TEORI PENAKSIRAN. Bab 8. A. Pendahuluan. Kompetensi Mampu menjelaskan dan menganalisis teori penaksiran

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "TEORI PENAKSIRAN. Bab 8. A. Pendahuluan. Kompetensi Mampu menjelaskan dan menganalisis teori penaksiran"

Transkripsi

1 Bab 8 TEORI PENAKSIRAN Kompetesi Mampu mejelaska da megaalisis teori peaksira Idikator 1. Mejelaska da megaalisis data dega megguaka peaksira titik 2. Mejelaska da megaalisis data dega megguaka peaksira iterval A. Pedahulua Dalam membuat taksira (pedugaa) sagat diperluka kosep probabilitas karea sagat bergua dalam pembuata keputusa pada kodisi ketidakpastia. Setiap orag selalu perah membuat suatu dugaa, cotoh hari ii cuaca medug, maka dugaa kita bahwa hari ii aka huja. Seorag Maajer juga harus melakuka dugaa-dugaa. Serigkali mereka ditutut utuk membuat dugaa yag rasioal dalam kodisi yag peuh ketidakpastia tapa iformasi yag legkap. Agar dugaa yag dilakuka dapat meghasilka suatu dugaa yag baik, maka mereka harus meguasai kosep pedugaa secara statistik, cotoh: maajeme memutuska utuk memproduksi barag pada tigkat tertetu berdasarka kemugkia permitaa yag aka terjadi terhadap barag tersebut. Pertimbaga yag dilakuka dapat berdasarka pegalama yag lalu (data histories), kodisi alam (musim huja, musim kemarau), pesaig, da lai sebagaiya. Dalam aalisis statistik, pearika kesimpula merupaka bagia yag sagat petig. Kesimpula yag diambil megeai sekelompok sampel aka 126

2 digeeralisasika terhadap populasiya. Geeralisasi kesimpula tersebut megadug risiko bahwa aka terdapat kekelirua atau ketidaktepata. Kriteria taksira (pedugaa) yag baik, yaitu: 1. Tidak bias (Ubiasedess), Artiya statistik sampel yag diguaka sebagai peduga harus sama atau medekati parameter populasi peduga 2. Efisiesi (Efficiecy), Artiya statistik sampel memiliki deviasi stadar yag kecil 3. Kosistesi (Cosistecy), Artiya jika ukura sampel meigkat maka statistik sampel aka semaki medekati parameter populasiya. 4. Kecukupa (Sufficiecy), Artiya suatu taksira dikataka memiliki kecukupa jika taksira tersebut dapat memberika iformasi yag cukup megeai sifat populasiya. Ada dua jeis taksira (pedugaa) yag dilakuka terhadap populasi, yaitu: 1. Pedugaa titik (Poit Estimatio) 2. Pedugaa iterval (Iterval Estimatio) B. Peaksira Titik (Poit Estimatio) Peaksira titik megadug pegertia bahwa suatu parameter (misal µ) aka ditaksir haya dega megguaka satu bilaga saja (misalya dega X). Peaksira titik serig megalami kekelirua, sehigga probabilitas suatu peaksira titik tersebut tepat adalah sagat kecil atau medekati ol. Sehigga peaksira titik jarag diguaka. Taksira titik utuk rata-rata populasi (µ) da proporsi populasi (π) megguaka rata-rata sample ( X ) da proporsi sample (p) yag dapat dihitug dega megguaka rumus: 127

3 X = ΣX (1) p = X (2) Cotoh: Seorag peeliti igi megetahui rata-rata TOEFL mahasiswa Prodi Maajeme Fakultas Ekoomi UMY yag aka meempuh pedadara periode bula Jauari. Dega megguaka sample sebayak 10 orag da data TOEFL masig-masig mahasiswa sebagai berikut: Tabel 8.1 Score TOEFL Mahasiswa No Mahasiswa TOEFL 1 Tii Badu Joo Ruli Meri Didi Badu Tuti Susi Dedi 385 Berdasarka data tersebut, maka rata-rata TOEFLya adalah: Jawab: Diketahui ΣX = 4120 = 10 maka X = ΣX = = 412 Jadi dapat disimpulka rata-rata TOEFL mahasiswa Prodi Maajeme FE UMY yag aka megambil pedadara periode bula Jauari 2007 adalah

4 C. Peaksira Iterval (Iterval Estimatio) Peaksira iterval merupaka iterval ilai (rage) yag ilai parameter populasi berada di dalamya.tujua membuat peaksira iterval adalah meguragi kesalaha peaksira. Peaksira iterval memiliki batas-batas tertetu sehigga peaksira aka berada di ataraya. Batas-batas tersebut adalah batas bawah taksira (lower limit estimate) yag merupaka ilai taksira parameter populasi teredah da batas atas taksira (upper limit estimate) merupaka ilai taksira parameter populasi tertiggi.. Batas-batas dalam peaksira dega iterval harus ditujag dega adaya derajat keyakia/kepastia yag biasaya diyataka dega prosetase. Derajat keyakia tersebut disebut dega Cofidece Coefficiet, besarya derajat keyakia sama dega 1 - α (α = tigkat kesalaha duga), misalya: derajat keyakia 90% maka α= 10%; derajat keyakia 95% maka α= 5%. Sedagka batas-batasya diamaka Cofidece Iterval. Peaksira iterval dibedaka mejadi 2 yaitu: 1. Peaksira rata-rata utuk data yag bersifat kotiu 2. Peaksira proporsi utuk data yag bersifat diskrit Peaksira dilakuka terhadap agka-agka statistic atau agka-agka yag diperoleh dari sample. Sampel yag diguaka utuk perhituga dibedaka atara sample kecil (< 30) da sample besar (>=30), pembedaa sample tersebut diguaka utuk pemiliha tabel distribusi yag aka diguaka dalam perhituga. Apabila sample kecil maka diguaka tabel Distribusi Studet t dega degree of freedom (df) atau derajat kebebasa = -1. t 1/2 (α).-1 (uji dua sisi) atau t α. -1 (uji satu sisi) dimaa: 129

