3 LIMIT DAN KEKONTINUAN

Ukuran: px
Mulai penontonan dengan halaman:

Download "3 LIMIT DAN KEKONTINUAN"

Transkripsi

1 Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan, kekonvergenan barisan bilangan real. Sebagaimana telah diketahui bahwa barisan merupakan bentuk khusus fungsi, yaitu fungsi bernilai real dengan domain bilangan asli. Pada bab ini kita memperluas konsep limit kepada bentuk fungsi bernilai real secara umum. Karena konsep kekontinuan terkait erat dengan konsep limit maka kedua topik ini dibahas secara simultan pada bab ini. 3.1 Pengertian Limit Fungsi dan Fungsi Kontinu Biasanya, notasi lim f(x) = L x c dipahami secara intuitif dengan berbagai pernyataan berikut 1. Jika x mendekati c maka f(x) mendekati L, semakin dekat x kepada c semakin dekat pula f(x) kepada L. 2. Nilai-nilai f(x) adalah dekat dengan L untuk x dekat dengan c. Pada pernyataan pertama, dekatnya f(x) terhadap L disebabkan oleh dekatnya x kepada c. Pernyataan ini banyak diambil sebagai denisi limit khususnya bagi mereka yang belum belajar analisis. Padahal sesungguhnya pernyataan kedua lebih sesuai untuk denisi limit. Pada pernyataan ini ada dua kriteria atau ukuran dekat. Kriteria dekatnya f(x) terhadap L memberikan kriteria dekatnya x kepada c. Kemudian, setiap x yang dekat dengan c dalam kriteria ini mengakibatkan nilai f(x) dekat dengan L. Sebelum masuk ke denisi formal limit fungsi, diberikan terlebih dahulu pegertian titik limit (cluster point) suatu himpunan. Denisi 3.1. [Titik Limit] Misalkan A R. Sebuah titik c R dikatakan titik limit A jika setiap persekitaran V δ (c) := (c δ, c + δ) memuat paling sedikit satu anggota A selain c, atau (c δ, c + δ) A \ {c}, δ > 0. Catatan 1. Titik limit A boleh jadi anggota A atau bukan anggota A. Sebaliknya, suatu anggota A dapat menjadi titik limit atau bukan titik limit A. Sebelum diberikan contoh diperhatikan teorema yang menjamin adanya barisan di dalam A yang konvergen ke titik limit A yang dapat dijadikan kriteria titik limit. Teorema 3.1. Sebuah bilangan c A titik limit A bila hanya bila terdapat barisan (a n ) dalam A dengan a n c untuk setiap n N sehingga lim(a n ) = c. Bukti. Misalkan c titik limit. Untuk setiap n N, bentuk persekitaran radius δ := 1 n, yaitu V 1 (c) = (c 1 n n, c+ 1 n ). Selalu ada a n A V 1 dengan a n c. Karena berlaku n a n c < 1 n maka disimpulkan lim(a n) = c. Sebaliknya, diketahui terdapat barisan 1

2 (a n ) dalam A, a n c dan lim(a n ) = c, dibuktikan c seperti ini adalah titik limit A. Karena diketahui lim(a n ) = c maka untuk sebarang δ > 0 terdapat bilangan asli K sehingga a n c < δ untuk setiap n K. Ini berarti, khususnya a K A, a K c dan a K V δ yaitu A V δ \ {c}. Terbukti c titik limit A. Contoh 3.1. Diberikan himpunan A yang didenisikan sebagai Tentukan himpunan semua titik limit A. A = { 1} {x R : 0 x < 1} {2}. Penyelesaian. Diperhatikan bahwa setiap x [0, 1] dan setiap δ > 0 maka berlaku (x δ, x + δ) A \ {x}. Jadi setiap x [0, 1] merupakan titik imit A. Diperhatikan x = 1 A. Kita dapat memilih δ 1 > 0 sehingga ( 1 δ 1, 1 + δ 1 ) A = { 1} sehingga ( 1 δ 1, 1 + δ 1 ) A \ { 1} =, jadi x = 1 bukan titik limit A. Argumen yang sama diterapkan untuk x = 2. Diperoleh himpunan titik lmit A adalah [0, 1]. Gambar 3.1: Ilustrasi titik limit pada garis bilangan Diperhatikan pada contoh ini, 1 / A tetapi 1 titik limit A. Sebaliknya 2 A tetapi 2 bukan titik limit A. Bilangan di dalam interval [0, 1) kesemuanya anggota A dan sekaligus titik limit A. Berikut diberikan beberapa fakta sederhana tentang titik limit: Himpunan yang banyak anggotanya berhingga tidak mempunyai titik limit. Himpunan bilangan asli N tidak mempunyai titik limit. Himpunan bilangan rasional Q mempunyai titik limit semua bilangan real. Hal ini disebabkan sifat kepadatan bilangan rasional di dalam R. Himpunan A = { 1 n : n N} hanya mempunyai titik limit 0. Dalam kasus ini tidak satupun anggota A menjadi titik limitnya. Selanjutnya denisi limit fungsi diberikan sebagai berikut. Denisi 3.2. [Limit Fungsi] Misalkan A R dan f : A R, c titik limit A. Bilangan L dikatakan limit fungsi f di c, ditulis L = lim x c f(x) (3.1) adalah bilamana diberikan ɛ > 0 terdapat δ > 0 sehingga berlaku 0 < x c < δ f(x) L < ɛ. (3.2) Pada denisi ini, nilai δ biasanya bergantung pada nilai ɛ yang diberikan sehingga kadangkadang ditulis sebagai δ(ɛ) untuk menunjukkan ketergantungan δ pada ɛ yang diberikan. Bila limit L ini ada maka fungsi f dikatakan juga konvergen ke L di c. Secara praktis, dapat dikatakan f(x) mendekati L bilamana x mendekati c. Ukuran dekat f(x) terhadap L diberikan oleh ɛ, dan kedekatan x dengan c diukur oleh δ. Pada ekspresi 2

