Perluasan permutasi dan kombinasi

Ukuran: px
Mulai penontonan dengan halaman:

Download "Perluasan permutasi dan kombinasi"

Transkripsi

1 Perluasan permutasi dan kombinasi Permutasi dengan pengulangan Kombinasi dengan pengulangan Permutasi dengan obyek yang tidak dapat dibedakan Distribusi obyek ke dalam kotak

2 Permutasi dengan pengulangan Contoh 1 Berapa banyak string panjang n yang dapat dibentuk dari alfabet? Karena ada 26 huruf dalam alfabet dan karena setiap huruf dapat digunakan berulang maka ada 26 n string panjang n. Teorema 3 Jumlah permutasi-r dari himpunan dengan n anggota yang memperbolehkan pengulangan adalah n r.

3 Kombinasi dengan pengulangan Contoh 2 Ada berapa cara untuk memilih 3 buah dari wadah yang berisi rambutan, duku, pisang, dan manggis, jika urutan pengambilan tidak penting, dan setidaknya ada 4 buah dalam setiap jenis buah.

4 Contoh 3 Ada berapa cara untuk memilih 5 lembar uang kertas dari kotak yg memuat lembaran $1, $2, $5, $10, $20, $50 dan $100? Asumsikan bahwa urutan pengambilan tidak penting dan ada sedikitnya 5 lembar uang kertas utk masing-masing pecahan. Solusi Karena urutan tidak penting dan ke-7 macam uang kertas tersebut dapat dipilih hingga 5 kali, maka problem ini sama dengan menghitung kombinasi-5 dengan pengulangan dari himpunan dengan 7 elemen. Misal kotak mempunyai 7 bagian dan setiap bagian menyimpan 1 macam uang, maka bagian-bagian tersebut dipisahkan oleh 6 pemisah.

5 Contoh 3 (2) Memilih 5 uang kertas sama artinya dengan menempatkan 6 pemisah dalam 11 tempat (5* + 6 ). ** *** : 3 $1 + 2 $10 * * ** * : $5 + 2 $20 + $50 + $100 Jadi banyaknya cara memilih 5 uang kertas = banyaknya cara menempatkan 6 pemisah dalam 11 tempat = C(11,6) = 462.

6 Kombinasi dengan pengulangan (2) Teorema 4 Terdapat C(n+r-1,r) kombinasi-r dari himpunan dengan n anggota yang memperbolehkan pengulangan anggota. Contoh 4 Ada berapa banyak solusi dari x 1 + x 2 + x 3 =11, jika x 1, x 2, x 3 bil bulat nonnegatif? Solusi Menghitung solusi = menghitung cara memilih 11 bintang dari himpunan 13 elemen (11 bintang + 2 pemisah). Jadi terdapat C(13,11) macam solusi.

7 Soal 1 NEW Apakah hubungan antara solusi x 1 + x 2 + x 3 + x 4 = 6, x i bilangan bulat nonnegatif, dengan lintasan terpendek antara A dan B pada grid ini? B A

8 Soal 2 a. Ada berapa banyak solusi dari x 1 + x 2 + x 3 11, bila x 1, x 2, x 3 bilangan bulat nonnegatif? b. Ada berapa banyak solusi dari x 1 + x 2 + x 3 = 11, bila x 1, x 2, x 3 bilangan bulat dan x 1 1, x 2 2 dan x 3 3?

9 Solusi: a. Tambahkan variabel baru y yang bernilai bulat nonnegatif, sehingga didapat persamaan x 1 + x 2 + x 3 +y = 11. NEW Solusi pada persamaan diatas sama banyak dengan solusi pada pertaksamaan semula. b. Definisikan y 1 = x 1-1, y 2 = x 2-2, dan y 3 = x 3-3. Maka y i adalah bilangan bulat nonnegatif. x 1 + x 2 + x 3 = 11 (y 1 +1) +(y 2 +2) + (y 3 +3) = 11 y 1 + y 2 + y 3 = 5.

10 Permutasi dan kombinasi dengan pengulangan Tipe Pengulangan? Rumus r-permutasi r-kombinasi r-permutasi r-kombinasi Tidak Tidak Ya Ya n! ( n r)! n! r!( n r)! n r ( n r 1)! r!( n 1)!

11 Permutasi dengan obyek yang tak dapat dibedakan Contoh 5 Ada berapa banyak string yang dapat dibuat dengan mengatur kembali huruf-huruf pada kata SUCCESS? Solusi Karena ada beberapa huruf yg sama, maka jawabannya tidaklah sama dengan permutasi 7 huruf. Tapi, banyaknya adalah: C(7,3) utk menempatkan 3 S dalam 7 tempat; C(4,2) utk menempatkan 2 C dalam 4 tempat sisanya; C(2,1) utk menempatkan 1 U dalam 2 tempat sisanya; C(1,1) utk menempatkan 1 E dalam 1 tempat sisanya; Jadi banyak string ada: C(7,3).C(4,2).C(2,1).C(1,1) = 420.

12 Permutasi dengan obyek yang tak dapat dibedakan (2) Teorema 5 Jumlah permutasi dari n obyek, di mana terdapat adalah: n 1 obyek tipe 1, n 2 obyek tipe 2,, dan n k obyek k, n! n! n! n! 1 2 k

13 Distribusi obyek ke dalam kotak Contoh 6 Ada berapa banyak cara untuk mendistribusikan satu set kartu pada 4 orang pemain sehingga setiap pemain mendapatkan 5 kartu? Solusi Pemain pertama memperoleh 5 kartu dalam C(52,5) cara Pemain kedua memperoleh 5 kartu dalam C(47,5) cara Pemain ketiga memperoleh 5 kartu dalam C(42,5) cara Pemain keempat memperoleh 5 kartu dalam C(37,5) cara Jadi, secara keseluruhan banyaknya cara adalah C(52,5). C(47,5). C(42,5). C(37,5) 52! 47! 42! 37! 52! 47!5! 42!5! 37!5! 32!5! 5!5!5!5!32!

