SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd

Ukuran: px
Mulai penontonan dengan halaman:

Download "SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd"

Transkripsi

1 SUBRUANG VEKTOR Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd Disusun Oleh : Kelompok 6/ III A4 1. Nina Octaviani Nugraheni Emi Suryani Azah Elvana PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS PGRI YOGYAKARTA 2015

2 SUBRUANG VEKTOR A. Definisi Jika dan, keduanya merupakan ruang vektor, di mana adalah himpunan bagian dari, dan bukan himpunan kosong { }, maka disebut subruang (subspace) dari. Dengan demikian jika kesepuluh aksioma dalam ruang vektor, maka akan berlaku juga untuk. Teorema 1 Jika adalah suatu himpunan yang terdiri dari satu atau lebih vektor dari suatu ruang vektor, maka adalah subruang dari, jika dan hanya jika syarat-syarat berikut terpenuhi: 1) Jika dan adalah vektor-vektor pada, maka berada pada. 2) Jika adalah skalar sembarang dan adalah vektor sembarangan pada, maka berada pada Bukti: Jika adalah suatu subruang dari, maka semua aksioma ruang vektor terpenuhi, khususnya aksioma 1 dan 6 berlaku. Tetapi aksioma-aksioma ini secara tepat adalah syarat-syarat 1 dan 2 (teorema 1). Catatan Suatu himpunan yang terdiri dari satu atau lebih vektor dari suatu subruang disebut tertutup terhadap penjumlahan (closed under addition) jika syarat a pada teorema 1 berlaku, dan dikatakan tertutup terhadap perkalian skalar (closed under scalar multiplication) jika syarat b berlaku. Jadi teorema 1 menyatakan bahwa adalah subruang dari jika dan hanya jika tertutup terhadap penjumlahan dan tertutup terhadap perkalian skalar. Contoh Subruang 1. Diketahui,* + - Apabila,* + - { } buktikan bahwa adalah subruang vector dari Penyelesaian: 1

3 Pembuktian bahwa { } * + sebab Sehingga Misal: Sebab maka { } Pembuktian aksioma a. Misal: * + * + Misalkan * + sebab b. * + * + Keterangan 2

4 Karena { }, syarat 1 dan 2 terpenuhi, maka terbukti adalah subruang vektor dari 2. Diketahui adalah himpunan vektor- vektor yang berbentuk ( ) dengan dengan operasi standar. Tunjukan apakah merupakan subruang vektor atau bukan! Penyelesaian : Akan ditunjukan apakah memenuhi syarat sub ruang vektor Misalkan Dengan maka Karena syarat ke-1 tidak dipenuhi, maka vektor bukan merupakan subruang B. Kombinasi Linear Sebuah vektor disebut kombinasi linear dari vektorvektor, jika vektor tersebut dapat dinyatakan dalam bentuk: Dengan adalah skalar Catatan: Kadang-kadang kita menuliskan vektor dengan bentuk, tetapi dalam konteks SPL akan dituliskan berbeda, yaitu: juga merupakan vektor dalam artian dengan 3

5 dan Contoh: Diketahui vektor-vektor dalam. Tunjukkan bahwa vektor merupakan kombinasi linear dari. Jawab: Supaya menjadi kombinasi linear dari, maka harus ada skalar sehingga: atau dengan kata lain Di dapat empat persamaan yaitu: Kita selesaikan dengan OBE, matriks augmented dari sistem persamaan di atas: [ ] [ ] [ ] [ ] [ ] Dari matriks di atas, maka diperoleh: 4

6 Substitusi mundur menjadi: Untuk maka. Ini artinya dapat disajikan sebagai kombinasi linear dari. C. Merentang (Span) Jika { } adalah vektor-vektor di dalam ruang vektor dan jika tiap-tiap vektor di dalam vektor dapat dinyatakan sebagai kombinasi linier dari { }, maka dikatakan bahwa vektorvektor ini merentang (span) Jika spann maka disebut himpunan perentang dan dikatakan direntang oleh. Contoh : Buktikan bahwa vektor merentang Jawab: Ambil sembarang vektor ( ) maka dapat ditulis dalam bentuk: ( ) ( ) Dengan kata lain sembarang vektor dapat dinyatakan sebagai kombinasi linear vektor merentang 5

7 Hasil yang penting dari konsep di atas adalah sebagai berikut. Jika adalah vektor-vektor di dalam ruang vektor, maka: 1. Himpunan dari semua kombinasi linear merupakan subruang dari 2. adalah subruang terkecil yang memuat dalam artian bahwa tiap-tiap subruang lain dari yang memuat harus memenuhi. Contoh: Tentukan apakah berada dalam span dengan dan Jawab: Akan dicari skalar dan sehingga: Diperoleh: Samakan koefisien-koefisiennya, maka diperoleh SPL: Kita selesaikan dengan OBE, matriks augmented dari sistem persamaan diatas: [ ] [ ] [ ] [ ] [ ] Dari matriks di atas, maka diperoleh: 6

8 Substitusi mundur menjadi : Didapatkan Jadi, D. Bebas linear dan Tak Bebas Linear Definisi bebas linier: jika sehingga maka vektor vektor tersebut bebas linear. Contoh bebas linear Tentukan apakah vektor-vektor Membentuk sebuah persamaan himpunan yang himpunan yang bebas linear. Penyelesaian: Dengan menyetarakan komponen- komponen yang bersesuaian akan diperoleh: [ ] [ ] [ ] [ ] [ ] [ ] 7