5 α = tigkat kesalaha duga = jumlah sample (observasi) Cotoh: Apabila jumlah sample 15 dega α=5% (0,05), uji dua sisi maka: t 1/2 (α).-1 = t 1/2 (0,05) t 0, = 2,145 (lihat tabel distribusi studet t ) Cara membaca tabel Tabel 8.2 Tabel distribusi studet t α df dst d s t Apabila sample besar maka diguaka Tabel Distribusi Normal Stadart. Tidak megguaka degree of freedom (df) Z 1/2 α (uji dua sisi) atau Z α (uji satu sisi) dimaa: α = tigkat kesalaha duga Cotoh: Apabila jumlah sample 35 dega α=5% (0,05), uji dua sisi maka: Z 1/2 (α) = Z ½ (0,05) Z 0,025 maka (1:2) 0,025= 0,4750 Z 0,025 = 1,96 (lihat tabel distribusi Normal Stadart) 130

6 Cara membaca tabel Tabel 8.3 Tabel distribusi Stadar Normal z dst dst 1.,1 1.2 dst dst D. Peaksira Rata-Rata 1. Peaksira rata-rata utuk parameter yag rata-rata da stadar deviasiya diketahui dega populasi tidak terbatas a. Sampel kecil ( < 30) Peaksira rata-rata dega sampel kecil megguaka tabel distribusi studet t, dega derajat kebebasa (degree of freedom/d.f) adalah 1 SD µ = Χ ± t 1 2α. 1 di maa: µ = rata-rata parameter yag ditaksir X = rata-rata statistik SD = stadar deviasi statistik = jumlah sampel yag diguaka t 1/2 α.-1 = batas keyakia yag diguaka Cotoh: Sebuah LSM igi megetahui rata-rata peghasila pegame yag ada di Yogyakarta. Utuk peelitia tersebut diambil sampel 29 pegame, da diperoleh data bahwa rata-rata peghasila pegame per hari adalah Rp ,- dega stadar deviasi Rp ,-. 131

7 Dega megguaka iterval keyakia 95%, tetuka peaksira rata-rata peghasila pegame di Yogyakarta tersebut? Diketahui: = 29 X = SD = α = 5% (0,05) t 1/2 α. -1 = t 1/2 (0,05) = t 0, = 2,048 Jawab: µ = Χ ± t1 2α. 1 SD µ = ± 2, µ = ± 2, µ = ± 2, ,385 µ = ± 2,048 µ = ± 1.559,84 (779,92 ) µ = ± ( dibulatka) µ = = µ = = Atas dasar perhituga tersebut dapat disimpulka bahwa rata-rata peghasila pegame yag ada di Yogyakarta palig besar adalah Rp Rp da yag palig kecil adalah Rp b. Sampel besar ( 30) Pada peaksira rata-rata dega sampel besar aka diguaka tabel Z (tabel kurva ormal stadar) dega rumus: 132

8 SD µ = Χ ± Ζ 1 2 α di maa: µ = rata-rata parameter yag ditaksir X SD = rata-rata statistik = stadar deviasi statistik = jumlah sampel yag diguaka Z 1/2 α.-1 = batas keyakia yag diguaka Cotoh: Seseorag melakuka pegamata megeai lama usia bola lampu OHP. Berdasarka pegamata pada 64 buah bola lampu OHP da teryata mempuyai rata-rata masa pakai 50 jam dega SD selama 4 jam. Dega megguaka α = 5%, tetuka rata-rata usia pakai yag sebearya dari bola lampu OHP tersebut megguaka peaksira rata-rata iterval. Jawab: Diketahui: = 64 X = 50 jam SD = 4 jam α = 5% (0,05) Z 1/2 (0,05). = t 0,025 = 1,96 maka µ = Χ ± Ζ 1 2 α SD = 50 ± 1, = 50 ± 1, = 50 ± 1,96 (0,5 ) 133

