IX. TEORI PENDUGAAN DAN PENGUJIAN HIPOTESISI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "IX. TEORI PENDUGAAN DAN PENGUJIAN HIPOTESISI"

Transkripsi

1 I. TEORI PENDUGAAN DAN PENGUJIAN IPOTESISI. Teori Pedugaa Dalam peelitia kita berusaha utuk meyimpulka populasi dimaa sample diambil utuk mewakili populasi tersebut. Utuk tujua tersebut kita mecari atau mempelajari data yag diambil baik secara samplig maupu sesus. Karea keterbatasa waktu, daa serta megigat besarya populasi (tak higga maka diambil sample yag represetative lalu berdasarka pada hasil aalisis terhadap data sample kesimpula megeai populasi dibuat. Kelakua populasi yag aka ditijau disii hayalah megeai parameter populasi da sample yag diguaka adalah sample acak. Data dari sample diaalisis diperoleh ilai-ilai statistic atau statistic sample. Statistic sample yag diperoleh diguka utuk meduga parameter-parameter dari populasi. Secara umum parameter populasi diberi simbul θ (baca theta jadi θ bisa berupa ratarata μ simpaga baku α, proporsi Π da sebagaiya. Jika θ yag tidak diketahui hargaya diduga oleh θ maka θdiamaka peduga jelas diigika θ = θtetapi ii haya merupaka suatu keigiaa yag idial sifatya, keyataa yag terjadi adalah : a. peduga θ oleh θ terlalu tiggi b. peduga θ oleh θ terlalu redah. Kedua ii jelas tidak diigika oleh peeliiti karea kita megigika peduga yag baik peduga yag baik adalah tak bias, mempuyai varias (ragam miimum da kosiste. Peduga θ dikataka peduga tidak bias jika rata-rata semua harga θ yag mugki aka sama dega θ. Peduga beragam miimum ialah peduga dega ragam terkecil diatara semua peduga utuk parameter yag sama. Jika θ da θ dua peduga beragam miimum da merupaka peduga yag baik. Misalka θ peduga utuk θ yag dihitug berdasarka sample acak berukura. jika ukura sample maki besar medekati ukura populasi maka aka meyebabka θ medekati θ maka dijami merupaka peduga kosiste. Peduga yag tak bias da beragam miimum diamaka peduga yag baik. Cara-cara meduga Meduga μ Secara umum peduga μ adalah deag rumus Biostatistika 66

2 ( i i / peduga utuk sebuah parameter μ misalka hargaya aka berlaia tergatug pada harga yag didapatka dari sample yag diambil. Karea orag serig merasa kurag yaki atau kurag percaya atas hasil peduga macam ii. Sebagai gatiya dipakai iterval pedugaa atau daerah pedugaa yaitu meduga suatu parameter diatara batas-batas dua harga deag tigkat kepercayaa yag telah ditetuka. Jika koefisie kepercayaa diyataka dega α maka besarya 0<α<. harga yag digukaa tergatug pada persoala yag dihadapi da keyakia peeliti. Namu yag biasa diguaka ialah 0,95 atau 0,99. Jadi pedugaa θ yag dimaksud adalah : P(A < θ <B = α P : peluag yag diigika A : batas bawah pedugaa B :batas atas pedugaa θ: parameter yag diduga α: koefisie kepercayaa pedugaa perumusa ii berarti bahwa peluag θterletak diatara ilai A da B sebesar α. Dalam peelitia A da B dihitug hargaya berdasarka data sampel maka A da B merupaka bilaga tetap.maka perumusa diatas berarti kita merasa percaya sebesar α bahwa parameter θ aka ada didalam iterval ( A,B. jika umpamaya α = 0,95 A= da B = 4 ii berarti bahwa kita percaya 95 % parameter θ ilai atara sampai deag 4 Pedugaa rata-rata μ Misalka kita mempuyai suatu populasi berukura N dega rata-rata μ da simpaga baku α. Dari populasi ii parameter rata-rata μ aka diduga dega. utuk keperlua ii kita megambil sample sebesar da hitug rata-rataya ( jika data berasal dari populasi yag meyebar ormal da α diketahui maka : P ( Z /α α/ < μ < + Z /α α/ =α Disii Z /α ilaiya diambil dari tabel ormal baku utuk peluag ½ α. Jadi iterval kepercayaa parameter μ sebesar α adalah : Z /α α/ <μ< +Z /α α/ Biostatistika 67

3 Atau ± Z /α α/ Dalam peelitia /keyataa parameter α tidak diketahui,sehigga iterval kepercayaa parameter μ sebesar α mejadi t ½ α s/ <μ< + t /α s/ Atau ± t /α s/ Dimaa t /α ilaiya diambil dari tabel t da s dicari dega rumus: τ SD i _ ( - ( Jika ukura sample berhigga yaitu sebesar N yaki (/N > 5% maka: s N s N t/ t/ N N Atau t/ s N N Pedugaa proporsi Populasi biomial berukura N dimaa terdapat propirsi Π utuk suatu peristiwa yag terdapat didalam populasi tersebut. Bila didalamsampel terdpat kejadia da terdpat x kejadia yag sukses maka proporsi atau peluag kejadia sukses adalah = Sehigga iterval kepercayaaya dega pedekata ormal dega cukup besar meajdi : Z/ p( p Z/ p( p Atau Z/ p( p Jadi iterval kepercayaa utuk Π mejadi : p Z / p( p p( p p z/ Atau p( P p Z/ Cotoh. misalya dari hasil pegukura 0 ekor kambig kacag jata diperoleh rata-rata berat bada kg,dari hasil peelitia sebelumya diperoleh iformasi bahwa Biostatistika 68

