DIGITAL TEKNIK PENGOLAHAN ISYARAT DIGITAL Kuliah 9 Filter Digital Indah Susilawati, S.T., M.Eng. Program Studi Teknik Elektro Program Studi Teknik Informatika Fakultas Teknik dan Ilmu

Lebih terperinci

Representasi sinyal dalam impuls

Representasi sinyal dalam impuls Represetasi siyal dalam impuls Represetasi siyal dalam impuls adalah siyal yag diyataa sebagai fugsi dari impuls atau sebagai umpula dari impuls-impuls. Sembarag siyal disret dapat diyataa sebagai pejumlaha

Lebih terperinci

BAB II LANDASAN TEORI. persamaan yang mengandung diferensial. Persamaan diferensial

BAB II LANDASAN TEORI. persamaan yang mengandung diferensial. Persamaan diferensial 5 BAB II LANDASAN TEORI A. Persamaa Diferesial Dari ata persamaa da diferesial, dapat diliat bawa Persamaa Diferesial beraita dega peelesaia suatu betu persamaa ag megadug diferesial. Persamaa diferesial

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET KELAS XII. IPS SEMESTER I Oleh : Drs. Pudjul Prijoo ( http://vidyagata.wordpress.co ) SMA NEGERI 6 Jala Mayje Sugoo 58 Malag Telp./Fax : (034) 75036 E-Mail : [email protected]

Lebih terperinci

Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit

Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit Siyal da Sistem Watu Disrit ET 35 Pegolaha Siyal Watu Disrit EL 5155 Pegolaha Siyal Watu Disrit Effria Yati Hamid 1 2 Siyal da Sistem Watu Disrit 2.1 Siyal Watu Disrit 2.1.1 Pegertia Siyal Watu Disrit

Lebih terperinci

MAKALAH KONTROL H 2 DAN KONTROL H SERTA APLIKASINYA DALAM SISTEM MASSA PEGAS KARTIKA YULIANTI ( ) RIRIN SISPIYATI ( )

MAKALAH KONTROL H 2 DAN KONTROL H SERTA APLIKASINYA DALAM SISTEM MASSA PEGAS KARTIKA YULIANTI ( ) RIRIN SISPIYATI ( ) MKLH KONTOL H N KONTOL H SET PLKSN LM SSTEM MSS PEGS KTK ULNT 6 N SSPT 63 POGM STU MTEMTK NSTTUT TEKNOLOG NUNG 7 PENHULUN. Latar elaag Masalah Efisiesi da efetivitas suatu siste yag diais selalu ejadi

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

RUANG BARISAN MUSIELAK-ORLICZ. Oleh: Encum Sumiaty dan Yedi Kurniadi

RUANG BARISAN MUSIELAK-ORLICZ. Oleh: Encum Sumiaty dan Yedi Kurniadi RUANG BARISAN USIELAK-ORLICZ Oleh: Ecu Suiat da Yedi Kuriadi Disapaia pada Seiar Nasioal ateatia ada taggal 8 Deseber 2008, di Jurusa edidia ateatia FIA UI JURUSAN ENDIDIKAN ATEATIKA FAKULTAS ENDIDIKAN

Lebih terperinci

Penggunaan Transformasi z

Penggunaan Transformasi z Pegguaa Trasformasi pada Aalisa Respo Freuesi Sistem FIR Oleh: Tri Budi Satoso E-mail:[email protected] Lab Siyal,, EEPIS-ITS ITS /3/6 osep pemiira domais of represetatio Domai- discrete time:

Lebih terperinci

MACAM-MACAM TEKNIK MEMBILANG

MACAM-MACAM TEKNIK MEMBILANG 0 MACAM-MACAM TEKNIK MEMBILANG ATURAN PERKALIAN Beriut ii diberia sebuah dalil tetag peetua baya susua yag palig sederhaa dalam suatu permasalaha yag beraita dega peluag. Dalil 2.1: ATURAN PERKALIAN SECARA

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

Bab 6: Analisa Spektrum

Bab 6: Analisa Spektrum BAB Aalisa Spetrum Bab : Aalisa Spetrum Aalisa Spetrum Dega DFT Tujua Belajar Peserta dapat meghubuga DFT dega spetrum dari sial hasil samplig sial watu otiue. -poit DFT dari sial x adalah Xω ag diealuasi

Lebih terperinci

TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS

TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS Jural Matematia Vol.6 No. November 6 [ 5 : ] TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS Ooy Rohaei Jurusa Matematia, UNISBA, Jala Tamasari No, Badug,6, Idoesia

Lebih terperinci

RUANG BANACH PADA RUANG BARISAN, DAN

RUANG BANACH PADA RUANG BARISAN, DAN RUANG BANACH PADA RUANG BARISAN, DAN Wahidah Alwi* * Dose ada Jurusa Mateatia Faultas Sais da Teologi UIN Alauddi Maassar e-ail: [email protected] Abstract: The ai object of the vectors are the vectors