9 ( ) [ ] [ ] Jadi maka himpunannya bebas linear Definisi tak bebas linear Vektor v 1, v 2, v 3...v n dikatakan tak bebas linear jika terdapat yang tidak semuanya nol sehingga memiliki persamaan Contoh tak bebas linear Tentukan apakah vektor- vektor membentuk sebuah himpunan yang tak bebas linear Penyelesaian: Dengan menyetarakan komponen yang bersesuaian akan diperoleh: [ ] [ ] [ ] [ ] ( ) [ ] ( ) [ ] [ ] [ ] Persamaan baru atau atau Jadi atau 8

10 E. Basis dan Dimensi Kita menganggap suatu garis sebagai berdimensi satu, suatu bidang sebagai berdimensi dua, dan ruang di sekeliling kita sebagai berdimensi tiga. Jika adalah suatu ruang vektor dan { } adalah suatu himpunan vektor- vektor pada, maka disebut basis untuk jika dua syarat berikut berlaku: 1. bebas linear 2. merentang Teorema : Jika = { } adalah suatu basis dari ruang vektor, maka setiap vektor pada dapat dinyatakan dalam bentuk dengan tepat satu cara. Contoh: Misalkan { }, { }, { }. Tentukan bahwa himpunan { } adalah suatu basis untuk. Penyelesaian: Untuk menunjukkan bahwa himpunan merentang, kita harus menunjukkan bahwa suatu vektor sebarang dapat dinyatakan sebagai suatu kombinasi. Dari persamaan tersebut dapat diperoleh sebagai berikut: [ ] [ ] [ ] 9

11 ( ) [ ] [ ] [ ] [ ] ( ) [ ] ( ) [ ] Persamaan tersebut merupakan bebas linear karena memiliki solusi trivial. Kita dapat membuktikan bahwa adalah bebas linear dan merentang dengan membuktikan matriks koefisiennya memiliki determinan tak nol. kita memperoleh: Dan dengan demikian adalah basis dari. Definisi: Dimensi dari ruang vektor yang berdimensi terhingga, dinotasikan dengan didefinisikan sebagai banyaknya vektor-vektor yang membentuk basis pada. Selain itu, kita mendefinisikan ruang vektor nol sebagai berdimensi nol. Contoh: Apakah sistem persamaan homogen di bawah ini termasuk basis dalam? 10

12 Penyelesaian: [ ] [ ] [ ] ( ) [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 11

13 Dari matriks di atas di dapat [ ] ; dan Berarti [ ], parameter banyak solusi Sehingga persamaan yang bersesuaian dari matriks di atas adalah Dengan menyelesaikan variable pertama kita memperoleh Karena dan belum diketahui dan matriks di atas memiliki banyak solusi maka kita misalkan Jadi solusinya adalah Oleh karena itu vektor-vektor solusi dapat dinyatakan sebagai Yang menunjukkan bahwa vektor-vektor dan merentang ruang solusi Karena dan bebas linear maka merupakan basis dari. 12

14 Soal Latihan Selesaikan soal berikut ini! 1. Diketahui,* + - Apabila { }, { }, buktikan bahwa W adalah subruang vektor dari! 2. Diketahui vektor-vektor dalam. Tunjukkan bahwa vektor merupakan kombinasi linear dari. 3. Diketahui apakah bebas linear atau tak bebas linear? 4. Apakah apakah bebas linear pada? 5. Tentukan basis dan dimensi dari ruang vektor yang dibentuk oleh: 6. Tentukan dimensi dan basis untuk ruang pemecahan system berikut! 13

15 Kunci Jawaban: 1. Diketahui,* + - Apabila { }, { }, buktikan bahwa W adalah subruang vektor dari! Penyelesaian: Pembuktian bahwa { } * + sebab Sehingga Misal: * + * + Sebab maka { } Pembuktian aksioma 1. Misal: Misalkan sebab 2. * + 14

16 * + Keterangan Karena { }, syarat 1 dan 2 terpenuhi, maka terbukti adalah subruang vektor dari 2. Diketahui vektor-vektor dalam. Tunjukkan bahwa vektor merupakan kombinasi linear dari. Penyelesaian: Supaya menjadi kombinasi linear dari, maka harus ada skalar sehingga: atau dengan kata lain Di dapat tiga persamaanya itu: Kita selesaikan dengan OBE, matriks augmented dari system persamaan diatas: Dari matriks di atas, maka diperoleh: 15

17 Substitusi mundur menjadi: Untuk maka. Ini artinya dapat disajikan sebagai kombinasi linear dari 3. Diketahui apakah bebas linear atau tak bebas linear? Penyelesaian: Diketahui : Ditanya : bebas linear atau tak bebas linear? jawab : Membentuk sebuah himpunan yang tak bebas linear atau himpunan yang bebas linear Dengan menyetarakan komponen- komponen yang bersesuaian akan diperoleh [ ] [ ] [ ] ( ) [ ] [ ] ( ) [ ] [ ] [ ] [ ] 16

18 jadi maka bebas linear 4. Apakah apakah bebas linear pada? Penyelesaian: Diketahui : Ditanya : Apakah bebas linear pada Jawab : Membentuk sebuah himpunan yang tak bebas linear atau himpunan yang bebas linear Dengan menyetarakan komponen- komponen yang bersesuaian akan diperoleh [ ] [ ] [ ] [ ] ( ) [ ] [ ] Persamaan baru : atau atau Jadi Maka tak bebas linear pada 17