3 diberikan V (L) L- L f(x)-l < L- terdapat V (c) c+ c c+ Gambar 3.2: Ilustrasi denisi limit fungsi (3.3) kita dapat membuat f(x) sedekat mungkin dengan L dengan memilih x yang dekat dengan c. Ilustrasi denisi limit fungsi diberikan pada Gambar 3.2. Pernyataan 0 < x c < δ pada (3.3) menunjukkan bahwa untuk berlakunya f(x) L < ɛ tidak memperhitungkan x yang sama dengan c. Artinya pada denisi limit, nilai f(c) tidak perlu ada. Ingat, titik limit himpunan domain A tidak harus di dalam A. Oleh karena itulah, ilustrasi grak denisi limit menggunakan dot di titik x = c. Pengertian yang hampir sama untuk fungsi kontinu di x = c, seperti diungkapkan berikut ini. Denisi 3.3. [Fungsi Kontinu] Misalkan A R dan f : A R, c A. Fungsi f dikatakan kontinu di c, adalah bilamana diberikan ɛ > 0 terdapat δ > 0 sehingga berlaku x c < δ f(x) f(c) < ɛ. (3.3) Kontinu pada himpunan A berarti kontinu di setiap c A. Dalam kasus c A dan c titik limit A maka kedua pengertian limit dan kekontinuan sangat terkait seperti diungkapkan pada teorema berikut. Teorema 3.2. Misalkan A R dan f : A R, c A. Bila c titik limit A maka kedua pernyataan berikut ekuivalen. (i) f kontinu di c (ii) lim x c f(x) = f(c) Bukti. Untuk mudahnya kita bentuk dua himpunan berikut E 1 := {x A : 0 < x c < δ}, E 2 := {x A : x c < δ}. Jadi E 2 E 1. Diketahui f kontinu di c berarti x E 2 f(x) f(c) < ɛ. Misalkan x E 1 maka x E 2 atau x = c. Bila x E 2 maka (3.2) berlaku dengan L = f(c). Untuk kemungkinan x = c berlaku f(x) f(c) = f(c) f(c) = 0 < ɛ sehingga (3.2) juga dipenuhi. Terbukti lim x c f(x) = f(c). Sebaliknya, diketahui lim x c f(x) = f(c) yaitu x E 1 f(x) f(c) < ɛ. Karena E 2 E 1 maka berlaku x E 2 f(x) f(c) < ɛ, yaitu f kontinu di c. 3

4 Contoh 3.2. Misalkan f fungsi konstan pada R, katakan f(x) = b untuk setiap x R. Buktikan untuk sebarang c R, berlaku lim x c b = b. Kemudian simpulkan bahwa f kontinu di c. Penyelesaian. Diberikan ɛ > 0 sebarang, ambil δ := 1 maka diperoleh 0 < x c < δ f(x) L = b b = 0 < ɛ. Jadi terbukti lim x c f(x) = f(c). Karena c R merupakan titik limit maka dengan teorema 3.2 maka disimpulkan f kontinu di c. Catatan 2. Pengambilan δ pada pembuktian di atas dapat selain 1, bahkan berapapun boleh. Pembuktian ini menggunakan pola p q dimana q sudah dipastikan benar. Contoh 3.3. Buktikan untuk sebarang c R, lim x c x = c. bahwa f(x) := x kontinu di c. Kemudian simpulkan Penyelesaian. Untuk setiap ɛ > 0 yang diberikan, ambil δ := ɛ. Diperoleh 0 < x c < δ f(x) L = x c < δ = ɛ. Karena itu terbukti lim x c x = c. Karena berlaku lim x c f(x) = f(c) dan c titik limit maka disimpulkan f kontinu di c. Contoh 3.4. Misalkan f(x) = x 2, x R. Buktikan f kontinu pada R. Bukti. Misalkan c R. Kita perhatikan dulu penjabaran berikut f(x) f(c) = x 2 c 2 = x + c x c. Karena sudah ada suku x c maka kita perlu melakukan estimasi pada suku x + c. Untuk itu diasumsikan dulu x c < 1, maka berlaku x c x c < 1 1 < x c 1 x c + 1. }{{} Untuk asumsi ini diperoleh estimasi pada x + c, yaitu Secara keseluruhan diperoleh estimasi x + c x + c 2 c + 1. f(x) f(c) = x + c x c < (2 c + 1) x c. ( ) Agar kuantitas terakhir ini kurang dari ɛ maka haruslah x c < ɛ 2 c + 1. ( ) Karena sudah diasumsikan x c < 1 maka agar x c < maka diambil { } δ = δ(ɛ) := min 1,. ɛ 2 c + 1 ɛ 2 c +1 juga dipenuhi Jadi jika 0 < x c < δ maka (*) dan (**) berlaku sehingga disimpulkan f(x) f(c) < ɛ. Jadi, lim x c f(x) = f(c), dan terbukti f kontinu di c. Ada kalanya sebuah fungsi tidak kontinu di suatu titik c dikarenakan ia tidak terdenisi di c, yaitu f(c) tidak ada. Tetapi, asalkan limitnya di c ada maka fungsi tersebut dapat diperluas menjadi fungsi kontinu. 4

