MATEMATIKA INDUKSI MATEMATIKA CONTOH SOAL A. PENGERTIAN INDUKSI MATEMATIKA B. LANGKAH-LANGKAH INDUKSI MATEMATIKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "MATEMATIKA INDUKSI MATEMATIKA CONTOH SOAL A. PENGERTIAN INDUKSI MATEMATIKA B. LANGKAH-LANGKAH INDUKSI MATEMATIKA"

Transkripsi

1 MATEMATIKA KELAS XII - KURIKULUM 0 Sesi INDUKSI MATEMATIKA A. PENGERTIAN INDUKSI MATEMATIKA Indusi mtemti merupn pembutin dedutif, mesi nmny indusi. Indusi mtemti tu disebut jug indusi lengp sering dipergunn untu pernytnpernytn yng menyngut bilngn-bilngn sli. B. LANGKAH-LANGKAH INDUKSI MATEMATIKA Msud dn tujun indusi mtemti dlh membutin sutu pernytn yng melibtn bilngn sli n misl P(n) n berlu semu nili dri n. Pembutin ini melibtn du lngh:. Lngh dsr: butin bhw pernytn itu berlu untu P().. Lngh indusi: tunjun bhw ji pernytn itu berlu untu P(), m pernytn itu berlu untu P(). CONTOH SOAL. Butin bhw untu penjumlhn n bilngn sli berurutn dpt dinytn dengn nn ( + ) formul n

2 nn ( + ) Misl Pn ( ) n ( ) P() + benr M P() benr. ( + ) Asumsin P() M benr. P( + ) ( + ) P( + ) + + ( + ) + ( + ) P ( + ) ( )( ) P ( + ) P( + ) mengiuti formul P(n), esimpulnny P(n) benr.. Butin bhw n dlh eliptn dri! Misl P(n) n dlh eliptn. P() P(), benr eliptn. Asumsin P() benr, P() eliptn tu m, m Asli m P( + ) ( m + ) P( + ) 6m+ P( + ) ( m+ ) Nmp P( + ) merupn bilngn eliptn sehingg P(n) pernytn yng berlu untu setip n Asli.

3 . Butin bhw ( n ) n Misl Pn ( ) ( n ) n P() benr P() benr. Asumsin P() ( ) benr. M P( + ) ( ) + ( ( + ) ) P( + ) + + P( + ) ( +) Kren P ( + ) mengiuti pol P(n), m P(n) benr.. Butin bhw n ( n) Misl P(n) n ( n ) P() benr P() pernytn benr. Disumsin P( ) ( ) benr. M P ( + ) ( ) ( ) + ( ) ( + ) + ( + ) ( ) + ( + ) ( ) + ( + ) ( ) + ( + ) ( )

4 ( ) ( + + ) ( ) ( ) ( )( + ) ( ) P() mengiuti formul P(n) m P(n) bernili benr untu semu n Asli. 5. Butin bhw +... n n +, untu setip bilngn sli n. Misl P(n) +... n n +, P( ) + + P() benr. Asumsin P() m P( + ) ( + ) + + ( + ) + P() mengiuti pol P(n), m P(n) benr untu setip n Asli. C. INDUKSI MATEMATIKA YANG DIPERLUAS Semu pernytn yng melibtn n bilngn sli, tid sellu dimuli dengn n. Oleh ren itu, indusi mtemti bis diperlus dengn cr sebgi beriut:. Lngh dsr: butin bhw pernytn itu berlu untu P(m).. Lngh indusi: tunjun bhw ji pernytn itu berlu untu P(), m, m pernytn itu berlu untu P().

5 CONTOH SOAL. Butin bhw pertidsmn berlu untu semu bilngn sli n! Misl P(n) n > n berlu untu semu bilngn sli n. P( ): > 8> 6 benr P() benr. Misl dn > benr > > > > + sedngn + + > + > + 9 > + 6 > + + dri > + > > ( + ) m P() mengiuti pol P(n) sehingg P(n) benr untu n.. Butin bhw n + < n untu semu bilngn sli n 5! Misl P(n) n + < n untu semu bilngn sli n 5. P( 5): P(5) benr. 5

6 Asumsin P(): + untu 5, m berlu 5m + ( + ) + + P( + ):( + ) + + benr. M P(n) benr untu n 5. D. PRINSIP INDUKSI MATEMATIS KUAT Misln P(n) dlh sutu pernytn di mn ebenrnny ditentun oleh nili n. Ji P(n) memenuhi du hl beriut:. P() benr.. Untu setip bilngn sli, ji P(), P(),.P(-),P() bernili benr, m P() jug bernili benr. M P(n) bernili benr untu setip bilngn sli n: 6 CONTOH SOAL. Brisn bilngn n didefinisin dengn:,, n+ ( n+ + n ) untu semu bilngn sli n. Tunjun bhw n untu semu bilngn sli n. Misl P( n):,, n+ ( n+ + n ) berlu untu semu n Asli. P():, P() benr. Untu setip bilngn sli misln P(), P(),..., P(-), P() benr, n ditunjun P ( + ): + Dri sumsi didpt

7 Bil pertidsmn di ts dijumlhn n didpt + Bil msing-msing rus dibgi, m n didpt + M P() benr sehingg P(n) benr untu n Asli. n + n. Misln 0,, n+ dengn n dlh bilngn sli. Butin : n+ untu semu bilngn sli n. n + Misl Pn ( ): n+ + 0 P(): n di mn n+ untu n Asli. P() benr. Misl P(), P( ), P( ),..., P( ), P( ) benr, berlu + dn + dn Untu P()

8 Kren Bil it mbil nili yng terbesrny m P() benr sehingg P(n) berlu untu n Asli.. Misln brisn,,,... didefinisin sebgi beriut: n,,, dn + +. Butin bhw n <! n n n n Misl n n + n + n m n < n untu,,. n < < terbuti 8 Asumsin,,,...,,, benr sehingg berlu < < < + + < + + < < < < m + benr sehingg n benr untu setip n Asli.

