1.6 RULES OF INFERENCE

Ukuran: px
Mulai penontonan dengan halaman:

Download "1.6 RULES OF INFERENCE"

Transkripsi

1 1.6 RULES OF INFERENCE 1

2 Argumen Argumen dalam logika adalah kumpulan sejumlah proposisi. Seluruh proposisi dalam suatu argumen, kecuali proposisi terakhir, disebut premis. Sedangkan proposisi terakhir disebut kesimpulan. Suatu argumen dikatakan valid, apabila kebenaran seluruh premis mengakibatkan kebenaran dari kesimpulan. Untuk mendeduksi proposisi baru dari proposisi yang telah ada sebelumnya, digunakan aturan inferensi untuk membangun argumen yang valid. Aturan inferensi merupakan alat untuk menentukan kebenaran suatu argumen. Selain itu, dapat juga digunakan tabel kebenaran untuk menunjukkan bahwa suatu argumen valid. Namun ini tidak efisien dilakukan untuk argumen yang memuat banyak proposisi. 2

3 Contoh Argumen Jika Anda memiliki password terkini, maka Anda dapat mengakses jaringan. Anda memiliki password terkini. Maka, Anda dapat mengakses jaringan. Argumen ini berbentuk: p q p q 3

4 Aturan Inferensi 4

5 Aturan Inferensi (2) 5

6 Soal 1 Tunjukkan bahwa premis: Matahari tidak bersinar sore ini dan sore ini lebih dingin dari kemarin, Kita akan berenang hanya jika matahari bersinar, Jika kita tidak berenang, maka kita akan naik perahu, dan Jika kita naik perahu, maka kita akan sampai ke rumah sebelum matahari terbenam akan memberikan kesimpulan: Kita akan sampai ke rumah sebelum matahari terbenam. 6

7 Soal 2 Tunjukkan bahwa premis Jika Anda mengirim , maka saya akan menyelesaikan penulisan program, Jika Anda tidak mengirim , maka saya akan tidur lebih awal, Jika saya tidur lebih awal, maka saya akan bangun dengan segar akan memberikan kesimpulan: Jika saya tidak menyelesaikan penulisan program, maka saya akan bangun dengan segar. 7

8 Argumen yang Tidak Valid ((p q) q) p bukan merupakan tautologi Contoh 1. Jika Anda mengerjakan setiap soal dalam buku teks, maka Anda akan belajar matematika diskrit. Anda belajar matematika diskrit. Jadi, Anda mengerjakan setiap soal dalam buku teks. 8

9 Aturan Inferensi untuk Pernyataan Berkuantor x P(x) P(c) P(c) utk setiap c x P(x) x P(x) P(c) utk suatu c P(c) utk suatu c x P(x) Universal instantiation Universal generalization Existential instantiation Existential generalization 9

10 Soal 3 Tunjukkan bahwa premis: Seorang mahasiswa di kelas ini tidak membaca buku teks dan Semua peserta kelas ini lulus ujian memberikan kesimpulan: Seseorang yang lulus ujian tidak membaca buku teks. 10

11 Universal Modus Ponens x(p(x) Q(x)) P(a), dengan a suatu anggota dari domain Q(a) Soal 4. Asumsikan bahwa pernyataan Untuk setiap bilangan bulat positif n, jika n>4, maka n 2 <2 n adalah benar. Gunakan universal modus ponens untuk menunjukkan bahwa <

12 1.7 PENGANTAR BUKTI 12

13 Terminologi Teorema adalah pernyataan yang dapat dibuktikan kebenarannya. Teorema yang dianggap kurang penting (kurang berkontribusi) biasanya disebut proposisi. Kebenaran teorema dibuktikan dengan menggunakan bukti. Bukti adalah argumen valid yang menyatakan kebenaran suatu teorema. Peryataan dalam suatu bukti dapat memuat aksioma (atau postulat), yaitu pernyataan yang diasumsikan benar. 13

14 Terminologi (2) Teorema yang kurang penting, namun membantu dalam membuktikan hasil lain disebut lema. Bukti yang sulit biasanya akan lebih mudah dipahami jika menggunakan sekumpulan lema, yang setiap lemanya dibuktikan tersendiri. Akibat adalah teorema yang dapat dibuktikan secara langsung dari teorema lain. Konjektur adalah pernyataan yang diajukan untuk menjadi pernyataan yang benar, biasanya berdasarkan bukti parsial, argumentasi heuristik atau intuisi seorang ahli. Apabila bukti untuk suatu konjektur ditemukan, maka konjektur akan menjadi teorema. Seringkali konjektur ditunjukkan salah, sehingga tidak menjadi teorema. 14

15 Kuantifikasi Universal dalam Teorema Banyak teorema yang berlaku untuk seluruh anggota dari suatu domain, seperti bilangan bulat atau bilangan real. Walaupun pernyataan yang demikian memerlukan kuantifikasi universal, dalam teorema seringkali dihilangkan. Contoh 2. Pernyataan Jika x > y, dengan x dan y bilangan real positif, maka x 2 > y 2. Sebenarnya bermakna Untuk setiap bilangan real positif x dan y, jika x > y, maka x 2 > y 2. 15

16 Bukti Langsung dan Bukti Tak Langsung 1. Bukti Langsung Implikasi p q dapat dibuktikan dengan menunjukkan jika p benar maka q juga harus benar. Soal 5. Berikan bukti langsung dari Jika n bilangan bulat ganjil maka n 2 ganjil. 2. Bukti Tak Langsung (Bukti dengan Kontraposisi) Karena p q ekivalen dengan q p maka p q dapat dibuktikan dengan menunjukkan bhw q p benar. Soal 6. Berikan bukti tak langsung dari Jika n 2 ganjil maka n ganjil. 16

17 Bukti Kosong dan Bukti Trivial Bukti kosong Jika hipotesis p dari implikasi p q salah, maka p q selalu benar, apapun nilai kebenaran dari q. Soal 7. P(n): Jika n > 1, maka n 2 > 1. Bukti trivial Tunjukkan P(0) benar. Jika konklusi q dari implikasi p q benar, maka p q selalu benar, apapun nilai kebenaran dari p. Soal 8. P(n): Jika a, b integer positif dengan a b, maka a n b n. Tunjukkan P(0) benar. 17

18 Bukti dengan Kontradiksi Bukti Tak Langsung (Bukti dengan Kontradiksi) Misalkan kita ingin membuktikan bahwa pernyataan p benar. Di samping itu, kita bisa menemukan suatu kontradiksi q sehingga p q benar. Karena q salah, tetapi p q benar, kita dapat menyimpulkan bahwa p salah, yang berarti p benar. Soal Tunjukkan bahwa sedikitnya ada 4 hari yang sama dari pilihan 22 hari sebarang. 2. Buktikan bahwa 2 irasional. 18

19 Bukti dengan Kontraposisi vs Kontradiksi Bukti dengan kontraposisi dapat dituliskan kembali sebagai bukti dengan kontradiksi. Dalam bukti dari p q dengan kontraposisi, kita mengasumsikan bahwa q benar. Kita kemudian menunjukkan bahwa p juga harus benar. Untuk menuliskan kembali bukti dengan kontraposisi dari p q sebagai bukti dengan kontradiksi, kita misalkan bahwa p dan q keduanya benar. Akibatnya, kita menggunakan langkah dalam bukti dari q p untuk menunjukkan bahwa p benar. Ini akan memberikan kontradiksi p p, yang merupakan akhir dari bukti. Soal 10. Berikan bukti dengan kontradiksi dari Soal 6 Jika n 2 ganjil maka n ganjil. 19