5 Contoh 3.5. Diberikan fungsi f(x) = x2 1 x 1, x 0 tidak kontinu di 1 karena f(1) tidak ada. Namun, berlaku x 2 1 lim f(x) = lim x 1 x 1 x 1 = lim (x + 1) = 2. x 1 Jadi fungsi ini dapat diperluas menjadi fungsi kontinu pada R sebagai berikut { x 2 1 f(x) = x 1 untukx 0 2 untukx = Kriteria Barisan untuk Limit dan Kekontinuan Untuk mengetahui limit dan kekontiunuan fungsi di suatu titik dapat dideteksi melalui limit barisan yang sudah dipelajari pada bab sebelumnya. Teorema 3.3. Misalkan f : A R dan c titik limit A. Maka kedua pernyataan berikut ekuivalen. (i) lim x c f(x) = L (ii) Untuk setiap barisan (x n ) di dalam A yang konvergen ke c, x n c untuk setiap n N, maka barisan (f(x n )) konvergen ke L. Bukti. (i) (ii). Diberikan ɛ > 0 sebarang. Karena diketahui lim x c f(x) = L, maka terdapat δ > 0 sehingga jika 0 < x c < δ berlaku f(x) L < ɛ. Misalkan lim(x n ) = c, x n c. Berdasarkan denisi limit barisan, untuk δ > 0 sebelumnya terdapat K N sehingga x n c < δ untuk setiap n K. Karena x n c maka dapat ditulis 0 < x n c < δ, sehingga berlaku f(x n ) L < ɛ untuk setiap n K. Ini menunjukkan bahwa barisan (f(x n )) konvergen ke L. (ii) (i). Dibuktikan melalui kontraposisinya. Diketahui lim x c f(x) L, berarti ada ɛ 0 > 0 sehingga setiap δ > 0 terdapat x δ A, 0 < x x δ < δ tetapi f(x) x δ ɛ 0. Bila diambil para δ > 0 tersebut sebagai δ := 1 n > 0 untuk setiap n N maka terbentuk barisan (x n ) dengan sifat 0 < x n c < 1 n, x n A tetapi f(x n ) L ɛ 0 untuk setiap n N. Ini berarti barisan (f(x n )) tidak mungkin konvergen ke L. Jadi ada barisan (x n ) dalam A, x n c tetapi (f(x n )) tidak konvergen ke L. Pernyataan (ii) salah. Bukti teorema selesai. Dengan demikian diperoleh kriteria divergen sebagai berikut: (a) lim x c f(x) L bila hanya bila ada barisan (x n ) dalam A dengan x n c, (x n ) konvergen ke c tetapi barisan lim (f(x n )) L. (b) lim x c f(x) tidak ada bila hanya bila ada barisan (x n ) dalam A dengan x n c, (x n ) konvergen ke c tetapi barisan f(x n ) tidak konvergen. (c) lim x c f(x) tidak ada bila hanya bila ada dua barisan (x n ), (y n ) dalam A dengan x n, y n c, (x n ) dan (y n ) konvergen ke c tetapi lim (f(x n )) lim (f(y n )). Contoh 3.6. Buktikan lim x 0 1 x tidak ada. Bukti. Di sini kita mempunyai f(x) = 1 x. Ambil barisan (x n) dengan x n := 1 n. Jelas barisan ) ini konvergen ke 0, x n 0. Sekarang perhatikan barisan (f(x n )) = ( 1 1/n = (n) = (1, 2, 3, ) tidak konvergen. Berdasarkan kriteria (b) maka terbukti limitnya tidak ada. 5

6 Contoh 3.7. Diberikan fungsi signum yang didenisikan sebagai berikut +1 untuk x > 0, sgn(x) : = 0 untuk x = 0, 1 untuk x < 0. Buktikan lim x 0 sgn(x) tidak ada. Bukti. Ambil dua barisan (x n ) dan (y n ) dengan x n := 1 n dan y n := 1 n. Jelas kedua barisan ini konvergen ke 0 dan setiap sukunya tidak ada yang sama dengan 0. Diperhatikan barisan (sgn(x n )) = ( sgn ( 1 n)) = (1) = (1, 1, ) konvergen ke 1, tetapi (sgn(y n )) = ( sgn( 1 n )) = ( 1) = ( 1, 1, ) konvergen ke 1. Berdasarkan kriteria (c) maka terbukti limitnya tidak ada. Cara lain dapat menggunakan sifat bahwa sgn(x) = x x untuk x 0. Dengan mengambil x n := ( 1)n n maka barisan (x n ) konvergen ke 0, x n 0. Tetapi ( ( )) (sgn(x n )) = ( 1) n sgn n = ( 1) n = ( 1, +1, 1, ) divergen. Teorema 3.4. Misalkan f : A R dan c A. ekuivalen. Maka kedua pernyataan berikut (i) f kontinu di c (ii) Untuk setiap barisan (x n ) di dalam A yang konvergen ke c, maka barisan (f(x n )) konvergen ke f(c). Bukti. Gunakan fakta f kontinu di c bila hanya bila lim x c f(x) = f(c) dan ambil L := f(c). Selanjutnya gunakan teorema kriteria barisan untuk limit. to be continued... 6