9 n. Misln,, + dengn n dlh bilngn sli. Butin : n 0 n+ n n untu semu bilngn sli n. n Misl Pn ( ): n + untu semu n Asli dengn + P(): benr n+ n n P() benr. Asumsin P(), P( ), P( ),... P( ), P( ) benr sehingg < < m untu P() + < + < + < < < + m P() benr sehingg P(n) benr untu semu n Asli. + 9

BEBERAPA SIFAT QUASI-IDEAL MINIMAL PADA RING TRANSFORMASI LINEAR V, W,

BEBERAPA SIFAT QUASI-IDEAL MINIMAL PADA RING TRANSFORMASI LINEAR V, W, BEBERAPA SIFAT QUASI-IDEAL MINIMAL PADA RING TRANSFORMASI LINEAR V,,, K r y t i Jurusn Pendidin Mtemti Fults Mtemti dn Ilmu Pengethun Alm Uniersits Negeri Yogyrt e-mil : ytiuny@yhoo.com Abstr Misln R dlh

Lebih terperinci

Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40

Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40 Solusi Pengn Mtemtik Edisi 4 Jnuri Pekn Ke-4, 007 Nomor Sol: -40. Diberikn persmn 8 9 4 8 007 dn b, dengn b. Angk stun dri b dlh. A. B. C. D. 7 E. 9 Persmn 8 9 4 8 8 9 4 8 9 4 8 8 8 9 8 4 8 8 8 0 0 b tu

Lebih terperinci

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real SISTEM BILANGAN REAL Dlm terminologi Aljbr Abstrk, sistem bilngn rel disebut dengn field (lpngn) pd opersi penjumlhn dn perklin. Sutu opersi biner bis ditulis dengn sutu psngn terurut (, b) yng unik dri

Lebih terperinci

BABAK PENYISIHAN AMSO JENJANG SMA PEMBAHASAN BABAK PENYISIHAN AMSO

BABAK PENYISIHAN AMSO JENJANG SMA PEMBAHASAN BABAK PENYISIHAN AMSO . Jwbn : C 8 3 8 6 3 3 3 6 BABAK PENYISIHAN AMSO JENJANG SMA PEMBAHASAN BABAK PENYISIHAN AMSO. Jwbn : C Tig bilngn prim pertm yng lebih besr dri 0 dlh 3, 9, dn 6. Mk 3 + 9 + 6 = 73. Jdi, jumlh tig bilngn

Lebih terperinci

MATEMATIKA INTEGRAL SUBSTITUSI TRIGONOMETRI. Teknik substitusi aljabar yang telah dipelajari sebelumnya memiliki bentuk

MATEMATIKA INTEGRAL SUBSTITUSI TRIGONOMETRI. Teknik substitusi aljabar yang telah dipelajari sebelumnya memiliki bentuk MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN 04 Sesi NGAN INTEGRAL SUBSTITUSI TRIGONOMETRI Teknik substitusi ljbr yng telh dipeljri sebelumny memiliki bentuk n+ n n u [ f ( )] f ( ) u n + + Di mn: u f()

Lebih terperinci

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. Dikethui bhw,. Untuk k didefinisikn bhw k k k. Tentukn jumlh tk hingg dri. Kit mislkn S S. Dengn demikin kit dpt menuliskn Kedu

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat.

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat. Husn Arifh,M.Sc : Persmn Legendre Emil : husnrifh@uny.c.id Persmn diferensil Legendre (1) 1 x 2 y 2xy + n n + 1 y = 0 Prmeter n pd (1) dlh bilngn rill yng diberikn. Setip penyelesin dri (1) dinmkn fungsi

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci

Minggu ke 6 LIMIT FUNGSI (LIMITS OF FINCTIONS) 2,1, 2,01, 2,001, 2,0001,, 2 + 1/10 n maka :

Minggu ke 6 LIMIT FUNGSI (LIMITS OF FINCTIONS) 2,1, 2,01, 2,001, 2,0001,, 2 + 1/10 n maka : Minggu ke 6 Modul Mtemtik LIMIT FUNGSI LIMITS OF FINCTIONS). BRISN SEQUENCES) VS. LIMIT FUNGSI LIMITS OF FUNCTIONS) Contoh : Sequence : fn) = + / n,,,,,,,,, + / n mk : Limit dri fungsi f) =, dimn vribel

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

LIMIT DAN KONTINUITAS

LIMIT DAN KONTINUITAS LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN . LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

7. Ruang L 2 (a, b) f(x) 2 dx < }.

7. Ruang L 2 (a, b) f(x) 2 dx < }. 7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f

Lebih terperinci

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1.

