II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel."

Transkripsi

1 II. LANDASAN TEORI Defiisi 2.1 Distribusi Samplig Distribusi samplig adalah distribusi probibilitas dari suatu statistik. Distribusi tergatug dari ukura populasi, ukura sampel da metode memilih sampel. Sampel yag diambil ialah sampel acak da dari sampel tersebut ilai statistikya dihitug. Nilai setiap statistik sampel aka bervariasi atar sampel. Samplig adalah proses pegambila atau memilih buah eleme dari populasi yag berukura N (Lohr, 1999). Dalam bayak hal, survai tidak mugki melibatka keseluruha eleme populasi, karea aka memerluka waktu, teaga da biaya yag cukup besar. Besarya biaya dalam sesus terkadag tidak seimbag dega mafaat dari iformasi yag dikumpulka. Tujua teori samplig adalah membuat samplig mejadi lebih efisie, artiya dega biaya yag lebih redah diperoleh ketelitia yag sama tiggi atau dega biaya yag sama diperoleh ketelitia yag lebih tiggi. Teori samplig mecoba utuk megembagka metode pemiliha sampel da pembuata perkiraa, sehigga diperoleh metode yag memugkika diperolehya hasil peelitia dega tigkat ketelitia tiggi sesuai dega tujua, tetapi dega biaya yag lebih redah.

2 2 Defiisi 2.2 Tekik Samplig Tekik Samplig merupaka tekik pegambila sampel utuk medapatka sampel yag dapat mewakili karakteristik populasi. Terdapat berbagai tekik samplig utuk meetuka sampel yag aka diguaka dalam peelitia. Tekik samplig pada dasarya dapat dikelompokka mejadi dua yaitu probability samplig da o probability samplig. Yag termasuk dalam tekik probability samplig adalah : a. Samplig Acak Sederhaa Defiisi 2.3 Samplig Acak Sederhaa Tekik acak sederhaa adalah tekik acak yag palig dasar dalam pegambila sampel. Syarat utama agar suatu sampel mempuyai sifat acak, pemiliha harus melalui proses acak, yaitu suatu proses yag hasilya tak dapat diketahui sebelumya. Prisip sampel acak sederhaa, setiap aggota populasi mempuyai kesempata yag sama utuk dipilih sebagai sampel. Jika suatu sampel dega eleme dipilih dari suatu populasi dega N eleme sedemikia rupa sehigga setiap kemugkia sampel dega eleme mempuyai kesempata yag sama utuk terpilih, prosedur samplig yag demikia disebut simple radom samplig (Suprato,J. 1992). Meskipu terlihat sagat sederhaa, tekik sederhaa ii mempuyai syarat yag khusus. Tekik acak sederhaa bisa dipakai jika ada keragka sampel yag baik da legkap yag memuat daftar ama aggota semua populasi. Oleh karea syarat yag ketat itu, tekik acak sederhaa ii umumya bisa dipakai dalam kodisi berikut :

3 3 1. Sampel acak sederhaa efektif dipakai jika populasi tidak terlalu besar. 2. Sampel acak sederhaa bisa dipakai jika populasi relatif homoge (Eriyato, 2007). Peduga rata-rata pada samplig acak sederhaa adalah: y = y i Peduga varia utuk μ adalah: V(y ) = σ2 (N N 1 ) Dimaa: σ 2 = (y i y ) 2 N b. Samplig Acak Berlapis atau Stratified Radom Samplig Defiisi 2.4 Samplig Acak Berlapis Samplig acak berlapis adalah betuk samplig acak yag eleme populasiya dibagi ke dalam kelompok-kelompok homoge yag disebut strata. Ada beberapa alasa dalam pegguaaaya,atara lai: 1. Jika data diketahui ketelitia yag diigika utuk subkelompok tertetu dari populasi, ada baikya memperlakuka setiap subkelompok sebagai suatu populasi tertetu. 2. Admiistrasi yag baik dapat memakai keguaaa strata. 3. Masalah pearika sampel dapat berbeda dalam bagia populasi yag berbeda. 4. Pelapisa dapat meghasilka suatu mafaat dalam ketelitia perkiraa dari karakteristik populasi. Hal ii memugkika utuk membagi sebuah populasi yag heteroge mejad subpopulasi-subpopulasi, dega setiap subpopulasi mejadi homoge (Cochra,1991).

4 4 Dalam acak stratifikasi, sebelum sampel diambil dari populasi, dilakuka stratifikasi populasi terlebih dahulu berdasarka karakteristik tertetu. Sampel yag diambil disesuaika dega proporsi da populasi. Cara melakuka tekik stratifikasi adalah sebagai berikut: Setelah medapatka keragka sampel, disusu terlebih dahulu stratifikasi. Aggota populasi dimasukka ke dalam stratifikasi yag telah dibuat. Setelah itu baru ditarik sampel sesuai dega strata masig-masig. Apabila populasi heteroge, lebih baik megguaka samplig acak berlapis daripada samplig acak sederhaa oleh karea alasa berikut : 1. Setiap stratum homoge atau relatif homoge, sehigga sampel acak yag diambil dari setiap stratum aka memberika perkiraa yag dapat mewakili stratum yag bersagkuta. Perkiraa gabuga yag diperoleh berdasarka perkiraa dari setiap stratum aka memberika perkiraa meyeluruh yag mewakili populasi. 2. Biaya utuk pelaksaa samplig acak berlapis lebih murah daripada samplig acak sederhaa karea alasa admiistrasi. 3. Perkiraa bisa dibuat utuk setiap stratum yag dapat diaggap sebagai populasi yag berdiri sediri da mugki bisa dilakuka oleh seorag peeliti saja (Suprato, J. 1992). Peduga rata-rata pada samplig acak berlapis adalah: L y = 1 N N iy i Peduga varia utuk μ adalah: V(y ) = 1 L N N 2 i 2 ( N i i ( S i 2 S 2 i = (Y ij Y ) 2 1 Dega N i ) i )