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan, kekonvergenan

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun dari berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN BAB 4 LIMIT DAN KEKONTINUAN Everything should made as simple as possible, but no simpler. Albert EINSTEIN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuhnya matematika

Lebih terperinci

BAB VI LIMIT FUNGSI. 6.1 Definisi. A R. Titik c R adalah titik limit dari A, jika untuk setiap persekitaran-δ dari c,

BAB VI LIMIT FUNGSI. 6.1 Definisi. A R. Titik c R adalah titik limit dari A, jika untuk setiap persekitaran-δ dari c, BAB VI LIMIT FUNGSI Sesungguhnya yang dimaksud dengan fungsi f mempunyai limit L di c adalah nilai f mendekati L, untuk x mendekati c. Dengan demikian dapat diartikan bahwa f(x) terletak pada sembarang

Lebih terperinci

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada BAB III FUNGSI TERUKUR LEBESGUE Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada Bab II, selanjutnya pada bab ini akan dipelajari gagasan mengenai fungsi terukur Lebesgue. Gagasan mengenai

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah menengah barisan diperkenalkan sebagai kumpulan bilangan yang disusun menurut "pola" tertentu, misalnya barisan aritmatika dan barisan geometri. Biasanya barisan dan

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah menengah barisan diperkenalkan sebagai kumpulan bilangan yang disusun menurut "pola" tertentu, misalnya barisan aritmatika dan barisan geometri. Biasanya barisan dan

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS)

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11.1 Definisi dan Limit Fungsi Monoton Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila untuk setiap x, y H dengan x < y berlaku

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 3.2 Himpunan Buka dan Himpunan Tutup Titik limit dari suatu himpunan tidak harus merupakan anggota himpunan tersebut. Pada interval

Lebih terperinci

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan 4 BARISAN TAK HINGGA DAN DERET TAK HINGGA JUMLAH PERTEMUAN : 5 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan kekonvergenan

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. September 12, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. September 12, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 12, 2011 Teorema 11 pada Bab 3 memberi kita cara untuk menyelidiki kekonvergenan sebuah barisan tanpa harus mengetahui

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 1, 2007 Diberikan sebuah fungsi yang terdefinisi pada interval (a, b) kecuali mungkin di

Lebih terperinci

4 DIFERENSIAL. 4.1 Pengertian derivatif

4 DIFERENSIAL. 4.1 Pengertian derivatif Diferensial merupakan topik yang cukup 'baru' dalam matematika. Dimulai sekitar tahun 1630 an oleh Fermat ketika menghadapi masalah menentukan garis singgung kurva, dan juga masalah menentukan maksimum

Lebih terperinci

II. LANDASAN TEORI ( ) =

II. LANDASAN TEORI ( ) = II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu

Lebih terperinci

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada BAB II DASAR TEORI Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada pembahasan BAB III, mulai dari definisi sampai sifat-sifat yang merupakan konsep dasar untuk mempelajari Fungsi

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga Kesumawati Prodi Statistika FMIPA-UII April 29, 2015 Akar Barisan a 1, a 2, a 3, a 4,... adalah susunan bilangan-bilangan real yang teratur, satu untuk setiap bilangan bulat positif. adalah fungsi yang

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 11, 2007 Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

BAB II TEOREMA NILAI RATA-RATA (TNR)

BAB II TEOREMA NILAI RATA-RATA (TNR) BAB II TEOREMA NILAI RATA-RATA (TNR) Teorema nilai rata-rata menghubungkan nilai suatu fungsi dengan nilai derivatifnya (turunannya), dimana TNR merupakan salah satu bagian penting dalam kuliah analisis

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. November 19, 2007 Secara geometris, f kontinu di suatu titik berarti bahwa grafiknya tidak terputus

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

BARISAN BILANGAN REAL

BARISAN BILANGAN REAL BAB 2 BARISAN BILANGAN REAL Di sekolah menengah barisan diperkenalkan sebagai kumpulan bilangan yang disusun menurut pola tertentu, misalnya barisan aritmatika dan barisan geometri. Biasanya barisan dan

Lebih terperinci

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh BAB III INTEGRAL LEBESGUE Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh fungsi-fungsi terukur dan memenuhi sifat yang berkaitan dengan integral Lebesgue. Kajian mengenai keterukuran suatu

Lebih terperinci

DERET TAK HINGGA. Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan. Definisi Deret tak hingga,

DERET TAK HINGGA. Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan. Definisi Deret tak hingga, DERET TAK HINGGA Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan Definisi Deret tak hingga,, konvergen dan mempunyai jumlah S, apabila barisan jumlah jumlah parsial konvergen menuju S.