14 Distribusi obyek ke dalam kotak Teorema 6 Banyaknya cara untuk mendistribusikan n obyek yang dapat dibedakan ke dalam k kotak yang dapat dibedakan sehingga n i buah obyek ditempatkan dalam kotak i, i=1,2,,k adalah n! n! n! n! 1 2 k

15 Koefisien Binomial Teorema Binomial (x+y) n = C(n,0)x n + C(n,1)x n-1 y + C(n,2)x n-2 y C(n,n-1)xy n-1 + C(n,n)y n. Bukti Menghitung banyaknya x n-j y j, untuk suatu j=0,1,2,,n, sama dengan memilih (n-j) buah x dari n suku (sehingga j suku lainnya dalam perkalian adalah y). Jadi koefisien x n-j y j adalah C(n,n-j).

16 Koefisien Binomial (2) Akibat 1 1. C(n,j) = C(n,n-j). 2. C(n,0) + C(n,1) + + C(n,n) = 2 n n k 0 n k 0 ( 1) 2 k k C( n, k) C( n, k) 3 n 0 Bukti 1. Banyaknya cara memilih j dari n elemen sama dengan banyaknya meninggalkan n-j dari n elemen. 2. Pilih x = y = Pilih x = -1 dan y = Pilih x = 1 dan y = 2.

17 Koefisien Binomial (3) NEW Perhatikan bahwa: ruas kanan Akibat 1 Bag. 2 menyatakan banyaknya subhimpunan dari himpunan dengan n anggota. Dari ruas kiri kita peroleh bahwa subhimpunan ini dapat dikelompokkan berdasarkan banyaknya anggota. Akibat 1 Bag. 3 menyatakan bahwa subhimpunan berukuran ganjil sama banyak dengan subhimpunan berukuran genap.

18 Identitas dan Segitiga Pascal Identitas Pascal Misal n dan k bilangan bulat positif, n k. Maka, C(n+1,k) = C(n,k-1) + C(n,k). Bukti Pandang T himpunan dengan n+1 elemen, a T. Misal S = T-{a}. Ada C(n+1,k) buah subhimpunan dari T yang mempunyai k elemen. Suatu subhimpunan dari T dgn k elemen dapat memuat a dan (k-1) elemen S atau memuat k elemen S tanpa memuat a. Jadi, C(n+1,k) = C(n,k-1)+C(n,k).

19 Identitas Vandermonde Misal m, n dan r bilangan bulat positif, m r dan n r. Maka, r C( m n, r) C( m, r k) C( n, k) k 0 Bukti Pandang dua himpunan A dengan m elemen dan B dengan n elemen. Maka banyaknya cara untuk memilih r elemen dari AUB adalah C(m+n,r). Cara lain untuk memilih r elemen dari AUB adalah dengan memilih k elemen dari B dan kemudian r-k elemen dari A, dengan k bilangan bulat, 0 k r. Banyaknya cara untuk melakukan pemilihan tersebut adalah C(m,r-k)C(n,k). Jadi banyaknya cara untuk memilih r elemen dari AUB adalah r C( m, r k) C( n, k) k 0

20 Soal 3 Buktikan C(2n,n) = C(n,0) 2 + C(n,1) C(n,n) 2 dengan 3 cara: 1. Menggunakan Identitas Vandermonde. 2. Memandang pemilihan n orang dari 2n orang yg terdiri dari n pria dan n wanita

21 Soal-soal 1. Latihan Ada berapa cara untuk memilih 8 uang logam dari sebuah celengan yang berisi 100 uang logam Rp. 500 yang identik dan 80 uang logam Rp yang identik. (Solusi: 9) 2. Latihan Ada berapa string dari 10 digit terner (0,1, atau 2) yang memuat tepat dua digit 0, tiga digit 1, dan lima digit 2? (Solusi: 2520) 3. Latihan Ada berapa banyak bilangan bulat positif yang lebih kecil dari dengan jumlah dari digit-digitnya adalah sama dengan 19? 4. Latihan Suatu penerbit mempunyai 3000 buku Matematika Diskrit. Ada berapa cara menyimpan buku-buku tersebut ke dalam tiga gudang jika setiap buku tidak dapat dibedakan? (Solusi: ) 5. Latihan Ada berapa cara untuk berjalan dari titik (0,0,0) ke (4,3,5) di ruang xyz dengan melangkah sebesar 1 satuan ke arah x positif, 1 satuan ke arah y positif, dan 1 satuan ke arah z positif.

6.3 PERMUTATIONS AND COMBINATIONS

6.3 PERMUTATIONS AND COMBINATIONS 6.3 PERMUTATIONS AND COMBINATIONS Pengaturan dengan urutan Sering kali kita perlu menghitung banyaknya cara pengaturan obyek tertentu dengan memperhatikan urutan maupun tanpa memperhatikan urutan. Contoh

Lebih terperinci

4. Pencacahan. Pengantar. Aturan penjumlahan (sum rule) Aturan penjumlahan Yang Diperumum. Aturan Perkalian (Product Rule)

4. Pencacahan. Pengantar. Aturan penjumlahan (sum rule) Aturan penjumlahan Yang Diperumum. Aturan Perkalian (Product Rule) 4. Pencacahan Pengantar Pencacahan (counting) adalah bagian dari matematika kombinatorial. Matematika kombinatorial berkaitan dengan pengaturan sekumpulan objek. Pencacahan berusaha menjawab pertanyaan-pertanyaan

Lebih terperinci

1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q.

1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q. Diskusi Kelompok (I) Waktu: 100 menit Selasa, 23 September 2008 Pengajar: Hilda Assiyatun, Djoko Suprijanto 1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q. (a) Mahasiswa perlu membawakan

Lebih terperinci

KOMBINATORIAL STRUKTUR DISKRIT K-1. Program Studi Teknik Komputer Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia.

KOMBINATORIAL STRUKTUR DISKRIT K-1. Program Studi Teknik Komputer Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia. STRUKTUR DISKRIT K-1 KOMBINATORIAL Program Studi Teknik Komputer Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia Suryadi MT Struktur Diskrit 1 Pendahuluan Sebuah password panjangnya 6 sampai

Lebih terperinci

KOMBINATORIKA. Berapa banyak cara menyusun sebuah bilangan yang terdiri dari empat buah angka yang tidak mengandung angka yang berulang?