19 5. Tentukan basis dan dimensi dari ruang vektor yang dibentuk oleh: Penyelesaian: Untuk menunjukkan bahwa himpunan merentang R, kita harus menunjukkan bahwa suatu vektor sebarang dapat dinyatakan sebagai suatu kombinasi. Sehingga didapat persamaan: Persamaan tersebut merupakan bebas linear karena memiliki solusi trivial atau tidak berkelipatan. Kita dapat membuktikan bahwa adalah basis linear dan tidak merentang dengan membuktikan matriks koefisiennya memiliki determinan nol. [ Sehingga di dapatbahwadimensinyaadatigayaitu dan basisnya ada 3 yaitu 6. Tentukan dimensi dan basis untuk ruang pemecahan system berikut: 18

20 Penyelesaian: [ ] [ ] [ ] [ ] [ ] [ ] [ ] Sehinggadi peroleh dan ; solusi tunggal Vektor solusi dapat dinyatakan sebagai merentang ruang solusi dan merupakan bebas linear maka adalah suatu basis di dan ruang solusinya berdimensi 1 19

21 DAFTAR PUSTAKA Anton, Howard Aljabar Linear Edisi Ketiga. Jakarta : Erlangga. Anton, Howard.2000.Aljabar Linear Edisi Kedelapan.Jakarta : Erlangga. Saefudin, Abdul Aziz Bahan Ajar Aljabar Linear.Yogyakarta.UPY 20

KS KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN KS091206 KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mengetahui definisi dan sifat-sifat dari ruang vektor

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUH1G3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 5 Ruang Vektor Ruang Vektor Sub Pokok Bahasan Ruang Vektor Umum Subruang Basis dan Dimensi Beberapa Aplikasi Ruang Vektor Beberapa metode optimasi Sistem Kontrol

Lebih terperinci

Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut:

Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut: Bagian 5. RUANG VEKTOR 5.1 Lapangan (Field) Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut: 1. dan 2., 3.,

Lebih terperinci

HASIL PRESENTASI ALJABAR LINIER ( SUB RUANG VEKTOR ) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier. Dosen Pengampu : Darmadi, S,Si, M.

HASIL PRESENTASI ALJABAR LINIER ( SUB RUANG VEKTOR ) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier. Dosen Pengampu : Darmadi, S,Si, M. HASIL PRESENTASI ALJABAR LINIER ( SUB RUANG VEKTOR ) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier Dosen Pengampu : Darmadi, S,Si, M.Pd Disusun oleh Matematika 5F Kelompok 5: ARLITA ROSYIDA 08411.081

Lebih terperinci

PERTEMUAN 11 RUANG VEKTOR 1

PERTEMUAN 11 RUANG VEKTOR 1 PERTEMUAN 11 RUANG VEKTOR 1 TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan : Dapat mengetahui definisi dan sifat-sifat dari ruang vektor Dapat mengetahui definisi

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk

Lebih terperinci

Aljabar Linier Elementer

Aljabar Linier Elementer Aljabar Linier Elementer Kuliah 15 dan 16 11/11/2014 1 Materi Kuliah Kebebasan Linier Basis dan Dimensi 11/11/2014 Yanita, Matematika Unand 2 5.3 Kebebasan Linier Definisi Jika S = v 1, v 2,, v r adalah

Lebih terperinci

RUANG VEKTOR. Nurdinintya Athari (NDT)

RUANG VEKTOR. Nurdinintya Athari (NDT) 1 RUANG VEKTOR Nurdinintya Athari (NDT) RUANG VEKTOR Sub Pokok Bahasan Ruang Vektor Umum Subruang Basis dan Dimensi Basis Subruang Beberapa Aplikasi Ruang Vektor Beberapa metode optimasi Sistem kontrol

Lebih terperinci

Chapter 5 GENERAL VECTOR SPACE Row Space, Column Space, Nullspace 5.6. Rank & Nullity

Chapter 5 GENERAL VECTOR SPACE Row Space, Column Space, Nullspace 5.6. Rank & Nullity Chapter 5 GENERAL VECTOR SPACE 5.5. Row Space, Column Space, Nullspace 5.6. Rank & Nullity 5.5. Row Space, Column Space, Nullspace Vektor-Vektor Baris & Kolom Vektor baris A (dalam R n ) Vektor kolom A

Lebih terperinci

Operasi perkalian skalar merupakan suatu aturan yang mengasosiasikan setiap skalar k dan setiap objek u pada v dengan suatu objek ku, yang disebut

Operasi perkalian skalar merupakan suatu aturan yang mengasosiasikan setiap skalar k dan setiap objek u pada v dengan suatu objek ku, yang disebut RUANG VEKTOR REAL Aksioma ruang vektor, dinyatakan dlam definisi beikut, dimana aksiona merupakan aturan permainan dalam ruang vektor. Definisi : Jika V merupakan suatu himpunan tidak kosong dari objek

Lebih terperinci

Kumpulan Soal,,,,,!!!