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. October 10, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. October 10, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. October 10, 2011 Pemahaman yang baik tentang fungsi kontinu merupakan hal yang penting dalam analisis. Dalam optimisasi,

Lebih terperinci

BAB II KAJIAN TEORI. memahami sifat-sifat dari barisan fungsi. Pada bab ini akan diuraikan materimateri

BAB II KAJIAN TEORI. memahami sifat-sifat dari barisan fungsi. Pada bab ini akan diuraikan materimateri BAB II KAJIAN TEORI Analisis kekonvergenan pada barisan fungsi, apakah barisan fungsi itu? Apakah berbeda dengan barisan pada umumnya? Tentunya sebelum membahas mengenai barisan fungsi, apa saja jenis

Lebih terperinci

Pengantar : Induksi Matematika

Pengantar : Induksi Matematika Pengantar : Induksi Matematika Analisis Real /2 SKS/ Ega Gradini, M.Sc Induksi Matematika adalah cara standar dalam membuktikan bahwa sebuah pernyataan tertentu berlaku untuk setiap bilangan asli. Pembuktian

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. October 3, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. October 3, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. October 3, 2011 6.3 Limit Sepihak, Limit di Tak Hingga, dan Limit Tak Hingga Bila sebelumnya kita mempelajari limit barisan,

Lebih terperinci

4 DIFERENSIAL. 4.1 Pengertian derivatif

4 DIFERENSIAL. 4.1 Pengertian derivatif Diferensial merupakan topik yang cukup 'baru' dalam matematika. Dimulai sekitar tahun 1630 an oleh Fermat ketika menghadapi masalah menentukan garis singgung kurva, dan juga masalah menentukan maksimum

Lebih terperinci

FUNGSI DAN LIMIT FUNGSI

FUNGSI DAN LIMIT FUNGSI 2 FUNGSI DAN LIMIT FUNGSI 2.1 Fungsi dan Grafiknya Definisi Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap x anggota A dengan tepat satu y anggota B. A disebut

Lebih terperinci

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun MA3231 Pengantar Analisis Real Semester II, Tahun 2016-2017 Hendra Gunawan, Ph.D. Bab 7 Limit dan Kekontinuan 2 Isaac Newton (1643-1727) Isaac Newton adalah seorang fisikawan & matematikawan Inggris yang

Lebih terperinci

Daftar Isi 3. BARISAN ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB

Daftar Isi 3. BARISAN ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 29, 2011 Dalam kisah Zeno tentang perlombaan lari antara Achilles dan seekor kura-kura, ketika Achilles mencapai

Lebih terperinci

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan BAGIAN KEDUA Fungsi, Limit dan Kekontinuan, Turunan 51 52 Hendra Gunawan Pengantar Analisis Real 53 6. FUNGSI 6.1 Fungsi dan Grafiknya Konsep fungsi telah dipelajari oleh Gottfried Wilhelm von Leibniz

Lebih terperinci

ANALISIS REAL 2 SUMANANG MUHTAR GOZALI KBK ANALISIS

ANALISIS REAL 2 SUMANANG MUHTAR GOZALI KBK ANALISIS ANALISIS REAL 2 SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta salam

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL DAFTAR ISI SISTEM BILANGAN REAL. Sifat Aljabar Bilangan Real......................2 Sifat Urutan Bilangan Real..................... 6.3 Nilai Mutlak dan Jarak Pada Bilangan Real.............4 Supremum

Lebih terperinci

Misal, dan diberikan sebarang, terdapat sehingga untuk setiap

Misal, dan diberikan sebarang, terdapat sehingga untuk setiap PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO PENYELESAIAN SOAL UJIAN AKHIR SEMESTER GENAP TA 2012/2013 Mata Ujian : Analisis Real 1 Tipe Soal : Reguler Dosen : Dr. Julan HERNADI Waktu : 90 menit

Lebih terperinci

BAB III KEKONVERGENAN LEMAH

BAB III KEKONVERGENAN LEMAH BAB III KEKONVERGENAN LEMAH Bab ini membahas inti kajian tugas akhir. Di dalamnya akan dibahas mengenai kekonvergenan lemah beserta sifat-sifat yang terkait dengannya. Sifatsifat yang dikaji pada bab ini

Lebih terperinci

Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 19 Agustus 2004 di PPPG Matematika

Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 19 Agustus 2004 di PPPG Matematika PENGANTAR KALKULUS Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 9 Agustus 004 di PPPG Matematika Oleh: Drs. SETIAWAN, M. Pd. Widyaiswara PPPG Matematika Yogyakarta

Lebih terperinci

BAB I LIMIT-LIMIT Limit-limit Fungsi

BAB I LIMIT-LIMIT Limit-limit Fungsi .. Limit-it Fungsi BAB I LIMIT-LIMIT... Definisi. Misalkan A R. Suatu titik c R adalah titik cluster dari A jika setiap lingkungan-δ dari c, V δ (c) = (c-δ,c+δ), memuat paling sedikit satu titik dari A

Lebih terperinci

ANALISIS REAL 1 SUMANANG MUHTAR GOZALI KBK ANALISIS

ANALISIS REAL 1 SUMANANG MUHTAR GOZALI KBK ANALISIS ANALISIS REAL 1 SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta salam

Lebih terperinci

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Uji Deret Positif. Ayundyah. Uji Integral. Uji Komparasi. Uji Rasio.