Lebih terperinci

Sifat-sifat Fungsi Karakteristik dari Sebaran Geometrik

Sifat-sifat Fungsi Karakteristik dari Sebaran Geometrik Sifat-sifat Fugsi Karateristi dari Sebara Geometri Dodi Deviato Jurusa Matematia, Faultas MIPA, Uiversitas Adalas Kamus Limau Mais, Padag 563, Sumatera Barat, Idoesia Abstra Fugsi arateristi dari suatu

Lebih terperinci

Analisis regresi linear ganda bertujuan untuk mencari bentuk hubungan linear antara satu variabel terikat Y dan k variabel bebas X1, X2, X3,..., Xk.

Analisis regresi linear ganda bertujuan untuk mencari bentuk hubungan linear antara satu variabel terikat Y dan k variabel bebas X1, X2, X3,..., Xk. EGESI DAN KOELASI LINEA GANDA Aalisis egesi liea gada etujua utu mecai etu huuga liea ataa satu vaiael teiat da vaiael eas,, 3,...,. Meetua pesamaa egesi liea gada Pesamaa egesi pada da adalah Dega metode

Lebih terperinci

DISTRIBUSI BINOMIAL. (sukses sebanyak x kali, gagal sebanyak n x kali)

DISTRIBUSI BINOMIAL. (sukses sebanyak x kali, gagal sebanyak n x kali) DISTRIBUSI BINOMIAL Distribusi bioial berasal dari percobaa bioial yaitu suatu proses Beroulli yag diulag sebayak kali da salig bebas. Distribusi Bioial erupaka distribusi peubah acak diskrit. Secara lagsug,

Lebih terperinci

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan BAB LADASA TEORI Teorema Shao-yquist meyataa agar tida ada iformasi yag hilag etia pecuplia siyal, maa ecepata pecuplia harus miimal dua ali dari lebar pita siyal tersebut. Pada ebayaa apliasi, termasu

Lebih terperinci

III Sistem LTI Waktu Diskrit Sistem LTI Operasi Konvolusi Watak sistem LTI Stabilitas sistem LTI Kausalitas sistem LTI

III Sistem LTI Waktu Diskrit Sistem LTI Operasi Konvolusi Watak sistem LTI Stabilitas sistem LTI Kausalitas sistem LTI III Sistem LTI Waktu Diskrit Sistem LTI Operasi Kovolusi Watak sistem LTI Stabilitas sistem LTI Kausalitas sistem LTI lts 1 III.1 Sistem LTI Sistem LTI Liear Time Ivariat Liear Tak-ubah-Waktu Liear Shift

Lebih terperinci

TINJAUAN PUSTAKA Statistical Proses Control Control Chart

TINJAUAN PUSTAKA Statistical Proses Control Control Chart TINJAUAN PUTAKA tatistical Proses Cotrol tatistical Proses Cotrol adalah salah satu cabag ilu statistia yag eelajari tetag eeraa tei statistia utu eguur da egaalisis variasi yag terjadi selaa roses rodusi

Lebih terperinci

Aplikasi Interpolasi Bilinier pada Pengolahan Citra Digital

Aplikasi Interpolasi Bilinier pada Pengolahan Citra Digital Aplikasi Iterpolasi Biliier pada Pegolaha Citra Digital Veriskt Mega Jaa - 35408 Program Studi Iformatika Sekolah Tekik Elektro da Iformatika Istitut Tekologi Badug, Jl. Gaesha 0 Badug 403, Idoesia [email protected]

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET SEMESTER 2 Muhammad Zaial Abidi Persoal Blog http://meetabied.wordpress.com BAB I. PENDAHULUAN A. Desripsi Dalam modul ii, ada aa mempelajari pola bilaga, barisa, da deret diidetifiasi

Lebih terperinci

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain.

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain. BARIAN DAN DERET A. Barisa Barisa adalah uruta bilaga yag memilii atura tertetu. etiap bilaga pada barisa disebut suu barisa yag dipisaha dega lambag, (oma). Betu umum barisa:,, 3, 4,, dega: = suu pertama

Lebih terperinci

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE)

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) 5.1. Pembagit Radom Variate Disrit Suatu Radom Variate diartia sebagai ilai suatu radom variate yag mempuyai distribusi tertetu. Utu megambil

Lebih terperinci

MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK. Masalah 1 Terdapat berapa carakah kita dapat memilih 2 baju dari 20 baju yang tersedia?

MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK. Masalah 1 Terdapat berapa carakah kita dapat memilih 2 baju dari 20 baju yang tersedia? Kartia Yuliati, SPd, MSi MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK Masalah Terdapat berapa caraah ita dapat memilih baju dari 0 baju yag tersedia? Cara Misala baju diberi omor dari sampai

Lebih terperinci

MENENTUKAN INVERS DRAZIN DARI MATRIKS SINGULAR. Lisnilwati Khasanah 1 dan Bambang Irawanto 2. Jl.Prof.Soedarto, S.H Semarang 50275

MENENTUKAN INVERS DRAZIN DARI MATRIKS SINGULAR. Lisnilwati Khasanah 1 dan Bambang Irawanto 2. Jl.Prof.Soedarto, S.H Semarang 50275 ENENTUKN INVERS RZIN RI TRIKS SINGULR Lisilwati Khasaah da Babag Irawato Progra Studi ateatia FIP UNIP lprofsoedarto SH Searag 7 bstract sigular atri with size has a iverse be called razi iverse ad deoted

Lebih terperinci

TEORI KONTROL ROBUST

TEORI KONTROL ROBUST TEORI KONTROL ROBUST TUGAS Oleh RIRIN SISPIYATI NIM : 6 Progra Studi Mateatia INSTITUT TEKNOLOGI BANDUNG 9 SISTEM MASSA PEGAS. Perasalahan Suatu siste assa pegas dengan redaan didesripsian seperti pada

Lebih terperinci

1) Leptokurtik Merupakan distribusi yang memiliki puncak relatif tinggi

1) Leptokurtik Merupakan distribusi yang memiliki puncak relatif tinggi Statisti Desriptif Keruciga atau Kurtosis Pegertia Kurtosis Peguura urtosis (peruciga) sebuah distribusi teoritis adaalaya diamaam peguura eses (excess) dari sebuah distribusi Sebearya urtosis bisa diaggap

Lebih terperinci

Gambar 3.1Single Channel Multiple Phase

Gambar 3.1Single Channel Multiple Phase BAB III MODEL ANTRIAN PADA PEMBUATAN SIM C. Sigle Chael Multiple Phase Sistem atria sigle chael multiple phase merupaa sistem atria dimaa pelagga yag tiba, dapat memasui sistem dega megatri di tempat yag

Lebih terperinci

BAB 4: PELUANG DAN DISTRIBUSI NORMAL.

BAB 4: PELUANG DAN DISTRIBUSI NORMAL. BAB 4: PELUANG DAN DISTRIBUSI NORMAL. PELUANG Peluag atau yag biasa juga disebut dega istilah keugkia, probablilitas, atau kas eujukka suatu tigkat keugkia terjadiya suatu kejadia yag diyataka dala betuk

Lebih terperinci

BAB 3 Interpolasi. 1. Beda Hingga

BAB 3 Interpolasi. 1. Beda Hingga BAB Iterpolas. Hgga. Iterpolas Lear da Kuadrat. Iterpolas -Maju da -Mudur Newto 4. Polo Iterpolas Terbag Newto 5. Polo Iterpolas Lagrage . Hgga Msala dbera suatu tabel la-la uers j j dar suatu ugs pada

Lebih terperinci

Volume 1, Nomor 2, Desember 2007

Volume 1, Nomor 2, Desember 2007 Volue, Noor, Deseber 7 Bareeg, Deseber 7 al4-7 Vol No DIAGONAISASI MATRIKS UNTUK MENYEESAIKAN MODE MANGSA-EMANGSA EVINUS R ERSUESSY Jurusa Mateatia FMIA UNATTI Abo ABSTRACT Diagoalizatio of a square atrix

Lebih terperinci

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng MODUL 1.03 DINMIK PROSES Ole : Ir. Tatag Kusmara, M.Eg LBORTORIUM OPERSI TEKNIK KIMI JURUSN TEKNIK KIMI UNIVERSITS SULTN GENG TIRTYS CILEGON BNTEN 2008 2 Modul 1.03 DINMIK PROSES I. Pedaulua Dalam bidag

Lebih terperinci

PROBLEM ELIMINASI CUT PADA LOGIKA LBB I nk

PROBLEM ELIMINASI CUT PADA LOGIKA LBB I nk Jural Mateatia, Vol. 10 No. 3, Deseber 007, ISSN 1410-8518 PROBLEM ELIMINASI CUT PADA LOGIKA LBB I Bayu Surarso Jurusa Mateetia FMIPA UNDIP Jl. Prof. H. Soedarto, SH Tebalag Searag 5075 Abstract. I the

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

MAKALAH GEOMETRI TRANSFORMASI MEMBAHAS TENTANG GESERAN (TRANSLASI) Kelompok VI (Enam)

MAKALAH GEOMETRI TRANSFORMASI MEMBAHAS TENTANG GESERAN (TRANSLASI) Kelompok VI (Enam) KLH EOETRI TRNSFORSI EHS TENTN ESERN (TRNSLSI) ENN ERSONIL : Kelopo VI (Ea) YEN RVH N : ( ) FIRN N : ( ) 3 I JEN N : ( ) 4 RIK RIYNI N : ( ) 5 SE RIZON N : ( ) 6 TRI HELENZ N : ( ) SEKOLH TINI KEURUN N