5 5 N = bayakya eleme (samplig uit) dari populasi Ni= bayakya eleme dari stratum ke-i = bayakya eleme sampel sebelum dikelompoka i= bayakya eleme sampel dari stratum ke-i yag dipilih secara acak c. Samplig Kelompok atau Cluster Samplig Samplig kelompok adalah pegambila sampel dari beberapa uit samplig yag merupaka kelompok dari eleme (Scheaffer, Medehall da Ott., 1996). Lagkah palig awal dalam pearika sampel cluster yag harus dilakuka oleh peeliti adalah megidetifikasi cluster atau satua dimaa idividu mejadi aggota dalam cluster. Semua cluster yag ada dalam populasi harus bisa diidetifikasi. Setelah cluster diambil, disusu keragka sampel berupa daftar ama idividu yag mejadi aggota cluster terpilih. Setelah daftar itu bisa disusu, barulah dilakuka pearika sampel seperti pada sampel acak sederhaa, sistematis atau stratifikasi. 2.5 Oe-Stage Cluster Samplig Oe-Stage Cluster Samplig dilakuka dega didasarka pada gugus (cluster). Asumsiya, idividu adalah bagia dari gugus atau cluster tertetu, keragka sampel berupa daftar ama idividu memag tidak tersedia, tetapi daftar kelompok (gugus) itu pastilah tersedia. Tekik ii dapat dilakuka jika tidak tersediaya keragka sampel berupa ama-ama idividu aggota populasi da kalaupu keragka sampel itu tersedia masih diraguka akurasiya. Gambara secara umum dari metode ii tersaji dalam Gambar 2.1.

6 6 Gambar 2.1. Oe-stage cluster samplig Cotoh kasus oe-stage cluster samplig Suatu populasi memiliki 10 cluster (N=10). Dari 10 cluster tersebut, dipilih secara acak 2 cluster utuk diamati. Secara legkap tahapa sampligya tersaji pada Gambar 2.2. Gambar 2.2. Ilustrasi pegambila sampel pada oe-stage cluster samplig Misal cluster yag terpilih adalah 1 da 8, maka cluster terpilih dijadika sebagai sampel peelitia. Peduga bagi rata-rata populasi adalah : y oe = y i m i (2.1) m Notasi : y i = i y ij mi = bayakya eleme dalam kelompok i, dimaa i = 1,2,3,...,N Karea pemiliha cluster dilakuka dega metode acak maka diperoleh peduga varias bagi oe-stage cluster adalah : N V (y oe ) = ( NM 2 ) S2 dega S 2 = (y i y m i ) 2 1

7 7 Notasi N= jumlah cluster = jumlah cluster terpilih m i = M i = jumlah eleme/uit sampel cluster terpilih ke-i Selajutya aka dibuktika varias peduga oe-stage cluster dega peduga rata-rata pada persamaa (2.1): Dega y oe = y i m i maka diperoleh V (y oe ) = V ( V (y oe ) = = y i m i 1 ( m i ) V( ) 2 y i ) (2.2) Dega m = m i, maka diperoleh m i = m. Sehigga persamaa (2.2) mejadi V (y oe ) = 1 V( y 2 m 2 i) (2.3) Dalam kasus oe-stage cluster mi=mi, sehigga diperoleh m i = m = m i = M Serta y = y i V (y oe ) = 1 2 M 2 V(y ) = 1 2 M 2 2 V(y ), maka diperoleh y i = y. Sehigga persamaa (2.3) mejadi : = 1 M 2 V(y ) (2.4) Diketahui bahwa y = y i m i, sehigga y i = y m i atau y = y m i. Megikuti kosep peduga varias pada kasus simple radom samplig, maka diperoleh: V(y ) = ( N N ) S 2 (2.5)

8 8 Dega mesubtitusika persamaa (2.5) ke (2.4) maka diperoleh diperoleh: V (y oe ) = V (y oe ) = 1 M 2 (N ) S 2 N N NM 2 S2 (2.6) Dega S 2 = (y i y m i ) 2 1 (terbukti) 2.6 Two-stage Cluster samplig Metode Two-Stage Cluster Samplig merupaka pegembaga dari metode cluster samplig dimaa pegambila sampel dilakuka secara dua tahap, yaitu tahap pertama, memilih beberapa cluster dalam populasi secara acak sebagai sampel da tahap kedua memilih eleme dari tiap cluster terpilih secara acak (Scheafer et.al., 1996).Gambara secara umum dari metode ii tersaji dalam Gambar 2.3. Tahap 1 Tahap 2 Gambar 2.3. Two-stage cluster samplig Cotoh kasus two-stage cluster samplig Suatu populasi memiliki 10 cluster (N=10). Masig-masig cluster terdiri dari 6 sub cluster. Dari 10 cluster tersebut, dipilih secara acak 2 cluster. Kemudia dari masig-masig cluster terpilih tersebut, dipilih 2 sub cluster. Secara legkap tahapa sampligya tersaji pada Gambar 2.4.