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Uji Deret Positif. Ayundyah. Uji Integral. Uji Komparasi. Uji Rasio. Uji Uji Deret Kesumawati Prodi Statistika FMIPA-UII April 29, 2015 Uji Deret Uji Deret yang mempunyai suku-suku positif menjadi bahasan pada uji integral ini. Uji integral ini menggunakan ide dimana suatu

Lebih terperinci

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ -LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id Konsep Limit Fungsi mendasari pembentukan kalkulus dierensial dan integral. Konsep ini

Lebih terperinci

) dengan. atau sub barisan (subsequences) dari X ,,,..., kemudian dipilih hasil index barisan Contoh, jika X =

) dengan. atau sub barisan (subsequences) dari X ,,,..., kemudian dipilih hasil index barisan Contoh, jika X = Section 3.4 Barisan Bagian dan Teorema Bolzano Weierstrass Di bagian ini kita akan diberikan konsep dari barisan bagian dari barisan bilangan real. Secara informal, barisan bagian dari barisan adalah satu

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 4. Fungsi Kontinu 4.1 Konsep Kekontinuan Fungsi kontinu Limit fungsi dan limit barisan Prapeta himpunan buka 4.2 Sifat-Sifat Fungsi

Lebih terperinci

Fungsi Analitik (Bagian Pertama)

Fungsi Analitik (Bagian Pertama) Fungsi Analitik (Bagian Pertama) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu IV) Outline 1 Fungsi Variabel Kompleks 2 Pemetaan/Transformasi/Mappings

Lebih terperinci

Fungsi Analitik (Bagian Kedua)

Fungsi Analitik (Bagian Kedua) Fungsi Analitik (Bagian Kedua) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 5528, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu V) Outline Limit Menuju Tak Hingga 2 Fungsi Kontinu

Lebih terperinci

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan BAB II LANDASAN TEORI Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada Bab III nanti, diantaranya: fungsi komposisi,

Lebih terperinci

BAB I TEOREMA TEOREMA LIMIT BARISAN

BAB I TEOREMA TEOREMA LIMIT BARISAN BAB I TEOREMA TEOREMA LIMIT BARISAN Definisi : Barisan bilangan real X = (x n ) dikatakan terbatas jika ada bilangan real M > 0 sedemikian sehingga x n M untuk semua n N. Catatan : X = (x n ) terbatas

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 37 Topik Bahasan 1 Limit Fungsi 2 Hukum Limit 3 Kekontinuan Fungsi (Departemen

Lebih terperinci

16. BARISAN FUNGSI. 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik

16. BARISAN FUNGSI. 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik 16. BARISAN FUNGSI 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik Bila pada bab-bab sebelumnya kita membahas fungsi sebagai sebuah objek individual, maka pada bab ini dan selanjutnya kita akan

Lebih terperinci

BAB III SUB BARISAN DAN TEOREMA BOLZANO-WEIERSTRASS

BAB III SUB BARISAN DAN TEOREMA BOLZANO-WEIERSTRASS BAB III SUB BARISAN DAN TEOREMA BOLZANO-WEIERSTRASS Dalam bab ini akan kita bahas pengertian tentang sub barisan dari barisan bilangan real, yang lebih umum dibandingkan ekor suatu barisan, serta dapat

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 3. Topologi Garis Bilangan Real 3.1 Teori Limit Limit, supremum, dan infimum Titik limit 3.2 Himpunan Buka dan Himpunan Tutup 3.3

Lebih terperinci

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB September 26, 2011

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB   September 26, 2011 (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 26, 2011 Diberikan sejumlah terhingga bilangan a 1,..., a N, kita dapat menghitung jumlah a 1 + + a N. Namun,

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang

Lebih terperinci

HUBUNGAN LIMIT FUNGSI DAN LIMIT BARISAN PADA TOPOLOGI REAL

HUBUNGAN LIMIT FUNGSI DAN LIMIT BARISAN PADA TOPOLOGI REAL HUBUNGAN LIMIT FUNGSI DAN LIMIT BARISAN PADA TOPOLOGI REAL Ukhti Raudhatul Jannah Program Studi Pendidikan Matematika, FKIP, Universitas Madura Alamat Jalan Raya Panglegur 3,5 KM Pamekasan Abstrak: Tulisan

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

KUANTOR KHUSUS (Minggu ke-8)

KUANTOR KHUSUS (Minggu ke-8) KUANTOR KHUSUS (Minggu ke-8) 1 4 Kuantor Jenis Lain Terdapatlah satu dan hanya satu x yang mempunyai sifat P. ( x)(p(x) ( y)(p(y) = y = x)) Terdapat x yang memenuhi sifat p dan untuk setiap y yang memenuhi

Lebih terperinci

F. RANCANGAN KEGIATAN BELAJAR MENGAJAR

F. RANCANGAN KEGIATAN BELAJAR MENGAJAR F. RANCANGAN KEGIATAN BELAJAR MENGAJAR No. (TIU) : 1. Pendahuluan Mahasiswa dapat memahami pengertian dan konsep himpunan, fungsi dan induksi matematik, mampu menerapkannya dalam penyelesaian soal dan

Lebih terperinci

CATATAN KULIAH ANALISIS REAL LANJUT

CATATAN KULIAH ANALISIS REAL LANJUT CATATAN KULIAH ANALISIS REAL LANJUT May 26, 203 A Lecture Note Acknowledgement of Sources For all ideas taken from other sources (books, articles, internet), the source of the ideas is mentioned in the

Lebih terperinci

URAIAN POKOK-POKOK PERKULIAHAN

URAIAN POKOK-POKOK PERKULIAHAN Pertemuan ke-: 10, 11, dan 12 Penyusun : Kosim Rukmana Materi: Barisan Bilangan Real 7. Barisan dan Limit Barisan 6. Teorema Limit Barisan 7. Barisan Monoton URAIAN POKOK-POKOK PERKULIAHAN 7. Barisan dan

Lebih terperinci

FUNGSI KONTINU. sedemikian sehingga jika x adalah titik dari A (c), maka f (x) berada pada Vg (f (c)). (Lihat Gambar 5.1.1).