Lebih terperinci

τ = r x F KESETIMBANGAN

τ = r x F KESETIMBANGAN KESETIMBG Moe Gaa ( τ ) Moe gaa atau torsi adalah besara ag dapat eebabka beda berotasi atau berputar. Besar oe gaa didefiisika sebagai hasil kali atara gaa ag bekerja dega lega. Moe gaa terasuk dala besara

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5 Mata Kuliah : Matematia Disrit Program Studi : Tei Iformatia Miggu e : 5 KOMBINATORIAL PENDAHULUAN Persoala ombiatori bua merupaa persoala baru dalam ehidupa yata. Baya persoala ombiatori sederhaa telah

Lebih terperinci

(The Method of Separation of Variables). Metode ini dapat digunakan pada PDP linier, khususnya PDP dengan koefisien konstan.

(The Method of Separation of Variables). Metode ini dapat digunakan pada PDP linier, khususnya PDP dengan koefisien konstan. METODE PEMISAHAN PEUBAH (The Method of Separatio of Variales) Metode ii dapat diguaka pada PDP liier, khususya PDP dega koefisie kosta Tujua Istruksioal : Setelah megikuti perkuliaha mahasiswa dapat: 1

Lebih terperinci

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS Bab 5 Siyal da Sistem Watu Disrit Oleh: Tri Budi Satoso Laboratorium Siyal, EEPIS-ITS Materi: Represetasi matemati pada siyal watu disrit, domai watu da freuesi pada suatu siyal watu disrit, trasformasi

Lebih terperinci

4/19/2016. Regresi Linier Berganda. Regresi Berganda. Model Regresi Berganda. Model Regresi Berganda. Asumsi Regresi Berganda. Model Regresi Berganda

4/19/2016. Regresi Linier Berganda. Regresi Berganda. Model Regresi Berganda. Model Regresi Berganda. Asumsi Regresi Berganda. Model Regresi Berganda 4/9/06 Regresi Liier Bergada Program Studi Tekik Idustri Uiversitas Brawijaa Ihwa Hamdala, ST., MT SI - Regresi & Korelasi Bergada Regresi Bergada Cotoh SI - Regresi & Korelasi Bergada Meguji huuga liier

Lebih terperinci

Penerapan Teorema Perron-Frobenius pada Penentuan Distribusi Stasioner Rantai Markov

Penerapan Teorema Perron-Frobenius pada Penentuan Distribusi Stasioner Rantai Markov Vol. 3, No., 85-9, Juli 6 Peerapa Teorea Perro-Frobeius pada Peetua Distribusi Stasioer Ratai Markov Jusawati Massalesse Abstrak Perilaku suatu ratai Markov setelah berala ukup laa dapat diketahui elalui

Lebih terperinci

Nilai Eigen dan Vektor Eigen Matriks atas Aljabar Max-Plus Interval

Nilai Eigen dan Vektor Eigen Matriks atas Aljabar Max-Plus Interval Nilai Eige da Vetor Eige Matris atas Aljabar Max-Plus Iterval 2 M. Ady Rudhito, Sri Wahyui, 3 Ari Suparwato, ad 4 F. Susilo Mahasiswa S3 Mateatia FMIPA UGM da Staff Pegajar FKIP Uiversitas Saata Dhara

Lebih terperinci

LEMBAR KERJA SISWA 5

LEMBAR KERJA SISWA 5 94 LEMBAR KERJA SISWA 5 Mata Pelajara Kelas/Seester Materi Pokok Subateri Pokok Alokasi Waktu : Kiia : XI/gajil : Laju Reaksi : Orde Reaksi : 2 x 45 eit Stadar Kopetesi 3. Meahai Kietika Reaksi, Kesetibaga

Lebih terperinci

SEPUTAR IDEAL DARI GELANGGANG POLINOM MIRING AROUND IDEAL OF THE SKEW POLYNOMIAL RING

SEPUTAR IDEAL DARI GELANGGANG POLINOM MIRING AROUND IDEAL OF THE SKEW POLYNOMIAL RING SEPUTAR IDEAL DARI GELANGGANG POLINOM MIRING Afra, Ar Kaal Ar da Nur Erawaty Jurusa Mateata Faultas Mateata da Ilu Pegetahua Ala Uverstas Hasaudd (UNHAS) Jl. Perts Keerdeaa KM.0 Maassar 90245, Idoesa [email protected]

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL

PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL Ahma Sya roi, M Natsir, Eag Lily E-mail: Arolativa@yahoocom Mahasiswa Program S Matematia Dose Jurusa Matematia

Lebih terperinci

3. Integral (3) (Integral Tentu)

3. Integral (3) (Integral Tentu) Darublic www.darublic.com. Itegral () (Itegral Tetu).. Luas Sebagai Suatu Itegral. Itegral Tetu Itegral tetu meruaa itegral ag batas-batas itegrasia jelas. Kose dasar dari itegral tertetu adalah luas bidag

