MENYELESAIKAN PERMAINAN DENGAN METODE NILAI SHAPLEY ABSTRACT

Ukuran: px
Mulai penontonan dengan halaman:

Download "MENYELESAIKAN PERMAINAN DENGAN METODE NILAI SHAPLEY ABSTRACT"

Transkripsi

1 MENYELESAIKAN PERMAINAN DENGAN METODE NILAI SHAPLEY Hendra Saputra 1, T. P. Nababan 2, M. D. H. Gamal 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Operasi Riset, Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia hendrasaputra234@gmail.com ABSTRACT We study the Shapley value methods in solving n-person game. It is defined as a characteristic function, which is the player s coalition form. The optimal strategy of every player is determined by the characteristic function. A numerical example is given at the last of the discussion. Keywords: characteristic function, Shapley value method, optimal strategy ABSTRAK Pada artikel ini dibahas metode nilai Shapley dalam menyelesaikan permainan n- orang. Fungsi karakteristik didefinisikan untuk menunjukkan kerja sama yang terjadi di antara pemain. Komputasi terhadap strategi terbaik untuk setiap pemain dapat ditentukan berdasarkan fungsi karakteristik yang dimiliki oleh setiap pemain. Pada akhir pembahasan diberikan komputasi terhadap permainan n-orang. Kata kunci: fungsi karakteristik, metode nilai Shapley, strategi terbaik 1. PENDAHULUAN Teori permainan merupakan teori yang dipergunakan dalam mengambil suatu keputusan terhadap suatu kegiatan kompetitif. Kompetisi tersebut tidak hanya terjadi di antara dua orang, tetapi juga dapat terjadi di antara beberapa orang. Untuk permainan yang melibatkan dua pemain, pada [1, h. 14] jika strategi murni tidak dapat dilakukan maka berlaku strategi campuran. Kemudian, permainan dengan strategi campuran dapat diselesaikan dengan pemograman linear [2, h. 45]. Untuk permainan yang melibatkan lebih dari dua pemain, penyelesaian permainan tersebut melibatkan fungsi karakterstik. Winston menyatakan pada [3, h. 837] bahwa metode nilai Shapley merupakan salah satu solusi dalam menyelesaikan permainan yang terdiri dari n-pemain dengan n 3. Berdasarkan hal tersebut, penulis tertarik membahas tentang menyelesaikan 1

2 permainan n-pemain dengan metode nilai Shaley. Artikel ini merupakan penelitian dengan studi literatur berdasarkan [1], [2] dan [3]. Artikel ini terdiri dari tiga bagian, dengan bagian satu merupakan pendahuluan yang memberikan gambaran umum mengenai permasalahan yang dibahas. Pada bagian dua dibahas mengenai fungsi karakteristik dan metode nilai Shapley dalam menyelesaikan permainan n-pemain. Kemudian, pada bagian tiga diberikan contoh pembahasan permainan yang terdiri dari 4 pemain dan penyelesaiannya. 2. FUNGSI KARAKTERISTIK DAN NILAI SHAPLEY Fungsi karakteristik digunakan dalam menyelesaikan permainan n-pemain dengan kerja sama diizinkan diantara pemain. Definisi 1 [1, h. 213] Misalkan N = {1,2,...,n} merupakan himpunan seluruh pemain, untuk suatu permainan n-pemain sebarang subhimpunan tak kosong dari N disebut dengan kerja sama. Definisi 2 [1, h. 213] Fungsi karakteristik suatu permainan n-pemain merupakan fungsi bilangan rill v yang didefinisikan pada subhimpunan dari himpunan pemain N, di mana untuk setiap S N merupakan nilai maksimin dari permainan dua orang yang dimainkan di antara kerja sama S dan N S. Definisi 3 [1, h. 213] Permainan n-pemain dalam bentuk fungsi karakteristik adalah fungsi bilangan rill v yang terdefinisi pada subhimpunan pemain N yang memenuhi: 1. v( ) = Jika S T =, maka v(s T) v(s)+v(t) dengan S,T N. Definisi 1, 2 dan 3 merupakan definisi dari fungsi karakteristik. Definisi 4 [1, h. 261] Pembawa pada permainan v merupakan suatu koalisi T sehingga untuk sebarang S, v(s) = v(s T). Definisi 5 [1, h. 261] Misalkan v merupakan permainan yang terdiri dari n-pemain dan π adalah sebarang permutasi dari himpunan N. Maka π merupakan permainan u sehingga untuk sebarang S = i 1,i 2,...,i s, u(π(i 1 ),π(i 2 ),...,π(i s )) = v(s). Secara sederhana, permainan u merupakan permainan v dengan syarat bahwa pemain dipertukarkan oleh permutasi π. Berdasarkan Definisi 4 dan 5, Lloyd Shapley membentuk suatu aksioma. 2

3 Aksioma 6 (Aksioma Shapley)[1, h. 262] Nilai dari suatu permainan v, n-vektor ϕ[v] memenuhi A1. Jika S adalah sebarang pembawa dari S, maka S ϕ i(v) = v(s). A2. Untuk sebarang permutasi π dan i N, ϕ π(i) [πv] = ϕ i (v). A3. Jika u dan v adalah sebarang permainan, ϕ i [u+v] = ϕ i [u]+ϕ i [v]. Lema 7 [1, h. 262] Untuk sebarang koalisi S, misalkan permainan w S didefinisikan oleh { 0 jika S T, w S = 1 jika S T. Jika s merupakan jumlah pemain di S, maka perolehan pemain ke-i pada permainan w S adalah { 1/s jika i S, ϕ i [w S ] = (1) 0 jika i / S Bukti. Karena S subhimpunan dari T, akibatnya S merupakan pembawa terhadap permainan w S. Berdasarkan Aksioma 6 A2, diperoleh T ϕ i[w S ] = 1 jika S T. Hal tersebut juga berarti bahwa ϕ i [w S ] = 0 jika i / S. Selanjutnya jika π adalah sebarang permutasi yang membawa S ke dirinya sendiri, pastilah πw S = w S. Berdasarkan Aksioma 6 A2, diperoleh ϕ i [w S ] = ϕ j [w S ] untuk i,j S. Karena terdapat s-kali bentuk ϕ i [w S ] = ϕ j [w S ] dan jika dijumlahkan adalah 1, akibatnya haruslah ϕ i [w S ] = 1/s untuk i S. Lema 8 [1, h. 263] Jika v adalah sebarang permainan, maka terdapat sebanyak 2 n 1 bilangan asli c S untuk S N sedemikian hingga v = S N c S w S, (2) dengan w S seperti yang didefinisikan pada Lema 7. Bukti. Misalkan c S = ( 1) s t v(t) (3) T S dengan t adalah jumlah elemen di T. Akan ditunjukkan bahwa c S pada persamaan 3 akan memenuhi Lema 8. Misalkan U merupakan sebarang koalisi sehingga c S w S (U) = c S = ( ) ( 1) s t v(t) S N S U S U T S ( 1) s t v(t). (4) = T U S U S T 3