Kumpulan Soal,,,,,!!! Kumpulan Soal,,,,,!!! Materi: Matriks & Ruang Vektor 1. BEBAS LINEAR S 3. BASIS DAN DIMENSI O A L 2. KOMBINASI LINEAR NeXt FITRIYANTI NAKUL Page 1 1. BEBAS LINEAR Cakupan materi ini mengkaji tentang himpunan

Lebih terperinci

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel)

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U November 2015 MZI (FIF Tel-U) Ruang Baris, Kolom,

Lebih terperinci

Ruang Vektor. Adri Priadana. ilkomadri.com

Ruang Vektor. Adri Priadana. ilkomadri.com Ruang Vektor Adri Priadana ilkomadri.com MEDAN SKLAR Misalkan diketahui bahwa K adalah himpunan, dan didefinisikan 2 buah operasi penjumlahan (+) dan perkalian (*). Maka K dikatakan medan skalar jika dipenuhi

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Independensi Linear Basis & Dimensi TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Independensi Linear Basis & Dimensi TIM KALIN KS091206 Independensi Linear Basis & Dimensi TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mengetahui apakah suatu vektor bebas linier atau tak bebas

Lebih terperinci

RUANG HASIL KALI DALAM (RHKD) Makalah Ini Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pengampu: Abdul Aziz Saefudin, M.

RUANG HASIL KALI DALAM (RHKD) Makalah Ini Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pengampu: Abdul Aziz Saefudin, M. RUANG HASIL KALI DALAM (RHKD) Makalah Ini Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pengampu: Abdul Aziz Saefudin, M.Pd Disusun oleh: Kelompok 5 1. Nurita Cahyaningtyas (14144100112)

Lebih terperinci

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1 Ruang Vektor Kartika Firdausy UAD blog.uad.ac.id/kartikaf Syarat agar V disebut sebagai ruang vektor 1. Jika vektor vektor u, v V, maka vektor u + v V 2. u + v = v + u 3. u + ( v + w ) = ( u + v ) + w

Lebih terperinci

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank khozin mu tamar 9 Oktober 2014 PERTEMUAN-4 : SISTEM KOORDINAT, DIMEN- SI RUANG VEKTOR DAN RANK 1. Sistem koordinat (a) Ketunggalan scalar

Lebih terperinci

Pertama, daftarkan kedua himpunan vektor: himpunan yang merentang diikuti dengan himpunan yang bergantung linear, perhatikan:

Pertama, daftarkan kedua himpunan vektor: himpunan yang merentang diikuti dengan himpunan yang bergantung linear, perhatikan: Dimensi dari Suatu Ruang Vektor Jika suatu ruang vektor V memiliki suatu himpunan S yang merentang V, maka ukuran dari sembarang himpunan di V yang bebas linier tidak akan melebihi ukuran dari S. Teorema

Lebih terperinci

Aljabar Linier. Kuliah 3. 5/9/2014 Yanita FMIPA Matematika Unand

Aljabar Linier. Kuliah 3. 5/9/2014 Yanita FMIPA Matematika Unand Aljabar Linier Kuliah 3 5/9/2014 Yanita FMIPA Matematika Unand 1 Materi Kuliah 3 Jumlah Langsung, Hasilkali Langsung Himpunan Pembangun (Spans) dan Bebas Linier 5/9/2014 Yanita FMIPA Matematika Unand 2

Lebih terperinci

Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES

Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES Definisi : VECTOR SPACE Jika V adalah ruang vektor dimana u,v,w merupakan objek dalam V sebagai vektor, dan terdapat skalar k dan

Lebih terperinci

RUANG VEKTOR UMUM AKSIOMA RUANG VEKTOR

RUANG VEKTOR UMUM AKSIOMA RUANG VEKTOR 7//5 RUANG VEKTOR UMUM Yang dibahas.. Ruang vektor umum. Subruang. Hubungan dependensi linier 4. Basis dan dimensi 5. Ruang baris, ruang kolom, ruang nul, rank dan nulitas AKSIOMA RUANG VEKTOR V disebut

Lebih terperinci

BAB 5 RUANG VEKTOR A. PENDAHULUAN

BAB 5 RUANG VEKTOR A. PENDAHULUAN BAB 5 RUANG VEKTOR A. PENDAHULUAN 1. Definisi-1. Suatu ruang vektor adalah suatu himpunan objek yang dapat dijumlahkan satu sama lain dan dikalikan dengan suatu bilangan, yang masing-masing menghasilkan

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.

Lebih terperinci

TRANSFORMASI LINEAR. Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear. Dosen Pengampu : Abdul Aziz Saefudin, M.Pd

TRANSFORMASI LINEAR. Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear. Dosen Pengampu : Abdul Aziz Saefudin, M.Pd TRANSFORMASI LINEAR Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pengampu : Abdul Aziz Saefudin, M.Pd Disusun oleh : Kelompok 7/ Kelas III A Endar Alviyunita 34400094 Ahmat Sehari ---------------

Lebih terperinci

Sistem Persamaan Linear Homogen 3P x 3V Metode OBE

Sistem Persamaan Linear Homogen 3P x 3V Metode OBE Sistem Persamaan Linear Homogen 3P x 3V Metode OBE Ogin Sugianto sugiantoogin@yahoo.co.id penma2b.wordpress.com Majalengka, 12 November 2016 Sistem Persamaan Linear (SPL) Homogen yang akan dibahas kali

Lebih terperinci

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN KS96 KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mencari ruang baris, ruang kolom,

Lebih terperinci

SUMMARY ALJABAR LINEAR

SUMMARY ALJABAR LINEAR SUMMARY ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta

Lebih terperinci

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: = BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Sebagai acuan penulisan penelitian ini diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam sub bab ini akan diberikan beberapa landasan teori berupa pengertian,

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 7 Transformasi Linear Sub Pokok Bahasan Definisi Transformasi Linear Matriks Transformasi Kernel dan Jangkauan Aplikasi Transformasi Linear Grafika Komputer Penyederhanaan

Lebih terperinci

ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS. Dosen Pengampu: DARMADI, S.Si, M.Pd. Oleh: Kelompok III

ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS. Dosen Pengampu: DARMADI, S.Si, M.Pd. Oleh: Kelompok III ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS Dosen Pengampu: DARMADI, SSi, MPd Oleh: Kelompok III 1 Andik Dwi S (06411008) 2 Indah Kurniawati (06411090) 3 Mahfuat M (06411104)

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan II. LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan penelitian ini sehingga dapat dijadikan sebagai landasan berfikir dalam melakukan penelitian dan akan mempermudah

Lebih terperinci

BASIS DAN DIMENSI. dengan mengurangkan persamaan kedua dengan persamaan menghasilkan

BASIS DAN DIMENSI. dengan mengurangkan persamaan kedua dengan persamaan menghasilkan BASIS DAN DIMENSI Representasi Basis Jika S={v 1,v,...,v n ) adalah suatu basis dari ruang vektor V, maka tiap vektor v pada V dapat dinyatakan dalam bentuk v= c 1 v 1 + c v +... c n v n dengan cepat satu

Lebih terperinci

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO PERANGKAT PEMBELAJARAN MATA KULIAH : ALJABAR LINIER 2 KODE : MKK414515 DOSEN PENGAMPU : Annisa Prima Exacta, M.Pd. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS

Lebih terperinci

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU Sistem persamaan linear orde/ tingkat satu memiliki bentuk standard : = = = = = = = = = + + + + + + + + + + Diasumsikan koefisien = dan fungsi adalah menerus

Lebih terperinci

BAB II DASAR DASAR TEORI

BAB II DASAR DASAR TEORI BAB II DASA DASA TEOI.. uang ruang Vektor.. uang Vektor Umum Defenisi dan sifat sifat sederhana Defenisi : Misalkan V adalah sebarang himpunan benda yang didefenisikan dua operasi, yakni penambahan perkalian

Lebih terperinci

0. Diperoleh bahwa: Selanjutnya dibuktikan tertutup terhadap perkalian skalar:

0. Diperoleh bahwa: Selanjutnya dibuktikan tertutup terhadap perkalian skalar: f g) f g C atau ( f g). Diperoleh bahwa: f g) ( f g) dg f ( f dg g) g dg f g Selanjutnya dibuktikan tertutup terhadap perkalian skalar: Ambil. f ) f C, R. Ditunjukkan bahwa. f C atau (. f ).. f ). diketahui

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

Aljabar Linier. Kuliah 2 30/8/2014 2

Aljabar Linier. Kuliah 2 30/8/2014 2 30/8/2014 1 Aljabar Linier Kuliah 2 30/8/2014 2 Bab 1 Subpokok Bahasan Ruang Vektor Subruang Subruang Lattice Jumlah Langsung Himpunan Pembangun dan Bebas Linier Dimensi Ruang Vektor Basis Terurut dan

Lebih terperinci

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui

Lebih terperinci

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah)

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah) Pengantar Vektor Besaran Skalar (Tidak mempunyai arah) Vektor (Mempunyai Arah) Vektor Geometris Skalar (Luas, Panjang, Massa, Waktu dan lain - lain), merupakan suatu besaran yang mempunyai nilai mutlak

Lebih terperinci

BAB II TEORI KODING DAN TEORI INVARIAN

BAB II TEORI KODING DAN TEORI INVARIAN BAB II TEORI KODING DAN TEORI INVARIAN Pada bab 1 ini akan dibahas definisi kode, khususnya kode linier atas dan pencacah bobot Hammingnya. Di samping itu, akan dijelaskanan invarian, ring invarian dan

Lebih terperinci

MAKALAH RUANG VEKTOR UMUM

MAKALAH RUANG VEKTOR UMUM MAKALAH RUANG VEKTOR UMUM Disusun untuk memenuhi tugas mata kuliah Aljabar Linier Dosen Pengampu : Darmadi, S.Si, M.Pd Disusun oleh Kelompok II: Mujiati 08411.192 Puji Astuti 08411.226 Siti Nur Aminah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

Prof.Dr. Budi Murtiyasa Muhammadiyah University of Surakarta

Prof.Dr. Budi Murtiyasa Muhammadiyah University of Surakarta BASIS DAN DIMENSI Prof.Dr. Budi Murtiyasa Muhammadiyah University of Surakarta Basis dan Dimensi Ruang vektor V dikatakan mempunyai dimensi terhingga n (ditulis dim V = n) jika ada vektor-vektor e, e,,

Lebih terperinci

Perluasan Teorema Cayley-Hamilton pada Matriks

Perluasan Teorema Cayley-Hamilton pada Matriks Vol. 8, No.1, 1-11, Juli 2011 Perluasan Teorema Cayley-Hamilton pada Matriks Nur Erawati, Azmimy Basis Panrita Abstrak Teorema Cayley-Hamilton menyatakan bahwa setiap matriks bujur sangkar memenuhi persamaan