9 = 50 ± 0,98 Dapat disimpulka rata-rata usia pakai bola lampu OHP palig lama 50,98 jam (50+0,98) da palig cepat 49,02 jam (50-0,98). 2. Peaksira rata-rata utuk parameter yag rata-rata da stadar deviasiya diketahui dega populasi terbatas. a. Sampel kecil ( < 30) SD µ = Χ ± t 1 2α. 1 N N 1 Cotoh: Suatu perusahaa alat elektroik igi meeliti waktu yag diperluka karyawaya dalam memasag kompoe X. Utuk itu diambil sampel 10 karyawa da diperoleh data waktu rata-rata 55 meit dega varia 100 meit. Bila jumlah karyawa seluruhya adalah 100 orag, hituglah berapa rata-rata waktu pemasaga utuk seluruh karyawa tersebut, guaka α = 5%. b. Utuk sampel besar ( 30) SD µ = Χ ± Ζ1 2α N N 1 µ = rata-rata parameter X = rata-rata statistik t 1/2 α.-1 = batas keyakia yag diguaka Z 1/2α = batas keyakia yag diguaka N = jumlah populasi = jumlah sampel 134

10 SD = stadar deviasi statistik. Cotoh: Sebuah populasi peggua mobil A berjumlah 1000 orag. Utuk megetahui pedapata rata-rata peggua mobil tersebut diambil sampel radom sebayak 50 orag. Hasil peelitia meujukka bahwa pedapata rata-rata per bula adalah Rp. 4 juta dega SD Rp. 1 juta. Dega taraf sigifikasi 4% tetuka iterval rata-rata pedapata peggua mobil tersebut? 3. Peaksira Proporsi Peaksira proporsi aka diguaka apabila data yag ada bersifat diskrit. Peaksira proporsi ii sebaikya diguaka utuk sampel besar. Terdapat dua rumus: a. Peaksira proporsi dega populasi yag tidak diketahui: p. q P = p ± Ζ1 2α dimaa: P = proporsi dari parameter p = proporsi statistik, yag besarya dapat diduga dega p = x/ X = ilai dari sample = jumlah sampel yag diguaka N = jumlah seluruh populasi q = 1 p Z 1/2 α = batas iterval keyakia Cotoh: Seorag deka dari salah satu fakultas di UMY igi megetahui besarya proporsi mahasiswa yag merasa kurag puas dega pelayaa yag diberika kepada mahasiswa. Utuk maksud tersebut 135

11 diambil sampel radom sebayak 100 mahasiswa da dari kuesioer yag diisi diketahui bahwa 10 orag meyataka kurag puas dega pelayaa fakultas tersebut. Bila deka tersebut megguaka tigkat keyakia 97%, maka berapa besar proporsi seluruh mahasiswa tersebut yag merasa kurag puas dega pelayaa yag diberika? Jawab: Diketahui: = 100 X = 10 p = 10/100 = 0,1 q = 1 0,1 = 0,9 α = 100% - 97% = 3% (0,03) Z 1/2 α = Z 1/2 (0,03) = Z 0,015 = (100%- 3%)/2 = 48,5% (0,4850) = 2,17 (lihat tabel distribusi Normal Stadart) maka: P = p ± Ζ 1 2 α p. q = 0,1 ± 2,17 0,1.0,9 100 P = 0,1 ± 2,17(0,03) P = 0,1 ± 0,0651 Dapat disimpulka bahwa proporsi mahasiswa yag kurag puas dega pelayaa yag diberika oleh fakultas palig sedikit 3,49% (0,1 0,0651) da palig bayak 16,51% (0,1 + 0,0651) b. Peaksira proporsi dega populasi terbatas: p. q N P = p ± Ζ1 2α N 1 dimaa: P = proporsi dari parameter 136

12 p = proporsi statistik, yag besarya dapat diduga dega p = x/ X = ilai dari sample = jumlah sampel yag diguaka N = jumlah seluruh populasi q = 1 p Z 1/2 α = batas iterval keyakia Cotoh: Seorag ketua RT igi megetahui berapa proporsi peduduk di desaya yag memiliki aak lebih dari 3 orag. Dari seluruh peduduk di desaya yag berjumlah 300 orag diambil sampel 80 orag da teryata yag memiliki aak lebih dari 3 orag sebayak 20 orag. Dega iterval keyakia 95%, batulah ketua RT tersebut meghitug proporsi peduduk desa yag memiliki aak lebih dari 3 orag. E. RANGKUMAN 1. Dalam membuat taksira (pedugaa) sagat diperluka kosep probabilitas karea sagat bergua dalam pembuata keputusa pada kodisi ketidakpastia, Ada jeis peaksira yaitu peaksira titik (Poit Estimatio) da peaksira iterval (Iterval Estimatio). 2. Peaksira titik megadug pegertia bahwa suatu parameter (misal µ) aka ditaksir haya dega megguaka satu bilaga saja (misalya dega X ). Peaksira titik serig megalami kekelirua, sehigga probabilitas suatu peaksira titik tersebut tepat adalah sagat kecil atau medekati ol. Sehigga peaksira titik jarag diguaka. 3. Peaksira iterval merupaka iterval ilai (rage) yag ilai parameter populasi berada di dalamya.tujua membuat peaksira iterval adalah meguragi kesalaha peaksira da ada dua batas yaitu batas bawah 137