9 9 Gambar 2.4 Ilustrasi pegambila sampel pada two-stage cluster samplig Misal pada tahap pertama cluster terpilih adalah 1 da 8. Sub cluster dari masig-masig cluster terpilih disajika dalam Tabel 2.1. Tabel 2.1 Ilustrasi pegambila sub kluster Sub kluster 1 Sub kluster 4 y 11 y 81 y 12 y 82 y 13 y 83 y 14 y 84 y 15 y 85 y 16 y 85 Selajutya dari masig-masig cluster terpilih, dipilih 2 sub cluster dega simple radom samplig. Ilustrasiya dapat dilihat pada Gambar 2.5. y 11 y 12 y 13 Dipilih y 15

10 10 Gambar 2.5 Ilustrasi pegambila sub cluster terpilih Persoala yag dihadapi di dalam memilih sampel Two-stage Cluster samplig ialah memilih kelompok yag tepat. Dua syarat yag harus dipeuhi adalah : 1) Secara geografis eleme dalam kelompok harus salig berdekata 2) Kelompok sedikit saja agar mudah megadmiistrasikaya (Suprato, J. 1992). Kelompok yag besar cederug memeliki eleme yag heteroge dega demikia diperluka pemiliha bayak eleme dari setiap kelompok sehigga diperoleh hasil peelitia tigkat ketelitia yag tiggi. Keutuga utama dari metode two-stage cluster samplig adalah bahwa metode ii lebih fleksibel daripada metode oe-stage cluster samplig samplig. Bila subuit dalam uit mempuyai karakteristik yag sama yag sagat dekat, metode ii meguragi pearika sampel satu tahap berukura besar sehigga peeliti mempuyai kesempata megambil beberapa ilai yag lebih kecil sehigga samplig mejadi lebih efisie. Peduga bagi rata-rata populasi yaitu y two = 1 M M i y i

11 11 Notasi: N = Jumlah kluster dalam populasi = Jumlah kluster terpilih Mi = Jumlam eleme/uit samplig dari kluster ke-i mi = Jumlam eleme/uit samplig yag dipilih dari kluster terpilih ke-i N M = M i = jumlah eleme/uit samplig dalam populasi M = M = rata-rata jumlah eleme/uit samplig masig-masig kluster N Bukti : Diketahui bahwa total populasi = Ny da M merupaka total jumlah eleme dalam populasi,sehigga aka dilakuka pedekata dega total pulasi. Maka diperoleh; y two = N y total M (2.7) Dimaa y total = i=i y i, sehigga mejadi y two = N M i=i y i, (2.8) dimaa y i merupaka total pegamata dari cluster terpilih ke-i : m i y i = j=1 y ij = M i y i (2.9) Subtitusi persamaa (2.9) ke persamaa (2.8), sehigga diperoleh : y two = N M i=i y i y two = N NM i=i M i y i y two = 1 i=i M iy i M (terbukti) Peduga varias bagi peduga rata-rata populasi adalah: N V (y two ) = ( N ) ( 1 M 2 ) S b N (M m M ) S i 2 m

12 12 Dega S 2 b = 1 1 (y im i M μ) 2 S i 2 = (y ij y i) m 1 2 Bukti: Meurut scheaffer, et.al (1996) peduga ragam bagi peduga rata-rata populasi utuk kasus two-stage cluster samplig dapat diuraika sebagai berikut: V(y two ) = V 1 [E 2 (y two ) ] + E 1 [V 2 (y two )] Pertama meguraika: V 1 [E 2 (y two ) ] = V 1 [ 1 y i ] = V 1 [y ] ; varias simple radom samplig = N N S 1 2 dega S 2 1 = 1 N N 1 (y i y ) 2 meurut scheaffer, et.al (1996) dega meguraika, 1 S M 2 b 2 = 1 1 (y i μ) 2 maka diperoleh ( N N ) ( 1 M 2 ) S b 2. Kemudia yag kedua meguraika: E 1 [V 2 (y two )] = E 1 (V 2 ( 1 y i ))

13 13 = E 1 [ 1 ( 2 y i )] = E 1 ( 1 2 (V 2(y 1) + V 2 (y 2) + + V 2 (y ))) = E 1 ( 1 V(y i)) 2 = E 1 ( 1 V(y i)) = 1 E 1[V(y i)] = 1 1 N V(y i) = 1 1 N M m M dega S i 2 = S i 2 m (y 2 ij y i) m 1 Dega demikia diperoleh peduga varias bagi peduga rata-rata populasiya adalah: V (y two ) = ( N N ) ( 1 M 2 ) S b (M m N M ) S i 2 m (terbukti) 2.7 Samplig Error Sampel berbeda dega populasi. Dalam sampel kita haya meyertaka sebagia aggota dari populasi utuk diamati. Karea haya sebagia aggota populasi yag diamati, sehigga secara teoritis ada kesalaha hasil yag diperoleh dari suatu sampel. Kesalaha ii terjadi karea peeliti haya megamati sebagia aggota da buka keseluruha aggota populasi. Peeliti umumya tidak megetahui ilai populasi (parameter). Yag dihadapi oleh peeliti adalah hasil dari sampel. Peeliti tidak bisa membuat jawaba yag pasti. Yag bisa dilakuka adalah membuat iterval kemugkia ilai sebearya jika semua aggota