Lebih terperinci

Aljabar Linier Elementer. Kuliah 26

Aljabar Linier Elementer. Kuliah 26 Aljabar Linier Elementer Kuliah 26 Materi Kuliah Transformasi Linier Umum Kernel dan Range 10/11/2014 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Umum Definisi Misalkan V dan W adalah ruang vektor

Lebih terperinci

Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 4) A. Pendahuluan Matriks dan Sistem Persamaan Linear

Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 4) A. Pendahuluan Matriks dan Sistem Persamaan Linear Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 4) A. Pendahuluan Salah satu kajian matematika sekolah menengah yang memiliki banyak aplikasinya dalam menyelesaikan permasalahan yang ada dalam kehidupan

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR

SOLUSI SISTEM PERSAMAAN LINEAR SOLUSI SISTEM PERSAMAAN LINEAR Bentuk umum persamaan linear dengan n peubah diberikan sebagai berikut : a1 x1 + a2 x2 +... + an xn = b ; a 1, a 2,..., a n R merupakan koefisien dari persamaaan dan x 1,

Lebih terperinci

MAKALAH BASIS RUANG SOLUSI

MAKALAH BASIS RUANG SOLUSI MAKALAH BASIS RUANG SOLUSI Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier Dosen pengampu : Darmadi,S.Si,M.pd Di susun Oleh : Kelompok 6/ VF 1. Fitria Wahyuningsih ( 08411.135 ) 2. Pradipta Annurwanda

Lebih terperinci

Aljabar Matriks. Aljabar Matriks

Aljabar Matriks. Aljabar Matriks Aljabar Matriks No No Unit Unit Kompetensi 1 Menerapkan keamanan web dinamis 2 Membuat halaman web dinamis dasar 3 Membuat halaman web dinamis lanjut 4 Menerapkan web hosting 5 Menerapkan konten web memenuhi

Lebih terperinci

ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS

ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam Shalawat serta salam

Lebih terperinci

Dalam bentuk SPL masalah ini dapat dinyatakan sebagai berikut:

Dalam bentuk SPL masalah ini dapat dinyatakan sebagai berikut: SISTEM PERSAMAAN LINIER Persamaan linier adalah persamaan dimana peubahnya tidak memuat fungsi eksponensial, trigonometri, logaritma serta tidak melibatkan suatu hasil kali peubah atau akar peubah atau

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor

Lebih terperinci

DIKTAT MATA KULIAH ALJABAR LINEAR ELEMENTER (BAGIAN II) DISUSUN OLEH ABDUL JABAR, M.Pd

DIKTAT MATA KULIAH ALJABAR LINEAR ELEMENTER (BAGIAN II) DISUSUN OLEH ABDUL JABAR, M.Pd DIKTAT MATA KULIAH ALJABAR LINEAR ELEMENTER (BAGIAN II) DISUSUN OLEH ABDUL JABAR, M.Pd JURUSAN/PROGRAM STUDI PENDIDIKAN MATEMATIKA STKIP PGRI BANJARMASIN MARET MUQADIMAH Alhamdulillah penyusun ucapkan

Lebih terperinci

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan.

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. i Kata Pengantar Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. Modul ajar ini dimaksudkan untuk membantu penyelenggaraan kuliah jarak

Lebih terperinci

UNIVERSITAS PENDIDIKAN INDONESIA

UNIVERSITAS PENDIDIKAN INDONESIA Ruang Norm Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Definisi. Misalkan suatu ruang vektor atas. Norm pada didefinisikan sebagai fungsi. : yang memenuhi N1. 0 N2. 0 0 N3.,, N4.,, Kita dapat

Lebih terperinci

RUANG FAKTOR. Oleh : Muhammad Kukuh

RUANG FAKTOR. Oleh : Muhammad Kukuh Muhammad Kukuh, Ruang RUANG FAKTOR Oleh : Muhammad Kukuh Abstraksi Pada struktur aljabar dikenal istilah grup faktor yaitu Jika grup dan N Subgrup normal G, maka grup faktor dengan operasi Apabila G ruang

Lebih terperinci

Pertemuan 13 persamaan linier NON HOMOGEN

Pertemuan 13 persamaan linier NON HOMOGEN Pertemuan 13 persamaan linier NON HOMOGEN 10 Metode CRAMER Aljabar Linier Hastha 2016 10. PERSAMAAN LINIER NONHOMOGEN 10.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara

Lebih terperinci

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

Lebih terperinci

MAKALAH ALJABAR LINIER

MAKALAH ALJABAR LINIER MAKALAH ALJABAR LINIER Transformasi Linier Makalah Ini Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier Dosen Pengampu : Abdul Aziz Saefudin, S.Pd.I, M.Pd Disusun Oleh: III A4 Kelompok 12 1. Ria

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh II. TINJAUAN PUSTAKA 2.1 Ruang Metrik Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh aksioma-aksioma tertentu. Ruang metrik merupakan hal yang fundamental dalam analisis fungsional,

Lebih terperinci

S I L A B U S. Kode Mata Kuliah : SKS : 3. Dosen Pembimbing : M. Soenarto

S I L A B U S. Kode Mata Kuliah : SKS : 3. Dosen Pembimbing : M. Soenarto 081316373780 S I L A B U S Mata Kuliah : ALJABAR LINIER Kode Mata Kuliah : SKS : 3 Prasyarat : MATEMAA DASAR Dosen Pembimbing : M. Soenarto Prodi / Jenjang : MATEMAA / S1 Buku Sumber : Singapore : Mc-Graw-