KOMBINATORIKA. Berapa banyak cara menyusun sebuah bilangan yang terdiri dari empat buah angka yang tidak mengandung angka yang berulang? P a g e 1 KOMBINATORIKA Beberapa prinsip penting dalam menyelesaikan masalah kombinatorika yaitu permutasi dan kombinasi, prinsip inklusi-eksklusi, koefisien binomial, prinsip sarang merpati (pigeon hole

Lebih terperinci

8/29/2014. Kode MK/ Nama MK. Matematika Diskrit 2 8/29/2014

8/29/2014. Kode MK/ Nama MK. Matematika Diskrit 2 8/29/2014 Kode MK/ Nama MK Matematika Diskrit 1 8/29/2014 2 8/29/2014 1 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 3 8/29/2014 3 KOMBINATORIAL Tujuan 1.Mahasiswa

Lebih terperinci

DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya.

DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya. KOMBINATORIAL DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya. ENUMERASI Sebuah sandi-lewat (password)

Lebih terperinci

DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya.

DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya. KOMBINATORIAL DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya. ENUMERASI Sebuah sandi-lewat (password)

Lebih terperinci

U n KOMBINATORIAL. A 1 atau A 2 atau... atau A n adalah (n 1 + n n n ). Dengan kata lain

U n KOMBINATORIAL. A 1 atau A 2 atau... atau A n adalah (n 1 + n n n ). Dengan kata lain KOMBINATORIAL Kombinatorial adalah cabang matematika yang mempelajari pengaturan objek objek Solusi yang ingin kita peroleh dari kombinatorial ini adalah jumlah cara pengaturan objek objek didalam kumpulanya

Lebih terperinci

L/O/G/O KOMBINATORIK. By : ILHAM SAIFUDIN

L/O/G/O KOMBINATORIK. By : ILHAM SAIFUDIN L/O/G/O KOMBINATORIK By : ILHAM SAIFUDIN Senin, 09 Mei 2016 1.2 Kaidah Dasar menghitung BAB 4. KOMBINATORIK 1.1 Pendahuluan 1.2 Kaidah Dasar Menghitung 1.3 Permutasi 1.4 Kombinasi 1.5 Permutasi dan Kombinasi

Lebih terperinci

BAB III KOMBINATORIK

BAB III KOMBINATORIK 37 BAB III KOMBINATORIK Persoalan kombinatorik bukan merupakan persoalan yang baru dalam kehidupan nyata. Banyak persoalan kombinatorik yang sederhana telah diselesaiakan dalam masyarakat. Misalkan, saat

Lebih terperinci

Bab 4. Koefisien Binomial

Bab 4. Koefisien Binomial Bab 4. Koefisien Binomial Koefisien binomial merupakan bilangan-bilangan yang muncul dari hasil penjabaran penjumlahan dua peubah yang dipangkatkan, misalnya (a + b) n. Sepintas terlihat bahwa ekspresi

Lebih terperinci

CHAPTER 7 DISCRETE PROBABILITY

CHAPTER 7 DISCRETE PROBABILITY CHAPTER 7 DISCRETE PROBABILITY 1 7.1 AN INTRODUCTION TO DISCRETE PROBABILITY 2 Sejarah 1526: Cardano menulis Liber de Ludo Aleae (Book on Games of Chance). Abad 17: Pascal menentukan kemungkinan untuk

Lebih terperinci

Solusi Pengayaan Matematika Edisi 14 April Pekan Ke-2, 2006 Nomor Soal:

Solusi Pengayaan Matematika Edisi 14 April Pekan Ke-2, 2006 Nomor Soal: Solusi Pengayaan Matematika Edisi 4 April Pekan Ke-, 006 Nomor Soal: 3-40 3. Manakah yang paling besar di antara bilangan-bilangan 0 9 b, 5 c, 0 d 5, dan 0 e 4 3? A. e B. d C. c D. b E. a Solusi: [E] 5

Lebih terperinci

Kombinatorial. Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir. Program Studi Teknik Informatika ITB

Kombinatorial. Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir. Program Studi Teknik Informatika ITB Kombinatorial Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir Program Studi Teknik Informatika ITB 1 Pendahuluan Sebuah kata-sandi (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa

Lebih terperinci

Pertemuan 14. Kombinatorial

Pertemuan 14. Kombinatorial Pertemuan 14 Kombinatorial 1 Pendahuluan Sebuah kata-sandi (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa huruf atau angka. Berapa banyak kemungkinan kata-sandi yang dapat dibuat? abcdef

Lebih terperinci

KOMBINATORIAL. /Nurain Suryadinata, M.Pd

KOMBINATORIAL. /Nurain Suryadinata, M.Pd Nama Mata Kuliah Kode Mata Kuliah/SKS Program Studi Semester Dosen Pengampu : Matematika Diskrit : MAT-3615/ 3 sks : Pendidikan Matematika : VI (Enam) : Nego Linuhung, M.Pd /Nurain Suryadinata, M.Pd Referensi

Lebih terperinci

Pendahuluan. abcdef aaaade a123fr. erhtgahn yutresik ????

Pendahuluan. abcdef aaaade a123fr. erhtgahn yutresik ???? Kombinatorial 1 Percobaan! Melampar dadu! Berapa saja angka yang muncul? Memilih 4 wakil dari kelas ini! Berapa kemungkinan perwakilan yang dapat dibentuk? Menyusun 5 huruf dari a,b,c,d,e, tidak boleh

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan

Lebih terperinci

STRATEGI PENYELESAIAN MASALAH (PROBLEM SOLVING STRATEGIES) EDDY HERMANTO

STRATEGI PENYELESAIAN MASALAH (PROBLEM SOLVING STRATEGIES) EDDY HERMANTO STRATEGI PENYELESAIAN MASALAH (PROBLEM SOLVING STRATEGIES) EDDY HERMANTO Strategi Penyelesaian Masalah Beberapa Strategi Penyelesaian Masalah : 1. Membuat daftar Yang Teratur 2. Memisalkan Dengan Suatu

Lebih terperinci

CHAPTER 8. Advanced Counting Techniques

CHAPTER 8. Advanced Counting Techniques CHAPTER 8 Advanced Counting Techniques Banyak problem counting yang tidak dapat dipecahkan dengan menggunakan hanya aturan dasar, kombinasi, permutasi, dan aturan sarang merpati. Misalnya: Ada berapa banyak