14 14 populasi diamati. Sehigga dapat diguaka kosep samplig error. Samplig error meujuka perbedaa atara statistik da parameter. Dega megguaka samplig dari suatu peelitia, peeliti bisa memprediksi ilai sesugguhya dalam populasi. Bila y diguaka utuk meduga μ, kita percaya (1-α)100% bahwa galatya tidak aka melebihi Zα V (y ) Selag Kepercayaa Salah satu peduga titik bagi ilai tegah populasi μ adalah statistik y. Sebara pearika sampel y berpusat di μ, da dalam sebagia besar peerapaya ragamya lebih kecil daripada ragam peduga-peduga laiya. Jadi ilai tegah sampel y aka diguaka sebagai ilai dugaa titik bagi ilai tegah populasi μ. Selag kepercaya (1-α)100% memberika ukura sejauh maa ketelitia atau akurasi ilai dugaa titikya. Bila μ memag pusat selag tersebut, maka y meduga μ tapa galat. Tetapi, kecil sekali kemugkiaya, y tepat sama dega μ, sehigga ilai dugaa tersebut mempuyai galat. Bila y adalah ilai tegah sampel acak berukua yag diambil dari suatu populasi dega varias σ 2 diketahui, maka selag kepercayaa (1-α)100% bagi μ adalah y ± Zα V (y ) Relatif Bias Salah satu alasa dasar utuk samplig adalah bahwa iformasi yag terkadug dalam sampel bergua utuk megestimasi parameter populasi. Peduga yag baik adalah peduga yag bersifat tak bias da bervariasi miimum. θ dikataka peduga tak bias bagi parameter θ, jika E(θ ) = θ. Sebalikya θ dikataka peduga bias bagi parameter θ, jika E(θ ) θ. Aka tetapi tidak diharapka suatu peduga aka meduga parameter tapa kesalaha. Tidak

15 15 beralasa megharapka θ aka meaksir θ dega tepat, tetapi tetuya diharapka bahwa peduga yag dihasilka tidak terlalu jauh meyimpag. Kualitas suatu peduga dapat di evaluasi salah satuya dega kriteria relatif bias. Jika θ suatu parameter da θ suatu peduga maka θ θ merupaka kesalaha samplig. Relatif bias dapat dihitug dega membagi kesalaha samplig dega θ dikalika dega 100%. Semaki kecil ilai relatif bias maka peduga dapat dikataka semaki baik. B = ( θ θ ) 100% θ Notasi : B = Relatif bias

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang II. LANDASAN TEORI Defiisi 2.1 Samplig Samplig adalah proses pegambila atau memilih buah eleme dari populasi yag berukura N (Lohr, 1999). Dalam melakuka samplig, terdapat teori dasar yag disebut teori

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi. Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa 19 III. METODE PENELITIAN A. Populasi da Sampel Populasi dalam peelitia ii adalah seluruh siswa kelas VIII SMP Negeri 8 Badar Lampug tahu pelajara 2009/2010 sebayak 279 orag yag terdistribusi dalam tujuh

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

Pendugaan Parameter. Debrina Puspita Andriani /

Pendugaan Parameter. Debrina Puspita Andriani    / Pedugaa Parameter 7 Debria Puspita Adriai E-mail : debria.ub@gmail.com / debria@ub.ac.id Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

x = μ...? 2 2 s = σ...? x x s = σ...?

x = μ...? 2 2 s = σ...? x x s = σ...? Pedugaa Parameter x 2 sx s = μ...? 2 = σ x...? = σ...? Peduga Parameter Peduga titik yaitu parameter populasi p diduga dega suatu besara statistik, misal: rata-rata, proporsi, ragam, dll Peduga Selag (Iterval)

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Tujua Peelitia Peelitia ii bertujua utuk megetahui apakah terdapat perbedaa hasil belajar atara pegguaa model pembelajara Jigsaw dega pegguaa model pembelajara Picture ad Picture

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

JENIS PENDUGAAN STATISTIK

JENIS PENDUGAAN STATISTIK ENDUGAAN STATISTIK ENDAHULUAN Kosep pedugaa statistik diperluka utuk membuat dugaa dari gambara populasi. ada pedugaa statistik dibutuhka pegambila sampel utuk diaalisis (statistik sampel) yag ati diguaka

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

BAB III METODOLOGI DAN PELAKSANAAN PENELITIAN. Perumusan - Sasaran - Tujuan. Pengidentifikasian dan orientasi - Masalah.

BAB III METODOLOGI DAN PELAKSANAAN PENELITIAN. Perumusan - Sasaran - Tujuan. Pengidentifikasian dan orientasi - Masalah. BAB III METODOLOGI DAN PELAKSANAAN PENELITIAN 3.1. DIAGRAM ALIR PENELITIAN Perumusa - Sasara - Tujua Pegidetifikasia da orietasi - Masalah Studi Pustaka Racaga samplig Pegumpula Data Data Primer Data Sekuder

Lebih terperinci

STATISTIK PERTEMUAN VIII

STATISTIK PERTEMUAN VIII STATISTIK PERTEMUAN VIII Pegertia Estimasi Merupaka bagia dari statistik iferesi Estimasi = pedugaa, atau meaksir harga parameter populasi dega harga-harga statistik sampelya. Misal : suatu populasi yag

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

BAB III METODOLOGI PENELITIAN. kuantitatif karena bertujuan untuk mengetahui kompetensi pedagogik mahasiswa

BAB III METODOLOGI PENELITIAN. kuantitatif karena bertujuan untuk mengetahui kompetensi pedagogik mahasiswa 54 BAB III METODOLOGI PENELITIAN A. Jeis Peelitia Peelitia ii merupaka peelitia deskriptif dega pedekata kuatitatif karea bertujua utuk megetahui kompetesi pedagogik mahasiswa setelah megikuti mata kuliah