13 taksira (lower limit estimate) da batas atas taksira (upper limit estimate). Batas-batas dalam peaksira dega iterval harus ditujag dega adaya derajat keyakia/kepastia disebut dega Cofidece Coefficiet, sedagka batas-batasya diamaka Cofidece Iterval. 4. Utuk meetuka rata-rata dalam peaksira, digologka atara populasi terbatas da populasi tidak terbatas da sample juga digologka atara sample kecil da sample besar. 5. Peaksira proporsi aka diguaka apabila data yag ada bersifat diskrit. Peaksira proporsi ii sebaikya diguaka utuk sampel besar yag terdiri dari populasi terbatas da populasi tidak terbatas. F. LATIHAN 1. Apakah yag dimaksud dega peaksira? 2. Jelaska secara terperici tetag peaksira titik, peaksira iterval da peaksira proporsi! 3. Suatu biro riset igi megestimasi rata-rata pegeluara utuk pembelia baha makaa per miggu dari ibu-ibu rumah tagga. Sebuah sampel radom yag terdiri dari 100 orag ibu rumah tagga telah dipilih dari populasi ibu rumah tagga. Dari data tersebut diketahui bahwa rata-rata pegeluara per miggu adalah Rp ,- dega stadar deviasi Rp ,-. Hitug dega iterval keyakia 98% utuk meaksir pegeluara rata-rata pembelia baha makaa per miggu? 4. Rektor suatu pergurua tiggi diyogyakarta igi megetahui rata-rata IPK utuk setiap Fakultas. Sampel yag diguaka utuk setiap fakultas adalah sebagai berikut: 138

14 No Fakultas Jumlah Jumlah IPK ratarata Stadar α Populasi Sampel Deviasi 1 Ekoomi , % 2 Hukum ,95 2 5% 3 Isipol ,10 3 8% 4 Tekik ,40 2 2% 5 Pertaia ,25 3 4% 6 Kedoktera ,60 2 1% 7 Agama Islam ,30 2 4% Dega taraf sigifika berbeda masig-masig fakultas, maka tetuka taksira rata-rata IPK mahasiswa masig-masig fakultas! 5. Suatu biro Travel igi meetuka waktu yag diperluka utuk meempuh perjalaa dari Yogyakarta ke Bali. Dari 12 kali perjalaa diperoleh iformasi sebagai berikut: Perjalaa ke Waktu (jam)

15 Buatlah taksira lama perjalaa dari Yogyakarta ke Bali yag sesugguhya dega taraf sigifikasi 10%! 6. Seorag pejual alat tulis igi megetahui merk bolpoit yag diguaka oleh pelajar SMP da SMA di Semarag. Pejual tersebut megambil sample sebayak 225 pelajar SMP maupu SMA da teryata 60% megguaka bolpoit pilot. Apabila iterval keyakia 96%, tetuka proporsi pelajar SMP da SMA di Semarag yag megguaka bolpoit tersebut! 7. Utuk megetahui tigkat kecerdasa aak suatu Sekolah Dasar di Yogyakarta, maka diambil secara radom aak SD tersebut sebayak 50 orag sebagai sample. Dari hasil tes IQ yag dilakuka diperoleh rata-rata IQ sebesar 115 dega varias sebesar 81. apabila diguaka taraf sigifika sebesar 4%, maka hituglah perkiraa rata-rata IQ aak SD tersebut! 140

Bab 6 PENAKSIRAN PARAMETER

Bab 6 PENAKSIRAN PARAMETER Bab 6 PENAKSIRAN PARAMETER Stadar Kompetesi : Setelah megikuti kuliah ii, mahasiswa dapat memahami hubuga ilai sampel da populasi da meetuka distribusi samplig yag tepat utuk diguaka Kompetesi Dasar :

Lebih terperinci

JENIS PENDUGAAN STATISTIK

JENIS PENDUGAAN STATISTIK ENDUGAAN STATISTIK ENDAHULUAN Kosep pedugaa statistik diperluka utuk membuat dugaa dari gambara populasi. ada pedugaa statistik dibutuhka pegambila sampel utuk diaalisis (statistik sampel) yag ati diguaka

Lebih terperinci

Statistika Inferensial

Statistika Inferensial Cofidece Iterval Ara Fariza Statistika Iferesial Populasi Sampel Simpulka (estimasi) tetag parameter Medapatka statistik Estimasi: estimasi titik, estimasi iterval, uji hipotesa 2 1 Proses Estimasi Populasi

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

A. Pengertian Hipotesis

A. Pengertian Hipotesis PENGUJIAN HIPOTESIS A. Pegertia Hipotesis Hipotesis statistik adalah suatu peryataa atau dugaa megeai satu atau lebih populasi Ada macam hipotesis:. Hipotesis ol (H 0 ), adalah suatu hipotesis dega harapa

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

Pendugaan Parameter. Debrina Puspita Andriani /

Pendugaan Parameter. Debrina Puspita Andriani    / Pedugaa Parameter 7 Debria Puspita Adriai E-mail : debria.ub@gmail.com / debria@ub.ac.id Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi. Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

Mata Kuliah: Statistik Inferensial

Mata Kuliah: Statistik Inferensial PENGUJIAN HIPOTESIS SAMPEL KECIL Prof. Dr. H. Almasdi Syahza, SE., MP Email: asyahza@yahoo.co.id DEFINISI Pegertia Sampel Kecil Sampel kecil yag jumlah sampel kurag dari 30, maka ilai stadar deviasi (s)

Lebih terperinci

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto Tue 0/04/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato Estimasi : salah satu cara megemukaka peryataa iduktif (meyataka karakteristik populasi dega meggu aka karakteristik yag didapat dari cuplika).