20 Bukti dengan Ekivalensi Untuk membuktikan teorema yang menggunakan pernyataan bikondisional, yaitu pernyataan dalam bentuk p q, kita menunjukkan bahwa p q dan q p keduanya benar. Pendekatan ini berdasarkan tautologi (p q) (p q) (q p). Soal 11. Buktikan teorema Jika n bilangan bulat, maka n ganjil jika dan hanya jika n 2 ganjil. 20

21 Contoh Penyangkal Untuk menunjukkan bahwa suatu pernyataan dalam bentuk x P(x) salah, kita hanya memerlukan satu contoh penyangkal, yaitu, contoh x sehingga P(x) salah. Contoh 3. Tunjukkan bahwa pernyataan setiap bilangan bulat positif adalah hasil tambah dari tiga bilangan kuadrat. adalah salah. Solusi. Pernyataan ini benar untuk beberapa nilai, mis. 1= ; 2= ; 3= ; 4= ; 5= ; 6= Tapi kita tidak dapat mengekspresikan seperti di atas untuk bilangan 7. Jadi bilangan 7 merupakan contoh penyangkal dari pernyataan di atas. 21

22 Kesalahan dalam Bukti Soal 12. Apa yang salah dalam bukti bahwa 1 = 2 ini? Bukti: Misalkan a dan b bilangan bulat positif. Langkah Alasan 1. a = b Diberikan 2. a 2 = ab Kalikan kedua ruas di (1) dengan a 3. a 2 b 2 = ab b 2 Kurangkan kedua ruas di (2) dengan b 2 4. (a b)(a + b) = b(a b) Faktorkan kedua ruas di (3) 5. a + b = b Bagi kedua ruas di (4) dengan a b 6. 2b = b Ganti a dengan b di (5) dan sederhanakan 7. 2 = 1 Bagi kedua ruas di (6) dengan b 22

23 1.8 PROOF METHODS AND STRATEGY 23

24 Pembuktian Finding proofs can be a challenging business Matematikawan bekerja dengan memformulasi konjektur dan kemudian mencoba membuktikan bahwa konjektur tersebut benar atau salah. Ketika dihadapkan dengan pernyataan yang akan dibuktikan: terjemahkan setiap istilah dengan definisinya analisa arti dari hipotesis dan kesimpulan coba membuktikan dengan menggunakan salah satu dari metoda pembuktian Jika pernyataan berupa implikasi; coba buktikan dengan bukti langsung. Bila gagal, coba dengan bukti tak langsung. Bila tidak berhasil juga coba dengan bukti kontradiksi.

25 Bukti dengan Kasus Kadangkala kita tidak dapat membuktikan teorema dengan menggunakan argumen yang berlaku untuk semua kasus, sehingga digunakan bukti dengan mempertimbangkan kasus yang berbeda secara terpisah. Untuk membuktikan pernyataan dalam bentuk tautologi (p 1 p 2 p n ) q [(p 1 p 2 p n ) q] [(p 1 q) (p 2 q) (p n q)] dapat digunakan sebagai aturan inferensi. Soal 13. Buktikan bahwa jika n adalah bilangan bulat, maka n 2 n. 25

26 Contoh 4 Buktikan bahwa jika n bulat dan tidak habis dibagi oleh 2 atau 3 maka n 2 1 habis dibagi 24. Solusi. n bilangan bulat dapat dinyatakan sebagai n=6k+j, j {0,1,2,3,4,5}. Karena n tidak habis dibagi oleh 2 atau 3 maka n=6k+1 atau n=6k+5. Jadi ada 2 kasus yg perlu diperhatikan.

27 Bukti Exhaustive Beberapa teorema dapat dibuktikan dengan memperhatikan sejumlah kecil contoh. Bukti demikian disebut bukti exhaustive. Bukti exhaustive merupakan salah satu bentuk bukti dengan kasus di mana setiap kasus memeriksa satu contoh tertentu. Secara umum, suatu pernyataan tidak dapat dibuktikan dengan menggunakan contoh, kecuali jika domain pembicaraan dapat direduksi menjadi contoh yang jumlahnya berhingga dan bukti yang diberikan mempertimbangkan semua contoh tersebut. 27

28 Contoh 5 Tunjukkan bahwa (n + 1) 3 3 n jika n bilangan bulat positif dengan n 4. Solusi. Digunakan bukti dengan exhaustion. Kita hanya perlu membuktikan (n + 1) 3 3 n untuk n = 1, 2, 3, dan 4. Untuk n = 1, (n + 1) 3 = 2 3 = 8 dan 3 n = 31 = 3; untuk n = 2, (n + 1) 3 = 33 = 27 dan 3 n = 32 = 9; untuk n = 3, (n + 1) 3 = 43 = 64 dan 3 n = 33 = 27; dan untuk n = 4, (n + 1) 3 = 53 = 125 dan 3 n = 34 = 81. Dalam keempat kasus ini, terlihat bahwa (n + 1) 3 3 n. Kita telah menggunakan bukti dengan exhautive bahwa (n + 1) 3 3 n jika n bilangan bulat positif dengan n 4. 28

29 Contoh 6 Tunjukkan bhw tidak ada solusi bulat x dan y yang memenuhi x 2 + 3y 2 = 8. Solusi. Karena x 2 > 8 bila x 3 dan 3y 2 > 8 bila y 2, maka kasus tersisa yang harus diperiksa adalah untuk x = -2, -1, 0, 1, atau 2 dan y = -1, 0 atau 1. Untuk nilai x demikian didapat x 2 = 0, 1 atau 4, sedangkan 3y 2 = 0 atau 3. Jadi nilai maksimum dari x 2 +3y 2 = 7. Dengan demikian tidak ada x dan y bulat yang memenuhi x 2 +3y 2 =8.

30 Bukti Eksistensi 1. Bukti Eksistensi Konstruktif Contoh 7. Tunjukkan bahwa ada bilangan bulat positif yang dapat dituliskan sebagai jumlah dua bilangan pangkat 3. Solusi = = Bukti Eksistensi Nonkonstruktif Contoh 8. Tunjukkan bhw ada bilangan irrasional x dan y sehingga x y rasional. Solusi. Kita tahu bahwa 2 irrasional. Pandang 2 2. Jika ia rasional maka terbukti. Jika tidak, perhatikan ( 2 2 ) 2 = 2 2 =2. Jadi terbukti ada pasangan (x= 2, y = 2) atau (x= 2 2 dan y= 2) yg salah satunya memenuhi x y rasional. 30

31 Bukti Ketunggalan Dua bagian dalam bukti ketunggalan: Eksistensi Menunjukkan bahwa ada elemen x yg memenuhi sifat yg diinginkan. Ketunggalan Menunjukkan bahwa jika y x maka y tidak memenuhi sifat yg diinginkan. Contoh 9. Tunjukkan bahwa setiap bilangan bulat mempunyai invers penjumlahan yang tunggal. Solusi. Jika p bulat maka p+q = 0 ketika q = -p, dan q juga bulat. Untuk menunjukkan ketunggalan, misalkan ada r bulat dengan r q dan p+r=0. Maka p+q = p+r. Dengan mengurangkan kedua ruas dgn p didapat q=r, kontradiksi dgn r q. Jadi ada bilangan bulat q yang tunggal sehingga p+q=0. 31

32 Proses Maju & Mundur Apa pun metoda yang digunakan, dalam melakukan proses pembuktian diperlukan titik awal. Proses maju: hipotesis aksioma & teorema kesimpulan Namun seringkali, proses maju sukar untuk digunakan dalam pembuktian sesuatu yang tidak sederhana. Sehingga kita harus mengkombinasikan dengan proses mundur.