4 simpaga beratya sebesar 5 kg. maka dega tigkat kpercayaa 95 %diperoleh kisara berat kambig tersebut adalah : 5 Z/.96,9 0 Jadi kisara berat kambig tersebut adalah atara,8 kg samai dega 7,9 (P<0,05. dari 50 ekor aak babi yag diperiksa teryata 30 ekor mederita peyakit mecret putih sedagka sisaya dalam keadaa sehat. Dega tigkat kepercayaa 95 % iterval pedugaa terhadap aak babi pederita mecret putih adalah sebagai berikut: kejadia sukses =30 x 30 p 50 S 0,60 p (-p = 50 (0,60(-0,60= S = 3, 46 Z/ p( p 30,96 0,60( 0, ,96 Jadi rata-rata aak babi yag mederita mecret putih 9,04-30,96 ekor atau 9-3 ekor (P<0,05. Kisara prepalesi(kemugkiaaak babi mecret putih adalah: p Z/ p( p 0,60,96 = 0,60 ±0,4 0,60( 0,60 50 Jadi prepalesiya berkisar atara 0,46-0,74 (p<0,05. Pegujia ipotesis ipotesis adalah jawaba smetara terhadap suatu permasalaha yag palig diaggap bear, diaggap semetara karea perlu dibuktika kebearaya da diaggap palig bear karea sudah berdasarka pikira yag logis d oegetahua yag meujagya. Pegujia hipotesis aka membawa kepada kesimpula utuk meerima atau Biostatistika 69

5 meolak hipotesis. Jadi dega demikia haya terdapat dua piliha. Maka dalam statistika kita megeal dua hipotesis yaitu 0 da pasaga 0 da mempuiyai daerah peerimaaa da daerah peolaka hipotesis. Daerah peolaka hipotesis serig disebut daerah kritis. Bila kita igi meguji suatu parameter yag diketahui (θ o maka hipotesisiya adalah sebagui berikut : a. ipoteisi dua arah o :θ =θ o lawa ;θ θ o b. ipotesisi satu arah kaa o :θ θ o lawa ;θ>θ o ipotesis ii megadug pegertia maksimum (meigkatka c. ipotesisi Satu arah kiri o :θ θ o lawa ;θ<θ o ipotesis ii megadug pegertia miimum(meuruka Meguji rata-rata A. Uji Dua Arah a. diketahui o : = o lawa : o Pegujia dilakuka dega megguaka rumus : Z o / Criteria peerimaa o adalah : o diterima pada taraf jika ; o ditolak pada taraf jika ; Z h Z h Z / Z / b. tidak diketahui o : = o lawa : o Pegujia dilakuka dega megguaka rumus : t o s / Criteria peerimaa o adalah : Biostatistika 70

6 o diterima pada taraf jika ; th t/ db o ditolak pada taraf jika ; th t/ db B. Pegujia Satu Arah : Arah kaa a. diketahui o : o lawa :.> o Pegujia dilakuka dega megguaka rumus : Z o / kriteria peerimaa o adalah : o diterima pada taraf jika ; Z Z α o ditolak pada taraf jika ; Z > Z α Utuk yag arah kiri criteria peerimaa o adalah b. tidak diketahui : Arah Kaa o : o lawa :.> o Pegujia dilakuka dega megguaka rumus : t o s / kriteria peerimaa o adalah : o diterima pada taraf jika ; t t α(db = - o ditolak pada taraf jika ; t > t α (db = - Kriteria peerimaa o utuk pegujia hipotesisi arah kiri adalah kebalika dari yag arah kaa. PENGUJIAN PROPORSI Π ipotesisya : o : olawa : Pegujia dilakuka dega rumus o Biostatistika 7

7 Z p o p( p kriteria peerimaa o adalah : o diterima pada taraf α jika Z Z o ditolak pada taraf α jika Z Z ipotesis da kriteria peerimaa hipotesis utuk uji satu arah sama dega pegujia ratarata μ Cotoh :. Seorag pejual ayam broiler meyataka bahwa rata-rata berat ayam yag dijual adalah,3 kg dega kisara berat 0,5 kg. utuk membuktika hal tersebut maka ditimbag ekor ayam broiler da diperoleh rata-rata bertaa, kg. apakah peyata pedagag ayam tersebut dapat dipercaya 95%. Jawab. ipotesiya dua arah karea kemugkia berat ayam tersebut lebih besar atau lebih kecil dari,3 kg maka hipoteisiya adalah : o : θ =,3 lawa : θ,3 Z o Z /,,3 0,,54 0,5/ 0,3 Jadi Z Z 0, 05atau,54<,96 maka o diterima.. Seorag pedagag obat peragsag pertumbuha meyataka bahwa, obat yag mereka jual dapta meigkatka berat sebesr 0,5 kg dega keragama 0, kg dari aak babi yag dipelihara selama masa meyusu. Dari 5 ekor aak babi yag dipelihara da diberika obat peragsag pertumbuha teryata rata-rata berat yag diperoleh sebesar 6, Kg,seagka sebelumya (tapa obat peragsag diperoleh berat rata-rata 5,8 Kg. Apakah obat tersebut dapat dipercaya 95 % dapat meragsag pertumbuha aak bagi selama meyusu. Jawab ipotesisi yag dapat dibuat adalah hipotesisi satu arah karea yag diigika dapat meigkatka saja, maka hipotesisiya adalah: o : μ <0,5 lawa : μ 0,5 S = α = 0, =0,3 Keaika yag dipero;eh (x = 6-58 = 0,3 Biostatistika 7