Lebih terperinci

SEBARAN t dan SEBARAN F

SEBARAN t dan SEBARAN F SEBARAN t da SEBARAN F 1 Tabel uji t disebut juga tabel t studet. Sebara t pertama kali diperkealka oleh W.S. Gosset pada tahu 1908. Saat itu, Gosset bekerja pada perusahaa bir Irladia yag melarag peerbita

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

ESTIMASI TITIK DAN INTERVAL KEPERCAYAAN

ESTIMASI TITIK DAN INTERVAL KEPERCAYAAN 8/8/0 IE 305 tatistika Idustri LOGO ETIMAI TITIK DAN INTERVAL KEPERCAYAAN Elty arvia, T.,MT. Fakultas Tekik Jurusa Tekik Idustri Uiversitas Kriste Maraatha Badug LT arvia/esi Tujua 3 4 5 6 Medefiisika

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Analisa Data Statistik. Ratih Setyaningrum, MT

Analisa Data Statistik. Ratih Setyaningrum, MT Aalisa Data tatistik Ratih etyaigrum, MT Referesi Agoes oehiaie, Ph.D Daftar Isi Iferesi tatistik Hipotesa tatistik : Kosep Umum Hipotesa statistik adalah sebuah klaim/peryataa atau cojecture tetag populasi.

Lebih terperinci

STATISTIK PERTEMUAN VIII

STATISTIK PERTEMUAN VIII STATISTIK PERTEMUAN VIII Pegertia Estimasi Merupaka bagia dari statistik iferesi Estimasi = pedugaa, atau meaksir harga parameter populasi dega harga-harga statistik sampelya. Misal : suatu populasi yag

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

REGRESI LINIER GANDA

REGRESI LINIER GANDA REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di MTs Muhammadiyah 1 Natar Lampung Selatan.

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di MTs Muhammadiyah 1 Natar Lampung Selatan. 9 III. METODOLOGI PENELITIAN A. Populasi Da Sampel Peelitia ii dilaksaaka di MTs Muhammadiyah Natar Lampug Selata. Populasiya adalah seluruh siswa kelas VIII semester geap MTs Muhammadiyah Natar Tahu Pelajara

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi da waktu Peelitia ii dilakuka di PD Pacet Segar milik Alm Bapak H. Mastur Fuad yag beralamat di Jala Raya Ciherag o 48 Kecamata Cipaas, Kabupate Ciajur, Propisi Jawa Barat.

Lebih terperinci

Sampling Process and Sampling Distribution Inference : Point and Interval Estimates. Pertemuan 2

Sampling Process and Sampling Distribution Inference : Point and Interval Estimates. Pertemuan 2 Samplig Process ad Samplig Distributio Iferece : Poit ad Iterval Estimates Pertemua 1 CAKUPAN MATERI: Pemahama tetag Samplig Sampel Acak Sederhaa (Simple Radom Samplig SRS) Estimasi Titik (Poit Estimatio)

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 Statistika Iferesia: Pedugaa Parameter Dr. Kusma Sadik, M.Si Dept. Statistika IPB, 05 Populasi : Parameter Sampel : Statistik Statistik merupaka PENDUGA bagi parameter populasi Pegetahua megeai distribusi

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Subjek Peelitia Peelitia ii dilaksaaka di kawasa huta magrove, yag berada pada muara sugai Opak di Dusu Baros, Kecamata Kretek, Kabupate Batul. Populasi dalam peelitia ii adalah

Lebih terperinci

PENAKSIRAN DAN PERAMALAN BIAYA D. PENAKSIRAN BIAYA JANGKA PANJANG E. PERAMALAN BIAYA

PENAKSIRAN DAN PERAMALAN BIAYA D. PENAKSIRAN BIAYA JANGKA PANJANG E. PERAMALAN BIAYA PENAKSIRAN DAN PERAMALAN BIAYA Ari Darmawa, Dr. S.AB, M.AB Email: aridarmawa_fia@ub.ac.id A. PENDAHULUAN B. PENAKSIRAN DAN PRAKIRAAN FUNGSI BIAYA C. PENAKSIRAN JANGKA PENDEK - Ekstrapolasi sederhaa - Aalisis

Lebih terperinci

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1 Proses Pedugaa Populasi Mea,, tdk diketahui Cotoh Acak Mea = 50 95% yaki bahwa diatara 40 & 60. Cotoh 1999 Pretice-Hall, Ic. Chap. 7-1 Pedugaa Parameter Populasi Meduga Parameter Populasi... Mea dg Statistik

Lebih terperinci

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered.