33 Contoh 10 Tunjukkan bahwa jika segitiga siku-siku RST dengan sisi tegak r, s, dan sisi miring t mempunyai luas t 2 /4, maka segitiga tersebut sama kaki. Solusi. A: Segitiga RST dengan sisi r, s dan sisi miring t dengan luas t 2 /4. A1: rs/2 = t 2 /4 A2: r 2 +s 2 = t 2 A3: rs/2 = (r 2 +s 2 )/4 A4: (r 2-2rs+s 2 t ) = 0 A5: (r-s) 2 = 0. B2: r-s = 0 B1: r = s B: Segitiga RST sama kaki. r s

34 Contoh 10 (2) Bukti 1. Dari hipotesis dan rumus luas segitiga siku-siku, Luas RST = rs/2 = t 2 /4. Hukum Pythagoras memberikan r 2 +s 2 =t 2, dan bila r 2 +s 2 disubstitusikan kedalam t 2, dengan sedikit manipulasi aljabar didapat (r-s) 2 =0. Sehingga r=s dan segitiga RST samakaki. Bukti 2. Hipotesis dengan hukum Pythagoras menghasilkan r 2 +s 2 =2rs; sehingga (r-s) = 0. Maka segitiga RST samakaki.

35 Contoh 11 Tunjukkan bahwa untuk setiap bilangan real positif x dan y yang berbeda berlaku (x+y)/2 > x y. Solusi. B: (x+y)/2 > x y B1: (x+y) 2 /4 > xy B2: (x+y) 2 > 4xy B3: x 2 +2xy+y 2 > 4xy B4: x 2-2xy+y 2 > 0 B5: (x-y) 2 > 0 B6: x y. Bukti. Karena x dan y berbeda maka (xy) 2 > 0. Ini berarti x 2 +2xy+y 2 > 4xy. Sehingga, (x+y) 2 > 4xy yang memberikan (x+y)/2 > x y.

36 Contoh 12. The Stone Game Dua orang memainkan suatu permainan dengan bergantian mengambil 1, 2, atau 3 batu pada setiap pengambilan dari suatu kotak yg pada awalnya berisi 15 batu. Orang yang mengambil batu terakhir adalah pemenangnya. Tunjukkan bahwa pemain pertama dapat selalu menang, tidak peduli apa yang dilakukan oleh pemain kedua.

37 The Stone Game - Proses Mundur Pemain 1 Pemain 2 0 1, 2, 3 4 5, 6, 7 8 9, 10, , 14, 15

38 The Stone Game - Bukti Teorema 1. Pemain pertama selalu dapat memaksakan kemenangan. Bukti. Pemain 1 dapat mengambil 3 batu, meninggalkan 12. Setelah giliran pemain 2, terdapat 11, 10, atau 9 batu yang tinggal. Dalam setiap kasus tersebut, pemain 1 dapat mengurangi jumlah batu yang tertinggal menjadi 8. Maka, pemain 2 dapat mengurangi kembali menjadi 7, 6, atau 5. Akibatnya, pemain 1 dapat meninggalkan sejumlah 4 batu. Sehingga pemain 2 harus meninggalkan 3, 2, atau 1. Pemain 1 kemudian mengambil semua batu yang tersisa dan memenangkan permainan.

39 Konjektur Buku matematika secara formal hanya menyajikan teorema dan bukti saja. Melalui penyajian seperti ini, kita tidak dapat mengetahui proses pencarian (discovery process) dalam matematika Proses ini meliputi: mengeksplorasi konsep & contoh, merumuskan pertanyaan, memformulasi konjektur, dan usaha menjawab konjektur dengan bukti atau contoh penyangkal.

40 Formulasi Konjektur Konjektur diformulasikan dengan didasarkan pada beberapa possible evidence: pengamatan beberapa kasus khusus identifikasi pola mengubah hipotesis dan kesimpulan dari teorema yang telah dikenal sebelumnya intuisi dan kepercayaan 40

41 Contoh 13 Perhatikan fakta berikut ini = 15 = = 31 prima = 63 = = 255 = = 80 = 8 10 Kita tahu bhw x n 1 = (x-1)(x n-1 +x n x + 1) Namun, faktorisasi ini bermasalah bila x=2. Konjektur 1. Bilangan a n -1 komposit jika a > 2 atau jika a=2 dan n komposit.

42 Contoh 13 - Bukti Kasus i) Bila a > 2 maka (a-1) adalah faktor dari a n -1 karena a n 1 = (a-1)(a n-1 +a n a + 1) dan 1 < (a-1) < (a n -1). Kasus ii) Bila a=2 dan n komposit maka ada s dan t sehingga n = st dengan 1 < s t < n. Sehingga, 2 s -1 faktor dari 2 n -1 karena 2 n 1 = (2 s -1)(2 s(t-1) +2 s(t-2) s + 1). Jadi 2 n 1 komposit. Dengan demikian Konjektur 1 menjadi teorema.

43 Konjektur dan Contoh Penyangkal Apakah ada fungsi f sehingga f(n) prima untuk semua bilangan bulat positif n? Konjektur 2. f(n) = n 2 n +41. Karena f(1) = 41, f(2) = 43, f(3) = 47, f(4)= 53,. Oopps! Tapi f(41) = 41 2 komposit. Jadi f(n) bukan fungsi penghasil bilangan prima. Konjektur salah.

44 Bahkan Matematikawan Besar dapat Mengajukan Konjektur yang Salah! Euler memformulasikan conjecture bahwa untuk n>2, jumlah dari n 1 buah pangkat ke-n bilangan bulat positif bukanlah merupakan bilangan pangkat ke-n. Benar untuk semua kasus yang diperiksa selama 200 tahun, namun tidak ada bukti yang ditemukan. Akhirnya, pada tahun 1966, Lander dan Parkin menemukan counter-example untuk n= = Counter-example juga ditemukan untuk n=4, tetapi belum ada untuk n>5.

45 Beberapa Konjektur Terkenal (1) Fermat s Last Theorem (abad ke-17) Persamaan x n + y n = z n tidak mempunyai solusi bulat x, y, dan z dengan xyz 0 dan n > 2.

46 Beberapa Konjektur Terkenal (2) Goldbach s Conjecture (1742) Dalam suratnya kepada Euler, Goldbach menulis Setiap bilangan ganjil n, dengan n > 5, dapat ditulis sebagai jumlah 3 bilangan prima. Menurut Euler, ini ekivalen dengan Setiap bilangan genap n, dengan n > 2, dapat ditulis sebagai jumlah 2 bilangan prima. Telah dicek dengan komputer bahwa Goldbach s conjecture benar utk semua bilangan

47 Beberapa Konjektur Terkenal (3) The Twin Prime Conjecture Twin prime adalah pasangan bilangan prima dengan selisih 2, seperti 3 dan 5, 5 dan 7, 11 dan 13, 17 dan 19, dan 4967 dan Twin prime conjecture menyatakan bahwa ada tak hingga banyaknya twin primes. Hasil terkuat yang telah dibuktikan adalah ada tak hingga banyaknya pasangan p dan p + 2, dengan p prima dan p + 2 prima atau hasil kali dari 2 bilangan prima (dibuktikan oleh J. R. Chen pada 1966). Rekor dunia untuk twin primes, sampai pertengahan 2011, adalah 65,516,468, ,333 1 yang memiliki 100,355 digit desimal.

48 Beberapa Konjektur Terkenal (4) The 3x+1 Conjecture Collatz problem, Hasse s algorithm, Ulam s problem, Syracuse problem, Kakutani s problem (1950an) Misalkan T suatu transformasi yang memetakan bilangan genap x ke x/2 dan bilangan ganjil x ke 3x + 1. Semua bilangan bulat x, apabila diterapkan transformasi T secara berulang, pada akhirnya akan mencapai 1.