Lebih terperinci

SIMULASI MODEL RLC BERBANTUAN MS EXCEL ASSISTED RLC MODEL SIMULATION MS EXCEL

SIMULASI MODEL RLC BERBANTUAN MS EXCEL ASSISTED RLC MODEL SIMULATION MS EXCEL SIMULASI MODEL RLC BERBANTUAN MS EXCEL ASSISTED RLC MODEL SIMULATION MS EXCEL Edag Habiuddi (Staf Pegajar UP MKU Politei Negeri Badug (Email : [email protected] ABSTRAK Sistem ragaia listri RLC seri

Lebih terperinci

Perluasan Uji Kruskal Wallis untuk Data Multivariat

Perluasan Uji Kruskal Wallis untuk Data Multivariat Statistia, Vol. No., Mei Perluasa Uji Krusal Wallis utu Data Multivariat TETI SOFIA YANTI Program Studi Statistia, Uiversitas Islam Badug, Jl. Purawarma No. Badug. E-mail: [email protected] ABSTAK Adaia

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG) PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP A. ISIAN SINGKAT SELEKSI TINGKAT PROPINSI TAHUN 011 BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT 1. Jia x adalah jumlah 99 bilaga gajil terecil yag lebih besar

Lebih terperinci

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C.

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C. BAB II LANDASAN TEORI Pada bab ii aa dibahas teori teori yag meduug metode upper level set sca statistics, atara lai peubah aca, distribusi gamma, fugsi gamma, fugsi lielihood, da uji rasio lielihood.

Lebih terperinci

Bab 16 Integral di Ruang-n

Bab 16 Integral di Ruang-n Catata Kuliah MA3 Kalulus Elemeter II Oi Neswa,Ph.D., Departeme Matematia-ITB Bab 6 Itegral di uag- Itegral Gada atas persegi pajag Itegral Berulag Itegral Gada atas Daerah sebarag Itegral Gada Koordiat

Lebih terperinci

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama.

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama. Darublic www.darublic.com 1. Itegral (1) (Macam Itegral, Pedeata Numeri) Sudarato Sudirham Dalam bab sebeluma, ita memelajari salah satu bagia utama alulus, aitu alulus diferesial. Beriut ii ita aa membahas

Lebih terperinci

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif Megaji Perbedaa Diagoalisasi Matris Atas Field da Matris Atas Rig Komutatif Teorema : Jia A adalah matris x maa eryataa eryataa beriut eivale satu sama lai : a A daat didiagoalisasi b A memuyai vetor eige

Lebih terperinci

x = 16 Jadi, banyak pekerja yang harus ditambahkan = = 4 orang.

x = 16 Jadi, banyak pekerja yang harus ditambahkan = = 4 orang. SOAL N MATEMATIKA SMK KELOMPOK PARIWISATA, SENI DAN KERAJINAN, TEKNOLOGI KERMAHTANGGAAN, PEKERJAAN SOSIAL, DAN ADMINISTRASI PERKANTORAN PAKET KC-F TAHN PELAJARAN /. Ekstrakurikuler pramuka suatu SMK aka

Lebih terperinci

PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR

PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR Jural Tei da Ilmu Komputer PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR Budi Marpaug Faultas Tei da Ilmu Komputer Jurusa Tei Idustri

Lebih terperinci

TAKSIRAN INTERVAL PARAMETER BENTUK DARI DISTRIBUSI PARETO BERDASARKAN METODE MOMEN DAN MAKSIMUM LIKELIHOOD

TAKSIRAN INTERVAL PARAMETER BENTUK DARI DISTRIBUSI PARETO BERDASARKAN METODE MOMEN DAN MAKSIMUM LIKELIHOOD TAKSIRAN INTERVAL PARAMETER BENTUK DARI DISTRIBUSI PARETO BERDASARKAN METODE MOMEN DAN MAKSIMUM LIKELIHOOD Jailah * Firdaus Sigit Sugiarto Mahasiwa Progra S Mateatika Dose Jurusa Mateatika Fakultas Mateatika

Lebih terperinci

BAB III ANUITAS DENGAN BEBERAPA KALI PEMBAYARAN SETAHUN TERHADAP TABUNGAN PENDIDIKAN

BAB III ANUITAS DENGAN BEBERAPA KALI PEMBAYARAN SETAHUN TERHADAP TABUNGAN PENDIDIKAN BAB III ANUITAS DNGAN BBRAPA KALI PMBAYARAN STAHUN TRHADAP TABUNGAN PNDIDIKAN. Tabuga Pedidika Aak Tabuga erupaka salah satu produk yag ditawarka oleh bak utuk eyipa uag. Utuk epersiapka daa pedidika aak,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakag Kehidupa ausia seatiasa diarahka pada kodisi yag aka datag, yag keberadaaya tidak dapat diketahui secara pasti. Sehigga ausia berusaha elakuka kegiata kegiata dega berorietasi