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered. 2. Pelajari data dibawah ii, tetuka depede da idepede variabel serta : a) Hitug Sum of Square for Regressio (X) b) Hitug Sum of Square for Residual c) Hitug Meas Sum of Square for Regressio (X) d) Hitug

Lebih terperinci

PETA KONSEP RETURN dan RISIKO PORTOFOLIO

PETA KONSEP RETURN dan RISIKO PORTOFOLIO PETA KONSEP RETURN da RISIKO PORTOFOLIO RETURN PORTOFOLIO RISIKO PORTOFOLIO RISIKO TOTAL DIVERSIFIKASI PORTOFOLIO DENGAN DUA AKTIVA PORTOFOLIO DENGAN BANYAK AKTIVA DEVERSIFIKASI DENGAN BANYAK AKTIVA DEVERSIFIKASI

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi da Waktu peelitia Peelitia dilakuka pada budidaya jamur tiram putih yag dimiliki oleh usaha Yayasa Paguyuba Ikhlas yag berada di Jl. Thamri No 1 Desa Cibeig, Kecamata Pamijaha,

Lebih terperinci

III. METODE PENELITIAN. Variabel X merupakan variabel bebas adalah kepemimpinan dan motivasi,

III. METODE PENELITIAN. Variabel X merupakan variabel bebas adalah kepemimpinan dan motivasi, 7 III. METODE PENELITIAN 3.1 Idetifikasi Masalah Variabel yag diguaka dalam peelitia ii adalah variabel X da variabel Y. Variabel X merupaka variabel bebas adalah kepemimpia da motivasi, variabel Y merupaka

Lebih terperinci

PENGUJIAN HIPOTESA BAB 7

PENGUJIAN HIPOTESA BAB 7 PENGUJIAN IPOTESA BAB 7 Pedahulua ipotesis ( upo : lemah, Thesis : peryataa ) Diartika :. Peryataa yag masih lemah kebearaya da perlu dibuktika. Dugaa yag sifatya masih semetara ipotesis ii perlu utuk

Lebih terperinci

IV. METODE PENELITIAN. berdasarkan tujuan penelitian (purposive) dengan pertimbangan bahwa Kota

IV. METODE PENELITIAN. berdasarkan tujuan penelitian (purposive) dengan pertimbangan bahwa Kota IV. METODE PENELITIAN 4.1. Lokasi da Waktu Peelitia ii dilaksaaka di Kota Bogor Pemiliha lokasi peelitia berdasarka tujua peelitia (purposive) dega pertimbaga bahwa Kota Bogor memiliki jumlah peduduk yag

Lebih terperinci

Penarikan Sampel Acak Sederhana

Penarikan Sampel Acak Sederhana Tekik Samplig Pearika Sampel Acak Sederhaa Hazmira Yozza- Jur. Matematika Uad 17/11/014 Tujua Pearika Sampel Megambil kesimpula megeai populasi berdasarka iformasi yag terkadug pada sampel Ukura sampel

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari. Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

UKURAN TENDENSI SENTRAL

UKURAN TENDENSI SENTRAL BAB 3 UKURAN TENDENSI SENTRAL Kompetesi Mampu mejelaska da megaalisis kosep dasar ukura tedesi setral. Idikator 1. Mejelaska da megaalisis mea.. Mejelaska da megaalisis media. 3. Mejelaska da megaalisis

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 36 BAB III METODE PENELITIAN A. Racaga Peelitia 1. Pedekata Peelitia Peelitia ii megguaka pedekata kuatitatif karea data yag diguaka dalam peelitia ii berupa data agka sebagai alat meetuka suatu keteraga.

Lebih terperinci

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N,

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N, DISTRIBUSI SAMLING opulasi da Sampel opulasi : totalitas dari semua objek/ idividu yg memiliki karakteristik tertetu, jelas da legkap yag aka diteliti Sampel : bagia dari populasi yag diambil melalui cara-cara

Lebih terperinci

x = μ...? 2 2 s = σ...? x x s = σ...?

x = μ...? 2 2 s = σ...? x x s = σ...? Pedugaa Parameter x 2 sx s = μ...? 2 = σ x...? = σ...? Peduga Parameter Peduga titik yaitu parameter populasi p diduga dega suatu besara statistik, misal: rata-rata, proporsi, ragam, dll Peduga Selag (Iterval)

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai dega Mei 03. B. Populasi da Sampel Populasi dalam

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I 7 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas XI IPA SMA Negeri I Kotaagug Tahu Ajara 0-03 yag berjumlah 98 siswa yag tersebar dalam 3

Lebih terperinci

METODE PENELITIAN. 3.1 Kerangka Pemikiran

METODE PENELITIAN. 3.1 Kerangka Pemikiran 24 III. METODE PENELITIN 3.1 Keragka Pemikira BMT l-fath IKMI melakuka fugsi meyalurka daa dega melakuka pembiayaa kepada UMKM. Produk pembiayaa yag dimiliki BMT l-fath IKMI adalah Murabahah da Iarah.

Lebih terperinci

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA BAB VII DITRIBUI AMPLING DAN DEKRIPI DATA 7. Distribusi amplig (samplig distributio) amplig distributio adalah distribusi probabilitas dari suatu statistik. amplig distributio tergatug dari ukura populasi,

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Lokasi da objek peelitia Lokasi peelitia dalam skripsi ii adalah area Kecamata Pademaga, alasa dalam pemiliha lokasi ii karea peulis bertempat tiggal di lokasi tersebut sehigga

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

PENDAHULUAN. Statistika penyajian DATA untuk memperoleh INFORMASI penafsiran DATA. Data (bentuk tunggal : Datum ) : ukuran suatu nilai

PENDAHULUAN. Statistika penyajian DATA untuk memperoleh INFORMASI penafsiran DATA. Data (bentuk tunggal : Datum ) : ukuran suatu nilai 1. Pegertia Statistika PENDAHULUAN Statistika berhubuga dega peyajia da peafsira kejadia yag bersifat peluag dalam suatu peyelidika terecaa atau peelitia ilmiah. Statistika peyajia DATA utuk memperoleh

Lebih terperinci

Bab III Metoda Taguchi

Bab III Metoda Taguchi Bab III Metoda Taguchi 3.1 Pedahulua [2][3] Metoda Taguchi meitikberatka pada pecapaia suatu target tertetu da meguragi variasi suatu produk atau proses. Pecapaia tersebut dilakuka dega megguaka ilmu statistika.