Lebih terperinci

Ruang Vektor Euclid R 2 dan R 3

Ruang Vektor Euclid R 2 dan R 3 Ruang Vektor Euclid R 2 dan R 3 Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U September 2015 MZI (FIF Tel-U) Ruang Vektor R 2 dan R 3 September 2015

Lebih terperinci

MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS

MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS MODULES AND BASES OF FREE MODULES Dian Mardiani Pendidikan Matematika, STKIP Garut Garut, Indonesia Alfid51@yahoo.com Abstrak Penelitian ini membahas beberapa

Lebih terperinci

9. Teori Aproksimasi

9. Teori Aproksimasi 44 Hendra Gunawan 9 Teori Aproksimasi Mulai bab ini tema kita adalah aproksimasi fungsi dan interpolasi Diberikan sebuah fungsi f, baik secara utuh ataupun hanya beberapilai di titik-titik tertentu saja,

Lebih terperinci

BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu

BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu BAB II SISTEM PERSAMAAN LINEAR Sistem persamaan linear ditemukan hampir di semua cabang ilmu pengetahuan. Di bidang ilmu ukur, diperlukan untuk mencari titik potong dua garis dalam satu bidang. Di bidang

Lebih terperinci

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain BAB III RUANG VEKTOR R DAN R 3 Bab ini membahas pengertian dan operasi ektor-ektor. Selain operasi aljabar dibahas pula operasi hasil kali titik dan hasil kali silang dari ektor-ektor. Tujuan Instruksional

Lebih terperinci

SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR

SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 03, No. 1 (2014), hal 91 98. SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR Febrianti,

Lebih terperinci

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta Bahan Ajar: BAB POKOK BAHASAN I MODUL ATAS RING Direncanakan

Lebih terperinci

4.1 Algoritma Ortogonalisasi Gram-Schmidt yang Diperumum

4.1 Algoritma Ortogonalisasi Gram-Schmidt yang Diperumum BAB 4 ORTOGONALISASI GRAM-SCHMIDT YANG DIPERUMUM Diberikan sebarang barisan hingga vektor di ruang Hilbert berdimensi hingga. Pada bab ini akan diberikan algoritma untuk menghitung frame Parseval pada

Lebih terperinci

Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester) ALJABAR LINEAR ELEMENTER

Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester) ALJABAR LINEAR ELEMENTER UNIVERSITAS GADJAH MADA FAKULTAS MIPA, JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara Yogyakarta Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester) ALJABAR LINEAR ELEMENTER

Lebih terperinci

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang

Lebih terperinci

Aljabar Linier Elementer. Kuliah ke-9

Aljabar Linier Elementer. Kuliah ke-9 Aljabar Linier Elementer Kuliah ke-9 Materi kuliah Hasilkali Titik Proyeksi Ortogonal 7/9/2014 Yanita, FMIPA Matematika Unand 2 Hasilkali Titik dari Vektor-Vektor Definisi Jika u dan v adalah vektor-vektor

Lebih terperinci

Sistem Persamaan Linier (SPL)

Sistem Persamaan Linier (SPL) Sistem Persamaan Linier (SPL) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) SPL Agustus 2015 1 / 27 Acknowledgements

Lebih terperinci

Pertemuan 1 Sistem Persamaan Linier dan Matriks

Pertemuan 1 Sistem Persamaan Linier dan Matriks Matriks & Ruang Vektor Pertemuan Sistem Persamaan Linier dan Matriks Start Matriks & Ruang Vektor Outline Materi Pengenalan Sistem Persamaan Linier (SPL) SPL & Matriks Matriks & Ruang Vektor Persamaan

Lebih terperinci

Course of Calculus MATRIKS. Oleh : Hanung N. Prasetyo. Information system Departement Telkom Politechnic Bandung

Course of Calculus MATRIKS. Oleh : Hanung N. Prasetyo. Information system Departement Telkom Politechnic Bandung Course of Calculus MATRIKS Oleh : Hanung N. Prasetyo Information system Departement Telkom Politechnic Bandung Matriks dan vektor merupakan pengembangan dari sistem persamaan Linier. Matriks dapat digunakan

Lebih terperinci

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert

Lebih terperinci

MATA KULIAH MATEMATIKA TEKNIK 2 [KODE/SKS : KD / 2 SKS] Ruang Vektor

MATA KULIAH MATEMATIKA TEKNIK 2 [KODE/SKS : KD / 2 SKS] Ruang Vektor MATA KULIAH MATEMATIKA TEKNIK [KODE/SKS : KD4 / SKS] Ruang Vetor FIELD: Ruang vetor V atas field salar K adalah himpunan ta osong dengan operasi penjumlahan vetor dan peralian salar. Himpunan ta osong

Lebih terperinci

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh:

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh: 5 II LANDASAN TEORI 2.1 Keterkontrolan Untuk mengetahui persoalan sistem kontrol mungkin tidak ada, jika sistem yang ditinjau tidak terkontrol. Walaupun sebagian besar sistem terkontrol ada, akan tetapi

Lebih terperinci

Bab 4 RUANG VEKTOR. 4.1 Ruang Vektor

Bab 4 RUANG VEKTOR. 4.1 Ruang Vektor Bab RUANG VEKTOR. Ruang Vektor DEFINISI.. Suatu ruang vektor (V, +,, F) atas field (F, +), ditulis singkat V(F), adalah suatu himpunan tak kosong V dengan elemenelemennya disebut vektor, yang dilengkapi