Lebih terperinci

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N,

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N, DISTRIBUSI SAMLING opulasi da Sampel opulasi : totalitas dari semua objek/ idividu yg memiliki karakteristik tertetu, jelas da legkap yag aka diteliti Sampel : bagia dari populasi yag diambil melalui cara-cara

Lebih terperinci

ESTIMASI TITIK DAN INTERVAL KEPERCAYAAN

ESTIMASI TITIK DAN INTERVAL KEPERCAYAAN 8/8/0 IE 305 tatistika Idustri LOGO ETIMAI TITIK DAN INTERVAL KEPERCAYAAN Elty arvia, T.,MT. Fakultas Tekik Jurusa Tekik Idustri Uiversitas Kriste Maraatha Badug LT arvia/esi Tujua 3 4 5 6 Medefiisika

Lebih terperinci

Sampling Process and Sampling Distribution Inference : Point and Interval Estimates. Pertemuan 2

Sampling Process and Sampling Distribution Inference : Point and Interval Estimates. Pertemuan 2 Samplig Process ad Samplig Distributio Iferece : Poit ad Iterval Estimates Pertemua 1 CAKUPAN MATERI: Pemahama tetag Samplig Sampel Acak Sederhaa (Simple Radom Samplig SRS) Estimasi Titik (Poit Estimatio)

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 Statistika Iferesia: Pedugaa Parameter Dr. Kusma Sadik, M.Si Dept. Statistika IPB, 05 Populasi : Parameter Sampel : Statistik Statistik merupaka PENDUGA bagi parameter populasi Pegetahua megeai distribusi

Lebih terperinci

TEKNIK SAMPLING PCA SISTEMATIK. Hazmira Yozza Izzati Rahmi HG. Jurusan Matematika FMIPA - Unand

TEKNIK SAMPLING PCA SISTEMATIK. Hazmira Yozza Izzati Rahmi HG. Jurusan Matematika FMIPA - Unand Hazmira Yozza Izzati Rahmi HG TEKNIK SAMPLING PCA SISTEMATIK Jurusa Matematika FMIPA - Uad Defiisi Samplig sistematik adalah metode pearika cotoh yag dilakuka dega cara memilih secara acak satu eleme dari

Lebih terperinci

MANAJEMEN RISIKO INVESTASI

MANAJEMEN RISIKO INVESTASI MANAJEMEN RISIKO INVESTASI A. PENGERTIAN RISIKO Resiko adalah peyimpaga hasil yag diperoleh dari recaa hasil yag diharapka Besarya tigkat resiko yag dimasukka dalam peilaia ivestasi aka mempegaruhi besarya

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I 7 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas XI IPA SMA Negeri I Kotaagug Tahu Ajara 0-03 yag berjumlah 98 siswa yag tersebar dalam 3

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1.Tempat da Waktu Peelitia ii dilakuka di ligkuga Kampus Aggrek da Kampus Syahda Uiversitas Bia Nusatara Program Strata Satu Reguler. Da peelitia dilaksaaka pada semester

Lebih terperinci

BAB III METODE PENELITIAN. objek penelitian yang penulis lakukan adalah Beban Operasional susu dan Profit

BAB III METODE PENELITIAN. objek penelitian yang penulis lakukan adalah Beban Operasional susu dan Profit BAB III METODE PENELITIAN 3.1 Objek Peelitia Objek peelitia merupaka sasara utuk medapatka suatu data. Jadi, objek peelitia yag peulis lakuka adalah Beba Operasioal susu da Profit Margi (margi laba usaha).

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

SEBARAN t dan SEBARAN F

SEBARAN t dan SEBARAN F SEBARAN t da SEBARAN F 1 Tabel uji t disebut juga tabel t studet. Sebara t pertama kali diperkealka oleh W.S. Gosset pada tahu 1908. Saat itu, Gosset bekerja pada perusahaa bir Irladia yag melarag peerbita

Lebih terperinci

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28 5 BAB III METODE PENELITIAN 3.1 Lokasi Peelitia da Waktu Peelitia Sehubuga dega peelitia ii, lokasi yag dijadika tempat peelitia yaitu PT. Siar Gorotalo Berlia Motor, Jl. H. B Yassi o 8 Kota Gorotalo.

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu:

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu: 4 BAB II LANDASAN TEORI 2.1 Model matematis da tahapa matematis Secara umum tahapa yag harus ditempuh dalam meyelesaika masalah matematika secara umerik da megguaka alat batu komputer, yaitu: 2.1.1 Tahap

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di MTs Muhammadiyah 1 Natar Lampung Selatan.