Lebih terperinci

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014.

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014. BAB III METODE PENELITIAN A. Waktu da Tempat Peelitia Peelitia dilaksaaka dari bula Agustus-September 03.Peelitia ii dilakuka di kelas X SMA Muhammadiyah Pekabaru semester gajil tahu ajara 03/04. B. Subjek

Lebih terperinci

Pengertian Estimasi Titik. Estimasi (Pendugaan) Estimasi (Pendugaan) Estimasi (Pendugaan) Populasi dan Sampel. Mean Proporsi

Pengertian Estimasi Titik. Estimasi (Pendugaan) Estimasi (Pendugaan) Estimasi (Pendugaan) Populasi dan Sampel. Mean Proporsi Chapter 6 Studet Lecture Notes 6-1 Hal-1 Hal-2 Estimasi (Pedugaa) Estimasi (Pedugaa) TOPIK Pegertia Estimasi Estimasi titik Nilai rata-rata populasi Nilai proporsi populasi Estimasi Iterval Estimasi iterval

Lebih terperinci

STATISTIKA DAN PELUANG BAB III STATISTIKA

STATISTIKA DAN PELUANG BAB III STATISTIKA Matematika Kelas IX Semester BAB Statistika STATISTIKA DAN PELUANG BAB III STATISTIKA A. Statistika Pegertia Statistika Statistika adalah ilmu yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis

Lebih terperinci

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya.

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya. BAB 1 PENDAHULUAN 1.1 Latar Belakag Aalisis regresi mejadi salah satu bagia statistika yag palig bayak aplikasiya. Aalisis regresi memberika keleluasaa kepada peeliti utuk meyusu model hubuga atau pegaruh

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Metode Peelitia Peelitia ii megguaka metode peelitia Korelasioal. Peelitia korelasioaal yaitu suatu metode yag meggambarka secara sistematis da obyektif tetag hubuga atara

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

BAB 7 PEN P GUJ GU IAN HIPO P T O ES T A

BAB 7 PEN P GUJ GU IAN HIPO P T O ES T A BAB 7 PENGUJIAN HIPOTESA Meguji Rata-rata µ Umpamakalah kita mempuyai sebuah populasi berdistribusi ormal dega rata-rata µ da simpaga baku σ. Aka diuji megeai parameter rata-rata µ Utuk pasaga hipotesa

Lebih terperinci

BAB IV. METODE PENELITlAN. Rancangan atau desain dalam penelitian ini adalah analisis komparasi, dua

BAB IV. METODE PENELITlAN. Rancangan atau desain dalam penelitian ini adalah analisis komparasi, dua BAB IV METODE PENELITlAN 4.1 Racaga Peelitia Racaga atau desai dalam peelitia ii adalah aalisis komparasi, dua mea depede (paired sample) yaitu utuk meguji perbedaa mea atara 2 kelompok data. 4.2 Populasi

Lebih terperinci

MANAJEMEN RISIKO INVESTASI

MANAJEMEN RISIKO INVESTASI MANAJEMEN RISIKO INVESTASI A. PENGERTIAN RISIKO Resiko adalah peyimpaga hasil yag diperoleh dari recaa hasil yag diharapka Besarya tigkat resiko yag dimasukka dalam peilaia ivestasi aka mempegaruhi besarya

Lebih terperinci

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang II. LANDASAN TEORI Defiisi 2.1 Samplig Samplig adalah proses pegambila atau memilih buah eleme dari populasi yag berukura N (Lohr, 1999). Dalam melakuka samplig, terdapat teori dasar yag disebut teori

Lebih terperinci

II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel.

II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel. II. LANDASAN TEORI Defiisi 2.1 Distribusi Samplig Distribusi samplig adalah distribusi probibilitas dari suatu statistik. Distribusi tergatug dari ukura populasi, ukura sampel da metode memilih sampel.

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

INFERENSI STATISTIS: UJI HIPOTESIS

INFERENSI STATISTIS: UJI HIPOTESIS Uiversitas Gadjah Mada Fakultas Tekik Departeme Tekik Sipil da Ligkuga INFERENSI STATISTIS: UJI HIPOTESIS Statistika da Probabilitas Model Matematis vs Pegukura komparasi garis teoretik (prediksi meurut

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

BAB III METODE PENELITIAN. Dalam melakukan penelitian, terlebih dahulu menentukan desain

BAB III METODE PENELITIAN. Dalam melakukan penelitian, terlebih dahulu menentukan desain BAB III METODE PENELITIAN 3.1 Desai Peelitia Dalam melakuka peelitia, terlebih dahulu meetuka desai peelitia yag aka diguaka sehigga aka mempermudah proses peelitia tersebut. Desai peelitia yag diguaka