4 Kemudian, perhatikan persamaan 4 yang di dalam kurung. Untuk setiap nilai s di antara t dan u, terdapat ( u t u s) himpunan S dengan s elemen sehingga T S U. Akibatnya, persamaan yang di dalam kurung dapat diganti dengan u ( ) u t ( 1) s t. (5) u s Tapi, persamaan5merupakanpenjabaranbinomialdari(1 1) u t yangakanbernilai nol jika t < u dan bernilai satu jika t = u. Akibatnya diperoleh v(u) = S N c S w S (U) untuk semua U N. Teorema 9 [1, h. 262] Terdapat fungsi tunggal ϕ yang didefinisikan pada semua permainan yang memenuhi Aksioma 6. Bukti. Berdasarkan Lema 8, dijelaskan bahwa sebarang permainan dapat berupa kombinasi linear dari permainan w S. Berdasarkan Lema 7; untuk suatu permainan, fungsi ϕ terdefinisi. Nilai koefisien c S dapat berupa bilangan negatif, namun berdasarkan Aksioma 6 A3, jika u, v, dan u v merupakan permainan, maka ϕ[u v] = ϕ[u] ϕ[v]. Berdasarkan aksioma A3, untuk semua permainan v, fungsi ϕ terdefinisi. Selanjutnya adalah menentukan bentuk eksak fungsi ϕ. Diketahui dari persamaan 2 bahwa v = S N c S w S dan dari persamaan 1 ϕ i [v] = S N c S ϕ i [w S ] = S N i S c S 1 s. Karena c S telah didefinisikan pada persamaan 3, sehingga ϕ i [v] = [ ] 1 ( 1) s t v(t), s S N T S i S dan ϕ i [v] = T N S N T {i} S ( 1) s t1 s v(t). (6) 4

5 Berdasarkan persamaan 6, misalkan γ i = S N T {i} S ( 1) s t1 s. (7) Berdasarkan persamaan 6 dapat diketahui bahwa jika i / T dan T = T i, maka γ i (T ) = γ i (T). Bentuk pada sisi kanan persamaan 7 akan bernilai sama untuk kedua kasus, kecuali untuk t = t + 1 terdapat perubahan tanda, sehingga persamaan 6 menjadi ϕ i [v] = T N i T γ i (T)[v(T) v(t i)]. (8) ( Selanjutnyaadalahmenentukannilaiγ i padapersamaan7. Jikai T,akanterdapat n t s t) koalisi S dengan s elemen sehingga T S dan diperoleh n ( ) n t 1 γ i (T) = ( 1) s t s t s. (9) Dengan melakukan manipulasi aljabar, bentuk 1/s dapat diubah menjadi 1 0 xs 1 dx sehingga persamaan 9 menjadi n ( ) n t 1 γ i (T) = ( 1) s t x s 1 dx s t = = 1 n ( 1) s t ( n t s t x t 1 n ) x s 1 dx ( 1) s t ( n t s t ) x s t dx. Bentuk n ( 1)s t( n t s t) x s t merupakan penjabaran binomial dari (1 x) n t sehingga γ i (T) = 1 Berdasarkan persamaan 8 dan 10, diperoleh ϕ i [v] = T N i T 0 x t 1 (1 x) n t dx γ i (T) = (t 1)!(n t)!. (10) n! (t 1)!(n t)! [v(t) v(t i)]. (11) n! Secara eksplisit, persamaan 11 merupakan nilai Shapley sehingga Teorema 9 terbukti. Prosedur pengerjaan untuk menentukan nilai dan strategi optimal untuk sebarang permainan n-pemain dengan nilai Shapley adalah 5

6 1. Tentukan fungsi karakteristik untuk semua koalisi pada permainan. Kemudian lanjutkan ke langkah Selesaikan permainan dengan menggunakan persamaan 11 sehingga setiap pemain memperoleh nilai Shapley dari seluruh perolehan yang mungkin diperolehnya dari kerja sama yang terbentuk. 3. CONTOH PEMBAHASAN Suatu firma dimiliki empat orang pemegang saham dengan pembagian masingmasing pemegang saham adalah 5, 25, 30 dan 40 persen. Kebijakan firma tersebut hanya dapat ditetapkan melalui persetujuan pemegang saham dengan jumlah total saham minimal 50 persen. Permainan tersebut merupakan permainan yang terdiri dari empat pemain, sehingga n = 4. Dalam sudut pandang pemain, setiap pemain akan berusaha untuk ikut dalam menentukan kebijakan firma dan berdasarkan Definisi 3, fungsi karakteristik yang dapat dibentuk yaitu v({2, 3}), v({2, 4}), v({3, 4}), v({1, 2, 3}), v({1,2,4}), v({2,3,4}) dan v({1,2,3,4}). Kerjasama agar Pemain 1 menang dan pemain lain kalah adalah v({1,2,3}), diperoleh t = 3, akibatnya nilai Shapley Pemain 1 adalah ϕ 1 = 2!1! = 1 4! 12. Dengan cara yang sama, v({2,3}), v({2,4}) dan v({2,3,4}) merupakan kerja sama jika Pemain 2 tidak disertakan maka tidak terdapat persetujuan pada firma sehingga ϕ 2 = = 1 4. Demikian pula dengan Pemain 3 dan Pemain 4, akan diperoleh ϕ 3 = 1 dan ϕ 4 4 = Vektor nilai Shapley permainan tersebut adalah (1/12, 1/4, 1/4, 5/12). Meskipun Pemain 3 memiliki nilai saham 5 persen lebih besar dari Pemain 2, namun nilai Shapley kedua pemain sama. Hal tersebut terjadi karena Pemain 3 tidak memiliki kesempatan membentuk kerja sama yang lebih baik dari kerja sama yang dibentuk oleh Pemain 2. Di sisi lain, Pemain 4 memiliki nilai saham yang paling besar dari pemain lain sehingga apabila ia menyepakati suatu keputusan firma, pastilah ia memiliki kesempatan yang jauh lebih baik dari pemain lainnya dibandingkan dengan Pemain 1 yang tidak demikian. DAFTAR PUSTAKA [1] Owen, G Game Theory 3 rd Ed. Academic Press Inc., California. [2] Thomas, L. C Games, Theory and Applications. Dover Publications Inc., New York. [3] Winston, W. L Operation Research: Applications and Logarithms 4 th Ed. Thomson Learning Inc., California. 6