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1. PROLEM SOLVING TERKIT DENGN KELS X SEMESTER PD STNDR KOMPETENSI (SK). LJR Memechkn mslh yng berkitn dengn bentuk pngkt, kr, dn logritm Oleh: Sigit Tri Guntoro. Du orng berselisih mengeni bnykny psngn bilngn

Lebih terperinci

MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ MTRIKS gustin Prdjningsih, M.Si. Jurusn Mtemtik FMIP UNEJ tinprdj.mth@gmil.com DEFINISI MTRIKS Sutu dftr bilngn-bilngn rel tu kompleks terdiri ts m bris dn n kolom, m dn n bilngn bult positip disebut mtriks

Lebih terperinci

Bilangan. Bilangan Nol. Bilangan Bulat (Z )

Bilangan. Bilangan Nol. Bilangan Bulat (Z ) Bilngn Bilngn Asli (N) (,2,, ) Bilngn Nol (0) Bilngn Negtif (,, 2, ) Bilngn Bult (Z ) Bilngn Pechn ( 2 ; 5 ; 5%; 6,82; ) 7 A. Bilngn Asli (N) Bilngn Asli dlh himpunn bilngn bult positif (nol tidk termsuk).

Lebih terperinci

SIMAK UI 2011 Matematika Dasar

SIMAK UI 2011 Matematika Dasar SIMAK UI 0 Mtemtik Dsr Kode Sol Doc. Nme: SIMAKUI0MATDAS999 Version: 0-0 hlmn 0. Sebuh segitig sm kki mempunyi ls 0 cm dn tinggi 5 cm. Jik dlm segitig tersebut dibut persegi pnjng dengn ls terletk pd ls

Lebih terperinci

3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi

3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi BB Determinn . Permutsi Definisi Permutsi: (i) Sutu permutsi dri bilngn-bilngn bult {,,,, n} dlh penyusunn bilngn-bilngn tersebut dengn urutn tnp pengulngn. (ii) Brisn bilngn ( j, j,.., j n ) dimn j i

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

PERTEMUAN - 1 JENIS DAN OPERASI MATRIKS

PERTEMUAN - 1 JENIS DAN OPERASI MATRIKS PERTEMUN - JENIS DN OPERSI MTRIKS Pengertin Mtriks : merupkn sutu lt tu srn yng sngt mpuh untuk menyelesikn model-model liner. Definisi : Mtriks dlh susunn empt persegi pnjng tu bujur sngkr dri bilngn-bilngn

Lebih terperinci

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L. INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP 2013 TINGKAT KABUPATEN

PEMBAHASAN SOAL OSN MATEMATIKA SMP 2013 TINGKAT KABUPATEN www.sip-osn.blogspot.com @Mret 0 PEMBAHASAN SOAL OSN MATEMATIKA SMP 0 TINGKAT KABUPATEN. B. x ( x ) ( x + )( x ) ( x ( ) )( x ) ( x + )( x )( x + )( x ) (d fktor) Tidk d penjelsn tentng fktor hrus bilngn

Lebih terperinci

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn

Lebih terperinci

BAB II LANDASAN TEORY Prosedur regresi dengan Menggunakan Metode Backward

BAB II LANDASAN TEORY Prosedur regresi dengan Menggunakan Metode Backward BAB II LANDASAN TEORY.. Prosedur regresi dengn Menggunn Metode Bcwrd Metode Bcwrd merupn lngh mundur, dimn semu vribel X i diregresin dengn vribel dependen Y. pengeleminsin vribel X i didsrn pd nili F

Lebih terperinci

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc.

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc. M T R I K S Oleh Dims Rhdin M, S.TP. M.Sc Emil rhdindims@yhoo.com JURUSN ILMU DN TEKNOLOGI PNGN UNIVERSITS SEBELS MRET SURKRT DEFINISI... Mtriks dlh susunn bilngn berbentuk jjrn segi empt siku-siku yng

Lebih terperinci

III. LIMIT DAN KEKONTINUAN

III. LIMIT DAN KEKONTINUAN KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY III. LIMIT DAN KEKONTINUAN 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi

Lebih terperinci

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung

Lebih terperinci

Bab 2 Teori Pendukung

Bab 2 Teori Pendukung Bb Teori Penduung. Sistem Bonus Mlus Sistem bonus mlus Belgi muli diterpn thun 97 terdiri dri 8 els. C =,,,. Thun 995, sistem bonus mlus menjdi 3 els (Tbel.), { } Tbel. Sistem Bonus Mlus Belgi Kels Premi

Lebih terperinci

Teorema Dasar Integral Garis

Teorema Dasar Integral Garis ISBN: 978-979-79-55-9 Teorem Dsr Integrl Gris Erdwti Nurdin Progrm Studi Pendidikn Mtemtik FKIP UIR d_1910@yhoo.com Abstrk Slh stu generlissi integrl tentu (definite integrl) f x dx diperoleh dengn menggnti

Lebih terperinci

RUANG VEKTOR (lanjut..)

RUANG VEKTOR (lanjut..) RUANG VEKTOR (Vector Spce) dn Rung Bgin (Subspce) 8/0/009 budi murtiys ums surkrt RUANG VEKTOR (VECTOR SPACE) Dikethui himpunn V dengn u, v, w V dn opersi i(+)b berlku dintr nggot-nggot t V. Dikethui Field

Lebih terperinci

MATERI: 7.1.Asal mula celah energi.model elektron hampir bebas. 7.2.Nilai energi celah.fungsi Bloch.Model Kronig-Peney.