8 Z o / 0,5 0,3 0,3 / 5 0, 3, 0,064 Jadi Z Z 0, 05atau 3,>,645 maka o diterima karea yata lebih kecil dari 0,5. maka peryataa pedagag obat tersebut tidak bear, peryataa pedagag baru bear jika hasilya tidak yata lebih kecil (P>0,05 dari 0,5 kg atau yata lebih besar dari 0,5 kg 3. jika diketahui peluag lahirya aak sapi jata adalah 0,50 jika dari dari 8 ekor aak sapai yag terlahir teryata 5 ekor jata da 3 ekor betia. Apakah masih dapat dieprcaya 95 % peluag yag meyataka kemugkia aak sapi jata yag lahir 0,50 jawab P 5 8 0,65 Karea peluag tersebut kemugkia lebih besar atau lebih kecil dari 0,50 maka hipotesisiya adalah : o Z : 0,50lawa : 0,50 p o Z p( p 0,65 0,50 0,65( 0,65 8 0, 0,73 0,7 Jadi Z <Z 0,05 atau 0,73<,96 maka o diterima, maka peluag yag meyataka kemugkia aak sapi jata lahir peluag 0,50 masih dapat dipercaya (P>0,05 PENGUJIAN KESAMAAN(OMOGENITAS RAGAM/VARIANS ipotesisiya : o : lawa : Pegujia dilakuka dega megguaka rumus : F S S Dega ketetua : S S Kriteria peerimaa o adalah o diterima (ragam homoge pada taraf α jika F F ( db ; db o ditolak (ragam tidak homoge pada taraf α jika F F ( db ; db Biostatistika 73

9 MENGUJI KESAMAAN DUA RATA-RATA PENGAMATAN BERPASANGAN A. Uji Dua Arah ipotesisya o : μ =μ lawa : μ μ a. da diketahui pegujia dilakuka dega megguuaka rumus : Z / Disii == Kriteria peerimaa o adalah: o diterima pada taraf α jika : o ditolak pada taraf α jika : Z Z Z / Z / b. da tidak diketahui pegujia dilakuka dega megguaka rumus : t Sd/ Sd i ( i i i (i i Kriteria peerimaa o adalah: o diterima pada taraf α jika : t t/ ( db o ditolak pada taraf α jika : t t/ ( db B. Uji Satu Arah ipotesisya: o : μ μ lawa : μ > μ a. da diketahui pegujia dilakuka dega meguuaka rumus : Biostatistika 74

10 Z / Kriteria peerimaa o adalah: o diterima pada taraf α jika : Z Z α o ditolak pada taraf α jika : Z >Z α b. da tidak diketahui pegujia dilakuka dega megguaka rumus : t Sd Sg / / i ( i i i ( i Kriteria peerimaa o adalah: o diterima pada taraf α jika : t t ( db o ditolak pada taraf α jika : t t ( db MENGUJI KESAMAAN DUA RATA-RATA PENGAMATAN TIDAK BERPASANGAN A. uji dua Arah ipotesisya o : μ =μ lawa : μ μ a. da diketahui i pegujia dilakuka dega meguuaka rumus : Z / / Kriteria peerimaa o adalah: o diterima pada taraf α jika : o ditolak pada taraf α jika : Z Z Z / Z / b. da tidak diketahui pegujia dilakuka dega megguaka rumus : t Sg / / Biostatistika 75

11 Sg ( S ( S Kriteria peerimaa o adalah: o diterima pada taraf α jika : t t/ ( db o ditolak pada taraf α jika : t t/ ( db B. Uji Satu Arah ipotesisya a. da diketahui pegujia dilakuka dega meguuaka rumus : Z / / Kriteria peerimaa o adalah: b. o diterima pada taraf α jika : Z Z α o ditolak pada taraf α jika : Z >Z α da t Sg Sg / / tidak diketahui ( S ( S Kriteria peerimaa o adalah: o diterima pada taraf α jika : t t ( db o ditolak pada taraf α jika : t t ( db Cotoh:. Seorag peeliti igi megetahui perubaha p dagig api sebelum da sesudah diberika baha pegawet asam Acetat,5 % utuk tujua tersebut peeliti memeriksa cotoh dagig da diuji pya sebelum da sesudah diberi baha pegawet. Data hasil peelitiaya sebagai berikut : omor Sebelum ( i Sesudah ( i 3 4 5, 5, ,7 4, 4,4 4,9 4,8 Biostatistika 76

12 ,6 5,9 5,5 5,6 5,8 5,6 5,7 5,6 5,4 5,3 5,8 4,7 5, 4, 4,3 4,7 4,3 4,5 4, 4, 4,0 4,4 Dari data yag diperoleh peeliti igi megetahui apakah terjadi peurua p dagig yag yata dega pemberia asam Acetat,5 % disampig pula igi diketahui kesamaa ragam atara sebelum da sesudah duberika asam Acetat,5 % Jawab> ipotesisi Kesamaa dua rata-rata berpasaga satu arah o : μ μ lawa : μ > μ Kesamaa ragam (α o : Perhituga lawa : ( i i i ( i i i i i i = (5,-4, +(5,6-4,4 +.+(5,8-4,4 = 0,88 =(5,-4,+(5,6-4,4+.=(5,8-4,4 =7,4 = 5, +5,6 +5, ,8 =47,05 = 5, + 5,6 + 5, ,8=84, i i 84, i 5,6 i i = 4, + 4,4 +4, ,4 =98,9 Biostatistika 77