Lebih terperinci

MAKALAH TEOREMA BINOMIAL

MAKALAH TEOREMA BINOMIAL MAKALAH TEOREMA BINOMIAL Disusu utu memeuhi tugas mata uliah Matematia Disrit Dose Pegampu : Dr. Isaii Rosyida, S.Si, M.Si Rombel B Kelompo 2 1. Wihdati Martalya (0401516006) 2. Betha Kuria S. (0401516012)

Lebih terperinci

BAB III FUZZY C-MEANS. mempertimbangkan tingkat keanggotaan yang mencakup himpunan fuzzy sebagai

BAB III FUZZY C-MEANS. mempertimbangkan tingkat keanggotaan yang mencakup himpunan fuzzy sebagai BB III FUZZY C-MENS 3. Fuzzy Klasterg Fuzzy lasterg erupaa salah satu etode aalss laster dega epertbaga tgat eaggotaa yag eaup hpua fuzzy sebaga dasar pebobota bag pegelopoa (Bezde,98). Metode erupaa pegebaga

Lebih terperinci

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi BAB III TAKSIRA PROPORSI POPULASI JIKA TERJADI ORESPO Dalam bab ii aa dibaas peasira proporsi populasi jia terjadi orespo da dilaua allba sebaya t ali. Selai itu, juga aa dibaas peetua uura sampel yag

Lebih terperinci

BAB 1 PENDAHULUAN. dimana f(x) adalah fungsi tujuan dan h(x) adalah fungsi pembatas.

BAB 1 PENDAHULUAN. dimana f(x) adalah fungsi tujuan dan h(x) adalah fungsi pembatas. BAB 1 PENDAHUUAN 1.1 atar Belakag Pada dasarya masalah optimisasi adalah suatu masalah utuk membuat ilai fugsi tujua mejadi maksimum atau miimum dega memperhatika pembatas pembatas yag ada. Dalam aplikasi

Lebih terperinci

Bab II Landasan Teori

Bab II Landasan Teori 4 Bab II Ladasa Teori II. Aalisis "Net Social Gai" (NSG) PT. Siar Asia Fortua sebagai suatu perusahaa tabag baha galia batugapig epuyai kotribusi positif terhadap peigkata pedapata jika ilai outputya lebih

Lebih terperinci

BAB I PERSAMAAN DIFFERENSIAL BIASA (PDB)

BAB I PERSAMAAN DIFFERENSIAL BIASA (PDB) BAB I PERSAMAAN DIFFERENSIAL BIASA (PDB) Tujua Pebelajara Pada bab. ii, pebaca diperkealka kepada persaaa differesial (PD) da jeis-jeisa. Selai itu juga dijelaska cara-cara pebuata persaaa differesial,

Lebih terperinci

BAB II PEMODELAN STRUKTUR DAN ANALISIS DINAMIK

BAB II PEMODELAN STRUKTUR DAN ANALISIS DINAMIK BAB II PEMODELAN SRUKUR DAN ANALISIS DINAMIK II Pedaulua Aalss da saga dperlua uu bagua-bagua berlaa baya aau yag el egga leb dar eer Respo da sruur dabaa ole beba beba da yag basaya erupaa fugs dar wau

Lebih terperinci

Optimisasi Terpadu Persoalan Inventori dan Persoalan Transfortasi dengan Metode ITIO ( Inventory Transfortation Integrated Optimization)

Optimisasi Terpadu Persoalan Inventori dan Persoalan Transfortasi dengan Metode ITIO ( Inventory Transfortation Integrated Optimization) Prosidig Seirata FMIP Uiversitas Lapug, Optiisasi Terpadu Persoala Ivetori da Persoala Trasfortasi dega Metode ITIO ( Ivetory Trasfortatio Itegrated Optiizatio) T.P.Nababa, Sukato, Karida Puspita N Jurusa

Lebih terperinci

Aplikasi Pemetaan Kucing Arnold pada Logo UNHAS

Aplikasi Pemetaan Kucing Arnold pada Logo UNHAS Vol. 3, No., -, Jauari 07 Aliasi Peetaa Kucig Arold ada Logo UNHAS Ara Efedi Abstra Peetaa ii eetaa bujursagar S x, y 0 x,0 y secara satu-satu da ada egguaa trasforasi Tx, y x y, x y od. Misala x, y adalah

Lebih terperinci

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teorema-teorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teorema-teorema II. LANDASAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teorea-teorea ag edukug utuk pebahasa pada bab IV. Pegerta (defs) da teorea tersebut dtulska sebaga berkut... Teorea Proeks Teorea proeks

Lebih terperinci

Contoh Produksi dua jenis sepatu A dan B memberikan fungsi keuntungan bulanan sebagai berikut :