Lebih terperinci

Sistem Persamaan Linier dan Matriks

Sistem Persamaan Linier dan Matriks Sistem Persamaan Linier dan Matriks 1.1 Pendahuluan linier: Sebuah garis pada bidang- dapat dinyatakan secara aljabar dengan sebuah persamaan Sebuah persamaan jenis ini disebut persamaan linier dalam dua

Lebih terperinci

8.1 Transformasi Linier Umum. Bukan lagi transformasi R n R m, tetapi transformasi linier dari

8.1 Transformasi Linier Umum. Bukan lagi transformasi R n R m, tetapi transformasi linier dari 8.1 Transformasi Linier Umum Bukan lagi transformasi R n R m, tetapi transformasi linier dari ruang vektor V vektor W. Definisi Jika T: V W adalah suatu fungsi dari suatu ruang vektor V ke ruang vektor

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2.

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2. SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : 3 Minggu Ke Pokok Bahasan dan TIU Sub Pokok Bahasan Sasaran Belajar Cara Pengajaran Media Tugas Referens i 1

Lebih terperinci

RUANG VEKTOR BAGIAN RANK KONSTAN DARI BEBERAPA RUANG VEKTOR MATRIKS CONSTANT RANK VECTOR SUBSPACE OF SOME VECTOR SPACE MATRICES

RUANG VEKTOR BAGIAN RANK KONSTAN DARI BEBERAPA RUANG VEKTOR MATRIKS CONSTANT RANK VECTOR SUBSPACE OF SOME VECTOR SPACE MATRICES RUANG VEKTOR BAGIAN RANK KONSTAN DARI BEBERAPA RUANG VEKTOR MATRIKS CONSTANT RANK VECTOR SUBSPACE OF SOME VECTOR SPACE MATRICES Iin Karmila Putri Karsa Amir Kamal Amir Loeky Haryanto Jurusan Matematika

Lebih terperinci

DIKTAT PERKULIAHAN. EDISI 1 Aljabar Linear dan Matriks

DIKTAT PERKULIAHAN. EDISI 1 Aljabar Linear dan Matriks DIKTAT PERKULIAHAN EDISI 1 Aljabar Linear dan Matriks Penulis : Ednawati Rainarli, M.Si. Kania Evita Dewi, M.Si. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 011 IF/011 1 DAFTAR ISI

Lebih terperinci

Part II SPL Homogen Matriks

Part II SPL Homogen Matriks Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a

Lebih terperinci

WARP PADA SEBUAH SEGITIGA

WARP PADA SEBUAH SEGITIGA Jurnal Matematika UNAND Vol. 3 No. 3 Hal. 26 33 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND WARP PADA SEBUAH SEGITIGA ABDUL ZAKY, MAHDHIVAN SYAFWAN Program Studi Matematika, Fakultas Matematika dan

Lebih terperinci

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab BAB III PEMBAHASAN Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab C. Sub-bab A menjelaskan mengenai konsep dasar C[a, b] sebagai ruang vektor beserta contohnya. Sub-bab B

Lebih terperinci

BAB 4 : SISTEM PERSAMAAN LINIER

BAB 4 : SISTEM PERSAMAAN LINIER BAB 4 : SISTEM PERSAMAAN LINIER 4.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara aljabar. Garis lurus pada bidang x 1 dan x 2 dapat dinyatakan sebagai persamaan a 1 x

Lebih terperinci

dimana a 1, a 2,, a n dan b adalah konstantakonstanta

dimana a 1, a 2,, a n dan b adalah konstantakonstanta Persamaan linear adalah persamaan dimana peubahnya tidak memuat eksponensial, trigonometri (seperti sin, cos, dll.), perkalian, pembagian dengan peubah lain atau dirinya sendiri. Secara umum persamaan

Lebih terperinci

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel. 1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT0143231 / 2 SKS Deskripsi: - Mata kuliah ini mempelajari konsep aljabar linear sebagai dasar untuk membuat algoritma dalam permasalahan

Lebih terperinci

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

MATRIKS BENTUK KANONIK RASIONAL DENGAN MENGGUNAKAN PEMBAGI ELEMENTER INTISARI

MATRIKS BENTUK KANONIK RASIONAL DENGAN MENGGUNAKAN PEMBAGI ELEMENTER INTISARI Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 6, No. (17), hal 7 34. MATRIKS BENTUK KANONIK RASIONAL DENGAN MENGGUNAKAN PEMBAGI ELEMENTER Ardiansyah, Helmi, Fransiskus Fran INTISARI Pada

Lebih terperinci

II. TINJAUAN PUSTAKA. nyata (fenomena-fenomena alam) ke dalam bagian-bagian matematika yang. disebut dunia matematika (mathematical world).

II. TINJAUAN PUSTAKA. nyata (fenomena-fenomena alam) ke dalam bagian-bagian matematika yang. disebut dunia matematika (mathematical world). 5 II. TINJAUAN PUSTAKA 2.1. Pemodelan Matematika Definisi pemodelan matematika : Pemodelan matematika adalah suatu deskripsi dari beberapa perilaku dunia nyata (fenomena-fenomena alam) ke dalam bagian-bagian

Lebih terperinci