13 i i =4, + 4,4 +4,9+..+4,4=66,7 i 66,7 i 4,45 Sd i ( i i i ( i i Sd t Sd (7,4 0,88 0,3 5,6 4,45 / 0,3 /,6 0,0576 Oleh karea t >t 0,05(db=-, yaitu 0,4>,76 0,4 Maka o ditolak jadi disimpulka bahwa pemberia asam Acetat,5 % dapat meuruka p dagig sapi secara yata (P<0,05 i i i F ( i ( i (85, 47,05 `5 4 i i i 0, 0,0378 3,06 (66,7 98,9 4 0,0378 0, Oleh karea F >F 0,05(cb 4,4 yaitu 3,06>,46 maka o ditolak jadi ragam sebelum da sesudah diberika asam acetate tidak homoge (P>0,05. jika peeliti igi meambah aplatosi sebaya 0 % pada rasom itik Bali terhadap kadar rotei darahya. Utuk tujua tersebut dipelihara 30 ekor itik, ekor diberika rasom tapa aplatosis (rasom da ekor lagi diberika rasom dega aplatosi 0 % (rasom Biostatistika 78

14 Data hasil peelitia sebagai berikut: omor Rasum ( i Rasum ( i ,87,9,,79,65,66,64,65,58,96,65,63,68,75,84 3,7 3,8 3, 3,09 3,07,96,85,96,89,65 3, 3,08 3,06 3,,97 Dari data tersebut juga igi diuji kesamaa ragam dari rasom da rasom Jawab ipotesis Kesamaa dua rata-rata tidak berpasaga, uji dua arah o : lawa : Kesamaa ragam (α o : lawa : Perhituga: i i,87,9...,84 09,633 i i,87,9...,84 40,47 i 4,47 i,698 i i 3,7 +3,8 + +,97 =37,45 i 3,7+3,8+ +,97= 45,3 i 5 i 45,3 i 3,007 Biostatistika 79

15 SD i SD =0,779 i ( i i (40,47 09,633 4 SD i SD =0,434 i ( i i (45,3 37,45 4 S g ( S ( S ( 0,779 ( 0,434 S g =0,66 8 t Sg,6980 3,007 5,47 / / 0,66 / / Oleh karea t >t 0,059db=8 yaitu 5,47>,048 Maka o ditolak disimpulka bahwa Aplatosispada rasom itik dapat mempegaruhi secara yata (P<0,05 kadar protei darahya F (0,979 (0,435,54 Oleh karea F <F 0,05(db4,4 yaitu,54>,6 Maka o diterima jadi ragam rasum da rasum sama atau homoge (P>0,05 Biostatistika 80

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

A. Pengertian Hipotesis

A. Pengertian Hipotesis PENGUJIAN HIPOTESIS A. Pegertia Hipotesis Hipotesis statistik adalah suatu peryataa atau dugaa megeai satu atau lebih populasi Ada macam hipotesis:. Hipotesis ol (H 0 ), adalah suatu hipotesis dega harapa

Lebih terperinci

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk :

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk : PARAMETER PENGJIAN HIPOTESIS MODL PARAMETER PENGJIAN HIPOTESIS. Pedahulua Kalau yag sedag ditest atau diuji itu parameter θ dalam hal ii pegguaaya ati bias rata-rata µ prprsi p, simpaga baku σ da lai-lai,

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

x = μ...? 2 2 s = σ...? x x s = σ...?

x = μ...? 2 2 s = σ...? x x s = σ...? Pedugaa Parameter x 2 sx s = μ...? 2 = σ x...? = σ...? Peduga Parameter Peduga titik yaitu parameter populasi p diduga dega suatu besara statistik, misal: rata-rata, proporsi, ragam, dll Peduga Selag (Iterval)

Lebih terperinci

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 Statistika Iferesia: Pedugaa Parameter Dr. Kusma Sadik, M.Si Dept. Statistika IPB, 05 Populasi : Parameter Sampel : Statistik Statistik merupaka PENDUGA bagi parameter populasi Pegetahua megeai distribusi

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto Tue 0/04/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato Estimasi : salah satu cara megemukaka peryataa iduktif (meyataka karakteristik populasi dega meggu aka karakteristik yag didapat dari cuplika).