1.6 RULES OF INFERENCE

1.6 RULES OF INFERENCE 1.6 RULES OF INFERENCE 1 Argumen Argumen dalam logika adalah kumpulan sejumlah proposisi. Seluruh proposisi dalam suatu argumen, kecuali proposisi terakhir, disebut premis. Sedangkan proposisi terakhir

Lebih terperinci

Strategi Pembuktian. Finding proofs can be a challenging business

Strategi Pembuktian. Finding proofs can be a challenging business Strategi Pembuktian Finding proofs can be a challenging business Matematikawan memformulasikan conjecture dan kemudian mencoba membuktikan bahwa conjecture tersebut benar atau salah. Ketika dihadapkan

Lebih terperinci

PERANAN INDUKSI MATEMATIKA DALAM PEMBUKTIAN MATEMATIKA

PERANAN INDUKSI MATEMATIKA DALAM PEMBUKTIAN MATEMATIKA PERANAN INDUKSI MATEMATIKA DALAM PEMBUKTIAN MATEMATIKA Riani Rilanda NIM : 13505051 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung e-mail : if15051@students.if.itb.ac.id

Lebih terperinci

METODA PEMBUKTIAN DALAM MATEMATIKA

METODA PEMBUKTIAN DALAM MATEMATIKA 1 1 Program Studi Pend Matematika FKIP UM Ponorogo January 12, 2011 Jenis Pernyataan dalam Matematika Denisi (Denition) Kesepakatan mengenai pegertian suatu istilah. Teorema (Theorem) Pernyataan yang dapat

Lebih terperinci

METODA PEMBUKTIAN DALAM MATEMATIKA

METODA PEMBUKTIAN DALAM MATEMATIKA 1 1 Program Studi Pend Matematika FKIP UM Ponorogo October 29, 2011 Jenis Pernyataan dalam Matematika Denisi (Denition) Kesepakatan mengenai pegertian suatu istilah. Teorema (Theorem) Pernyataan yang dapat

Lebih terperinci

BAB I NOTASI, KONJEKTUR, DAN PRINSIP

BAB I NOTASI, KONJEKTUR, DAN PRINSIP BAB I NOTASI, KONJEKTUR, DAN PRINSIP Kompetensi yang akan dicapai setelah mempelajari bab ini adalah sebagai berikut. (1) Dapat memberikan sepuluh contoh notasi dalam teori bilangan dan menjelaskan masing-masing

Lebih terperinci

METODA PEMBUKTIAN DALAM MATEMATIKA

METODA PEMBUKTIAN DALAM MATEMATIKA METODA PEMBUKTIAN DALAM MATEMATIKA Dr. Julan HERNADI & Uki Suhendar, S.Pd (Asrul dan Enggar) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Pertemuan 8 FONDASI MATEMATIKA Matematika Bukan Sekedar

Lebih terperinci

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 3 DEFINISI DAN PERISTILAHAN MATEMATIKA (c) Hendra Gunawan (2015) 2 Ingat PROPOSISI Ini? Proposisi. Jika segitiga siku-siku XYZ dengan

Lebih terperinci

METODA PEMBUKTIAN DALAM MATEMATIKA

METODA PEMBUKTIAN DALAM MATEMATIKA METODA PEMBUKTIAN DALAM MATEMATIKA Dr. Julan HERNADI & Uki Suhendar, S.Pd (Asrul dan Enggar) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Pertemuan 8 FONDASI MATEMATIKA Matematika Bukan Sekedar

Lebih terperinci

CHAPTER 5 INDUCTION AND RECURSION

CHAPTER 5 INDUCTION AND RECURSION CHAPTER 5 INDUCTION AND RECURSION 5.1 MATHEMATICAL INDUCTION Jumlah n Bilangan Ganjil Positif 1 = 1 1 + 3 = 4 1 + 3 + 5 = 9 1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 + 9 = 25 Tebakan: Jumlah dari n bilangan ganjil

Lebih terperinci

CHAPTER 5 INDUCTION AND RECURSION

CHAPTER 5 INDUCTION AND RECURSION CHAPTER 5 INDUCTION AND RECURSION 5.1 MATHEMATICAL INDUCTION Jumlah n Bilangan Ganjil Positif 1 = 1 1 + 3 = 4 1 + 3 + 5 = 9 1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 + 9 = 25 Tebakan: Jumlah dari n bilangan ganjil

Lebih terperinci

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika Bilangan prima telah dikenal sejak sekolah dasar, yaitu bilangan yang tidak mempunyai faktor selain dari 1 dan dirinya sendiri. Bilangan prima memegang peranan penting karena pada dasarnya konsep apapun

Lebih terperinci

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012 Jurusan Informatika FMIPA Unsyiah September 26, 2012 Cara menentukan nilai kebenaran pernyataan majemuk dengan menggunakan tabel kebenaran, yaitu dengan membagi beberapa bagian (kolom). Nilai kebenarannya

Lebih terperinci

MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT

MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT Penulis : Nelly Indriani Widiastuti S.Si., M.T. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 2011 DAFTAR ISI Daftar Isi. 2 Bab 1 LOGIKA

Lebih terperinci

Matematika Industri I

Matematika Industri I LOGIKA MATEMATIKA TIP FTP - UB Pokok Bahasan Proposisi dan negasinya Nilai kebenaran dari proposisi Tautologi Ekuivalen Kontradiksi Kuantor Validitas pembuktian Pokok Bahasan Proposisi dan negasinya Nilai

Lebih terperinci

METODA PEMBUKTIAN DALAM MATEMATIKA

METODA PEMBUKTIAN DALAM MATEMATIKA METODA PEMBUKTIAN DALAM MATEMATIKA Dr. Julan Hernadi julan hernadi@yahoo.com ABSTRAK Di dalam matematika, bukti adalah serangkaian argumen logis yang menjelaskan kebenaran suatu pernyataan. Argumen-argumen

Lebih terperinci

ATURAN INFERENSI. Dr. Julan HERNADI & (Asrul dan Enggar) Pertemuan 6 FONDASI MATEMATIKA. Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo

ATURAN INFERENSI. Dr. Julan HERNADI & (Asrul dan Enggar) Pertemuan 6 FONDASI MATEMATIKA. Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Pertemuan 6 FONDASI MATEMATIKA Masalah Penarikan Kesimpulan Kesimpulan apa yang dapat diambil dari deskripsi berikut 1 Jika seseorang kuliah di perguruan

Lebih terperinci

II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351)

II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351) II. SISTEM BILANGAN RIIL Handout Analisis Riil I (PAM 351) Sifat Aljabar (Aksioma Lapangan) dari Bilangan Riil Bagian ini akan membicarakan struktur aljabar bilangan riil dengan terlebih dahulu memberikan

Lebih terperinci

1.3 Pembuktian Tautologi dan Kontradiksi. Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi

1.3 Pembuktian Tautologi dan Kontradiksi. Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi 1.3 Pembuktian 1.3.1 Tautologi dan Kontradiksi Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi yang membentuknya disebut toutologi, sedangkan proposisi yang selalu bernilai salah

Lebih terperinci

PTI 206 Logika. Semester I 2007/2008. Ratna Wardani

PTI 206 Logika. Semester I 2007/2008. Ratna Wardani PTI 206 Logika Semester I 2007/2008 Ratna Wardani 1 Materi Logika Predikatif Fungsi proposisi Kuantor : Universal dan Eksistensial Kuantor bersusun 2 Logika Predikat Logika Predikat adalah perluasan dari

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan Matematika & Analisis Real Matematika berurusan dengan gagasan, yang mungkin merupakan abstraksi atau sari dari sesuatu yang terdapat