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 8 BAB 2 LANDASAN TEORI Pada bab ini akan dibahas beberapa konsep teori permainan pada permainan berstrategi murni dan campuran dari dua pemain yang akan digunakan sebagai landasan berpikir dalam melakukan

Lebih terperinci

PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK. Nurul Ain Farhana 1, Imran M. 2 ABSTRACT

PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK. Nurul Ain Farhana 1, Imran M. 2 ABSTRACT PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK Nurul Ain Farhana, Imran M Mahasiswa Program Studi S Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Lecture 1: Concept of Game Theory A. Pendahuluan bidang perdagangan (bisnis), olahraga, peperangan (pertahanan), dan politik

Lecture 1: Concept of Game Theory A. Pendahuluan bidang perdagangan (bisnis), olahraga, peperangan (pertahanan), dan politik Lecture 1: Concept of Game Theory A. Pendahuluan Dalam kehidupan sehari-hari kita sering menjumpai kegiatan-kegiatan yang bersifat kom-petitif yang diwarnai dengan suatu keadaan persaingan (konflik). Persaingan

Lebih terperinci

BAB IV TEORI PERMAINAN

BAB IV TEORI PERMAINAN BAB IV TEORI PERMAINAN Teori permainan merupakan suatu model matematika yang digunakan dalam situasi konflik atau persaingan antara berbagai kepentingan yang saling berhadapan sebagai pesaing. Dalam permaian

Lebih terperinci

Istilah games atau permainan berhubungan erat dengan kondisi pertentangan bisnis yang meliputi suatu periode tertentu.

Istilah games atau permainan berhubungan erat dengan kondisi pertentangan bisnis yang meliputi suatu periode tertentu. Istilah games atau permainan berhubungan erat dengan kondisi pertentangan bisnis yang meliputi suatu periode tertentu. Saingan-saingan yang memanfaatkan teknik matematika dan pemikiran logis agar sampai

Lebih terperinci

METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT

METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR Adek Putri Syafriani, Syamsudhuha 2, Zulkarnain 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan

Lebih terperinci

9. Teori Aproksimasi

9. Teori Aproksimasi 44 Hendra Gunawan 9 Teori Aproksimasi Mulai bab ini tema kita adalah aproksimasi fungsi dan interpolasi Diberikan sebuah fungsi f, baik secara utuh ataupun hanya beberapilai di titik-titik tertentu saja,

Lebih terperinci

Pertemuan 7 GAME THEORY / TEORI PERMAINAN

Pertemuan 7 GAME THEORY / TEORI PERMAINAN Pertemuan 7 GAME THEORY / TEORI PERMAINAN Objektif: 1. Mahasiswa dapat merumuskan masalah dalam game theory / teori permainan 2. Mahasiswa dapat mencari penyelesaian masalah dalam proses pengambilan keputusan

Lebih terperinci

SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU ABSTRACT

SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU ABSTRACT SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU Vanny Octary 1 Endang Lily 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

TEORI PERMAINAN GAME THEORY MATA KULIAH RISET OPERASI

TEORI PERMAINAN GAME THEORY MATA KULIAH RISET OPERASI TEORI PERMAINAN GAME THEORY MATA KULIAH RISET OPERASI KETENTUAN UMUM 1. Teori permainan memusatkan pada analisis keputusan dalam suasana konflik 2. Setiap pemain bermain rasional, dengan asumsi memiliki

Lebih terperinci

MENYELESAIKAN PERSOALAN TRANSPORTASI DENGAN KENDALA CAMPURAN

MENYELESAIKAN PERSOALAN TRANSPORTASI DENGAN KENDALA CAMPURAN MENYELESAIKAN PERSOALAN TRANSPORTASI DENGAN KENDALA CAMPURAN J. K. Sari, A. Karma, M. D. H. Gamal junikartika.sari@ymail.com Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan Jurusan

Lebih terperinci

FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU ABSTRACT

FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU ABSTRACT FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU Syofia Deswita 1, Syamsudhuha 2, Agusni 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

Bab 1 PENDAHULUAN. 1.1 Latar Belakang

Bab 1 PENDAHULUAN. 1.1 Latar Belakang Bab 1 PENDAHULUAN 1.1 Latar Belakang Teori himpunan fuzzy banyak diterapkan dalam berbagai disiplin ilmu seperti teori kontrol dan manajemen sains, pemodelan matematika dan berbagai aplikasi dalam bidang

Lebih terperinci

MODIFIKASI APROKSIMASI TAYLOR DAN PENERAPANNYA

MODIFIKASI APROKSIMASI TAYLOR DAN PENERAPANNYA MODIFIKASI APROKSIMASI TAYLOR DAN PENERAPANNYA Irpan Riski M 1, Musraini M 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

Matriks Permainan (Payoff matrix) Matriks Permainan Jumlah tak NOL

Matriks Permainan (Payoff matrix) Matriks Permainan Jumlah tak NOL Definisi Teori permainan adalah suatu pendekatan matematis untuk merumuskan situasi dan pertentangan (konfleks) antar berbagai kepentingan. Teori ini dikembangkan untuk meng-analisis proses pengambil keputusan

Lebih terperinci

METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR ABSTRACT

METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR ABSTRACT METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR I. P. Edwar, M. Imran, L. Deswita Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. INTEGRASI NUMERIK TANPA ERROR UNTUK FUNGSI-FUNGSI TERTENTU Irma Silpia 1, Syamsudhuha, Musraini M. 1 Mahasiswi Jurusan Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

Teori permainan mula-mula dikembangkan oleh ilmuan Prancis bernama Emile Borel, secara umum digunakan untuk menyelesaikan masalah yang