Lebih terperinci

TEKNIK MEMBILANG. b T U V W

TEKNIK MEMBILANG. b T U V W TEKNIK MEMBILANG Berikut ini teknik-teknik (cara-cara) membilang atau menghitung banyaknya anggota ruang sampel dari suatu eksperimen tanpa harus mendaftar seluruh anggota ruang sampel tersebut. A. Prinsip

Lebih terperinci

PELUANG. Permutasi dengan beberapa elemen yang sama: Dari n obyek terdapat n

PELUANG. Permutasi dengan beberapa elemen yang sama: Dari n obyek terdapat n PELUANG Bab 11 1. Faktorial Faktorial adalah perkalian bilangan asli berurutan Hasil perkalian dari n bilangan asli pertama yang terurut dikatakan sebagai n faktorial (n!) n! n( n 1)( n 2)...3.2.1 5! =

Lebih terperinci

Kombinatorial. Matematika Diskrit Pertemuan ke - 4

Kombinatorial. Matematika Diskrit Pertemuan ke - 4 Kombinatorial Matematika Diskrit Pertemuan ke - 4 Pengertian Cabang matematika yang mempelajari pengaturan objek-objek Solusi yang diperoleh : jumlah cara pengaturan objek-objek tertentu dalam himpunan

Lebih terperinci

TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada

TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada II. TINJAUAN PUSTAKA Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori penelitian ini. 2. Konsep Dasar Graf Teori dasar mengenai graf

Lebih terperinci

Bab 11 PELUANG. Contoh : 5! = = 120

Bab 11 PELUANG. Contoh : 5! = = 120 PELUANG Bab 11 1. Faktorial Faktorial adalah perkalian bilangan asli berurutan Hasil perkalian dari n bilangan asli pertama yang terurut dikatakan sebagai n faktorial (n!) n! n( n 1)( n 2)...3.2.1 5! =

Lebih terperinci

INF-104 Matematika Diskrit

INF-104 Matematika Diskrit Jurusan Informatika FMIPA Unsyiah February 13, 2012 Apakah Matematika Diskrit Itu? Matematika diskrit: cabang matematika yang mengkaji objek-objek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)?

Lebih terperinci

Kombinatorial. Pendahuluan. Definisi. Kaidah Dasar Menghitung. Sesi 04-05

Kombinatorial. Pendahuluan. Definisi. Kaidah Dasar Menghitung. Sesi 04-05 Pendahuluan Kombinatorial Sesi 04-05 Sebuah sandi-lewat (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa huruf atau angka. Berapa banyak kemungkinan sandi-lewat yang dapat dibuat? abcdef

Lebih terperinci

Kombinatorial. Matematika Deskrit. Sirait, MT 1

Kombinatorial. Matematika Deskrit. Sirait, MT 1 Kombinatorial Matematika Deskrit By @Ir.Hasanuddin Sirait, MT 1 Pendahuluan Sebuah sandi-lewat (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa huruf atau angka. Berapa banyak kemungkinan

Lebih terperinci

SOAL-JAWAB MATEMATIKA PENCACAHAN

SOAL-JAWAB MATEMATIKA PENCACAHAN SOAL-JAWAB MATEMATIKA PENCACAHAN Soal 1 Tersedia angka-angka 1, 2, 3, 7, 8, 9. a) Dari angka-angka tersebut disusun bilangan terdiri dari tiga angka berbeda. Berapa banyaknya bilangan yang dapat disusun?

Lebih terperinci

Strategi Penemuan Pola pada Pemecahan Masalah

Strategi Penemuan Pola pada Pemecahan Masalah Strategi Penemuan Pola pada Pemecahan Masalah I Strategi Penemuan Pola dalam Penyelesaian Masalah Sehari-hari Penemuan pola adalah salah satu strategi dalam problem solving dimana kita dapat mengamati

Lebih terperinci

Kombinatorial dan Peluang Diskret Matematika Diskret (TKE072107) Program Studi Teknik Elektro, Unsoed

Kombinatorial dan Peluang Diskret Matematika Diskret (TKE072107) Program Studi Teknik Elektro, Unsoed Kombinatorial dan Peluang Diskret Matematika Diskret (TKE072107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2012/2013 Kombinatorial: cabang matematika yang mempelajari

Lebih terperinci

MA5032 ANALISIS REAL

MA5032 ANALISIS REAL (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 16, 2011 Pada bab ini anda diasumsikan telah mengenal dengan cukup baik bilangan asli, bilangan bulat, dan bilangan

Lebih terperinci

Peluang Aturan Perkalian, Permutasi, dan Kombinasi dalam Pemecahan Masalah Ruang Sampel Suatu Percobaan Peluang Suatu Kejadian dan Penafsirannya

Peluang Aturan Perkalian, Permutasi, dan Kombinasi dalam Pemecahan Masalah Ruang Sampel Suatu Percobaan Peluang Suatu Kejadian dan Penafsirannya 2 Aturan Perkalian, Permutasi, dan Kombinasi dalam ; Pemecahan Masalah Ruang Sampel Suatu Percobaan ; Suatu Kejadian dan Penafsirannya ; Pada era demokrasi saat ini untuk menduduki suatu jabatan tertentu

Lebih terperinci

KOMBINATORIKA. Erwin Harahap

KOMBINATORIKA. Erwin Harahap KOMBINATORIKA Erwin Harahap Disampaikan pada acara Sosialisasi OLIMPIADE MATEMATIKA, FISIKA, DAN KIMIA 2011 KOPERTIS WILAYAH IV JAWA BARAT Jatinangor- Bandung, 22 Maret 2011 1 KEMENTRIAN PENDIDIKAN NASIONAL

Lebih terperinci

KONSEP DASAR PROBABILITAS

KONSEP DASAR PROBABILITAS KONSEP DASAR PROBABILITAS PENDAHULUAN Tanpa kita sadari kehidupan kita sehari-hari selalu berhubungan dengan matematika, khususnya peluang. Misalnya dalam pemilihan umum terdapat 5 orang calon presiden,