FUNGSI KONTINU. sedemikian sehingga jika x adalah titik dari A (c), maka f (x) berada pada Vg (f (c)). (Lihat Gambar 5.1.1). FUNGSI KONTINU 51 FUNGSI KONTINU 511 Definisi A R, f: A R, dan c A Kita mengatakan bahwa f kontinu di c jika, diberi persekitaran Vg (f (c)) dari f (c) terdapat persekitaran (c) dari c sedemikian sehingga

Lebih terperinci

Bab 2 Fungsi Analitik

Bab 2 Fungsi Analitik Bab 2 Fungsi Analitik Bab 2 ini direncanakan akan disampaikan dalam 4 kali pertemuan, dengan perincian sebagai berikut: () Pertemuan I: Fungsi Kompleks dan Pemetaan. (2) Pertemuan II: Limit Fungsi, Kekontiuan,

Lebih terperinci

Muhafzan FUNGSI KONTINU. Muhafzan, Ph.D

Muhafzan FUNGSI KONTINU. Muhafzan, Ph.D 1 FUNGSI KONTINU, Ph.D FUNGSI KONTINU 3 1 Kekontinuan Bab ini akan diawali dengan klas fungsi yang terpenting dalam analisis riil, yaitu klas fungsi-fungsi kontinu. Terlebih dahulu akan didenisikan gagasan

Lebih terperinci

BAB I PENDAHULUAN. : k N} dan A(m) menyatakan banyaknya m suku pertama (x n ) yang menjadi suku (x nk ), maka A(m)

BAB I PENDAHULUAN. : k N} dan A(m) menyatakan banyaknya m suku pertama (x n ) yang menjadi suku (x nk ), maka A(m) BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Konvergensi barisan bilangan real mempunyai banyak peranan dan aplikasi yang cukup penting pada beberapa bidang matematika, antara lain pada teori optimisasi,

Lebih terperinci

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, Lecture 4. Limit B A. Continuity Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, (2) lim f(x) ada, (3) lim f(x) =

Lebih terperinci

Definisi. Turunan (derivative) suatu fungsi f di sebarang titik x adalah. f merupakan fungsi baru yang disebut turunan dari f (derivative of f).

Definisi. Turunan (derivative) suatu fungsi f di sebarang titik x adalah. f merupakan fungsi baru yang disebut turunan dari f (derivative of f). Lecture 5. Derivatives C A. Turunan (derivatives) Sebagai Fungsi Definisi. Turunan (derivative) suatu fungsi f di sebarang titik x adalah f ()() (x) = lim. f merupakan fungsi baru yang disebut turunan

Lebih terperinci

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi semua fungsi yang terintegralkan Lebesgue, 1. Sebagaimana telah dirumuskan

Lebih terperinci

KONSISTENSI ESTIMATOR

KONSISTENSI ESTIMATOR KONSISTENSI ESTIMATOR TUGAS STATISTIKA MATEMATIKA II Oleh 1. Wahyu Nikmatus S. (121810101010) 2. Vivie Aisyafi F. (121810101050) 3. Rere Figurani A. (121810101052) 4. Dwindah Setiari W. (121810101054)

Lebih terperinci

PENGANTAR ANALISIS REAL

PENGANTAR ANALISIS REAL Seri Analisis dan Geometri No. 1 (2009), -15 158 (173 hlm.) PENGANTAR ANALISIS REAL Oleh Hendra Gunawan Edisi Pertama Bandung, Januari 2009 2000 Dewey Classification: 515-xx. Kata Kunci: Analisis matematika,

Lebih terperinci

Kuliah 2: FUNGSI MULTIVARIABEL. Indah Yanti

Kuliah 2: FUNGSI MULTIVARIABEL. Indah Yanti Kuliah 2: FUNGSI MULTIVARIABEL Indah Yanti Definisi Dasar Perhatikan fungsi f: A R n R m : x f x n = m = 1 fungsi bernilai riil satu variabel n = 1, m > 1 fungsi bernilai vektor satu variabel n > 1, m

Lebih terperinci

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan ANALISIS REAL 1 Perkuliahan ini dimaksudkan memberikan kemampuan pada mahasiswa agar dapat memahami pernyataan-pernyataan matematika secara baik dan benar, berpikir secara logis, kritis dan sistematis,

Lebih terperinci

F. RANCANGAN KEGIATAN BELAJAR MENGAJAR

F. RANCANGAN KEGIATAN BELAJAR MENGAJAR F. RANCANGAN KEGIATAN BELAJAR MENGAJAR No. (TIU) 1. Limit Fungsi Mahasiswa dapar memahami secara mendalam (deduktif) pengertian limit fungsi, definisi dan te-orema-teorema serta mampu menga-plikasikannya

Lebih terperinci

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika Bilangan prima telah dikenal sejak sekolah dasar, yaitu bilangan yang tidak mempunyai faktor selain dari 1 dan dirinya sendiri. Bilangan prima memegang peranan penting karena pada dasarnya konsep apapun

Lebih terperinci

Definisi 1 Deret Tak Hingga adalah suatu ekspresi yang dapat dinyatakan dalam bentuk:

Definisi 1 Deret Tak Hingga adalah suatu ekspresi yang dapat dinyatakan dalam bentuk: DERET TAK HINGGA Definisi 1 Deret Tak Hingga adalah suatu ekspresi yang dapat dinyatakan dalam bentuk: u k = u 1 + u 2 + u 3 + + u k + Bilangan-bilangan u 1, u 2, u 3, disebut suku-suku dalam deret tersebut.