Lebih terperinci

Contoh-contoh soal induksi matematika

Contoh-contoh soal induksi matematika Contoh-contoh soal induksi matematika Buktikan bahwa 2 n > n + 20 untuk setiap bilangan bulat n 5. (i) Basis induksi : Untuk n = 5, kita peroleh 2 5 > 5 + 20 adalah suatu pernyataan yang benar. (ii) Langkah

Lebih terperinci

1 INDUKSI MATEMATIKA

1 INDUKSI MATEMATIKA 1 INDUKSI MATEMATIKA Induksi Matematis Induksi matematis merupakan teknik pembuktian yang baku di dalam matematika. Melalui induksi matematis maka dapat mengurangi langkah-langkah pembuktian bahwa semua

Lebih terperinci

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 9-10 METODE KONTRADIKSI & METODE KONTRAPOSISI (c) Hendra Gunawan (2015) 2 Metode Pembuktian Lainnya Pada bab-bab sebelumnya kita telah

Lebih terperinci

BAB I LOGIKA MATEMATIKA

BAB I LOGIKA MATEMATIKA BAB I LOGIKA MATEMATIKA A. Ringkasan Materi 1. Pernyataan dan Bukan Pernyataan Pernyataan adalah kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus benar dan salah. (pernyataan disebut

Lebih terperinci

Selamat Datang. MA 2151 Matematika Diskrit. Semester I 2008/2009

Selamat Datang. MA 2151 Matematika Diskrit. Semester I 2008/2009 Selamat Datang di MA 2151 Matematika Diskrit Semester I 2008/2009 Hilda Assiyatun & Djoko Suprijanto 1 Referensi Pustaka Kenneth H. Rosen, Discrete Mathematics and its Applications, 5 th edition. On the

Lebih terperinci

LOGIKA MATEMATIKA (Pendalaman Materi SMA)

LOGIKA MATEMATIKA (Pendalaman Materi SMA) LOGIKA MATEMATIKA (Pendalaman Materi SMA) Disampaikan Pada MGMP Matematika SMA Provinsi Bengkulu Tahun Ajaran 2007/2008 Oleh: Supama Widyaiswara LPMP Bengkulu DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL DAFTAR ISI 1 SISTEM BILANGAN REAL 1 1.1 Sifat Aljabar Bilangan Real..................... 1 1.2 Sifat Urutan Bilangan Real..................... 6 1.3 Nilai Mutlak dan Jarak Pada Bilangan Real............

Lebih terperinci

BILANGAN. Bilangan Satu Bilangan Prima Bilangan Komposit. Bilangan Asli

BILANGAN. Bilangan Satu Bilangan Prima Bilangan Komposit. Bilangan Asli BILANGAN A. Sistem Bilangan Dalam matematika mempelajari urutan dan keberaturan di antara bilangan-bilangan merupakan suatu bagian yang sangat fundamental. Dengan ditemukannya pola dalam suatu bilangan,

Lebih terperinci

PEMBAHASAN. Teorema 1. Tidak ada bilangan asli N yang lebih besar dari semua bilangan bulat lainnya.

PEMBAHASAN. Teorema 1. Tidak ada bilangan asli N yang lebih besar dari semua bilangan bulat lainnya. PEMAHAAN 1. Pengertian Kontradiksi Kontradiksi adalah dua pernyataan yang bernilai salah untuk setiap nilai kebenaran dari setiap komponen-komponennya. 2. Pembuktian dengan Kontradiksi Kontradiksi merupakan

Lebih terperinci

PENERAPAN INDUKSI MATEMATIKA DALAM PEMBUKTIAN MATEMATIKA

PENERAPAN INDUKSI MATEMATIKA DALAM PEMBUKTIAN MATEMATIKA Penerapan Induksi Matematika Dalam Pembuktian.. PENERAPAN INDUKSI MATEMATIKA DALAM PEMBUKTIAN MATEMATIKA Miksalmina, S.Pd ABSTRAK Induksi matematika merupakan sebuah teknik pembuktian pernyataan yang berkaitan

Lebih terperinci

BILANGAN DAN KETERBAGIAN BILANGAN BULAT

BILANGAN DAN KETERBAGIAN BILANGAN BULAT BILANGAN DAN KETERBAGIAN BILANGAN BULAT A. Sistem Bilangan Dalam matematika mempelajari urutan dan keberaturan di antara bilangan-bilangan merupakan suatu bagian yang sangat fundamental. Dengan ditemukannya

Lebih terperinci

MATEMATIKA DISKRIT. Logika

MATEMATIKA DISKRIT. Logika MATEMATIKA DISKRIT Logika SILABUS KULIAH 1. Logika 2. Himpunan 3. Matriks, Relasi dan Fungsi 4. Induksi Matematika 5. Algoritma dan Bilangan Bulat 6. Aljabar Boolean 7. Graf 8. Pohon REFERENSI Rinaldi

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang

Lebih terperinci

Logika Matematika BAGUS PRIAMBODO. Tautologi dan Kontradiksi Argumen 1/Penarikan kesimpulan yang valid: modus ponen, modus tolen.

Logika Matematika BAGUS PRIAMBODO. Tautologi dan Kontradiksi Argumen 1/Penarikan kesimpulan yang valid: modus ponen, modus tolen. Modul ke: 6 Logika Matematika Tautologi dan Kontradiksi Argumen 1/Penarikan kesimpulan yang valid: modus ponen, modus tolen Fakultas FASILKOM BAGUS PRIAMBODO Program Studi SISTEM INFORMASI http://www.mercubuana.ac.id

Lebih terperinci

Pusat Pengembangan Pendidikan Universitas Gadjah Mada 1

Pusat Pengembangan Pendidikan Universitas Gadjah Mada 1 2. ALJABAR LOGIKA 2.1 Pernyataan / Proposisi Pernyataan adalah suatu kalimat yang mempunyai nilai kebenaran (benar atau salah), tetapi tidak keduanya. Contoh 1 : P = Tadi malam BBM mulai naik (memiliki

Lebih terperinci

TEKNIK BUKTI: I Drs. C. Jacob, M.Pd

TEKNIK BUKTI: I Drs. C. Jacob, M.Pd TEKNIK BUKTI: I Drs C Jacob, MPd Email: cjacob@upiedu Dalam dua bagian pertama kita memperkenalkan suatu kata-kata sukar logika dan matematika Tujuannya adalah tentu, agar mampu untuk membaca dan menulis

Lebih terperinci

Selamat Datang. MA 2151 Matematika Diskrit. Semester I, 2012/2013. Rinovia Simanjuntak & Edy Tri Baskoro

Selamat Datang. MA 2151 Matematika Diskrit. Semester I, 2012/2013. Rinovia Simanjuntak & Edy Tri Baskoro Selamat Datang di MA 2151 Matematika Diskrit Semester I, 2012/2013 Rinovia Simanjuntak & Edy Tri Baskoro 1 Referensi Pustaka Kenneth H. Rosen, Discrete Mathematics and its Applications, 7 th edition, 2007.

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 01 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 0 soal isian singkat dan tes

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Pertemuan Standar kompetensi: mahasiswa memahami cara membangun sistem bilangan real, aturan dan sifat-sifat dasarnya. Kompetensi dasar Memahami aksioma atau sifat aljabar bilangan real Memahami fakta-fakta

Lebih terperinci

Contoh : 1..Buktikan bahwa untuk semua bilangan bulat n, jika n adalah bilangan ganjil, maka n 2 adalah bilangan ganjil! Jawab :

Contoh : 1..Buktikan bahwa untuk semua bilangan bulat n, jika n adalah bilangan ganjil, maka n 2 adalah bilangan ganjil! Jawab : PEMBUKTIAN LANGSUNG Untuk menunjukan pernyataan (p=>q) benar dapat dilakukan dengan menggunakan premis p untuk mendapatkan konklusi q. Metode pembuktian yang termasuk bukti langsung antara lain modus ponens,

Lebih terperinci

Pernyataan adalah kalimat yang bernilai benar atau salah tetapi tidak sekaligus benar dan salah.