Contoh Produksi dua jenis sepatu A dan B memberikan fungsi keuntungan bulanan sebagai berikut : I. OPTIMISASI FUNGSI TANPA KENDALA Utuk fugsi dua peubah ) f ag terdiferesial dua kali. Jika di titik ) P dipeuhi :. sarat stasioer)... > maka mecapai ekstrim di ) P. Jika : ekstrim maksimum mecapai maka

Lebih terperinci

PENAKSIRAN DAN PERAMALAN BIAYA D. PENAKSIRAN BIAYA JANGKA PANJANG E. PERAMALAN BIAYA

PENAKSIRAN DAN PERAMALAN BIAYA D. PENAKSIRAN BIAYA JANGKA PANJANG E. PERAMALAN BIAYA PENAKSIRAN DAN PERAMALAN BIAYA Ari Darmawa, Dr. S.AB, M.AB Email: [email protected] A. PENDAHULUAN B. PENAKSIRAN DAN PRAKIRAAN FUNGSI BIAYA C. PENAKSIRAN JANGKA PENDEK - Ekstrapolasi sederhaa - Aalisis

Lebih terperinci

HUBUNGAN MATRIKS AB DAN BA PADA STRUKTUR JORDAN NILPOTEN

HUBUNGAN MATRIKS AB DAN BA PADA STRUKTUR JORDAN NILPOTEN HUBUNGAN ARKS AB DAN BA ADA SRUKUR ORDAN NLOEN Sodag uraasar aaha ([email protected]) UB-U eda Elva Herawaty FA ateata Uverstas Suatera Utara ABSRAC ths aer, we gve aother roof about the relatosh betwee

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

MATEMATIKA DISKRIT II ( 2 SKS)

MATEMATIKA DISKRIT II ( 2 SKS) ATEATIKA DISKRIT II ( SKS) Rabu 8.5. Ruag Hard Disk PERTEUAN V & VI RELASI Dose Lie Jasa OS - 6 ateatika Diskrit Relasi da Fugsi Oerip S. Satoso OS - 6 Relasi Defiisi. Relasi bier R atara A da B adalah

Lebih terperinci

Konvolusi pada Distribusi dengan Support Kompak

Konvolusi pada Distribusi dengan Support Kompak Prosidig SI MaNIs (Semiar Nasioal Itegrasi Matematia da Nilai Islami) Vol1, No1, Juli 2017, Hal 453-457 p-issn: 2580-4596; e-issn: 2580-460X Halama 453 Kovolusi pada Distribusi dega Support Kompa Cythia

Lebih terperinci

MENENTUKAN PENYELESAIAN PERTIDAKSAMAAN DENGAN METODE TITIK PEMECAH. Warsito. Program Studi Matematika FMIPA Universitas Terbuka.

MENENTUKAN PENYELESAIAN PERTIDAKSAMAAN DENGAN METODE TITIK PEMECAH. Warsito. Program Studi Matematika FMIPA Universitas Terbuka. MENENTUKAN PENYELESAIAN PERTIDAKSAMAAN DENGAN METODE TITIK PEMECAH Warsito Progra Studi Mateatika FMIPA Uiversitas Terbuka [email protected] Abstrak Peyelesaia pertidaksaaa ( x- a, a Î R adalah x a (egguaka

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Risio Operasioal.1.1 Defiisi Dewasa ii risio operasioal semai diaui sebagai salah satu fator uci yag perlu dielola da dicermati oleh para pelau usaha, hususya di bidag jasa euaga.

Lebih terperinci

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K)

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) JMP : Volume 4 Nomor 1, Jui 2012, hal. 41-50 PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga [email protected] ABSTRACT. I this

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

KOMPUTASI ALIRAN FLUIDA DINAMIK DENGAN CITRA DIGITAL DAN PIV (PARTICLE IMAGE VELOCIMETRY), KHUSUSNYA DALAM APLIKASI NUKLIR. Muhammad Arifin Sanusi *

KOMPUTASI ALIRAN FLUIDA DINAMIK DENGAN CITRA DIGITAL DAN PIV (PARTICLE IMAGE VELOCIMETRY), KHUSUSNYA DALAM APLIKASI NUKLIR. Muhammad Arifin Sanusi * KOMPUTASI ALIRA FLUIDA DIAMIK DEGA CITRA DIGITAL DA PIV PARTICLE IMAGE VELOCIMETRY KHUSUSYA DALAM APLIKASI UKLIR Muhammad Arifi Sausi * ABSTRAK KOMPUTASI ALIRA FLUIDA DIAMIK DEGA CITRA DIGITAL DA PIV PARTICLE

Lebih terperinci

BAB 3 PENYELESAIAN PERSAMAAN DIFFERENSIAL BIASA

BAB 3 PENYELESAIAN PERSAMAAN DIFFERENSIAL BIASA BAB PENYELESAIAN PERSAMAAN DIFFERENSIAL BIASA Meode Euler Meode Euler adala Meode ampira palig sederaa uu meelesaia masala ilai awal: ( Biasaa diasumsia bawa peelesaia ( dicari pada ierval erbaas ag dieaui