MATERI: 7.1.Asal mula celah energi.model elektron hampir bebas. 7.2.Nilai energi celah.fungsi Bloch.Model Kronig-Peney. BAB 7 PITA ENERI MATERI: 7.1.Asl mul celh energi.model eletron hmpir bebs. 7..Nili energi celh.fungsi Bloch.Model Kronig-Peney.Persmn sentrl INDIKATOR: Mhsisw hrus dpt : Menjelsn sl mul celh energi. Menggunn

Lebih terperinci

8 adalah... A. 3 3 (kunci) C. 3 D. 3 E. 6 Pembahasan: Kedua ruas diakarkan: = = 8 = 3 3. adalah Jika 2 dan. , maka nilai. log w.

8 adalah... A. 3 3 (kunci) C. 3 D. 3 E. 6 Pembahasan: Kedua ruas diakarkan: = = 8 = 3 3. adalah Jika 2 dan. , maka nilai. log w. http://www.syiknybeljr.wordpress.co PEMBAHASAN SOAL SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI (SBMPTN) TAHUN 0. Jik, k nili A. (kunci) B. C. D. E... ( ) ( ) Kedu rus dikrkn: 8 = ( ) = = ( ) ( ) 8 =

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA K- Kels X mtemtik PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi persmn dn pertidksmn logritm.. Dpt

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

15. INTEGRAL SEBAGAI LIMIT

15. INTEGRAL SEBAGAI LIMIT 15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini

Lebih terperinci

Modul ini adalah modul ke-2 dalam mata kuliah Matematika. Isi modul ini

Modul ini adalah modul ke-2 dalam mata kuliah Matematika. Isi modul ini BILANGAN BULAT, BILANGAN RASIONAL, DAN BILANGAN IRASIONAL PENDAHULUAN Modul ini dlh modul e- dlm mt ulih Mtemti. Isi modul ini membhs tentng bilngn bult, bilngn rsionl, dn bilngn irsionl. Modul ini terdiri

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Pengertin Anlisis Regresi Sttisti merupn slh stu cbng ilmu pengethun yng pling bny mendptn perhtin dn dipeljri oleh ilmun dri hmpir semu ilmu bidng pengethun, terutm pr peneliti yng

Lebih terperinci

MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo.

MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo. MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT Supriyono Jurusn Pendidikn Mtemtik FKIP Universits Muhmmdiyh Purworejo Abstrk Tulisn ini terdiri bgin yitu () bgin pendhulun yng membhs bentuk umum persmn pngkt

Lebih terperinci

2. Paman mempunyai sebidang tanah yang luasnya 5 hektar. Tanah itu dibagikan kepada 3. Luas tanah yang diterima oleh mereka masing-masing = 5 :3 1

2. Paman mempunyai sebidang tanah yang luasnya 5 hektar. Tanah itu dibagikan kepada 3. Luas tanah yang diterima oleh mereka masing-masing = 5 :3 1 . Hitunglh 7 5. : b. 5 : c. 8 : 6 d. 8 9 7 7 7 5 77 77 77. : c. 8 : 6 : 6 6 9 9 9 6 54 8 40 7 b. 5: 5 d. 4: 4: 4 6 8 7 95 Husein Tmpoms, Rumus-rumus Dsr Mtemtik 4 :. Pmn mempunyi sebidng tnh yng lusny

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA MATEMATIKA A Hendr Gunwn Semester II, 6/7 Februri 7 Kulih yng Llu 8. Bentuk Tk Tentu Tipe / Menghitung limit bentuk tk tentu / dengn menggunkn Aturn l Hopitl 8. Bentuk Tk Tentu Linny Menghitung bentuk

Lebih terperinci

BAB II DETERMINAN 2.1. DETERMINAN. Bab II Determinan

BAB II DETERMINAN 2.1. DETERMINAN. Bab II Determinan B II Determinn BB II DETERINN TUJUN PEBELJRN Sup mhsisw mempuni pengethun dsr dn pemhmn tentng onsep-onsep determinn, r menghitung determinn, plisi determinn pd geometri OUTOE PEBELJRN hsisw mempuni emmpun

Lebih terperinci

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0. DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn

Lebih terperinci

Vektor di R 2 dan R 3

Vektor di R 2 dan R 3 Vektor di R dn R Pengertin Vektor dlh besrn yng mempunyi besr dn rh Vektor digmbrkn oleh rus gris yng dilengkpi dengn nk pnh vektor dimuli dri titik wl (initil point) dn dikhiri oleh titik khir (terminl

Lebih terperinci

Permodelan Sistem. Melalui Identifikasi Parameter. Ir. Rusdhianto EAK, MT. Pelatihan PC-Based Control

Permodelan Sistem. Melalui Identifikasi Parameter. Ir. Rusdhianto EAK, MT. Pelatihan PC-Based Control Permodeln Sistem Mellui Identifisi Prmeter Ir. Rusdhinto EAK, M Pengertin Adlh seumpuln metode yng digunn untu mendptn/menentun prmeter model pendetn dri sistem mellui evlusi dt penguurn input output Secr