Lebih terperinci

Combinatorics dan Counting

Combinatorics dan Counting CHAPTER 6 COUNTING Combinatorics dan Counting Kombinatorik Ilmu yang mempelajari pengaturan obyek Bagian penting dari Matematika Diskrit Mulai dipelajari di abad 17 Enumerasi Penghitungan obyek dengan

Lebih terperinci

5.Permutasi dan Kombinasi

5.Permutasi dan Kombinasi 5.Permutasi dan Kombinasi Prinsip Perkalian : Jika sebuah aktivitas bisa dibentuk dalam t langkah berurutan dan langkah 1 bisa dilakukan dalam n1 cara; langkah kedua bisa dilakukan dalam n2 cara;.; langkah

Lebih terperinci

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 2012

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 2012 Tutur Widodo Pembahasan OSK Matematika SMA 01 Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 01 Oleh Tutur Widodo 1. Banyaknya bilangan bulat n yang memenuhi (n 1(n 3(n 5(n 013 = n(n + (n

Lebih terperinci

Studi Tentang Kombinatorial dan Peluang Diskrit Serta Beberapa Aplikasinya

Studi Tentang Kombinatorial dan Peluang Diskrit Serta Beberapa Aplikasinya Studi Tentang Kombinatorial dan Peluang Diskrit Serta Beberapa Aplikasinya Hanif Eridaputra (13510091) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

Sistem Bilangan Riil

Sistem Bilangan Riil Sistem Bilangan Riil Sistem bilangan N : 1,,,. Z :,-,-1,0,1,,.. N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real Q : q R a b, a, b Z, b Q Irasional Contoh Bil Irasional,, 0

Lebih terperinci

CHAPTER 5 INDUCTION AND RECURSION

CHAPTER 5 INDUCTION AND RECURSION CHAPTER 5 INDUCTION AND RECURSION 5.1 MATHEMATICAL INDUCTION Jumlah n Bilangan Ganjil Positif 1 = 1 1 + 3 = 4 1 + 3 + 5 = 9 1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 + 9 = 25 Tebakan: Jumlah dari n bilangan ganjil

Lebih terperinci

PELUANG. n cara yang berbeda. Contoh 1: Ali mempunyai 2 celana dan 3 baju yang berbeda. Berapa stelan celana dan baju berbeda yang dipunyai Ali?

PELUANG. n cara yang berbeda. Contoh 1: Ali mempunyai 2 celana dan 3 baju yang berbeda. Berapa stelan celana dan baju berbeda yang dipunyai Ali? -1- PELUANG 1. KAIDAH PENCACAHAN 1.1 Aturan Pengisian Tempat Jika beberapa peristiwa dapat terjadi dengan n1, n2, n3,... cara yang berbeda, maka keseluruhan peristiwa itu dapat terjadi dengan n n......

Lebih terperinci

Sistem Bilangan Ri l

Sistem Bilangan Ri l Sistem Bilangan Riil Sistem bilangan N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real N : 1,,,. Z :,-,-1,0,1,,.. Q : a q =, a, b Z, b 0 b R = Q Irasional Contoh Bil Irasional,,π

Lebih terperinci

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun Oleh Tutur Widodo. (n 1)(n 3)(n 5)(n 2013) = n(n + 2)(n + 4)(n )

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun Oleh Tutur Widodo. (n 1)(n 3)(n 5)(n 2013) = n(n + 2)(n + 4)(n ) Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 01 Oleh Tutur Widodo 1. Banyaknya bilangan bulat n yang memenuhi adalah... (n 1)(n 3)(n 5)(n 013) = n(n + )(n + )(n + 01) Jawaban : 0 ( tidak

Lebih terperinci

CHAPTER 5 INDUCTION AND RECURSION

CHAPTER 5 INDUCTION AND RECURSION CHAPTER 5 INDUCTION AND RECURSION 5.1 MATHEMATICAL INDUCTION Jumlah n Bilangan Ganjil Positif 1 = 1 1 + 3 = 4 1 + 3 + 5 = 9 1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 + 9 = 25 Tebakan: Jumlah dari n bilangan ganjil

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pada bab ini akan diberikan definisi dan teorema yang berhubungan dengan

BAB II TINJAUAN PUSTAKA. Pada bab ini akan diberikan definisi dan teorema yang berhubungan dengan BAB II TINJAUAN PUSTAKA Pada bab ini akan diberikan definisi dan teorema yang berhubungan dengan penelitian yang dilakukan. 2.1. Konsep Dasar Graf Graf G didefinisikan sebagai pasangan himpunan terurut

Lebih terperinci

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui

Lebih terperinci

II. TINJAUAN PUSTAKA. 2.1 Bilangan Bulat, Bilangan Rasional, dan Bilangan Real. dengan huruf kecil. Sebagai contoh anggota himpunan A ditulis ;

II. TINJAUAN PUSTAKA. 2.1 Bilangan Bulat, Bilangan Rasional, dan Bilangan Real. dengan huruf kecil. Sebagai contoh anggota himpunan A ditulis ; 4 II. TINJAUAN PUSTAKA 2.1 Bilangan Bulat, Bilangan Rasional, dan Bilangan Real Himpunan dinyatakan dengan huruf kapital dan anggota himpunan dinyatakan dengan huruf kecil. Sebagai contoh anggota himpunan

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi

TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi II. TINJAUAN PUSTAKA Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi pada suatu graf sebagai landasan teori pada penelitian ini.. Konsep Dasar Graf Pada bagian ini akan

Lebih terperinci

BAB III INDUKSI MATEMATIK dan KOMBINATORIK

BAB III INDUKSI MATEMATIK dan KOMBINATORIK BAB III INDUKSI MATEMATIK dan KOMBINATORIK 1. Kata pengantar Kebenaran pernyataan matematika yang berkaitan dengan bilangan bulat perlu pembuktian salah satu metode pembuktian dapat menggunakan Induksi