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

SEBARAN t dan SEBARAN F

SEBARAN t dan SEBARAN F SEBARAN t da SEBARAN F 1 Tabel uji t disebut juga tabel t studet. Sebara t pertama kali diperkealka oleh W.S. Gosset pada tahu 1908. Saat itu, Gosset bekerja pada perusahaa bir Irladia yag melarag peerbita

Lebih terperinci

JENIS PENDUGAAN STATISTIK

JENIS PENDUGAAN STATISTIK ENDUGAAN STATISTIK ENDAHULUAN Kosep pedugaa statistik diperluka utuk membuat dugaa dari gambara populasi. ada pedugaa statistik dibutuhka pegambila sampel utuk diaalisis (statistik sampel) yag ati diguaka

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

PENGUJIAN HIPOTESA BAB 7

PENGUJIAN HIPOTESA BAB 7 PENGUJIAN IPOTESA BAB 7 Pedahulua ipotesis ( upo : lemah, Thesis : peryataa ) Diartika :. Peryataa yag masih lemah kebearaya da perlu dibuktika. Dugaa yag sifatya masih semetara ipotesis ii perlu utuk

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

Pendugaan Parameter. Debrina Puspita Andriani /

Pendugaan Parameter. Debrina Puspita Andriani    / Pedugaa Parameter 7 Debria Puspita Adriai E-mail : debria.ub@gmail.com / debria@ub.ac.id Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:

Lebih terperinci

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari. Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi. Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan Selag Kepercayaa (Cofidece Iterval) Pegatar Peduga titik (poit estimator) telah dibahas pada kuliah-kuliah sebelumya. Walau statistikawa telah berusaha memperoleh peduga titik yag baik, amu hampir bisa

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

ESTIMASI TITIK DAN INTERVAL KEPERCAYAAN

ESTIMASI TITIK DAN INTERVAL KEPERCAYAAN 8/8/0 IE 305 tatistika Idustri LOGO ETIMAI TITIK DAN INTERVAL KEPERCAYAAN Elty arvia, T.,MT. Fakultas Tekik Jurusa Tekik Idustri Uiversitas Kriste Maraatha Badug LT arvia/esi Tujua 3 4 5 6 Medefiisika

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

Mata Kuliah: Statistik Inferensial

Mata Kuliah: Statistik Inferensial PENGUJIAN HIPOTESIS SAMPEL KECIL Prof. Dr. H. Almasdi Syahza, SE., MP Email: asyahza@yahoo.co.id DEFINISI Pegertia Sampel Kecil Sampel kecil yag jumlah sampel kurag dari 30, maka ilai stadar deviasi (s)

Lebih terperinci

Chapter 7 Student Lecture Notes 7-1

Chapter 7 Student Lecture Notes 7-1 Chapter 7 Studet Lecture Notes 7-1 DASAR-DASAR UJI Hipotesis: Hipo (di bawah) da Tesis (peryataa yag telah diuji) Hipotesis Statistik:suatu proposisi atau aggapa megeai parameter populasi yag dapat diuji

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I 7 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas XI IPA SMA Negeri I Kotaagug Tahu Ajara 0-03 yag berjumlah 98 siswa yag tersebar dalam 3

Lebih terperinci

STATISTIK PERTEMUAN VIII

STATISTIK PERTEMUAN VIII STATISTIK PERTEMUAN VIII Pegertia Estimasi Merupaka bagia dari statistik iferesi Estimasi = pedugaa, atau meaksir harga parameter populasi dega harga-harga statistik sampelya. Misal : suatu populasi yag

Lebih terperinci

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci

REGRESI LINIER GANDA

REGRESI LINIER GANDA REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka

Lebih terperinci

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1 Proses Pedugaa Populasi Mea,, tdk diketahui Cotoh Acak Mea = 50 95% yaki bahwa diatara 40 & 60. Cotoh 1999 Pretice-Hall, Ic. Chap. 7-1 Pedugaa Parameter Populasi Meduga Parameter Populasi... Mea dg Statistik

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

Statistika Inferensial

Statistika Inferensial Cofidece Iterval Ara Fariza Statistika Iferesial Populasi Sampel Simpulka (estimasi) tetag parameter Medapatka statistik Estimasi: estimasi titik, estimasi iterval, uji hipotesa 2 1 Proses Estimasi Populasi

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di MTs Muhammadiyah 1 Natar Lampung Selatan.

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di MTs Muhammadiyah 1 Natar Lampung Selatan. 9 III. METODOLOGI PENELITIAN A. Populasi Da Sampel Peelitia ii dilaksaaka di MTs Muhammadiyah Natar Lampug Selata. Populasiya adalah seluruh siswa kelas VIII semester geap MTs Muhammadiyah Natar Tahu Pelajara

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang II. LANDASAN TEORI Defiisi 2.1 Samplig Samplig adalah proses pegambila atau memilih buah eleme dari populasi yag berukura N (Lohr, 1999). Dalam melakuka samplig, terdapat teori dasar yag disebut teori

Lebih terperinci

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang 2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai dega Mei 03. B. Populasi da Sampel Populasi dalam

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas I MIA SMA Negeri 5 Badar Lampug Tahu Pelajara 04-05 yag berjumlah 48 siswa. Siswa tersebut

Lebih terperinci

UKURAN PEMUSATAN UKURAN PENYEBARAN

UKURAN PEMUSATAN UKURAN PENYEBARAN UKURAN PEMUSATAN DATA TUNGGAL DATA KELOMPOK. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL UKURAN PENYEBARAN JANGKAUAN HAMPARAN RAGAM / VARIANS SIMPANGAN BAKU

Lebih terperinci

MODUL BEBERAPA MACAM SEBARAN TEORITIS BEBERAPA MACAM SEBARAN TEORITIS

MODUL BEBERAPA MACAM SEBARAN TEORITIS BEBERAPA MACAM SEBARAN TEORITIS MODUL 7 BEBERAPA MACAM SEBARAN TEORITIS Pedahulua Dibedaka sebara probabilitas yag diskrit dega sebara yag kotiyu Keduaya bukalah sebara yag berasal dari pegalama, melaika berasal dari pertimbaga-pertimbaga

Lebih terperinci

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut:

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut: Statistik da Peluag A. Statistik Statistik adalah metode ilmiah yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis data, serta cara pegambila kesimpula berdasarka data-data tersebut. Data ialah

Lebih terperinci

1 Departemen Statistika FMIPA IPB

1 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351) 1 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Metode Noparametrik Skala Pegukura Metode Noparameterik Uji Hipotesis

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014.