Lebih terperinci

Bagian 1 Integral Rangkap

Bagian 1 Integral Rangkap Bgin Integrl ngp Bgin Integrl ngp mempeljri bgimn teni integrsi ng telh And peljri dlm Mtemti Teni diembngn lebih lnjut sehingg menjdi integrl ng rngp. Teni integrsi rngp ini dpt it pi untu menghitung

Lebih terperinci

SOAL SOAL DAN JAWABAN PERMASALAHAN SISTEM DINAMIK. Kartika Yulianti, M.Si. Jurusan Pendidikan Matematika FPMIPA - UPI

SOAL SOAL DAN JAWABAN PERMASALAHAN SISTEM DINAMIK. Kartika Yulianti, M.Si. Jurusan Pendidikan Matematika FPMIPA - UPI SOAL SOAL DAN JAWABAN PERMASALAHAN SISTEM DINAMIK Krti Yulinti, MSi Jurusn Pendidin Mtemti FPMIPA - UPI Problem - Suppose tht ver long conductor hs been fied in verticl stright line : constnt current I

Lebih terperinci

BAB 1 PERSAMAAN DAN PERTIDAKSAMAAN. Standar Kompetensi Mahasiswa memahami konsep dasar sistem bilangan real (R)

BAB 1 PERSAMAAN DAN PERTIDAKSAMAAN. Standar Kompetensi Mahasiswa memahami konsep dasar sistem bilangan real (R) BAB PERSAMAAN DAN PERTIDAKSAMAAN Stndr Kompetensi Mhsisw memhmi konsep dsr sistem bilngn rel (R) sebgi semest untuk menentukn selesin persmn dn pertidksmn, dpt mengembngkn bentuk persmn dn pertidksmn yng

Lebih terperinci

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: GARIS SINGGUNG PADA HIPERBOLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (, ) pd

Lebih terperinci

Skew- Semifield dan Beberapa Sifatnya 1

Skew- Semifield dan Beberapa Sifatnya 1 Skew- Semifield dn Beberp Siftny K r y t i Jurusn Pendidikn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm Universits Negeri Yogykrt E-mil: ytiuny@yhoo.com Abstrk Sutu field ( lpngn ) F dlh struktur ljbr

Lebih terperinci

MODUL 6. Materi Kuliah New_S1

MODUL 6. Materi Kuliah New_S1 MODUL 6 Mteri Kulih New_S1 KULIAH 10 Spnning tree dn minimum spnning tree - Definisi spnning tree T diktkn spnning tree dri grph terhubung G bil T dlh sutu tree yng vertexvertexny sm dengn vertexny G dn

Lebih terperinci

STRATEGI PENGAJARAN MATEMATIKA UNTUK MENENTUKAN AKAR-AKAR PERSAMAAN KUADRAT

STRATEGI PENGAJARAN MATEMATIKA UNTUK MENENTUKAN AKAR-AKAR PERSAMAAN KUADRAT Jurnl Vol II. No., Mret 08, hlm. 9-95 vilble online t www.jurnl.un.c.id/indeks/jmp STRTEGI PENGJRN MTEMTIK UNTUK MENENTUKN KR-KR PERSMN KUDRT Indh Purnm Putri, Symsudhuh, Ihd Hsbiyti 3 Progrm Studi Mgister

Lebih terperinci

ATURAN NEWTON-COTES TERTUTUP DENGAN KOREKSI PADA UJUNG INTERVAL. Rifaldi Putra ABSTRACT

ATURAN NEWTON-COTES TERTUTUP DENGAN KOREKSI PADA UJUNG INTERVAL. Rifaldi Putra ABSTRACT ATURAN NEWTON-COTES TERTUTUP DENGAN KOREKSI PADA UJUNG INTERVAL Rifldi Putr Mhsisw Progrm Studi S1 Mtemti Jurusn Mtemti Fults Mtemti dn Ilmu Pengethun Alm Universits Riu Kmpus Bin Widy, Penbru 28293 rifldiputr1995@gmil.com

Lebih terperinci

Kombinasi Linier. Definisi Kombinasi Linier. Contoh Kombinasi Linier 1

Kombinasi Linier. Definisi Kombinasi Linier. Contoh Kombinasi Linier 1 Kominsi Linier Definisi Kominsi Linier Misln V rung vetor. S{u, u,..., u n } V. Misln V. Vetor iseut pt inytn segi ominsi linier ri S, ji terpt slr-slr (onstnt riil),,..., n, sehingg memenuhi persmn: u

Lebih terperinci

CHAPTER 1 EXPONENTS, ROOTS, AND LOGARITHMS

CHAPTER 1 EXPONENTS, ROOTS, AND LOGARITHMS CHAPTER EXPONENTS, ROOTS, AND LOGARITHMS Indiktor (penunjuk): Mengubh bentuk pngkt negtif ke pngkt positif dn seblikny. (4 jp) A. EXPONENTS. Definition (ketentun): Positive Integers Exponents n = x x...