Lebih terperinci

KUMPULAN SOAL DAN PEMBAHASAN BILANGAN I SMP. Abdul Azis Abdillah. Januari 2017

KUMPULAN SOAL DAN PEMBAHASAN BILANGAN I SMP. Abdul Azis Abdillah. Januari 2017 Soal KUMPULAN SOAL DAN PEMBAHASAN BILANGAN I SMP Abdul Azis Abdillah Januari 07. Angka satuan dari + ( ) + ( 3) + ( 3 4) +... + ( 3 4... 07) adalah.... Diberikan dua buah bilangan yaitu x = 070707 06060606

Lebih terperinci

Permutasi & Kombinasi. Dr.Oerip S Santoso MSc

Permutasi & Kombinasi. Dr.Oerip S Santoso MSc Permutasi & Kombinasi Dr.Oerip S Santoso MSc Aturan Pejumlahan dan Perkalian Aturan Penjumlahan Himpunan S dipartisi menjadi subset S1,S2, Sm Jumlah objek di S = jumlah objek dari semua subset Contoh 1:

Lebih terperinci

LEMBAR AKTIVITAS SISWA PELUANG

LEMBAR AKTIVITAS SISWA PELUANG Nama Siswa : LEMBAR AKTIVITAS SISWA PELUANG 2 2. Kelas : Kompetensi Dasar (KURIKULUM 2013): 3.16 Memahami dan menerapkan berbagai aturan pencacahan melalui beberapa contoh nyata serta menyajikan alur perumusan

Lebih terperinci

PENCACAHAN RUANG SAMPEL

PENCACAHAN RUANG SAMPEL PENCACAHAN RUANG SAMPEL PERTEMUAN VII EvanRamdan PENDAHULUAN Tanpa kita sadari kehidupan kita sehari-hari selalu berhubungan dengan matematika, khususnya peluang. Misalnya dalam pemilihan umum terdapat

Lebih terperinci

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS 21 YOGYAKARTA55281 lmnas@ugm.ac.id http://lmnas.fmipugm.ac.id

Lebih terperinci

4. Sebuah toko perlengkapan olahraga menyebarkan brosur sebagai berikut :

4. Sebuah toko perlengkapan olahraga menyebarkan brosur sebagai berikut : 1. Jika 3x2006 = 2005+2007+a, maka a sama dengan A) 2003 B) 2004 C) 2005 D) 2006 2. Berapa angka terbesar yang mungkin didapat dari kombinasi susunan enam kartu angka di bawah ini? A) 6 475 413 092 B)

Lebih terperinci

Permutasi & Kombinasi

Permutasi & Kombinasi Permutasi & Kombinasi 1 Pendahuluan Sebuah sandi-lewat (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa huruf atau angka. Berapa banyak kemungkinan sandi-lewat yang dapat dibuat????? abcdef

Lebih terperinci

D) 1 A) 3 C) 5 B) 4 D) 6

D) 1 A) 3 C) 5 B) 4 D) 6 1. Hasil penjumlahan dua buah bilangan pecahan positif adalah 41 5. Jika penyebut dari kedua pecahan tersebut kurang dari 5, berapakah pembilang dari pecahan yang lebih besar? A) C) 4 B) D) 5. Dalam sebuah

Lebih terperinci

Strategi Pembuktian. Finding proofs can be a challenging business

Strategi Pembuktian. Finding proofs can be a challenging business Strategi Pembuktian Finding proofs can be a challenging business Matematikawan memformulasikan conjecture dan kemudian mencoba membuktikan bahwa conjecture tersebut benar atau salah. Ketika dihadapkan

Lebih terperinci

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Latihan 1 1. A. NOTASI SIGMA 1. Pengertian Notasi Sigma Misalkan jumlah n suku pertama deret aritmatika adalah S n = U 1 + U 2 + U 3 + + U

Lebih terperinci

Ruang Sampel. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Ruang Sampel. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Ruang Sampel Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Ruang Sampel (Sample Space) Ruang sampel: himpunan semua hasil (outcome) yang

Lebih terperinci

03/08/2015. Sistem Bilangan Riil. Simbol-Simbol dalam Matematikaa

03/08/2015. Sistem Bilangan Riil. Simbol-Simbol dalam Matematikaa 0/08/015 Sistem Bilangan Riil Simbol-Simbol dalam Matematikaa 1 0/08/015 Simbol-Simbol dalam Matematikaa Simbol-Simbol dalam Matematikaa 4 0/08/015 Simbol-Simbol dalam Matematikaa 5 Sistem bilangan N :

Lebih terperinci

Untuk soal (1) s/d (3) berhubungan dengan data berikut :

Untuk soal (1) s/d (3) berhubungan dengan data berikut : Untuk soal () s/d (3) berhubungan dengan data berikut : Sebanyak 30 siswa mengikuti test materi Statistik Skor hasil test dikelompokkan dalam tabulasi berikut. Nilai Frekuensi (f) 4 50 2 5 60 n 6 70 7

Lebih terperinci

Kombinatorial. Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir. Program Studi Teknik Informatika ITB

Kombinatorial. Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir. Program Studi Teknik Informatika ITB Kombinatorial Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir Program Studi Teknik Informatika ITB 1 Pendahuluan Sebuah kata-sandi (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa

Lebih terperinci

MATEMATIKA BISNIS. Himpunan. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen.

MATEMATIKA BISNIS. Himpunan. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen. MATEMATIKA BISNIS Modul ke: Himpunan Fakultas Ekonomi Bisnis Muhammad Kahfi, MSM Program Studi Manajemen http://www.mercubuana.ac.id Konsep Konsep Himpunan merupakan suatu konsep yang paling mendasar bagi

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 009 TIM OLIMPIADE MATEMATIKA INDONESIA 00 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 009 Bagian

Lebih terperinci

1.6 RULES OF INFERENCE

1.6 RULES OF INFERENCE 1.6 RULES OF INFERENCE 1 Argumen Argumen dalam logika adalah kumpulan sejumlah proposisi. Seluruh proposisi dalam suatu argumen, kecuali proposisi terakhir, disebut premis. Sedangkan proposisi terakhir

Lebih terperinci

OMITS 12. Soal Babak Penyisihan Olimpiade Matematika ITS (OMITS) Tahun 2012 Tingkat SMA/Sederajat MATEMATIKA ING NGARSA SUNG TULADHA