Pernyataan adalah kalimat yang bernilai benar atau salah tetapi tidak sekaligus benar dan salah. LOGIKA MATEMATIKA 1. Pernyataan Pernyataan adalah kalimat yang bernilai benar atau salah tetapi tidak sekaligus benar dan salah. Pernyataan dilambangkan dengan huruf kecil, misalnya p, q, r dan seterusnya.

Lebih terperinci

BAB 4. TEOREMA FERMAT DAN WILSON

BAB 4. TEOREMA FERMAT DAN WILSON BAB 4. TEOREMA FERMAT DAN WILSON 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo June 11, 2012 Metoda Faktorisasi Fermat (1643) Biasanya pemfaktoran n melalui tester, yaitu faktor

Lebih terperinci

PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca.

PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca. PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca. Karena hampir semua rumus dan hukum yang berlaku tidak tercipta

Lebih terperinci

Himpunan dan Fungsi. Modul 1 PENDAHULUAN

Himpunan dan Fungsi. Modul 1 PENDAHULUAN Modul 1 Himpunan dan Fungsi Dr Rizky Rosjanuardi P PENDAHULUAN ada modul ini dibahas konsep himpunan dan fungsi Pada Kegiatan Belajar 1 dibahas konsep-konsep dasar dan sifat dari himpunan, sedangkan pada

Lebih terperinci

PENALARAN DALAM MATEMATIKA

PENALARAN DALAM MATEMATIKA PENALARAN DALAM MATEMATIKA A. PENDAHULUAN Siswa belajar dimulai dari mengamati contoh-contoh atau fenomena Dari informasi-informasi yang diperoleh secara khusus siswa mencoba melakukan generalisasi secara

Lebih terperinci

LOGIKA MATEMATIKA. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X

LOGIKA MATEMATIKA. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X LA - WB (Lembar Aktivitas Warga Belajar) LOGIKA MATEMATIKA Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana 37 Logika Matematika Kompetensi

Lebih terperinci

LOGIKA MATEMATIKA SOAL DAN PENYELESAIAN Logika, Himpunan, Relasi, Fungsi JONG JEK SIANG Kita menjalani hidup dari apa yang kita dapatkan Tetapi kita menikmati hidup dari apa yang kita berikan Jong Jek

Lebih terperinci

PERTEMUAN Logika Matematika

PERTEMUAN Logika Matematika 3-1 PERTEMUAN 3 Nama Mata Kuliah : Matematika Diskrit (3 SKS) Nama Dosen Pengamu : Dr. Suarman E-mail : matdis@netcourrier.com HP : 0813801198 Judul Pokok Bahasan Tujuan Pembelajaran : 3. Logika Matematika

Lebih terperinci

BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN

BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN 2.1 Pendahuluan Pada bab ini akan dibicarakan rumus-rumus tautologi dan prinsip-prinsip pembuktian yang tidak saja digunakan di bidang matematika, tetapi

Lebih terperinci

PEMBUKTIAN, PENALARAN, DAN KOMUNIKASI MATEMATIK. OLEH: DADANG JUANDI JurDikMat FPMIPA UPI 2008

PEMBUKTIAN, PENALARAN, DAN KOMUNIKASI MATEMATIK. OLEH: DADANG JUANDI JurDikMat FPMIPA UPI 2008 PEMBUKTIAN, PENALARAN, DAN KOMUNIKASI MATEMATIK OLEH: DADANG JUANDI JurDikMat FPMIPA UPI 2008 PEMBUKTIAN DALAM MATEMATIKA Bukti menurut Educational Development Center (2003) adalah suatu argumentasi logis

Lebih terperinci

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 5 KUANTOR II: METODE MEMILIH (c) Hendra Gunawan (2015) 2 Masih Berurusan dengan Kuantor Sekarang kita akan membahas metode memilih,

Lebih terperinci

KONSTRUKSI SISTEM BILANGAN

KONSTRUKSI SISTEM BILANGAN KONSTRUKSI SISTEM BILANGAN KEVIN MANDIRA LIMANTA 1. Konstruksi Aljabar 1.1. Bilangan Natural. Himpunan bilangan paling primitif adalah bilangan natural N, yang dicacah dengan aturan sebagai berikut: (1)

Lebih terperinci

- Mahasiswa memahami dan mampu membuat kalimat, mengevaluasi kalimat dan menentukan validitas suatu kalimat

- Mahasiswa memahami dan mampu membuat kalimat, mengevaluasi kalimat dan menentukan validitas suatu kalimat LOGIKA Tujuan umum : - Mahasiswa memahami dan mampu membuat kalimat, mengevaluasi kalimat dan menentukan validitas suatu kalimat Tujuan Khusus: - mahasiswa diharapkan dapat : 1. memahami pengertian proposisi,

Lebih terperinci

LOGIKA MATEMATIKA. d. 6 + a > -4 e. 7 adalah faktor dari 63. c. 4 x 6 2. Tentukan variabel dan himpunan penyelesaian dari: a.

LOGIKA MATEMATIKA. d. 6 + a > -4 e. 7 adalah faktor dari 63. c. 4 x 6 2. Tentukan variabel dan himpunan penyelesaian dari: a. LOGIKA MATEMATIKA A. Definisi 1). Pernyataan Pernyataan adalah suatu kalimat yang bernilai benar atau salah, tetapi tidak sekaligus benar dan salah. Air laut rasanya asin, adalah bilangan prima, urabaya

Lebih terperinci

1. Memahami pengertian proposisi dan predikat. 3. Memahami penggunaan penghubung dan tabel kebenaran

1. Memahami pengertian proposisi dan predikat. 3. Memahami penggunaan penghubung dan tabel kebenaran Modul 1 Logika Matematika Pendahuluan Pada Modul ini akan dibahas materi yang berkaitan dengan logika proposisi dan logika predikat, serta berbagai macam manipulasi didalamnya. Tujuan Instruksional Umum

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL 1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita

Lebih terperinci

LOGIKA SIMBOLIK. Bagian II. September 2005 Pengantar Dasar Matematika 1

LOGIKA SIMBOLIK. Bagian II. September 2005 Pengantar Dasar Matematika 1 LOGIKA IMOLIK agian II eptember 2005 Pengantar Dasar Matematika 1 LOGIKA Realitas Kalimat/ Pernyataan Logis LOGIKA eptember 2005 Pengantar Dasar Matematika 2 Apakah logika itu? Logika: Ilmu untuk berpikir

Lebih terperinci

KUANTOR. A. Fungsi Pernyataan

KUANTOR. A. Fungsi Pernyataan A. Fungsi Pernyataan KUANTOR Definisi : Suatu fungsi pernyataan adalah suatu kalimat terbuka di dalam semesta pembicaraan (semesta pembicaraan diberikan secara eksplisit atau implisit). Fungsi pernyataan

Lebih terperinci

Logika Proposisi. Adri Priadana ilkomadri.com

Logika Proposisi. Adri Priadana ilkomadri.com Logika Proposisi Adri Priadana ilkomadri.com Matematika Diskrit Apa? Cabang matematika yg mempelajari tentang obyek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)? Objek disebut diskrit jika:

Lebih terperinci

Logika Proposisi 1. Definisi 1. (Proposisi) Proposisi adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya sekaligus.