Lebih terperinci

TINGKAT SMA KOMET 2018 SE-JAWA TIMUR

TINGKAT SMA KOMET 2018 SE-JAWA TIMUR . Dlm cr jln seht yng didkn oleh HIMATIKA menyedikn kupon hdih. Kode-kode kupon tersebut disusun dri ngkngk,,, 6, 8. Nomor dri kupon-kupon tersebut disusun berdsrkn kodeny muli dri yng terkecil smpi dengn

Lebih terperinci

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits

Lebih terperinci

BAB IV BILANGAN BERPANGKAT DAN BENTUK AKAR

BAB IV BILANGAN BERPANGKAT DAN BENTUK AKAR BAB IV BILANGAN BERPANGKAT DAN BENTUK AKAR Pet Konsep Bilngn Berpngkt dn Bentuk Akr mempeljri Bilngn berpngkt meliputi Bentuk kr meliputi Sift Opersi Mersionlkn Opersi Sift Kt Kunci. Pngkt 2. Akr 3. Sift

Lebih terperinci

Integral Kompleks (Bagian Kesatu)

Integral Kompleks (Bagian Kesatu) Integrl Kompleks (Bgin Kestu) Supm Jurusn Mtemtik, FMIPA UGM Yogykrt 55281, INDONESIA Emil:mspomo@yhoo.com, supm@ugm.c.id (Pertemun Minggu XI) Outline 1 Fungsi Bernili Kompleks 2 Lintsn tu Kontur 3 Integrl

Lebih terperinci

Penyelesaian Persamaan dengan Logaritma. Persamaan & Fungsi logaritma. Pengertian Logaritma 10/9/2013

Penyelesaian Persamaan dengan Logaritma. Persamaan & Fungsi logaritma. Pengertian Logaritma 10/9/2013 10/9/013 Penyelesin Persmn dengn Logritm Persmn & Fungsi logritm Tim Dosen Mtemtik FTP Logritm dpt digunkn untuk mencri bilngn yng belum dikethui (bilngn x) dlm sebuh persmn, khususny persmn eksponensil

Lebih terperinci

2. Memahami dan mampu menggunakan Integral Lipat Dua untuk menentukan Volume Bidang Empat, Massa Suatu Benda, Pusat massa suatu benda

2. Memahami dan mampu menggunakan Integral Lipat Dua untuk menentukan Volume Bidang Empat, Massa Suatu Benda, Pusat massa suatu benda TUJUAN PEMBELAJAAN Agr pemc memhmi p ng diseut dengn Integrl Lipt Du ts Persegipnjng dn un Persegipnjng, selnjutn dpt memhmi penggunn Integrl Lipt Du untu menghitung Volume Bidng Empt, Mss sutu Bend dn

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn

Lebih terperinci

Catatan Kuliah 2 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks (2)

Catatan Kuliah 2 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks (2) Cttn Kulih Mtemtik Ekonomi Memhmi dn Mengnlis ljbr Mtriks (). Vektor dn kr Krkteristik pbil dlh mtriks berordo n n dn X dlh vector n, kn dicri sklr λ R yng memenuhi persmn : X λ X tu ( λi) X gr X (solusiny

Lebih terperinci

Matriks. Pengertian. Lambang Matrik

Matriks. Pengertian. Lambang Matrik triks Pengertin Definisi: trik dlh susunn bilngn tu fungsi yng diletkkn ts bris dn kolom sert dipit oleh du kurung siku. Bilngn tu fungsi tersebut disebut entri tu elemen mtrik. mbng mtrik dilmbngkn dengn

Lebih terperinci

didefinisikan sebagai bilangan yang dapat ditulis dengan b

didefinisikan sebagai bilangan yang dapat ditulis dengan b 1 PENDAHULUAN 1.1 Sistem Bilngn Rel Untuk mempeljri klkulus perlu memhmi hsn tentng system ilngn rel, kren klkulus didsrkn pd system ilngn rel dn siftsiftny. Sistem ilngn yng pling sederhn dlh ilngn sli,

Lebih terperinci

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan III FUNGSI 15 1. Definisi Fungsi Definisi 1 Mislkn dn dlh himpunn. Relsi iner f dri ke merupkn sutu fungsi jik setip elemen di dlm dihuungkn dengn tept stu elemen di dlm. Jik f dlh fungsi dri ke, mk f

Lebih terperinci

POSET ( Partially Ordered Set ) Himpunan Terurut Parsial

POSET ( Partially Ordered Set ) Himpunan Terurut Parsial POSET ( Prtilly Ordered Set ) Himpunn Terurut Prsil Definisi Sutu relsi biner dinmkn sebgi sutu relsi pengurutn tk lengkp tu relsi pengurutn prsil ( prtil ordering reltion ) jik i bersift reflexive, ntisymmetric,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bb berikut ini kn disjikn mteri pendukung yng dpt membntu penulis untuk menyelesikn permslhn yng kn dibhs pd bb selnjutny. Adpun mteri pendukungny dlh pengertin mtriks, jenis-jenis

Lebih terperinci

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1 Pge of 8 Kegitn eljr 5. Tujun Pembeljrn Setelh mempeljri kegitn beljr 5, dihrpkn sisw dpt. Menentukn unsur-unsur segitig dengn turn sinus b. Menentukn unsur-unsur segitig dengn turn kosinus. Menghitung

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

det DEFINISI Jika A 0 disebut matriks non singular

det DEFINISI Jika A 0 disebut matriks non singular DETERINAN DEFINISI Untuk setip mtriks persegi (bujur sngkr), d stu bilngn tertentu yng disebut determinn Determinn dlh jumlh semu hsil kli elementer bertnd dri sutu mtriks bujur sngkr. Disimbolkn dengn:

Lebih terperinci

LEMBAR KEGIATAN SISWA. : Menemukan Teorema Pythagoras Sekolah/Satuan Pendidikan:... Kelas/Semester :... Anggota Kelompok :