OMITS 12. Soal Babak Penyisihan Olimpiade Matematika ITS (OMITS) Tahun 2012 Tingkat SMA/Sederajat MATEMATIKA ING NGARSA SUNG TULADHA OMITS 2 Soal Babak Penyisihan Olimpiade Matematika ITS (OMITS) Tahun 202 Tingkat SMA/Sederajat MATEMATIKA ING NGARSA SUNG TULADHA Olimpiade? Ya OMITS Petunjuk Pengerjaan Soal Babak Penyisihan Olimpiade

Lebih terperinci

Contoh Masalah Matematika dan Solusinya dengan Menggunakan Strategi Penemuan Pola

Contoh Masalah Matematika dan Solusinya dengan Menggunakan Strategi Penemuan Pola Contoh Masalah Matematika dan Solusinya dengan Menggunakan Strategi Penemuan Pola 1 Problem: Tentukan digit terakhir dari 8 Solusi: Banyak siswa akan mencoba menyelesaikan masalah tersebut dengan menggunakan

Lebih terperinci

Relasi Rekursi. Matematika Informatika 4. Onggo

Relasi Rekursi. Matematika Informatika 4. Onggo Relasi Rekursi Matematika Informatika 4 Onggo Wiryawan @OnggoWr Definisi Definisi 1 Suatu relasi rekursi untuk sebuah barisan {a n } merupakan sebuah rumus untuk menyatakan a n ke dalam satu atau lebih

Lebih terperinci

Perluasan Segitiga Pascal

Perluasan Segitiga Pascal Perluasan Segitiga Pascal Untung Trisna S. ontongts@yahoo.com PPPPTK Matematika Yogyakarta 2011 The moving power of mathematical invention is not reasoning but imagination. Augustus De Morgan (27 Jun 1806

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang Pertemuan 2. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuanku Tambusai Bangkinang 0. Bilangan Real 0. Bilangan Real sebagai bentuk desimal Pada pembahasan berikutnya kita diasumsikan telah mengetahui dengan

Lebih terperinci

Teori Peluang Diskrit

Teori Peluang Diskrit Teori Peluang Diskrit Peluang Diskrit Apa yang terjadi jika keluaran dari suatu eksperimen tidak memiliki peluang yang sama? Dalam kasus ini, peluang p(s) dipadankan dengan setiap keluaran s S, di mana

Lebih terperinci

Pembahasan Soal Final Kompetisi Matematika Pasiad ( KMP ) VIII Tahun 2012 Tingkat SMP

Pembahasan Soal Final Kompetisi Matematika Pasiad ( KMP ) VIII Tahun 2012 Tingkat SMP Pembahasan Soal Final Kompetisi Matematika Pasiad ( KMP ) VIII Tahun 01 Tingkat SMP Oleh Tutur Widodo I. Soal Pilihan Ganda (Cara Penilaian : Benar = 1 poin, Kosong = 0, Salah = 0.5 poin) 1. Terdapat berapa

Lebih terperinci

3. Kuadrat dari hasil penjumlahan angka 5 dan 6, dikurangi hasil perkalian kedua angka tersebut

3. Kuadrat dari hasil penjumlahan angka 5 dan 6, dikurangi hasil perkalian kedua angka tersebut 1. Pada sisi kanan dan kiri sebuah jalan raya terdapat perumahan. Rumah-rumah yang terdapat di sisi kiri jalan dinomori berurutan dengan nomor ganjil dari angka 1 sampai 39. Rumah-rumah di sebelah kanan

Lebih terperinci

KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Relasi Ekivalen Relasi ekivalen digunakan untuk merelasikan obyek-obyek yang memiliki kemiripan dalam suatu hal tertentu. Definisi.

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-26

LOMBA MATEMATIKA NASIONAL KE-26 LOMBA MATEMATIKA NASIONAL KE-26 Babak Penyisihan Tingkat SMP Minggu, 8 November HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

LEMBAR KERJA SISWA (LKS) I ( 1 ) ( 2 ) ( 3 ) ( 4 ) a. Apakah gambar di atas membentuk suatu pola?

LEMBAR KERJA SISWA (LKS) I ( 1 ) ( 2 ) ( 3 ) ( 4 ) a. Apakah gambar di atas membentuk suatu pola? 57 LEMBAR KERJA SISWA (LKS) I 1. Perhatikan gambar kelereng di bawah ini! ( 1 ) ( 2 ) ( 3 ) ( 4 ) a. Apakah gambar di atas membentuk suatu pola? b. Jika banyak kelereng pada gambar ( 6 ) dikurangi dengan

Lebih terperinci

Bab 9. Peluang Diskrit

Bab 9. Peluang Diskrit Bab 9. Peluang Diskrit Topik Definisi Peluang Diskrit Sifat Peluang Diskrit Probabilitas terbatas Konsep Teori Himpunan pada Peluang Diskrit Probabilitas Kejadian Majemuk A B dan A B DuaKejadianSalingLepas

Lebih terperinci

BAB III. PECAHAN KONTINU dan PIANO. A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional

BAB III. PECAHAN KONTINU dan PIANO. A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional BAB III PECAHAN KONTINU dan PIANO A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional Sekarang akan dibahas tentang pecahan kontinu tak hingga yang diawali dengan barisan tak hingga bilangan bulat mendefinisikan

Lebih terperinci

Statistika & Probabilitas

Statistika & Probabilitas Statistika & Probabilitas Statistika Berhubungan dengan banyak angka Contoh : Numerical Description pergerakan IHSG, jumlah penduduk di suatu wilayah. Dalam dunia usaha sekumpulan data : pergerakan tingkat

Lebih terperinci

1 Sistem Bilangan Real

1 Sistem Bilangan Real Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan solusi pertidaksamaan aljabar ) Menyelesaikan pertidaksamaan dengan nilai mutlak

Lebih terperinci

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 29 BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 4.1 Perumusan Penduga Misalkan adalah proses Poisson nonhomogen

Lebih terperinci

II. KONSEP DASAR PELUANG

II. KONSEP DASAR PELUANG II. KONSEP DASAR PELUANG Teori Peluang memberikan cara pengukuran kuantitatif tentang kemungkinan munculnya suatu kejadian tertentu dalam suatu percobaan/peristiwa. Untuk dapat menghitung peluang lebih

Lebih terperinci

MATERI BAB I RUANG SAMPEL DAN KEJADIAN. A. Pendahuluan Dari jaman dulu sampai sekarang orang sering berhadapan dengan peluang.