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

asimtot.wordpress.com BAB I PENDAHULUAN

asimtot.wordpress.com BAB I PENDAHULUAN BAB I PENDAHULUAN. Latar Belakang Kalkulus Differensial dan Integral sangat luas penggunaannya dalam berbagai bidang seperti penentuan maksimum dan minimum. Suatu fungsi yang sering digunakan mahasiswa

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

Matematika I : Limit. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 79

Matematika I : Limit. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 79 Matematika I : Limit Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 79 Outline 1 limit Introduction to Limit Rigorous Study of Limits Limit Theorem Limit Involving Trigonometric

Lebih terperinci

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh II. TINJAUAN PUSTAKA 2.1 Ruang Metrik Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh aksioma-aksioma tertentu. Ruang metrik merupakan hal yang fundamental dalam analisis fungsional,

Lebih terperinci

Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua

Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua II. LANDASAN TEORI 2.1 Limit Fungsi Definisi 2.1.1(Edwin J, 1987) Misalkan I interval terbuka pada R dan f: I R fungsi bernilai real. Secara matematis ditulis lim f(x) = l untuk suatu a I, yaitu nilai

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Ringkasan Kalkulus 2, Untuk dipakai di ITB Deret Tak Hingga Pada bagian ini akan dibicarakan penjumlahan berbentuk a +a 2 + +a n + dengan a n R Sebelumnya akan dibahas terlebih dahulu pengertian barisan

Lebih terperinci

BAB III TRANSFORMASI MATRIKS DERET DIRICHLET HOLOMORFIK. A. Transformasi Matriks Mengawetkan Kekonvergenan

BAB III TRANSFORMASI MATRIKS DERET DIRICHLET HOLOMORFIK. A. Transformasi Matriks Mengawetkan Kekonvergenan BAB III TRANSFORMASI MATRIKS DERET DIRICHLET HOLOMORFIK A. Transformasi Matriks Mengawetkan Kekonvergenan Pada bagian A ini pembahasan dibagi menjadi dua bagian, yang pertama membahas mengenai transformasi

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. August 18, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. August 18, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 18, 2011 Kita telah mencatat sebelumnya bahwa supremum dan infimum suatu himpunan tidak harus merupakan anggota himpunan

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 4.2 Sifat-Sifat Fungsi Kontinu Diberikan f dan g, keduanya terdefinisi pada himpunan A, kita definisikan f + g, f g, fg, f/g secara

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

Deret Binomial. Ayundyah Kesumawati. June 25, Prodi Statistika FMIPA-UII. Ayundyah (UII) Deret Binomial June 25, / 14

Deret Binomial. Ayundyah Kesumawati. June 25, Prodi Statistika FMIPA-UII. Ayundyah (UII) Deret Binomial June 25, / 14 Deret Binomial Ayundyah Kesumawati Prodi Statistika FMIPA-UII June 25, 2015 Ayundyah (UII) Deret Binomial June 25, 2015 1 / 14 Pendahuluan Deret Binomial Kita telah mengenal Rumus Binomial. Untuk bilangan

Lebih terperinci

MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri

MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri MATEMATIKA LIMIT FUNGSI SMK NEGERI 1 SURABAYA Halaman 1 BAB LIMIT FUNGSI A. Limit Fungsi Aljabar PENGERTIAN

Lebih terperinci

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang

Lebih terperinci

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat 1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat dan logos yang artinya ilmu merupakan cabang matematika yang bersangkutan dengan

Lebih terperinci

Dwi Lestari, M.Sc: Konvergensi Deret 1. KONVERGENSI DERET

Dwi Lestari, M.Sc: Konvergensi Deret   1. KONVERGENSI DERET 1. KONVERGENSI DERET Suatu barisan disebut konvergen jika terdapat bilangan Z yang setiap lingkungannya memuat semua. Jika bilangan Z itu ada maka dapat ditulis: lim sehingga dapat dikatakan bahwa barisan

Lebih terperinci

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka Contoh 5 Buktikan jika c 0 maka c c Analisis Pendahuluan Akan dicari bilangan 0 sedemikian sehingga apabila c untuk setiap 0. 0 c berlaku Perhatikan: c ( c)( c) c c c c Dapat dipilih c Bukti: c c c Ambil

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral merupakan salah satu konsep penting dalam matematika dan banyak aplikasinya. Dalam kehidupan sehari-hari integral dapat diaplikasikan dalam berbagai

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Analisis merupakan salah satu cabang matematika yang mempelajari antara lain barisan, limit, deret, kekontinuan, kekonvergenan, integral, dan yang lainnya.

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL 1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita

Lebih terperinci

TITIK TETAP NADLR FUNGSI MULTI NILAI KONTRAKTIF PADA RUANG METRIK ( ) Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60111

TITIK TETAP NADLR FUNGSI MULTI NILAI KONTRAKTIF PADA RUANG METRIK ( ) Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60111 TITIK TETAP NADLR FUNGSI MULTI NILAI KONTRAKTIF PADA RUANG METRIK ( ) Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60111 Abstract. In this paper was discussed about Nadlr fixed

Lebih terperinci