LEMBAR KEGIATAN SISWA. : Menemukan Teorema Pythagoras Sekolah/Satuan Pendidikan:... Kelas/Semester :... Anggota Kelompok : LEMBAR KEGATAN SSWA Topik : Menemukn Teorem Pythgors Sekolh/Stun Pendidikn:... Kels/Semester :... Anggot Kelompok : 1.... 2.... 3.... 4. 5.... Tnggl Mengerjkn LKS :. Petunjuk Umum: 1. Setelh mengerjkn

Lebih terperinci

Minggu ke 3 : Lanjutan Matriks

Minggu ke 3 : Lanjutan Matriks inggu ke : Lnjutn triks Pokok Bhsn Sub Pokok Bhsn Tujun Instruksionl Umum Tujun Instruksionl Khusus : triks :. Trnsformsi Elementer. Trnsformsi Elementer pd bris dn kolom. triks Ekivlen. Rnk triks B. Determinn.

Lebih terperinci

Prestasi itu diraih bukan didapat!!!

Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 00 TIM OLIMPIADE MATEMATIKA INDONESIA 00 Prestsi itu dirih ukn didpt!!! SOLUSI SOAL Bidng Mtemtik Disusun oleh : Olimpide Mtemtik Tk Kupten/Kot 00 BAGIAN PERTAMA.

Lebih terperinci

Beberapa Sifat Integral Henstock Sekuensial

Beberapa Sifat Integral Henstock Sekuensial JURNAL FOURER Otoer 2017, Vol. 6, No. 2, 55-68 SSN 2252-763X DO: 10.14421/fourier.2017.62.55-68 E-SSN 2541-5239 Beerp Sift ntegrl Hensto Seuensil Mlhyti Progrm Studi Mtemti Fults Sins dn Tenologi, UN Sunn

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2009

TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2009 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 009 Bidng Mtemtik Wktu :,5 Jm DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

SIFAT-SIFAT LOGARITMA

SIFAT-SIFAT LOGARITMA K- Kels X mtemtik PEMINATAN SIFAT-SIFAT LOGARITMA Tujun Pembeljrn Setelh memeljri mteri ini, kmu dihrkn memiliki kemmun berikut.. Memhmi definisi logritm.. Dt menentukn nili logritm dengn menggunkn tbel

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M3 3 SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

Deret Fourier. (Pertemuan X) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Deret Fourier. (Pertemuan X) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 47 Mtemtik III Deret Fourier (Pertemun X) Dr. AZ Jurusn Teknik Sipil Fkults Teknik Universits Brwijy Pendhulun Deret Fourier ditemukn oleh ilmun Perncis, Jen Bptiste Joseph Fourier (768-83) yng menytkn

Lebih terperinci

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II)

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) MATA KULIAH KODE MK Dosen : FISIKA DASAR II : EL-22 : Dr. Budi Mulynti, MSi Pertemun ke-6 CAKUPAN MATERI. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) SUMBER-SUMBER:.

Lebih terperinci

6. Himpunan Fungsi Ortogonal

6. Himpunan Fungsi Ortogonal 6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn

Lebih terperinci

matematika WAJIB Kelas X KUADRAN SUDUT Kurikulum 2013 A. Besar Sudut pada Setiap Kuadran

matematika WAJIB Kelas X KUADRAN SUDUT Kurikulum 2013 A. Besar Sudut pada Setiap Kuadran Kuikulum 03 Kels mtemtik WAJIB KUADRAN SUDUT Tujun Pembeljn Setelh mempelji ini, kmu dihpkn memiliki kemmpun beikut.. Memhmi bes sudut di setip kudn.. Memhmi pebndingn tigonometi sudut-sudut di setip kudn.

Lebih terperinci

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: PERSAMAAN GARIS SINGGUNG PADA ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (,

Lebih terperinci

14. SIFAT-SIFAT INTEGRAL RIEMANN

14. SIFAT-SIFAT INTEGRAL RIEMANN 4. SIFAT-SIFAT INTEGRAL RIEMANN 4. Sift-sift Dsr Integrl Riemnn Pd bb ini kit kn mempeljri sift-sift dsr integrl Riemnn. Sift pertm dlh sift kelinern, yng dinytkn dlm Proposisi. Sepnjng bb ini, I menytkn

Lebih terperinci

1 TEORI KETERBAGIAN. Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai

1 TEORI KETERBAGIAN. Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai Contents 1 TEORI KETERBAGIAN 2 1.1 Algoritm Pembgin.............................. 3 1.2 Pembgi persekutun terbesr.......................... 6 1.3 Algoritm Euclid................................. 10 1.4

Lebih terperinci

NFA. Teori Bahasa dan Automata. Viska Mutiawani - Informatika FMIPA Unsyiah

NFA. Teori Bahasa dan Automata. Viska Mutiawani - Informatika FMIPA Unsyiah NFA Teori Bhs dn Automt Visk Mutiwni - Informtik FMIPA Unsyih 1 NFA NFA: Nondeterministic Finite Automt Atu Automt Hingg NonDeterministik (AHND) Slh stu bentuk dri Finite Automt NFA memiliki kemmpun untuk

Lebih terperinci

SUKUBANYAK (POLINOMIAL)