MATERI BAB I RUANG SAMPEL DAN KEJADIAN. A. Pendahuluan Dari jaman dulu sampai sekarang orang sering berhadapan dengan peluang. MATERI BAB I RUANG SAMPEL DAN KEJADIAN Pendahuluan Ruang Sampel Kejadian Dua Kejadian Yang Saling Lepas Operasi Kejadian BAB II MENGHITUNG TITIK SAMPEL Prinsip Perkalian/ Aturan Dasar Notasi Faktorial

Lebih terperinci

MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT

MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT Penulis : Nelly Indriani Widiastuti S.Si., M.T. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 011 6 INDUKSI MATEMATIKA JUMLAH PERTEMUAN

Lebih terperinci

BAB 1. PENDAHULUAN KALKULUS

BAB 1. PENDAHULUAN KALKULUS BAB. PENDAHULUAN KALKULUS (Himpunan,selang, pertaksamaan, dan nilai mutlak) Pembicaraan kalkulus didasarkan pada sistem bilangan nyata. Sebagaimana kita ketahui sistem bilangan nyata dapat diklasifikasikan

Lebih terperinci

Pierre-Simon Laplace. Born 23 March 1749 Beaumont-en-Auge, Normandy, France Died 5 March 1827 (aged 77) Paris, France Mempelajari peluang dalam judi

Pierre-Simon Laplace. Born 23 March 1749 Beaumont-en-Auge, Normandy, France Died 5 March 1827 (aged 77) Paris, France Mempelajari peluang dalam judi Blaise Pascal Born June 19, 1623 Clermont-Ferrand, France Died August 19, 1662 (aged 39) Paris, France Memenangkan taruhan tentang hasil tos dua dadu yang dilakukan berulang-ulang Pierre-Simon Laplace

Lebih terperinci

BILANGAN. Kita bisa menggunakan garis bilangan di bawah ini untuk memaknai penjumlahan 3 ditambah 4.

BILANGAN. Kita bisa menggunakan garis bilangan di bawah ini untuk memaknai penjumlahan 3 ditambah 4. BILANGAN A. BILANGAN BULAT Himpunan bilangan bulat adalah himpunan bilangan yang terdiri dari himpunan bilangan positif (bilangan asli), bilangan nol, dan bilangan bulat negatif. Himpunan bilangan bulat

Lebih terperinci

KOMBINATORIAL DALAM HUKUM PEWARISAN MENDEL

KOMBINATORIAL DALAM HUKUM PEWARISAN MENDEL KOMBINATORIAL DALAM HUKUM PEWARISAN MENDEL Fransisca Cahyono (13509011) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-27

LOMBA MATEMATIKA NASIONAL KE-27 LOMBA MATEMATIKA NASIONAL KE-27 Babak Penyisihan Tingkat SMA Minggu, 0 Oktober HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR

Lebih terperinci

Contoh-contoh soal induksi matematika

Contoh-contoh soal induksi matematika Contoh-contoh soal induksi matematika Buktikan bahwa 2 n > n + 20 untuk setiap bilangan bulat n 5. (i) Basis induksi : Untuk n = 5, kita peroleh 2 5 > 5 + 20 adalah suatu pernyataan yang benar. (ii) Langkah

Lebih terperinci

Penulis : Rahmad AzHaris. Copyright 2013 pelatihan-osn.com. Cetakan I : Oktober Diterbitkan oleh : Pelatihan-osn.com

Penulis : Rahmad AzHaris. Copyright 2013 pelatihan-osn.com. Cetakan I : Oktober Diterbitkan oleh : Pelatihan-osn.com Penulis : Rahmad AzHaris Copyright 2013 pelatihan-osn.com Cetakan I : Oktober 2012 Diterbitkan oleh : Pelatihan-osn.com Kompleks Sawangan Permai Blok A5 No.12 A Sawangan, Depok, Jawa Barat 16511 Telp.

Lebih terperinci

BEBERAPA APLIKASI SEGITIGA PASCAL

BEBERAPA APLIKASI SEGITIGA PASCAL BEBERAPA APLIKASI SEGITIGA PASCAL Yulino Sentosa NIM : 13507046 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10, Bandung. E-mail : if17046@students.if.itb.ac.id

Lebih terperinci

5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION

5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION 5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION Rekursif Ada kalanya kita mengalami kesulitan untuk mendefinisikan suatu obyek secara eksplisit. Mungkin lebih mudah untuk mendefinisikan obyek tersebut

Lebih terperinci

(a) 32 (b) 36 (c) 40 (d) 44

(a) 32 (b) 36 (c) 40 (d) 44 Halaman:. Jika n = 8, maka n0 n bernilai... (a) kurang dari 00 (b) (d) lebih dari 00. Penumpang suatu pesawat terdiri dari anak-anak dari berbagai negara, 6 orang dari Indonesia yang termasuk dari anak-anak

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-25

LOMBA MATEMATIKA NASIONAL KE-25 LOMBA MATEMATIKA NASIONAL KE-5 Babak Penyisihan Tingkat SMP Minggu, 9 November 04 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

matematika Wajib Kelas X PERSAMAAN LINEAR SATU VARIABEL K-13 A. DEFINISI PERSAMAAN LINEAR SATU VARIABEL

matematika Wajib Kelas X PERSAMAAN LINEAR SATU VARIABEL K-13 A. DEFINISI PERSAMAAN LINEAR SATU VARIABEL K-3 Kelas X matematika Wajib PERSAMAAN LINEAR SATU VARIABEL TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami definisi dan solusi persamaan linear

Lebih terperinci

MATEMATIKA DASAR (Kardinalitas)

MATEMATIKA DASAR (Kardinalitas) MATEMATIKA DASAR (Kardinalitas) Antonius Cahya Prihandoko Universitas Jember Indonesia Jember, 2015 Antonius Cahya Prihandoko (UNEJ) MDAS - Kardinalitas Jember, 2015 1 / 19 Outline 1 Kardinalitas 2 Produk

Lebih terperinci