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di MTs Muhammadiyah 1 Natar Lampung Selatan. 9 III. METODOLOGI PENELITIAN A. Populasi Da Sampel Peelitia ii dilaksaaka di MTs Muhammadiyah Natar Lampug Selata. Populasiya adalah seluruh siswa kelas VIII semester geap MTs Muhammadiyah Natar Tahu Pelajara

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

BAB 4. METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN

BAB 4. METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN BAB 4 METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN Estimasi reliabilitas membutuhka pegetahua distribusi waktu kerusaka yag medasari dari kompoe atau sistem yag dimodelka Utuk memprediksi

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

PENAKSIR RANTAI RASIO DAN RANTAI PRODUK YANG EFISIEN UNTUK MENAKSIR RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA

PENAKSIR RANTAI RASIO DAN RANTAI PRODUK YANG EFISIEN UNTUK MENAKSIR RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA PENAKSIR RANTAI RASIO DAN RANTAI PRODUK YANG EFISIEN UNTUK MENAKSIR RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA V. M. Vidya *, Bustami, R. Efedi Mahasiswa Program S Matematika Dose Jurusa Matematika

Lebih terperinci

Statistika Inferensial

Statistika Inferensial Cofidece Iterval Ara Fariza Statistika Iferesial Populasi Sampel Simpulka (estimasi) tetag parameter Medapatka statistik Estimasi: estimasi titik, estimasi iterval, uji hipotesa 2 1 Proses Estimasi Populasi

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Lokasi da objek peelitia Lokasi peelitia dalam skripsi ii adalah area Kecamata Pademaga, alasa dalam pemiliha lokasi ii karea peulis bertempat tiggal di lokasi tersebut sehigga

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai dega Mei 03. B. Populasi da Sampel Populasi dalam

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas I MIA SMA Negeri 5 Badar Lampug Tahu Pelajara 04-05 yag berjumlah 48 siswa. Siswa tersebut

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi da waktu Peelitia ii dilakuka di PD Pacet Segar milik Alm Bapak H. Mastur Fuad yag beralamat di Jala Raya Ciherag o 48 Kecamata Cipaas, Kabupate Ciajur, Propisi Jawa Barat.

Lebih terperinci

Bab III Metoda Taguchi

Bab III Metoda Taguchi Bab III Metoda Taguchi 3.1 Pedahulua [2][3] Metoda Taguchi meitikberatka pada pecapaia suatu target tertetu da meguragi variasi suatu produk atau proses. Pecapaia tersebut dilakuka dega megguaka ilmu statistika.

Lebih terperinci

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari. Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah

Lebih terperinci

OBJEK DAN METODE PENELITIAN. Objek ternak yang digunakan adalah itik Damiaking jantan dan betina

OBJEK DAN METODE PENELITIAN. Objek ternak yang digunakan adalah itik Damiaking jantan dan betina 1 III OBJEK DAN METODE PENELITIAN 3.1. Objek da Perlegkapa Peelitia 3.1.1. Objek Peelitia Objek terak yag diguaka adalah itik Damiakig jata da betia produktif dega umur lebih dari 7 bula di Kampug Teras

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMPN 20 Bandar Lampung, dengan populasi

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMPN 20 Bandar Lampung, dengan populasi 5 III. METODE PENELITIAN A. Populasi da Sampel Peelitia ii dilaksaaka di SMPN 0 Badar Lampug, dega populasi seluruh siswa kelas VII. Bayak kelas VII disekolah tersebut ada 7 kelas, da setiap kelas memiliki

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

Penarikan Sampel Acak Sederhana

Penarikan Sampel Acak Sederhana Tekik Samplig Pearika Sampel Acak Sederhaa Hazmira Yozza- Jur. Matematika Uad 17/11/014 Tujua Pearika Sampel Megambil kesimpula megeai populasi berdasarka iformasi yag terkadug pada sampel Ukura sampel

Lebih terperinci

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan Selag Kepercayaa (Cofidece Iterval) Pegatar Peduga titik (poit estimator) telah dibahas pada kuliah-kuliah sebelumya. Walau statistikawa telah berusaha memperoleh peduga titik yag baik, amu hampir bisa

Lebih terperinci

BAB II METODOLOGI PENELITIAN. kualitatif. Kerangka acuan dalam penelitian ini adalah metode penelitian

BAB II METODOLOGI PENELITIAN. kualitatif. Kerangka acuan dalam penelitian ini adalah metode penelitian BAB II METODOLOGI PEELITIA 2.1. Betuk Peelitia Betuk peelitia dapat megacu pada peelitia kuatitatif atau kualitatif. Keragka acua dalam peelitia ii adalah metode peelitia kuatitatif yag aka megguaka baik

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi da Waktu peelitia Peelitia dilakuka pada budidaya jamur tiram putih yag dimiliki oleh usaha Yayasa Paguyuba Ikhlas yag berada di Jl. Thamri No 1 Desa Cibeig, Kecamata Pamijaha,

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1 Metode Pegumpula Data Dalam melakuka sebuah peelitia dibutuhka data yag diguaka sebagai acua da sumber peelitia. Disii peulis megguaka metode yag diguaka utuk melakuka pegumpula

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB ENDAHULUAN. Latar Belakag Masalah Dalam kehidupa yata, hampir seluruh feomea alam megadug ketidak pastia atau bersifat probabilistik, misalya pergeraka lempega bumi yag meyebabka gempa, aik turuya

Lebih terperinci

Pendekatan Nilai Logaritma dan Inversnya Secara Manual

Pendekatan Nilai Logaritma dan Inversnya Secara Manual Pedekata Nilai Logaritma da Iversya Secara Maual Moh. Affaf Program Studi Pedidika Matematika, STKIP PGRI BANGKALAN affafs.theorem@yahoo.com Abstrak Pada pegaplikasiaya, bayak peggua yag meggatugka masalah

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

1200 (0,535) (0,465) (1200 1).0,05 + (0,535) (0,465)

1200 (0,535) (0,465) (1200 1).0,05 + (0,535) (0,465) = DATA DAN METODE PENELITIAN Data Peelitia Data yag diguaka dalam peelitia ii adalah data primer hasil yag diperoleh melalui peyebara kuisioer da metode wawacara sebagai data pelegkap. Pegumpula data dilaksaaka