SUKUBANYAK (POLINOMIAL) SUKUBANYAK (POLINOMIAL) A. Bentuk Umum Sukubnyk (Polinomil) n n n b c... z n = pngkt tertinggi (derjt sukubnyk) n = koefisien 7 5 5 9 6 dlh sukubnyk berderjt 7, koefisien dlh 9, koefisien konstnt dlh 6

Lebih terperinci

STRUKTUR BETON BERTULANG I. Tulangan Rangkap. Oleh Resmi Bestari Muin

STRUKTUR BETON BERTULANG I. Tulangan Rangkap. Oleh Resmi Bestari Muin MODUL KULIAH STRUKTUR BETON BERTULANG I Minggu ke : 9 Tulngn Rngkp Oleh Resmi Bestri Muin PRODI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL dn PERENCANAAN UNIVERSITAS MERCU BUANA 2010 DAFTAR ISI DAFTAR ISI i IX

Lebih terperinci

AUTOMATA SEBAGAI MODEL PENGENAL BAHASA

AUTOMATA SEBAGAI MODEL PENGENAL BAHASA JMP : Volume Nomor Oktober 9 AUTOMATA SEBAGAI MODEL PENGENAL BAHASA Eddy Mrynto Fkults Sins dn Teknik Universits Jenderl Soedirmn Purwokerto Indonesi emil: eddy_mrynto@unsoed.c.id Abstrct. A deterministic

Lebih terperinci

BAB VIII PENDIMENSIAN JARINGAN. Data yang diperlukan untuk pendimensian jaringan adalah : 1. matriks trafik (trafik yang ditawarkan)

BAB VIII PENDIMENSIAN JARINGAN. Data yang diperlukan untuk pendimensian jaringan adalah : 1. matriks trafik (trafik yang ditawarkan) 8 Diktt Rekys Trfik VIII PEDIMESI JRIG 8. Dt yng diperlukn Dt yng diperlukn untuk pendimensin jringn dlh :. mtriks trfik (trfik yng ditwrkn) -.... -.... -.... -. mtrik biy (biy per slurn) -.... -.... -....

Lebih terperinci

Bab RUANG VEKTOR UMUM

Bab RUANG VEKTOR UMUM B 5 RUANG VEKTOR Pd seelumny, it telh memhs tentng veto di idng dn diung. Selnjutny, it n menco memhmi pengetin ung veto sec umum menuut definisi lj. Ini dipelun segi lndsn dlm memhmi tentng sis dn ung

Lebih terperinci

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 5 Sesi N INTEGRAL TENTU DAN LUAS DAERAH A. DEFINISI INTEGRAL TENTU Bentuk integrl f d = f + c diseut segi integrl tk tentu kren hsil dri pengintegrlnn msih erup

Lebih terperinci

Ruang Vektor Umum. V dinamakan ruang vektor jika terpenuhi aksioma : 1. V tertutup terhadap operasi penjumlahan

Ruang Vektor Umum. V dinamakan ruang vektor jika terpenuhi aksioma : 1. V tertutup terhadap operasi penjumlahan /8/5 Mtris & Rng Vetor Rng Vetor Umm Strt Rng Vetor Umm Misln v w V dn l Riil V dinmn rng vetor ji terpenhi siom :. V terttp terhdp opersi penjmlhn Unt setip v V m v V.. v v ( v w ) ( v ) w. Terdpt V sehingg

Lebih terperinci

BAB III MATRIKS

BAB III MATRIKS BB III MTRIKS PENGERTIN MTRIKS Pengertin Mtriks Mtriks dlh susunn bilngn-bilngn ng berbentuk persegi tu persegi pnjng ng ditur dlm bris dn kolom Bentuk Umum Mtriks : i m i m i m j j j ij mj n n n in mn

Lebih terperinci

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2008 Nomor Soal: 21-30

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2008 Nomor Soal: 21-30 Solusi Pengn Mtemtik Edisi Jnuri Pekn Ke-, 00 Nomor Sol: -0. Crilh himpunn penelesin dri sistem persmn log log. () log Misln 0 ( )( ) 0 tu, mk persmn () menjdi: log tu log log log log tu log log log log

Lebih terperinci

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45 INTEGRAL Deprtemen Mtemtik FMIPA IPB Bogor, 2012 (Deprtemen Mtemtik FMIPA IPB) Klkulus I Bogor, 2012 1 / 45 Topik Bhsn 1 Pendhulun 2 Anti-turunn 3 Lus di Bwh Kurv 4 Integrl Tentu 5 Teorem Dsr Klkulus 6

Lebih terperinci

BAB 5 PENDEKATAN FUNGSI

BAB 5 PENDEKATAN FUNGSI BAB 5 ENDEKATAN FUNGSI DEVIDE DIFFERENCE SELISIH TERBAGI A. Tuju. Memhmi oliomil Newto Selisih Terbgi b. Mmpu meetu oeisie-oeisie oliomil Newto c. Mmpu meetu oeisie-oeisie oliomil Newto deg Mtlb B. ergt

Lebih terperinci

BAB 10. MATRIKS DAN DETERMINAN

BAB 10. MATRIKS DAN DETERMINAN Dessy Dwiynti, S.Si, MBA Mtemtik Ekonomi 1 BAB 10. MATRIKS DAN DETERMINAN 1. Pengertin mtriks Mtriks kumpuln bilngn yng disjikn secr tertur dlm bris dn kolom yng membentuk sutu persegi pnjng, sert termut

Lebih terperinci