Teori permainan mula-mula dikembangkan oleh ilmuan Prancis bernama Emile Borel, secara umum digunakan untuk menyelesaikan masalah yang BAB 2 LANDASAN TEORI 2.1 Strategi Pemasaran Strategi pemasaran adalah pola pikir pemasaran yang akan digunakan untuk mencapai tujuan pemasarannya. Strategi pemasaran berisi strategi spesifik untuk pasar

Lebih terperinci

MENENTUKAN INVERS SUATU MATRIKS DENGAN MENGGUNAKAN METODE AUGMENTASI DAN REDUKSI ABSTRACT

MENENTUKAN INVERS SUATU MATRIKS DENGAN MENGGUNAKAN METODE AUGMENTASI DAN REDUKSI ABSTRACT MENENTUKAN INVERS SUATU MATRIKS DENGAN MENGGUNAKAN METODE AUGMENTASI DAN REDUKSI S. E. Wati 1, M. Imran 2, A. Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

untuk setiap x sehingga f g

untuk setiap x sehingga f g Jadi ( f ( f ) bernilai nol untuk setiap x, sehingga ( f ( f ) fungsi nol atau ( f ( f ) Aksioma 5 Ambil f, g F, R, ( f g )( f g ( g( g( ( f g)( Karena ( f g )( ( f g)( untuk setiap x sehingga f g Aksioma

Lebih terperinci

SOLUSI NUMERIK UNTUK PERSAMAAN INTEGRAL KUADRAT NONLINEAR. Eka Parmila Sari 1, Agusni 2 ABSTRACT

SOLUSI NUMERIK UNTUK PERSAMAAN INTEGRAL KUADRAT NONLINEAR. Eka Parmila Sari 1, Agusni 2 ABSTRACT SOLUSI NUMERIK UNTUK PERSAMAAN INTEGRAL KUADRAT NONLINEAR Eka Parmila Sari 1, Agusni 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

MENENTUKAN PERPANGKATAN MATRIKS TANPA MENGGUNAKAN EIGENVALUE

MENENTUKAN PERPANGKATAN MATRIKS TANPA MENGGUNAKAN EIGENVALUE MENENTUKAN PERPANGKATAN MATRIKS TANPA MENGGUNAKAN EIGENVALUE Rini Pratiwi 1*, Rolan Pane 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu

Lebih terperinci

MODEL PENGENDALIAN PERSEDIAAN DENGAN PENUNGGAKAN PESANAN KETIKA TERJADI KEKURANGAN STOK. F. Aldiyah 1, E. Lily 2 ABSTRACT

MODEL PENGENDALIAN PERSEDIAAN DENGAN PENUNGGAKAN PESANAN KETIKA TERJADI KEKURANGAN STOK. F. Aldiyah 1, E. Lily 2 ABSTRACT MODEL PENGENDALIAN PERSEDIAAN DENGAN PENUNGGAKAN PESANAN KETIKA TERJADI KEKURANGAN STOK F. Aldiyah 1, E. Lily 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu

Lebih terperinci

PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR. Merintan Afrina S ABSTRACT

PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR. Merintan Afrina S ABSTRACT PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR Merintan Afrina S Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK Risvi Ayu Imtihana 1, Asmara Karma 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari sering dijumpai kegiatan-kegiatan yang bersifat kompetitif yang diwarnai persaingan atau konflik. Konflik ini dapat terjadi antara dua

Lebih terperinci

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta Bahan Ajar: BAB POKOK BAHASAN I MODUL ATAS RING Direncanakan

Lebih terperinci

Yurnalis 1. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Yurnalis 1. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. SIFAT MULTIPLICATIVE PADA HIIMPUNAN SISA Yurnalis 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia

Lebih terperinci

CHAPTER 5 INDUCTION AND RECURSION

CHAPTER 5 INDUCTION AND RECURSION CHAPTER 5 INDUCTION AND RECURSION 5.1 MATHEMATICAL INDUCTION Jumlah n Bilangan Ganjil Positif 1 = 1 1 + 3 = 4 1 + 3 + 5 = 9 1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 + 9 = 25 Tebakan: Jumlah dari n bilangan ganjil

Lebih terperinci

MENGOPTIMALKAN PENJADWALAN SEKURITI DENGAN MODEL GOAL PROGRAMMING ABSTRACT ABSTRAK

MENGOPTIMALKAN PENJADWALAN SEKURITI DENGAN MODEL GOAL PROGRAMMING ABSTRACT ABSTRAK MENGOPTIMALKAN PENJADWALAN SEKURITI DENGAN MODEL GOAL PROGRAMMING Said Almuhajir 1, T. P. Nababan 2, M. D. H. Gamal 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

GENERALISASI METODE GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT

GENERALISASI METODE GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT GENERALISASI METODE GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR Andri Ramadhan 1, Syamsudhuha 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan

Lebih terperinci

CHAPTER 5 INDUCTION AND RECURSION

CHAPTER 5 INDUCTION AND RECURSION CHAPTER 5 INDUCTION AND RECURSION 5.1 MATHEMATICAL INDUCTION Jumlah n Bilangan Ganjil Positif 1 = 1 1 + 3 = 4 1 + 3 + 5 = 9 1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 + 9 = 25 Tebakan: Jumlah dari n bilangan ganjil

Lebih terperinci

METODE BEDA HINGGA UNTUK MENENTUKAN HARGA OPSI SAHAM TIPE EROPA DENGAN PEMBAGIAN DIVIDEN. Lidya Krisna Andani ABSTRACT

METODE BEDA HINGGA UNTUK MENENTUKAN HARGA OPSI SAHAM TIPE EROPA DENGAN PEMBAGIAN DIVIDEN. Lidya Krisna Andani ABSTRACT METODE BEDA HINGGA UNTUK MENENTUKAN HARGA OPSI SAHAM TIPE EROPA DENGAN PEMBAGIAN DIVIDEN Lidya Krisna Andani Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS

MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS MODULES AND BASES OF FREE MODULES Dian Mardiani Pendidikan Matematika, STKIP Garut Garut, Indonesia Alfid51@yahoo.com Abstrak Penelitian ini membahas beberapa

Lebih terperinci

BAB II TEORI KODING DAN TEORI INVARIAN

BAB II TEORI KODING DAN TEORI INVARIAN BAB II TEORI KODING DAN TEORI INVARIAN Pada bab 1 ini akan dibahas definisi kode, khususnya kode linier atas dan pencacah bobot Hammingnya. Di samping itu, akan dijelaskanan invarian, ring invarian dan