Logika Proposisi 1. Definisi 1. (Proposisi) Proposisi adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya sekaligus. Logika Proposisi 1 I. Logika Proposisi Logika adalah bagian dari matematika, tetapi pada saat yang sama juga merupakan bahasa matematika. Pada akhir abad ke-19 dan awal abad ke-20, ada kepercayaan bahwa

Lebih terperinci

5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION

5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION 5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION Rekursif Ada kalanya kita mengalami kesulitan untuk mendefinisikan suatu obyek secara eksplisit. Mungkin lebih mudah untuk mendefinisikan obyek tersebut

Lebih terperinci

APOTEMA: Jurnal Pendidikan Matematika. Volume 2, Nomor 2 Juli 2016 p ISSN BILANGAN SEMPURNA GENAP DAN KEPRIMAAN BI LANGAN MERSENNE

APOTEMA: Jurnal Pendidikan Matematika. Volume 2, Nomor 2 Juli 2016 p ISSN BILANGAN SEMPURNA GENAP DAN KEPRIMAAN BI LANGAN MERSENNE APOTEMA: Jurnal Pendidikan Matematika Volume 2 Nomor 2 Juli 2016 p 63-75 ISSN 2407-8840 BILANGAN SEMPURNA GENAP DAN KEPRIMAAN BI LANGAN MERSENNE Moh Affaf Prodi Pendidikan Matematika STKIP PGRI BANGKALAN

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

Silogisme Hipotesis Ekspresi Jika A maka B. Jika B maka C. Diperoleh, jika A maka C

Silogisme Hipotesis Ekspresi Jika A maka B. Jika B maka C. Diperoleh, jika A maka C MSH1B3 Logika Matematika Dosen: Aniq A Rohmawati, M.Si Kalkulus Proposisi [Definisi] Metode yang digunakan untuk meninjau nilai kebenaran suatu proposisi atau kalimat Jika Anda belajar di Tel-U maka Anda

Lebih terperinci

PENARIKAN KESIMPULAN/ INFERENSI

PENARIKAN KESIMPULAN/ INFERENSI PENARIKAN KESIMPULAN/ INFERENSI Proses penarikan kesimpulan dari beberapa proposisi disebut inferensi (inference). Argumen Valid/Invalid Kaidah-kaidah Inferensi Modus Ponens Modus Tollens Silogisme Hipotesis

Lebih terperinci

Selamat Datang. MA 2251 Matematika Diskrit. Semester II, 2016/2017. Rinovia Simanjuntak & Saladin Uttunggadewa

Selamat Datang. MA 2251 Matematika Diskrit. Semester II, 2016/2017. Rinovia Simanjuntak & Saladin Uttunggadewa Selamat Datang di MA 2251 Matematika Diskrit Semester II, 2016/2017 Rinovia Simanjuntak & Saladin Uttunggadewa 1 Referensi Pustaka Kenneth H. Rosen, Discrete Mathematics and its Applications, 7 th edition,

Lebih terperinci

PENGANTAR TOPOLOGI. Dosen Pengampu: Siti Julaeha, M.Si EDISI PERTAMA UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015

PENGANTAR TOPOLOGI. Dosen Pengampu: Siti Julaeha, M.Si EDISI PERTAMA UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015 PENGANTAR TOPOLOGI EDISI PERTAMA Dosen Pengampu: Siti Julaeha, M.Si UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015 by Matematika Sains 2012 UIN SGD, Copyright 2015 BAB 0. HIMPUNAN, RELASI, FUNGSI,

Lebih terperinci

DAFTAR ISI 3 TEORI KONGRUENSI 39 4 TEOREMA FERMAT DAN WILSON 40

DAFTAR ISI 3 TEORI KONGRUENSI 39 4 TEOREMA FERMAT DAN WILSON 40 DAFTAR ISI 1 TEORI KETERBAGIAN 1 1.1 Algoritma Pembagian............................. 2 1.2 Pembagi persekutuan terbesar........................ 5 1.3 Algoritma Euclides.............................. 12

Lebih terperinci

PERTEMUAN KE 3 F T T F T F T F

PERTEMUAN KE 3 F T T F T F T F PEREMUAN KE 3 E. DISJUNGSI EKSLUSI (Exclusive OR) Misalkan p dan q adalah proposisi. Exclusive or p dan q, dinyatakan dengan notasi, adalah proposisi yang bernilai benar bila hanya salah satu dari p dan

Lebih terperinci

n suku Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai

n suku Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai Contents 1 TEORI KETERBAGIAN 2 1.1 Algoritma Pembagian............................. 3 1.2 Pembagi persekutuan terbesar......................... 6 1.3 Algoritma Euclides............................... 11

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Sejak tiga abad yang lalu, pakar-pakar matematika telah menghabiskan banyak waktu untuk mengeksplorasi dunia bilangan prima. Banyak sifat unik dari bilangan prima yang menakjubkan.

Lebih terperinci

PETA PERKULIAHAN MATA KULIAH : LOGIKA MATEMATIKA KODE MATA KULIAH : GD 321. SEMESTER : GANJIL (5) DOSEN : MAULANA, S.Pd., M.Pd.

PETA PERKULIAHAN MATA KULIAH : LOGIKA MATEMATIKA KODE MATA KULIAH : GD 321. SEMESTER : GANJIL (5) DOSEN : MAULANA, S.Pd., M.Pd. Doc Logika Matematika PGSD Maulana 1 PETA PERKULIAHAN MATA KULIAH : LOGIKA MATEMATIKA KODE MATA KULIAH : GD 321 BOBOT SKS : 2 (DUA) TAHUN AKADEMIK : 2007/2008 PROGRAM : PGSD S-1 KELAS SEMESTER : GANJIL

Lebih terperinci

Logika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed

Logika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Logika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Logika Klasik Matematika Diskret (TKE132107) - Program Studi Teknik

Lebih terperinci

Struktur Diskrit. Catatan kuliah Struktur Diskrit Program Ilmu Komputer. disusun oleh Yusuf Hartono Fitri Maya Puspita

Struktur Diskrit. Catatan kuliah Struktur Diskrit Program Ilmu Komputer. disusun oleh Yusuf Hartono Fitri Maya Puspita Struktur Diskrit Catatan kuliah Struktur Diskrit Program Ilmu Komputer disusun oleh Yusuf Hartono Fitri Maya Puspita UNIVERSITAS SRIWIJAYA 2006 Kata Pengantar Buku ini adalah versi pertama dari catatan

Lebih terperinci

LOGIKA. /Nurain Suryadinata, M.Pd

LOGIKA. /Nurain Suryadinata, M.Pd Nama Mata Kuliah Kode Mata Kuliah/SKS Program Studi Semester Dosen Pengampu : Matematika Diskrit : MAT-3615/ 3 sks : Pendidikan Matematika : VI (Enam) : Nego Linuhung, M.Pd /Nurain Suryadinata, M.Pd Referensi

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses penelitian untuk penyelesaian persamaan Diophantine dengan relasi kongruensi modulo m mengenai aljabar dan

Lebih terperinci

MATEMATIKA DISKRIT LOGIKA

MATEMATIKA DISKRIT LOGIKA MATEMATIKA DISKRIT LOGIKA Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda tidak sulit belajar Bahasa Java. Jika anda tidak suka begadang maka anda bukan mahasiswa Informatika.

Lebih terperinci

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner)

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) 1 B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN Bilangan Kompleks Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) Bilangan Rasional Bilangan Irrasional Bilangan Pecahan Bilangan Bulat Bilangan Bulat

Lebih terperinci

Teori Bilangan (Number Theory)

Teori Bilangan (Number Theory) Bahan Kuliah ke-3 IF5054 Kriptografi Teori Bilangan (Number Theory) Disusun oleh: Ir. Rinaldi Munir, M.T. Departemen Teknik Informatika Institut Teknologi Bandung 2004 3. Teori Bilangan Teori bilangan

Lebih terperinci

Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si.

Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si. Logika Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si. Logika Matematika Kalimat Terbuka dan Tertutup Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Semoga kamu

Lebih terperinci

I. Aljabar Himpunan Handout Analisis Riil I (PAM 351)

I. Aljabar Himpunan Handout Analisis Riil I (PAM 351) I. Aljabar Himpunan Aljabar Himpunan Dalam bab ini kita akan menyajikan latar belakang yang diperlukan untuk mempelajari analisis riil. Dua alat utama analisis riil, yakni aljabar himpunan dan fungsi,

Lebih terperinci

BAB 6 LOGIKA MATEMATIKA

BAB 6 LOGIKA MATEMATIKA A 6 LOGIKA MATEMATIKA A RINGKAAN MATERI 1. Pengertian Logika adalah suatu metode yang diciptakan untuk meneliti ketepatan penalaran (bentuk pemikiran yang masuk akal). Pernyataan adalah kalimat yang hanya

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan (Semester I Tahun 2011-2012) Analysis and Geometry Group, FMIPA-ITB E-mail: hgunawan@math.itb.ac.id. http://personal.fmipa.itb.ac.id/hgunawan August 8, 2011 Di sekolah menengah telah dipelajari apa yang

Lebih terperinci

Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements).

Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Logika (logic) 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang bernilai

Lebih terperinci

PENGERTIAN. Proposisi Kalimat deklaratif yang bernilai benar (true) atau salah (false), tetapi tidak keduanya. Nama lain proposisi: kalimat terbuka.

PENGERTIAN. Proposisi Kalimat deklaratif yang bernilai benar (true) atau salah (false), tetapi tidak keduanya. Nama lain proposisi: kalimat terbuka. BAB 2 LOGIKA PENGERTIAN Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang

Lebih terperinci

Metoda Pembuktian: Induksi Matematika

Metoda Pembuktian: Induksi Matematika Metoda Pembuktian: 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo January 14, 011 ILUSTRASI Figure: Ilustrasi Induksi Reaksi Berantai Pada ilustrasi di atas, kartu-kartu disusun

Lebih terperinci

DASAR-DASAR LOGIKA. Pertemuan 2 Matematika Diskrit

DASAR-DASAR LOGIKA. Pertemuan 2 Matematika Diskrit DASAR-DASAR LOGIKA Pertemuan 2 Matematika Diskrit 25-2-2013 Materi Pembelajaran 1. Kalimat Deklaratif 2. Penghubung kalimat 3. Tautologi dan Kontradiksi 4. Konvers, Invers, dan Kontraposisi 5. Inferensi

Lebih terperinci

1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q.

1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q. Diskusi Kelompok (I) Waktu: 100 menit Selasa, 23 September 2008 Pengajar: Hilda Assiyatun, Djoko Suprijanto 1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q. (a) Mahasiswa perlu membawakan

Lebih terperinci

BAB I PENDAHULUAN. a. Apa sajakah hukum-hukum logika dalam matematika? b. Apa itu preposisi bersyarat?

BAB I PENDAHULUAN. a. Apa sajakah hukum-hukum logika dalam matematika? b. Apa itu preposisi bersyarat? BAB I PENDAHULUAN 1.1 LATAR BELAKANG Secara etimologi, istilah Logika berasal dari bahasa Yunani, yaitu logos yang berarti kata, ucapan, pikiran secara utuh, atau bisa juga ilmu pengetahuan. Dalam arti

Lebih terperinci

Jurnal Apotema Vol.2 No. 2 62

Jurnal Apotema Vol.2 No. 2 62 Jurnal Apotema Vol.2 No. 2 62 Sudjana. 2005). Metoda Statistika. Bandung: Tarsito. Sugianto, D. 2014). Perbedaan Penerapan Model Pembelajaran Kooperatif Tipe Jigsaw Dan Sta Ditinjau Dari Kemampuan Penalaran

Lebih terperinci

kusnawi.s.kom, M.Eng version

kusnawi.s.kom, M.Eng version Propositional Logic 3 kusnawi.s.kom, M.Eng version 1.0.0.2009 Adalah sifat-sifat yang dimiliki oleh kalimat logika. Ada 3 sifat logika yaitu : - Valid(Tautologi) - Kontradiksi - Satisfiable(Contingent).

Lebih terperinci

Mendeskripsikan Himpunan

Mendeskripsikan Himpunan BASIC STRUCTURE 2.1 SETS Himpunan Himpunan adalah koleksi tak terurut dari obyek, yang disebut anggota himpunan Notasi. a A : a adalah anggota himpunan A a A : a bukan anggota himpunan A Contoh 1. Himpunan

Lebih terperinci

Materi-3 PROPOSITION LOGIC. Properties of Sentences Inference Methods Quantifier Sentences

Materi-3 PROPOSITION LOGIC. Properties of Sentences Inference Methods Quantifier Sentences Materi-3 PROPOSITION LOGIC Properties of Sentences Inference Methods Quantifier Sentences 1 Properties of Sentences Adalah sifat-sifat yang dimiliki oleh kalimat logika Ada 3 sifat, yaitu: 1. Valid 2.

Lebih terperinci

PENALARAN INDUKTIF DAN DEDUKTIF

PENALARAN INDUKTIF DAN DEDUKTIF Unit 6 PENALARAN INDUKTIF DAN DEDUKTIF Wahyudi Pendahuluan U nit ini membahas tentang penalaran induktif dan deduktif yang berisi penarikan kesimpulan dan penalaran indukti deduktif. Dalam penalaran induktif

Lebih terperinci

SOLUSI OSN MATEMATIKA SMP TINGKAT PROPINSI TAHUN 2004

SOLUSI OSN MATEMATIKA SMP TINGKAT PROPINSI TAHUN 2004 SOLUSI OSN MATEMATIKA SMP TINGKAT PROPINSI TAHUN 004 A. ISIAN SINGKAT. Setiap muka sebuah kubus diberi bilangan seperti pada gambar. Kemudian setiap titik sudut diberi bilangan yang merupakan hasil penjumlahan

Lebih terperinci

LOGIKA MATEMATIKA I. PENDAHULUAN

LOGIKA MATEMATIKA I. PENDAHULUAN LOGIKA MATEMATIKA I. PENDAHULUAN Logika adalah dasar dan alat berpikir yang logis dalam matematika dan pelajaran-pelajaran lainnya, sehingga dapat membantu dan memberikan bekal tambahan untuk menyampaikan

Lebih terperinci

Materi 4: Logika. I Nyoman Kusuma Wardana. STMIK STIKOM Bali

Materi 4: Logika. I Nyoman Kusuma Wardana. STMIK STIKOM Bali Materi 4: Logika I Nyoman Kusuma Wardana STMIK STIKOM Bali Logika merupakan dasar dr semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan-pernyataan (statements). Dalam Logika

Lebih terperinci

Teori Dasar Himpunan. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo

Teori Dasar Himpunan. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo December 27, 2012 PENGERTIAN DASAR Denition Himpunan merupakan koleksi objek-objek yang disebut anggota atau elemen himpunan tersebut.

Lebih terperinci

Teori Dasar Logika (Lanjutan)

Teori Dasar Logika (Lanjutan) Teori Dasar Logika (Lanjutan) Inferensi Logika Logika selalu berhubungan dengan pernyataan-pernyataan yang ditentukan nilai kebenarannya. Untuk menentukan benar tidaknya kesimpulan berdasarkan sejumlah

Lebih terperinci