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 22 BAB III METODOLOGI PENELITIAN 3.1 Lokasi da Waktu Peelitia Peelitia ii dilaksaaka di tiga kator PT Djarum, yaitu di Kator HQ (Head Quarter) PT Djarum yag bertempat di Jala KS Tubu 2C/57 Jakarta Barat,

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 1 Seputih Agung. Populasi dalam

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 1 Seputih Agung. Populasi dalam 19 III. METODE PENELITIAN A. Populasi da Sampel Peelitia ii dilaksaaka di SMP Negeri 1 Seputih Agug. Populasi dalam peelitia ii adalah seluruh siswa kelas VII SMP Negeri 1 Seputih Agug sebayak 248 siswa

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

METODE PENELITIAN. Penelitian tentang Potensi Ekowisata Hutan Mangrove ini dilakukan di Desa

METODE PENELITIAN. Penelitian tentang Potensi Ekowisata Hutan Mangrove ini dilakukan di Desa III. METODE PENELITIAN A. Lokasi da Waktu Peelitia Peelitia tetag Potesi Ekowisata Huta Magrove ii dilakuka di Desa Merak Belatug, Kecamata Kaliada, Kabupate Lampug Selata. Peelitia ii dilaksaaka atara

Lebih terperinci

BAB III ECONOMIC ORDER QUANTITY MULTIITEM DENGAN MEMPERTIMBANGKAN WAKTU KADALUARSA DAN FAKTOR DISKON

BAB III ECONOMIC ORDER QUANTITY MULTIITEM DENGAN MEMPERTIMBANGKAN WAKTU KADALUARSA DAN FAKTOR DISKON BAB III ECONOMIC ORDER QUANTITY MULTIITEM DENGAN MEMPERTIMBANGKAN WAKTU KADALUARA DAN FAKTOR DIKON 3.1 Ecoomic Order Quatity Ecoomic Order Quatity (EOQ) merupaka suatu metode yag diguaka utuk megedalika

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini merupakan jenis penelitian deskriptif-kuantitatif, karena

BAB III METODE PENELITIAN. Penelitian ini merupakan jenis penelitian deskriptif-kuantitatif, karena 7 BAB III METODE PENELITIAN A. Jeis Peelitia Peelitia ii merupaka jeis peelitia deskriptif-kuatitatif, karea melalui peelitia ii dapat dideskripsika fakta-fakta yag berupa kemampua siswa kelas VIII SMP

Lebih terperinci

BAB IV. METODE PENELITlAN. Rancangan atau desain dalam penelitian ini adalah analisis komparasi, dua

BAB IV. METODE PENELITlAN. Rancangan atau desain dalam penelitian ini adalah analisis komparasi, dua BAB IV METODE PENELITlAN 4.1 Racaga Peelitia Racaga atau desai dalam peelitia ii adalah aalisis komparasi, dua mea depede (paired sample) yaitu utuk meguji perbedaa mea atara 2 kelompok data. 4.2 Populasi

Lebih terperinci

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1 Proses Pedugaa Populasi Mea,, tdk diketahui Cotoh Acak Mea = 50 95% yaki bahwa diatara 40 & 60. Cotoh 1999 Pretice-Hall, Ic. Chap. 7-1 Pedugaa Parameter Populasi Meduga Parameter Populasi... Mea dg Statistik

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1 Disai Peelitia Tujua Jeis Peelitia Uit Aalisis Time Horiso T-1 Assosiatif survey Orgaisasi Logitudial T-2 Assosiatif survey Orgaisasi Logitudial T-3 Assosiatif survey Orgaisasi

Lebih terperinci

III. METODOLOGI PENELITIAN. diinginkan. Menurut Arikunto (1991 : 3) penelitian eksperimen adalah suatu

III. METODOLOGI PENELITIAN. diinginkan. Menurut Arikunto (1991 : 3) penelitian eksperimen adalah suatu III. METODOLOGI PENELITIAN A. Metode Peelitia Metode peelitia merupaka suatu cara tertetu yag diguaka utuk meeliti suatu permasalaha sehigga medapatka hasil atau tujua yag diigika. Meurut Arikuto (99 :

Lebih terperinci

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy BAB III PEMBAHASAN Pada BAB III ii aka dibahas megeai betuk program liear fuzzy dega koefisie tekis kedala berbetuk bilaga fuzzy da pembahasa peyelesaia masalah optimasi studi kasus pada UD FIRDAUS Magelag

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

STATISTIKA NON PARAMETRIK

STATISTIKA NON PARAMETRIK . PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha

Lebih terperinci

TEORI PENAKSIRAN. Bab 8. A. Pendahuluan. Kompetensi Mampu menjelaskan dan menganalisis teori penaksiran

TEORI PENAKSIRAN. Bab 8. A. Pendahuluan. Kompetensi Mampu menjelaskan dan menganalisis teori penaksiran Bab 8 TEORI PENAKSIRAN Kompetesi Mampu mejelaska da megaalisis teori peaksira Idikator 1. Mejelaska da megaalisis data dega megguaka peaksira titik 2. Mejelaska da megaalisis data dega megguaka peaksira

Lebih terperinci

BAB III OBYEK DAN METODE PENELITIAN

BAB III OBYEK DAN METODE PENELITIAN BAB III OBYEK DAN METODE PENELITIAN 3.1 Obyek Peelitia Meurut Sugiyoo (2010, hlm. 3) pegertia dari obyek peelitia adalah sasara ilmiah utuk medapatka data dega tujua da keguaa tertetu tetag sesuatu hal