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014. BAB III METODE PENELITIAN A. Waktu da Tempat Peelitia Peelitia dilaksaaka dari bula Agustus-September 03.Peelitia ii dilakuka di kelas X SMA Muhammadiyah Pekabaru semester gajil tahu ajara 03/04. B. Subjek

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

INTERVAL KEPERCAYAAN

INTERVAL KEPERCAYAAN INTERVAL KEPERCAYAAN Tujua utama diambil ebuah ampel dari ebuah populai adalah utuk memperoleh iformai megeai parameter populai.. Ada cara meetuka parameter populai yaitu peakira da pegujia hipotei. Peakira

Lebih terperinci

STATISTIKA NON PARAMETRIK

STATISTIKA NON PARAMETRIK . PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha

Lebih terperinci

DISTRIBUSI SAMPEL PENAKSIRAN UJI HIPOTESIS MA5182 Topik dalam Statistika I: Statistika Spasial 6 September 2012 Utriweni Mukhaiyar

DISTRIBUSI SAMPEL PENAKSIRAN UJI HIPOTESIS MA5182 Topik dalam Statistika I: Statistika Spasial 6 September 2012 Utriweni Mukhaiyar INFERENSI STATISTIKA DISTRIBUSI SAMPEL PENAKSIRAN UJI HIPOTESIS MA518 Topik dalam Statistika I: Statistika Spasial 6 September 01 Utriwei Mukhaiyar DISTRIBUSI SAMPEL Beberapa defiisi Suatu populasi terdiri

Lebih terperinci

MODUL BEBERAPA MACAM SEBARAN TEORITIS

MODUL BEBERAPA MACAM SEBARAN TEORITIS BEBERAPA MACAM SEBARAN TEORITIS MODUL 7 BEBERAPA MACAM SEBARAN TEORITIS Pedahulua Dibedaka sebara probabilitas yag diskrit dega sebara yag kotiyu Keduaya bukalah sebara yag berasal dari pegalama, melaika

Lebih terperinci

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered.

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered. 2. Pelajari data dibawah ii, tetuka depede da idepede variabel serta : a) Hitug Sum of Square for Regressio (X) b) Hitug Sum of Square for Residual c) Hitug Meas Sum of Square for Regressio (X) d) Hitug

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemua VI Sebara Pearika Cotoh Septia Rahardiatoro - STK IPB 1 Sebara Pearika Cotoh Megidetifikasi sebara suatu fugsi dari cotoh ketika diambil dari suatu populasi X

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

III. METODOLOGI PENELITIAN. diinginkan. Menurut Arikunto (1991 : 3) penelitian eksperimen adalah suatu

III. METODOLOGI PENELITIAN. diinginkan. Menurut Arikunto (1991 : 3) penelitian eksperimen adalah suatu III. METODOLOGI PENELITIAN A. Metode Peelitia Metode peelitia merupaka suatu cara tertetu yag diguaka utuk meeliti suatu permasalaha sehigga medapatka hasil atau tujua yag diigika. Meurut Arikuto (99 :

Lebih terperinci

TEKNIK SAMPLING PCA SISTEMATIK. Hazmira Yozza Izzati Rahmi HG. Jurusan Matematika FMIPA - Unand

TEKNIK SAMPLING PCA SISTEMATIK. Hazmira Yozza Izzati Rahmi HG. Jurusan Matematika FMIPA - Unand Hazmira Yozza Izzati Rahmi HG TEKNIK SAMPLING PCA SISTEMATIK Jurusa Matematika FMIPA - Uad Defiisi Samplig sistematik adalah metode pearika cotoh yag dilakuka dega cara memilih secara acak satu eleme dari

Lebih terperinci

Pengertian Estimasi Titik. Estimasi (Pendugaan) Estimasi (Pendugaan) Estimasi (Pendugaan) Populasi dan Sampel. Mean Proporsi

Pengertian Estimasi Titik. Estimasi (Pendugaan) Estimasi (Pendugaan) Estimasi (Pendugaan) Populasi dan Sampel. Mean Proporsi Chapter 6 Studet Lecture Notes 6-1 Hal-1 Hal-2 Estimasi (Pedugaa) Estimasi (Pedugaa) TOPIK Pegertia Estimasi Estimasi titik Nilai rata-rata populasi Nilai proporsi populasi Estimasi Iterval Estimasi iterval

Lebih terperinci

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa 19 III. METODE PENELITIAN A. Populasi da Sampel Populasi dalam peelitia ii adalah seluruh siswa kelas VIII SMP Negeri 8 Badar Lampug tahu pelajara 2009/2010 sebayak 279 orag yag terdistribusi dalam tujuh

Lebih terperinci

III. METODELOGI PENELITIAN

III. METODELOGI PENELITIAN III. METODELOGI PENELITIAN A. Metode Peelitia Metode peelitia merupaka suatu cara tertetu yag diguaka utuk meeliti suatu permasalaha sehigga medapatka hasil atau tujua yag diigika, meurut Arikuto (998:73)