Lebih terperinci

TEORI PERMAINAN GAME THEORY MATA KULIAH RISET OPERASI

TEORI PERMAINAN GAME THEORY MATA KULIAH RISET OPERASI TEORI PERMAINAN GAME THEORY MATA KULIAH RISET OPERASI KETENTUAN UMUM 1. Teori permainan memusatkan pada analisis keputusan dalam suasana konflik 2. Setiap pemain bermain rasional, dengan asumsi memiliki

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN GENERALISASI METODE JACOBI

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN GENERALISASI METODE JACOBI PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN GENERALISASI METODE JACOBI Sandra Roza 1*, M. Natsir 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen JurusanMatematika Fakultas Matematika dan

Lebih terperinci

Pengertian Teori permainan adalah suatu pendekatan matematis untuk merumuskan situasi dan pertentangan (konfleks) antar berbagai kepentingan.

Pengertian Teori permainan adalah suatu pendekatan matematis untuk merumuskan situasi dan pertentangan (konfleks) antar berbagai kepentingan. Pengertian Teori permainan adalah suatu pendekatan matematis untuk merumuskan situasi dan pertentangan (konfleks) antar berbagai kepentingan. Teori ini dikembangkan untuk menganalisis proses pengambil

Lebih terperinci

METODE ITERASI AOR UNTUK SISTEM PERSAMAAN LINEAR PREKONDISI ABSTRACT

METODE ITERASI AOR UNTUK SISTEM PERSAMAAN LINEAR PREKONDISI ABSTRACT METODE ITERASI AOR UNTUK SISTEM PERSAMAAN LINEAR PREKONDISI Siswanti, Syamsudhuha 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Permainan Teori permainan ( games theory) merupakan salah satu solusi dalam merumuskan keadaan persaingan antara berbagai pihak dan berbagai kepentingan. Pendekatan dalam

Lebih terperinci

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui

Lebih terperinci

KETEROBSERVASIAN SISTEM LINIER DISKRIT

KETEROBSERVASIAN SISTEM LINIER DISKRIT Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 108 114 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KETEROBSERVASIAN SISTEM LINIER DISKRIT MIDIAN MANURUNG Program Studi Matematika, Fakultas Matematika

Lebih terperinci

GERSHGORIN DISK FRAGMENT UNTUK MENENTUKAN DAERAH LETAK NILAI EIGEN PADA SUATU MATRIKS. Anggy S. Mandasary 1, Zulkarnain 2 ABSTRACT

GERSHGORIN DISK FRAGMENT UNTUK MENENTUKAN DAERAH LETAK NILAI EIGEN PADA SUATU MATRIKS. Anggy S. Mandasary 1, Zulkarnain 2 ABSTRACT GERSHGORIN DISK FRAGMENT UNTUK MENENTUKAN DAERAH LETAK NILAI EIGEN PADA SUATU MATRIKS Anggy S. Mandasary 1, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

TEORI PERMAINAN. JHON HENDRI RISET OPERASIONAL UNIVERSITAS GUNADARMA 2009 Page 1

TEORI PERMAINAN. JHON HENDRI RISET OPERASIONAL UNIVERSITAS GUNADARMA 2009 Page 1 TEORI PERMAIA Teori permainan merupakan suatu model matematika yang digunakan dalam situasi konflik atau persaingan antara berbagai kepentingan yang saling berhadapan sebagai pesaing. Dalam permaian peserta

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 9 BAB 2 LANDASAN TEORI 2.1 Konsep Pemasaran Konsep pemasaran merupakan orientasi managemen yang beranggapan bahwa tugas pokok perusahaan ialah menentukan kebutuhan, keinginan dan penilaian dari pasar yang

Lebih terperinci

SOLUSI NUMERIK PERSAMAAN INTEGRO-DIFERENSIAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI TRIANGULAR ABSTRACT ABSTRAK

SOLUSI NUMERIK PERSAMAAN INTEGRO-DIFERENSIAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI TRIANGULAR ABSTRACT ABSTRAK SOLUSI NUMERIK PERSAMAAN INTEGRO-DIFERENSIAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI TRIANGULAR Suci Dini Anggraini 1, Khozin Mu tamar 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika

Lebih terperinci

SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd

SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd SUBRUANG VEKTOR Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd Disusun Oleh : Kelompok 6/ III A4 1. Nina Octaviani Nugraheni 14144100115 2. Emi Suryani 14144100126

Lebih terperinci

ANALISIS PENYELESAIAN RUBIK 2X2 MENGGUNAKAN GRUP PERMUTASI

ANALISIS PENYELESAIAN RUBIK 2X2 MENGGUNAKAN GRUP PERMUTASI βeta p-issn: 2085-5893 e-issn: 2541-0458 Vol. 4 No. 2 (Nopember) 2011, Hal. 151-161 βeta2011 ANALISIS PENYELESAIAN RUBIK 2X2 MENGGUNAKAN GRUP PERMUTASI Abdurahim 1, Mamika Ujianita Romdhini 2, I Gede Adhitya

Lebih terperinci

Pemain B B 1 B 2 B 3 9 5

Pemain B B 1 B 2 B 3 9 5 TEORI PERMAINAN Teori permainan (game theory) adalah suatu pendekatan matematis untuk merumuskan situasi persaingan dan konflik antara berbagai kepentingan. Teori dikembangkan untuk menganalisa proses

Lebih terperinci

KEBEBASAN LINEAR GONDRAN-MINOUX DAN REGULARITAS DALAM ALJABAR MAKS-PLUS

KEBEBASAN LINEAR GONDRAN-MINOUX DAN REGULARITAS DALAM ALJABAR MAKS-PLUS KEBEBASAN LINEAR GONDRAN-MINOUX DAN REGULARITAS DALAM ALJABAR MAKS-PLUS Annisa Rahmawati, Siswanto, Muslich Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret

Lebih terperinci

Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian

Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian Rio Yohanes 1, Nora Hariadi 2, Kiki Ariyanti Sugeng 3 Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424, Indonesia rio.yohanes@sci.ui.ac.id,