Lebih terperinci

BAB III METODOLOGI 3.1 Tempat dan Waktu Penelitian 3.2 Bahan dan Alat 3.3 Metode Pengumpulan Data Pembuatan plot contoh

BAB III METODOLOGI 3.1 Tempat dan Waktu Penelitian 3.2 Bahan dan Alat 3.3 Metode Pengumpulan Data Pembuatan plot contoh BAB III METODOLOGI 3.1 Tempat da Waktu Peelitia Pegambila data peelitia dilakuka di areal revegetasi laha pasca tambag Blok Q 3 East elevasi 60 Site Lati PT Berau Coal Kalimata Timur. Kegiata ii dilakuka

Lebih terperinci

PENAKSIR RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PADA SAMPLING GANDA

PENAKSIR RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PADA SAMPLING GANDA PEAKSIR RASIO UTUK RATA-RATA POPULASI MEGGUAKA KOEFISIE VARIASI DA KOEFISIE KURTOSIS PADA SAMPLIG GADA Heru Agriato *, Arisma Ada, Firdaus Mahasiswa Program S Matematika Dose Jurusa Matematika Fakultas

Lebih terperinci

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014.

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014. BAB III METODE PENELITIAN A. Waktu da Tempat Peelitia Peelitia dilaksaaka dari bula Agustus-September 03.Peelitia ii dilakuka di kelas X SMA Muhammadiyah Pekabaru semester gajil tahu ajara 03/04. B. Subjek

Lebih terperinci

SOAL DAN PEMBAHASAN MULTISTAGE SAMPLING. Oleh: Adhi Kurniawan

SOAL DAN PEMBAHASAN MULTISTAGE SAMPLING. Oleh: Adhi Kurniawan SOA DAN PEMBAHASAN MUTISTAGE SAMPING Oleh: Adhi Kuriawa. Pada bula Mei 03, suatu survei keteagakerjaa dilakuka di suatu kecamata. Pada tahap pertama dilakuka pegambila sampel 4 blok sesus secara PPS WR

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

Pengendalian Proses Menggunakan Diagram Kendali Median Absolute Deviation (MAD)

Pengendalian Proses Menggunakan Diagram Kendali Median Absolute Deviation (MAD) Prosidig Statistika ISSN: 2460-6456 Pegedalia Proses Megguaka Diagram Kedali Media Absolute Deviatio () 1 Haida Lestari, 2 Suliadi, 3 Lisur Wachidah 1,2,3 Prodi Statistika, Fakultas Matematika da Ilmu

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Objek Peelitia Dalam peelitia ii, pegambila da peroleha data dilakuka di UKM. Bakso Solo, Bakauhei, Lampug Selata. Utuk pegukura kualitas pelayaa, objek yag diteliti adalah

Lebih terperinci

III. METODE PENELITIAN. kelas VIII semester ganjil SMP Sejahtera I Bandar Lampung tahun pelajaran 2010/2011

III. METODE PENELITIAN. kelas VIII semester ganjil SMP Sejahtera I Bandar Lampung tahun pelajaran 2010/2011 III. METODE PENELITIAN A. Latar Peelitia Peelitia ii merupaka peelitia yag megguaka total sampel yaitu seluruh siswa kelas VIII semester gajil SMP Sejahtera I Badar Lampug tahu pelajara 2010/2011 dega

Lebih terperinci

PROSIDING ISBN:

PROSIDING ISBN: S-6 Perlukah Cross Validatio dilakuka? Perbadiga atara Mea Square Predictio Error da Mea Square Error sebagai Peaksir Harapa Kuadrat Kekelirua Model Yusep Suparma (yusep.suparma@ upad.ac.id) Uiversitas

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto Tue 0/04/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato Estimasi : salah satu cara megemukaka peryataa iduktif (meyataka karakteristik populasi dega meggu aka karakteristik yag didapat dari cuplika).

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

BAB III METODE PENELITIAN. penelitian yang tepat dalam sebuah penelitian ditentukan guna menjawab

BAB III METODE PENELITIAN. penelitian yang tepat dalam sebuah penelitian ditentukan guna menjawab BAB III METODE PENELITIAN Metode peelitia merupaka suatu cara atau prosedur utuk megetahui da medapatka data dega tujua tertetu yag megguaka teori da kosep yag bersifat empiris, rasioal da sistematis.

Lebih terperinci

PETA KONSEP RETURN dan RISIKO PORTOFOLIO

PETA KONSEP RETURN dan RISIKO PORTOFOLIO PETA KONSEP RETURN da RISIKO PORTOFOLIO RETURN PORTOFOLIO RISIKO PORTOFOLIO RISIKO TOTAL DIVERSIFIKASI PORTOFOLIO DENGAN DUA AKTIVA PORTOFOLIO DENGAN BANYAK AKTIVA DEVERSIFIKASI DENGAN BANYAK AKTIVA DEVERSIFIKASI

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 30 III. METODE PENELITIAN A. Metode Dasar Peelitia Metode yag diguaka dalam peelitia adalah metode deskriptif, yaitu peelitia yag didasarka pada pemecaha masalah-masalah aktual yag ada pada masa sekarag.

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya.

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya. BAB 1 PENDAHULUAN 1.1 Latar Belakag Aalisis regresi mejadi salah satu bagia statistika yag palig bayak aplikasiya. Aalisis regresi memberika keleluasaa kepada peeliti utuk meyusu model hubuga atau pegaruh

Lebih terperinci