Lebih terperinci

Statistika Inferensia: Pengujian Hipotesis. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015

Statistika Inferensia: Pengujian Hipotesis. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 Statistika Iferesia: Pegujia Hipotesis Dr. Kusma Sadik, M.Si Dept. Statistika IPB, 05 Populasi : = 0 Butuh pembuktia berdasarka cotoh!!! Apa yag diperluka? > 0? Maa yag bear? Sampel : x 5 Hal itu merupaka

Lebih terperinci

BAB III MATERI DAN METODE. Ettawa Berdasarkan Bobot Lahir dan Bobot Sapih Cempe di Satuan Kerja

BAB III MATERI DAN METODE. Ettawa Berdasarkan Bobot Lahir dan Bobot Sapih Cempe di Satuan Kerja 8 BAB III MATERI DAN METODE Peelitia tetag Pedugaa Keuggula Pejata Kambig Peraaka Ettawa Berdasarka Bobot Lahir da Bobot Sapih Cempe di Satua Kerja Sumberejo Kedal dilakuka di Satua Kerja Sumberejo Kedal.

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

TEORI PENAKSIRAN. Bab 8. A. Pendahuluan. Kompetensi Mampu menjelaskan dan menganalisis teori penaksiran

TEORI PENAKSIRAN. Bab 8. A. Pendahuluan. Kompetensi Mampu menjelaskan dan menganalisis teori penaksiran Bab 8 TEORI PENAKSIRAN Kompetesi Mampu mejelaska da megaalisis teori peaksira Idikator 1. Mejelaska da megaalisis data dega megguaka peaksira titik 2. Mejelaska da megaalisis data dega megguaka peaksira

Lebih terperinci

Statistika 2. Pengujian Hipotesis. 1. Pendahuluan. Topik Bahasan: Oleh : Edi M. Pribadi, SP., MSc.

Statistika 2. Pengujian Hipotesis. 1. Pendahuluan. Topik Bahasan: Oleh : Edi M. Pribadi, SP., MSc. Statistika Toik Bahasa: Pegujia Hiotesis Oleh : Edi M. Pribadi, SP., MSc. E-mail: edi_m@staff.guadarma.ac.id. Pedahulua Hiotesis eryataa yag meruaka edugaa berkaita dega ilai suatu arameter oulasi (satu

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

III. MATERI DAN METODE PENELITIAN. Penelitian telah dilakukan pada bulan November - Desember 2013 di

III. MATERI DAN METODE PENELITIAN. Penelitian telah dilakukan pada bulan November - Desember 2013 di III. MATERI DAN METODE PENELITIAN 3.. Waktu da Tempat Peelitia telah dilakuka pada bula November - Desember 203 di peteraka Kambig yag ada di Kota Pekabaru Provisi Riau. 3.2. Alat da Baha Materi yag diguaka

Lebih terperinci

III BAHAN DAN METODE PENELITIAN. memelihara itik Damiaking murni di Kampung Teras Toyib Desa Kamaruton

III BAHAN DAN METODE PENELITIAN. memelihara itik Damiaking murni di Kampung Teras Toyib Desa Kamaruton III BAHAN DAN METODE PENELITIAN 3.1 Baha da Alat Peelitia 3.1.1 Telur Tetas Itik Damiakig Baha yag diguaka dalam peelitia ii adalah telur tetas itik Damiakig berasal dari iduk yag dipelihara secara ekstesif

Lebih terperinci

Pendugaan Parameter 1

Pendugaan Parameter 1 Topik Bahaa: Pedugaa Parameter 1 (Selag Pedugaa, Pedugaa Selag 1 Rata-Rata) Pertemua ke II 1 Ilutrai Statitika Ifereia : Mecakup emua metode yag diguaka utuk pearika keimpula atau geeraliai megeai populai

Lebih terperinci

Pedahulua Pedugaa Parameter Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel, Mial :. x diguaka ebagai peduga bagi µ. diguaka ebagai peduga bagi σ 3. p atau p$ diguaka ebagai peduga

Lebih terperinci

Bab 6 PENAKSIRAN PARAMETER

Bab 6 PENAKSIRAN PARAMETER Bab 6 PENAKSIRAN PARAMETER Stadar Kompetesi : Setelah megikuti kuliah ii, mahasiswa dapat memahami hubuga ilai sampel da populasi da meetuka distribusi samplig yag tepat utuk diguaka Kompetesi Dasar :

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

Kompetisi Statistika Tingkat SMA

Kompetisi Statistika Tingkat SMA . Arya da Bombom melakuka tos koikoi yag seimbag yag mempuyai sisi, agka da gambar Arya melakuka tos terhadap 6 koi, sedagka Bombom melakuka tos terhadap koi, maka peluag Arya medapatka hasil tos muka

Lebih terperinci

III. METODE PENELITIAN. Variabel X merupakan variabel bebas adalah kepemimpinan dan motivasi,

III. METODE PENELITIAN. Variabel X merupakan variabel bebas adalah kepemimpinan dan motivasi, 7 III. METODE PENELITIAN 3.1 Idetifikasi Masalah Variabel yag diguaka dalam peelitia ii adalah variabel X da variabel Y. Variabel X merupaka variabel bebas adalah kepemimpia da motivasi, variabel Y merupaka

Lebih terperinci

Uji apakah ada perbedaan signifikan antara mean masing-masing laboratorium. Gunakan α=0.05.