Lebih terperinci

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM07

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM07 METODE NUMERIK UNTUK SIMULASI Pemodela & Simulasi TM07 Metode Numerik ( Metode umerik dpt diklasiikasika mjd:. Metode satu-lagka atau sigle-step. Metode multistep Metode sigle-step Pd metode ii, utuk meetuka

Lebih terperinci

BAGIAN 2 TOPIK 5. andhysetiawan

BAGIAN 2 TOPIK 5. andhysetiawan BAGIAN OIK 5 adhyseiawa Isi Maeri Modulasi Aliudo AM Modulasi Frekuesi FM adhyseiawa MODULASI AMLIUDO DAN MODULASI ANGULAR SUDU Modulasi roses erubaha karakerisik aau besara gelobag ebawa, euru ola gelobag

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

1.1 METODE PENGEMBANGAN PENDEKATAN RATA- RATA SAMPEL UNTUK PROGRAM STOKASTIK DUA TAHAP. Faridawaty Marpaung. Abstrak

1.1 METODE PENGEMBANGAN PENDEKATAN RATA- RATA SAMPEL UNTUK PROGRAM STOKASTIK DUA TAHAP. Faridawaty Marpaung. Abstrak METODE PEGEMBAGA PEDEKATA RATA- RATA SAMPEL UTUK PROGRAM STOKASTIK DUA TAHAP Faridawaty Marpaug Abstra Peelitia ii megemuaa metode pegembaga pedeata rata rata sampel utu program stoasti dua tahap. Metodologi

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

MASALAH DISTRIBUSI BOLA KE DALAM WADAH SEBAGAI FUNGSI ATAU KUMPULAN FUNGSI

MASALAH DISTRIBUSI BOLA KE DALAM WADAH SEBAGAI FUNGSI ATAU KUMPULAN FUNGSI Vol. 11, No. 1, 45-55, Juli 2014 MASALAH DISTRIBUSI BOLA KE DALAM WADAH SEBAGAI FUNGSI ATAU KUMPULAN FUNGSI Fauziah Baharuddi 1, Loey Haryato 2, Nurdi 3 Abstra Peulisa ii bertujua utu medapata perumusa

Lebih terperinci

Sekolah Olimpiade Fisika

Sekolah Olimpiade Fisika SOLUSI SIMULASI OLIMPIADE FISIKA SMA Agustus 06 TINGKAT KABUPATEN/KOTA Waktu : 3 ja Sekolah Olipiade Fisika davitsipayug.co Sekolah Olipiade Fisika davitsipayug.co [email protected]. Dua orag aak earik

Lebih terperinci

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM09

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM09 METODE NUMERIK UNTUK SIMULASI Pemodela & Simulasi TM09 Metode Numerik ( Metode umerik dpt diklasiikasika mjd:. Metode satu-lagka atau sigle-step. Metode multistep Metode sigle-step Pada metode ii, utuk

Lebih terperinci

SISTEM LINIER. Oleh : Kholistianingsih, S.T., M.Eng. lts 1

SISTEM LINIER. Oleh : Kholistianingsih, S.T., M.Eng. lts 1 SISTEM LINIER Oleh : Kholistiaigsih, S.T., M.Eg. lts 1 2 Isyarat Waktu Diskrit di kawasa waktu. 2.1 Represetasi Isyarat Waktu Diskrit 2.2 Klasifikasi Rutu 2.3 Rutu rutu Dasar 2.4 Operasi di kawasa waktu

Lebih terperinci

DESAIN PENGENDALIAN TEGANGAN ALTERNATOR PADA SISTEM PENGISIAN BATERAI MENGGUNAKAN METODE SLIDING MODE CONTROL (SMC) Akhmad Nurhadi

DESAIN PENGENDALIAN TEGANGAN ALTERNATOR PADA SISTEM PENGISIAN BATERAI MENGGUNAKAN METODE SLIDING MODE CONTROL (SMC) Akhmad Nurhadi OGO DEAN PENGENDAAN TEGANGAN ATENATO PADA TEM PENGAN BATEA MENGGUNAKAN METODE DNG MODE CONTO (MC) Ahmad Nurhadi 1206100713 JUUAN MATEMATKA FAKUTA MATEMATKA DAN MU PENGETAHUAN AAM NTTUT TEKNOOG EPUUH NOPEMBE

Lebih terperinci

5. KARAKTERISTIK RESPON

5. KARAKTERISTIK RESPON 5. ARATERISTI RESPON Adalah ciri-ciri khusus perilaku diamik (spesifikasi performasi) Taggapa (respo) output sistem yag mucul akibat diberikaya suatu siyal masuka tertetu yag khas betukya (disebut sebagai

Lebih terperinci