Lebih terperinci

1.6 RULES OF INFERENCE

1.6 RULES OF INFERENCE 1.6 RULES OF INFERENCE 1 Argumen Argumen dalam logika adalah kumpulan sejumlah proposisi. Seluruh proposisi dalam suatu argumen, kecuali proposisi terakhir, disebut premis. Sedangkan proposisi terakhir

Lebih terperinci

Riset Operasional Teori Permainan

Riset Operasional Teori Permainan TEORI PERMAINAN KETENTUAN UMUM 1. Setiap pemain bermain rasional, dengan asumsi memiliki intelegensi yang sama, dan tujuan sama, yaitu memaksimumkan payoff, dengan kriteria maksimin dan minimaks. 2. Terdiri

Lebih terperinci

DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN ABSTRACT

DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN ABSTRACT DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN Lucy L. Batubara 1, Deswita. Leli 2, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

RUANG FAKTOR. Oleh : Muhammad Kukuh

RUANG FAKTOR. Oleh : Muhammad Kukuh Muhammad Kukuh, Ruang RUANG FAKTOR Oleh : Muhammad Kukuh Abstraksi Pada struktur aljabar dikenal istilah grup faktor yaitu Jika grup dan N Subgrup normal G, maka grup faktor dengan operasi Apabila G ruang

Lebih terperinci

Perluasan permutasi dan kombinasi

Perluasan permutasi dan kombinasi Perluasan permutasi dan kombinasi Permutasi dengan pengulangan Kombinasi dengan pengulangan Permutasi dengan obyek yang tidak dapat dibedakan Distribusi obyek ke dalam kotak Permutasi dengan pengulangan

Lebih terperinci

METODE GAUSS-SEIDEL PREKONDISI DENGAN MENGGUNAKAN EKSPANSI NEUMANN ABSTRACT

METODE GAUSS-SEIDEL PREKONDISI DENGAN MENGGUNAKAN EKSPANSI NEUMANN ABSTRACT METODE GAUSS-SEIDEL PREKONDISI DENGAN MENGGUNAKAN EKSPANSI NEUMANN Juanita Adrika, Syamsudhuha 2, Asmara Karma 2 Mahasiswa Program Studi S Matematika 2 Dosen Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

SYARAT PERLU DAN CUKUP SISTEM PERSAMAAN LINEAR BERUKURAN m n MEMPUNYAI SOLUSI ABSTRACT

SYARAT PERLU DAN CUKUP SISTEM PERSAMAAN LINEAR BERUKURAN m n MEMPUNYAI SOLUSI ABSTRACT SYARAT PERLU DAN CUKUP SISTEM PERSAMAAN LINEAR BERUKURAN m n MEMPUNYAI SOLUSI Aryan Zainuri 1, Syamsudhuha 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Koko Saputra 1, Supriadi Putra 2, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

MENGHITUNG BANYAKNYA BILANGAN PRIMA YANG LEBIH KECIL DARI ATAU SAMA DENGAN SUATU BILANGAN BULAT n ABSTRACT

MENGHITUNG BANYAKNYA BILANGAN PRIMA YANG LEBIH KECIL DARI ATAU SAMA DENGAN SUATU BILANGAN BULAT n ABSTRACT MENGHITUNG BANYAKNYA BILANGAN PRIMA YANG LEBIH KECIL DARI ATAU SAMA DENGAN SUATU BILANGAN BULAT n Polorida 1, Asli Sirait, Musraini M. 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas

Lebih terperinci

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com 2 G R U P Struktur aljabar adalah suatu himpunan tak kosong S yang dilengkapi dengan satu atau lebih operasi biner. Jika himpunan S dilengkapi dengan satu operasi biner * maka struktur aljabar tersebut

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang 1 BAB 1 PENDAHULUAN 11 Latar Belakang Teori permainan (game theory) adalah bagian dari ilmu matematika yang mempelajari interaksi antar agen, di mana tiap strategi yang dipilih akan memiliki matriks perolehan

Lebih terperinci

Modul 11. PENELITIAN OPERASIONAL GAME THEORY. Oleh : Eliyani PROGRAM KELAS KARYAWAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI

Modul 11. PENELITIAN OPERASIONAL GAME THEORY. Oleh : Eliyani PROGRAM KELAS KARYAWAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI Modul. PENELITIAN OPERASIONAL GAME THEORY Oleh : Eliyani PROGRAM KELAS KARYAWAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS MERCU BUANA http://www.mercubuana.ac.id JAKARTA 7 Modul

Lebih terperinci

METODE ITERATIF YANG DIPERCEPAT UNTUK Z-MATRIKS ABSTRACT

METODE ITERATIF YANG DIPERCEPAT UNTUK Z-MATRIKS ABSTRACT METODE ITERATIF YANG DIPERCEPAT UNTUK Z-MATRIKS Mildayani 1, Syamsudhuha 2, Aziskhan 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus

Lebih terperinci

DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN INTISARI

DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN INTISARI Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 3 (2013), hal. 183-190 DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN Fidiah Kinanti, Nilamsari Kusumastuti, Evi Noviani

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Beberapa tahun terakhir ini, banyak peneliti tertarik mempelajari teori permainan. Teori permainan yang mula-mula dikembangkan oleh ilmuan Prancis bernama Emile Borel

Lebih terperinci

STRATEGI GAME. Achmad Basuki

STRATEGI GAME. Achmad Basuki STRATEGI GAME Achmad Basuki MATERI Strategi dalam Permainan Strategi Murni Strategi Campuran Penyelesaian Analisis (Metode Linear Programming) STRATEGI DALAM PERMAIAN BENTUK STRATEGI PERMAINAN 2 pemain

Lebih terperinci

METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Mahrani 1, M. Imran, Agusni 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

PENERAPAN TEORI PERMAINAN DALAM STRATEGI PEMASARAN PRODUK BAN SEPEDA MOTOR DI FMIPA USU

PENERAPAN TEORI PERMAINAN DALAM STRATEGI PEMASARAN PRODUK BAN SEPEDA MOTOR DI FMIPA USU Saintia Matematika Vol. 1, No. 2 (2013), pp. 129 137. PENERAPAN TEORI PERMAINAN DALAM STRATEGI PEMASARAN PRODUK BAN SEPEDA MOTOR DI FMIPA USU Charles Harianto Simamora, Elly Rosmaini, Normalina Napitupulu

Lebih terperinci

KEKONVERGENAN LEMAH PADA RUANG HILBERT

KEKONVERGENAN LEMAH PADA RUANG HILBERT KEKONVERGENAN LEMAH PADA RUANG HILBERT Moch. Ramadhan Mubarak 1), Encum Sumiaty 2), Cece Kustiawan 3) 1), 2), 3) Departemen Pendidikan Matematika FPMIPA UPI *Surel: ramadhan.101110176@gmail.com ABSTRAK.