Uji apakah ada perbedaan signifikan antara mean masing-masing laboratorium. Gunakan α=0.05. MA 8 STATISTIKA DASAR SEMESTER I /3 KK STATISTIKA, FMIPA ITB UJIAN AKHIR SEMESTER (UAS) Sei, Desember, 9.3.3 WIB ( MENIT) Kelas. Pegajar: Utriwei Mukhaiyar, Kelas. Pegajar: Sumato Wiotoharjo Jawablah pertayaa

Lebih terperinci

Analisa Data Statistik. Ratih Setyaningrum, MT

Analisa Data Statistik. Ratih Setyaningrum, MT Aalisa Data tatistik Ratih etyaigrum, MT Referesi Agoes oehiaie, Ph.D Daftar Isi Iferesi tatistik Hipotesa tatistik : Kosep Umum Hipotesa statistik adalah sebuah klaim/peryataa atau cojecture tetag populasi.

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1. Lokasi da Waktu Peelitia Daerah peelitia adalah Kota Bogor yag terletak di Provisi Jawa Barat. Pemiliha lokasi ii berdasarka pertimbaga atara lai: (1) tersediaya Tabel Iput-Output

Lebih terperinci

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28 5 BAB III METODE PENELITIAN 3.1 Lokasi Peelitia da Waktu Peelitia Sehubuga dega peelitia ii, lokasi yag dijadika tempat peelitia yaitu PT. Siar Gorotalo Berlia Motor, Jl. H. B Yassi o 8 Kota Gorotalo.

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

Sampling Process and Sampling Distribution Inference : Point and Interval Estimates. Pertemuan 2

Sampling Process and Sampling Distribution Inference : Point and Interval Estimates. Pertemuan 2 Samplig Process ad Samplig Distributio Iferece : Poit ad Iterval Estimates Pertemua 1 CAKUPAN MATERI: Pemahama tetag Samplig Sampel Acak Sederhaa (Simple Radom Samplig SRS) Estimasi Titik (Poit Estimatio)

Lebih terperinci

BAB 7 PEN P GUJ GU IAN HIPO P T O ES T A

BAB 7 PEN P GUJ GU IAN HIPO P T O ES T A BAB 7 PENGUJIAN HIPOTESA Meguji Rata-rata µ Umpamakalah kita mempuyai sebuah populasi berdistribusi ormal dega rata-rata µ da simpaga baku σ. Aka diuji megeai parameter rata-rata µ Utuk pasaga hipotesa

Lebih terperinci

III. METODE PENELITIAN. kelas VIII semester ganjil SMP Sejahtera I Bandar Lampung tahun pelajaran 2010/2011

III. METODE PENELITIAN. kelas VIII semester ganjil SMP Sejahtera I Bandar Lampung tahun pelajaran 2010/2011 III. METODE PENELITIAN A. Latar Peelitia Peelitia ii merupaka peelitia yag megguaka total sampel yaitu seluruh siswa kelas VIII semester gajil SMP Sejahtera I Badar Lampug tahu pelajara 2010/2011 dega

Lebih terperinci

Metode Statistika Pertemuan XI-XII

Metode Statistika Pertemuan XI-XII /4/0 Metode Statitika Pertemua XI-XII Statitika Ifereia: Pegujia Hipotei Populai : = 0 Butuh pembuktia berdaarka cotoh!!! Apa yag diperluka? > 0? Maa yag bear? Sampel : 5 Ok, itu adalah pegujia hipotei,

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel.

II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel. II. LANDASAN TEORI Defiisi 2.1 Distribusi Samplig Distribusi samplig adalah distribusi probibilitas dari suatu statistik. Distribusi tergatug dari ukura populasi, ukura sampel da metode memilih sampel.

Lebih terperinci

III. METODOLOGI PENELITIAN. Menurut Sukardi, (2003:17) Metodologi penelitian adalah cara yang

III. METODOLOGI PENELITIAN. Menurut Sukardi, (2003:17) Metodologi penelitian adalah cara yang 5 III. METODOLOGI PENELITIAN A. Metode Peelitia Meurut Sukardi, (003:7) Metodologi peelitia adalah cara yag dilakuka secara sistematis megikuti atura-atura, direcaaka oleh para peeliti utuk memecahka permasalaha

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

BAB III METODE PENELITIAN. Metode yang digunakan dalam penelitian ini adalah penelitian korelasi,

BAB III METODE PENELITIAN. Metode yang digunakan dalam penelitian ini adalah penelitian korelasi, BAB III METODE PENELITIAN 3.1 Metode Peelitia Metode yag diguaka dalam peelitia ii adalah peelitia korelasi, yaitu suatu metode yag secara sistematis meggambarka tetag hubuga pola asuh orag tua dega kosep

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Metode Peelitia Peelitia ii megguaka metode peelitia Korelasioal. Peelitia korelasioaal yaitu suatu metode yag meggambarka secara sistematis da obyektif tetag hubuga atara

Lebih terperinci

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA BAB VII DITRIBUI AMPLING DAN DEKRIPI DATA 7. Distribusi amplig (samplig distributio) amplig distributio adalah distribusi probabilitas dari suatu statistik. amplig distributio tergatug dari ukura populasi,

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval Pedugaa Parameter. Pedahulua Pedugaa Parameter Popoulai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi

Lebih terperinci