Lebih terperinci

I. PENDAHULUAN. Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara historis

I. PENDAHULUAN. Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara historis 1 I. PENDAHULUAN 1.2 Latar Belakang dan Masalah Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara historis aljabar dibagi menjadi dua periode waktu, dengan batas waktu sekitar tahun

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

UNNES Journal of Mathematics

UNNES Journal of Mathematics UJM 6 (1) 2017 UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm STRUKTUR DAN SIFAT-SIFAT K-ALJABAR Deni Nugroho, Rahayu Budhiati Veronica, dan Mashuri Jurusan Matematika, FMIPA,

Lebih terperinci

Volume 9 Nomor 1 Maret 2015

Volume 9 Nomor 1 Maret 2015 Volume 9 Nomor 1 Maret 015 Jurnal Ilmu Matematika dan Terapan Maret 015 Volume 9 Nomor 1 Hal. 1 10 KARAKTERISASI DAERAH DEDEKIND Elvinus R. Persulessy 1, Novita Dahoklory 1, Jurusan Matematika FMIPA Universitas

Lebih terperinci

HASIL PRESENTASI ALJABAR LINIER ( SUB RUANG VEKTOR ) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier. Dosen Pengampu : Darmadi, S,Si, M.

HASIL PRESENTASI ALJABAR LINIER ( SUB RUANG VEKTOR ) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier. Dosen Pengampu : Darmadi, S,Si, M. HASIL PRESENTASI ALJABAR LINIER ( SUB RUANG VEKTOR ) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier Dosen Pengampu : Darmadi, S,Si, M.Pd Disusun oleh Matematika 5F Kelompok 5: ARLITA ROSYIDA 08411.081

Lebih terperinci

TEORI PENGAMBILAN KEPUTUSAN. Liduina Asih Primandari, S.Si.,M.Si.

TEORI PENGAMBILAN KEPUTUSAN. Liduina Asih Primandari, S.Si.,M.Si. TEORI PENGAMBILAN KEPUTUSAN Liduina Asih Primandari, S.Si.,M.Si. MATERI - 2 KONSEP PROBABILITAS PENGAMBILAN KEPUTUSAN KONDISI BERESIKO DALAM PENGAMBILAN KEPUTUSAN KONDISI TIDAK PASTI DALAM PENGAMBILAN

Lebih terperinci

OPTIMASI PROGRAM LINIER PECAHAN DENGAN FUNGSI TUJUAN BERKOEFISIEN INTERVAL

OPTIMASI PROGRAM LINIER PECAHAN DENGAN FUNGSI TUJUAN BERKOEFISIEN INTERVAL Saintia Matematika Vol. XX, No. XX (XXXX), pp. 17 24. OPTIMASI PROGRAM LINIER PECAHAN DENGAN FUNGSI TUJUAN BERKOEFISIEN INTERVAL M Khahfi Zuhanda, Syawaluddin, Esther S M Nababan Abstrak. Beberapa tahun

Lebih terperinci

Interpretasi Geometri Dari Sebuah Determinan

Interpretasi Geometri Dari Sebuah Determinan Jurnal Sains Matematika dan Statistika Vol No Juli 5 ISSN 46-454 Interpretasi Geometri Dari Sebuah Determinan Riska Yeni Syamsudhuha M D H Gamal 3 Jurusan Matematika Fakultas Mipa Universitas Riau Jl HR

Lebih terperinci

TEKNIK ITERASI VARIASIONAL DAN BERBAGAI METODE UNTUK PENDEKATAN SOLUSI PERSAMAAN NONLINEAR. Yeni Cahyati 1, Agusni 2 ABSTRACT

TEKNIK ITERASI VARIASIONAL DAN BERBAGAI METODE UNTUK PENDEKATAN SOLUSI PERSAMAAN NONLINEAR. Yeni Cahyati 1, Agusni 2 ABSTRACT TEKNIK ITERASI VARIASIONAL DAN BERBAGAI METODE UNTUK PENDEKATAN SOLUSI PERSAMAAN NONLINEAR Yeni Cahyati 1, Agusni 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan

Lebih terperinci

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1 Ruang Vektor Kartika Firdausy UAD blog.uad.ac.id/kartikaf Syarat agar V disebut sebagai ruang vektor 1. Jika vektor vektor u, v V, maka vektor u + v V 2. u + v = v + u 3. u + ( v + w ) = ( u + v ) + w

Lebih terperinci

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI Soal-soal osnpertamincom di download di www.osnpertamincom 1 Olimpiade Sains Nasional Perguruan Tinggi Indonesia 2010 Petunjuk : 1. Tuliskan secara

Lebih terperinci

ORDER UNSUR DARI GRUP S 4

ORDER UNSUR DARI GRUP S 4 Jurnal Matematika UNAND Vol. VI No. 1 Hal. 142 147 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND ORDER UNSUR DARI GRUP S 4 FEBYOLA, YANITA, MONIKA RIANTI HELMI Program Studi Matematika, Fakultas Matematika

Lebih terperinci

SKEMA NUMERIK UNTUK MEMPEROLEH SOLUSI TAKSIRAN DARI KELAS PERSAMAAN INTEGRAL FREDHOLM NONLINEAR JENIS KEDUA. Vanny Restu Aji 1 ABSTRACT

SKEMA NUMERIK UNTUK MEMPEROLEH SOLUSI TAKSIRAN DARI KELAS PERSAMAAN INTEGRAL FREDHOLM NONLINEAR JENIS KEDUA. Vanny Restu Aji 1 ABSTRACT SKEMA NUMERIK UNTUK MEMPEROLEH SOLUSI TAKSIRAN DARI KELAS PERSAMAAN INTEGRAL FREDHOLM NONLINEAR JENIS KEDUA Vanny Restu Aji 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit BAB I RUANG EKTOR UMUM Dalam bab ini akan dipelajari tentang konsep ruang vektor umum, sub ruang vektor dan sifat-sifatnya. Pada pembicaraan ini, para mahasiswa dianggap sudah mengenal konsep dan sifat

Lebih terperinci

Bab 4. Koefisien Binomial

Bab 4. Koefisien Binomial Bab 4. Koefisien Binomial Koefisien binomial merupakan bilangan-bilangan yang muncul dari hasil penjabaran penjumlahan dua peubah yang dipangkatkan, misalnya (a + b) n. Sepintas terlihat bahwa ekspresi

Lebih terperinci

MODEL EOQ DENGAN KONDISI KEKURANGAN PERSEDIAAN YANG DIPENGARUHI POTONGAN HARGA DAN INFLASI

MODEL EOQ DENGAN KONDISI KEKURANGAN PERSEDIAAN YANG DIPENGARUHI POTONGAN HARGA DAN INFLASI MODEL EOQ DENGAN KONDISI KEKURANGAN PERSEDIAAN YANG DIPENGARUHI POTONGAN HARGA DAN INFLASI W Islaimi, T P Nababan, E Lily Mahasiswa Program S Matematika Dosen Jurusan Matematika Fakultas Matematika dan

Lebih terperinci

HUBUNGAN DERIVASI PRIME NEAR-RING DENGAN SIFAT KOMUTATIF RING

HUBUNGAN DERIVASI PRIME NEAR-RING DENGAN SIFAT KOMUTATIF RING E-Jurnal Matematika Vol 6 (2), Mei 2017, pp 116-123 ISSN: 2303-1751 HUBUNGAN DERIVASI PRIME NEAR-RING DENGAN SIFAT KOMUTATIF RING Pradita Z Triwulandari 1, Kartika Sari 2, Luh Putu Ida Harini 3 1 Jurusan

Lebih terperinci

Pendekatan Dual-Matriks Untuk Menyelesaikan Persoalan Transportasi

Pendekatan Dual-Matriks Untuk Menyelesaikan Persoalan Transportasi Pendekatan Dual-Matriks Untuk Menyelesaikan Persoalan Transportasi Aziskhan, Usna Wita, M D H Gamal Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Abstract: This paper discusses an approach

Lebih terperinci

SPECTRUM PADA GRAF STAR ( ) DAN GRAF BIPARTISI KOMPLIT ( ) DENGAN

SPECTRUM PADA GRAF STAR ( ) DAN GRAF BIPARTISI KOMPLIT ( ) DENGAN PROSIDING ISBN : 978 979 6353 3 SPECTRUM PADA GRAF STAR ( ) DAN GRAF BIPARTISI OMPLIT ( ) A. DENGAN Oleh Imam Fahcruddin Mahasiswa Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri

Lebih terperinci

METODE ITERASI JACOBI DAN GAUSS-SEIDEL PREKONDISI UNTUK MENYELESAIKAN SISTEM PERSAMAN LINEAR DENGAN M-MATRIKS ABSTRACT

METODE ITERASI JACOBI DAN GAUSS-SEIDEL PREKONDISI UNTUK MENYELESAIKAN SISTEM PERSAMAN LINEAR DENGAN M-MATRIKS ABSTRACT METODE ITERASI JACOBI DAN GAUSS-SEIDEL PREKONDISI UNTUK MENYELESAIKAN SISTEM PERSAMAN LINEAR DENGAN M-MATRIKS Efriani Widya 1, Syamsudhuha 2, Bustami 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan

Lebih terperinci

SIFAT-SIFAT HIMPUNAN PROXIMINAL

SIFAT-SIFAT HIMPUNAN PROXIMINAL Prima: Jurnal Pendidikan Matematika Vol. 2, No. 1, Januari 2018, hal. 49-56 P-ISSN: 2579-9827, E-ISSN: 2580-2216 SIFAT-SIFAT HIMPUNAN PROXIMINAL Arta Ekayanti Universitas Muhammadiyah Ponorogo, Jl. Budi

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk

Lebih terperinci

MODIFIKASI METODE HUNGARIAN UNTUK PENYELESAIAN MASALAH PENUGASAN

MODIFIKASI METODE HUNGARIAN UNTUK PENYELESAIAN MASALAH PENUGASAN MODIFIKASI METODE HUNGARIAN UNTUK PENYELESAIAN MASALAH PENUGASAN Idris 1* Eng Lily 2 Sukamto 2 1 Mahasiswa Program S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika Ilmu Pengetahuan Alam Universitas

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dewasa ini perkembangan ilmu pengetahuan dan teknologi sangatlah pesat. Bidang otomotif pun turut serta, khususnya sepeda motor yang sampai saat ini jumlah pemakainya

Lebih terperinci

Ruang Norm-n Berdimensi Hingga

Ruang Norm-n Berdimensi Hingga Jurnal Matematika Integratif. Vol. 3, No. 2 (207), pp. 95 04. p-issn:42-684, e-issn:2549-903 doi:0.2498/jmi.v3.n2.986.95-04 Ruang Norm-n Berdimensi Hingga Moh. Januar Ismail Burhan Jurusan Matematika dan

Lebih terperinci

MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA ABSTRACT

MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA ABSTRACT MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA Kristiani Panjaitan 1, Syamsudhuha 2, Leli Deswita 2 1 Mahasiswi Program

Lebih terperinci

BAB II TEORI PERMAINAN KOOPERATIF

BAB II TEORI PERMAINAN KOOPERATIF BAB II TEORI PERMAINAN KOOPERATIF 2.1 Teori Permainan Teori permainan merupakan suatu studi formal tentang konflik dan kerjasama. Konsep teori permainan ini berdasarkan pada aksi beberapa agen yang saling

Lebih terperinci

DASAR-DASAR TEORI PELUANG

DASAR-DASAR TEORI PELUANG DASAR-DASAR TEORI PELUANG Herry P. Suryawan 1 Ruang Peluang Definisi 1.1 Diberikan himpunan tak kosong Ω. Aljabar-σ (σ-algebra pada Ω adalah koleksi subhimpunan A dari Ω dengan sifat (i, Ω A (ii jika A

Lebih terperinci

ABSTRACT 1. PENDAHULUAN

ABSTRACT 1. PENDAHULUAN Repositori Karya Ilmiah Universitas Riau Matematika: September 01. PENYELESAIAN MASALAH TRAVELING SALESMAN DENGAN PEMROGRAMAN DINAMIK Mustafsiroh 1, M. D. H Gamal, M. Natsir mustafsiroh@ymail.com 1 Mahasiswa

Lebih terperinci