Lebih terperinci

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011 PENAKSIRAN Peaksira Titik Peaksira Selag Selag Kepercayaa utuk RATAAN Selag Kepercayaa utuk VARIANSI MA8 ANALISIS DATA Utriwei Mukhaiyar 7 Oktober 0 Metode Peaksira Peaksira Titik Peaksira Selag Nilai

Lebih terperinci

PENDAHULUAN. (ingat : STATISTIKA STATISTIK!!! )

PENDAHULUAN. (ingat : STATISTIKA STATISTIK!!! ) Hal dari 7 PENDAHULUAN. PENGERTIAN STATISTIKA Statistika metode yag berhubuga dega peyajia da peafsira kejadia yag bersifat peluag dalam suatu peyelidika terecaa atau peelitia ilmiah (igat : STATISTIKA

Lebih terperinci

III. METODELOGI PENELITIAN

III. METODELOGI PENELITIAN III. METODELOGI PENELITIAN A. Metode Peelitia Metode peelitia merupaka suatu cara tertetu yag diguaka utuk meeliti suatu permasalaha sehigga medapatka hasil atau tujua yag diigika, meurut Arikuto (998:73)

Lebih terperinci

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET BAB VII RANDOM VARIATE DISTRIBUSI DISKRET Diskret radom variabel dapat diguaka utuk berbagai radom umber yag diambil dalam betuk iteger. Pola kebutuha ivetori (persediaa) merupaka cotoh yag serig diguaka

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakag Maajeme risiko merupaka salah satu eleme petig dalam mejalaka bisis perusahaa karea semaki berkembagya duia perusahaa serta meigkatya kompleksitas aktivitas perusahaa

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 6 BAB III METODE PENELITIAN 3.1 Desai Peelitia Meurut Kucoro (003:3): Peelitia ilmiah merupaka usaha utuk megugkapka feomea alami fisik secara sistematik, empirik da rasioal. Sistematik artiya proses yag

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMPN 20 Bandar Lampung, dengan populasi

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMPN 20 Bandar Lampung, dengan populasi 5 III. METODE PENELITIAN A. Populasi da Sampel Peelitia ii dilaksaaka di SMPN 0 Badar Lampug, dega populasi seluruh siswa kelas VII. Bayak kelas VII disekolah tersebut ada 7 kelas, da setiap kelas memiliki

Lebih terperinci

III. METODE PENELITIAN. Pembangunan Daerah (BAPPEDA) Provinsi NTB, BPS pusat, dan instansi lain

III. METODE PENELITIAN. Pembangunan Daerah (BAPPEDA) Provinsi NTB, BPS pusat, dan instansi lain III. METODE PENELITIAN 3.1 Jeis da Sumber Data Data yag diguaka pada peelitia ii merupaka data sekuder yag diperoleh dari Bada Pusat Statistik (BPS) Provisi NTB, Bada Perecaaa Pembagua Daerah (BAPPEDA)

Lebih terperinci

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut:

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut: Statistik da Peluag A. Statistik Statistik adalah metode ilmiah yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis data, serta cara pegambila kesimpula berdasarka data-data tersebut. Data ialah

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Alat terapi ini menggunakan heater kering berjenis fibric yang elastis dan

BAB IV HASIL DAN PEMBAHASAN. Alat terapi ini menggunakan heater kering berjenis fibric yang elastis dan BAB IV HASIL DAN PEMBAHASAN 4.1. Spesifikasi Alat Alat terapi ii megguaka heater kerig berjeis fibric yag elastis da di bugkus dega busa, pasir kuarsa, da kai peutup utuk memberi isolator terhadap kulit

Lebih terperinci

BAB VIII KONSEP DASAR PROBABILITAS

BAB VIII KONSEP DASAR PROBABILITAS BAB VIII KONSEP DASAR PROBABILITAS 1.1. Pedahulua Dalam pertemua ii Ada aka mempelajari beberapa padaga tetag permutasi da kombiasi, fugsi da metode perhituga probabilitas, da meghitug probabilitas. Pada

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

III. METODOLOGI PENELITIAN. diinginkan. Menurut Arikunto (1991 : 3) penelitian eksperimen adalah suatu

III. METODOLOGI PENELITIAN. diinginkan. Menurut Arikunto (1991 : 3) penelitian eksperimen adalah suatu III. METODOLOGI PENELITIAN A. Metode Peelitia Metode peelitia merupaka suatu cara tertetu yag diguaka utuk meeliti suatu permasalaha sehigga medapatka hasil atau tujua yag diigika. Meurut Arikuto (99 :

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1. Lokasi da Waktu Peelitia Daerah peelitia adalah Kota Bogor yag terletak di Provisi Jawa Barat. Pemiliha lokasi ii berdasarka pertimbaga atara lai: (1) tersediaya Tabel Iput-Output

Lebih terperinci

BAB III METODOLOGI PENELITIAN. kuantitatif karena bertujuan untuk mengetahui kompetensi pedagogik mahasiswa

BAB III METODOLOGI PENELITIAN. kuantitatif karena bertujuan untuk mengetahui kompetensi pedagogik mahasiswa 54 BAB III METODOLOGI PENELITIAN A. Jeis Peelitia Peelitia ii merupaka peelitia deskriptif dega pedekata kuatitatif karea bertujua utuk megetahui kompetesi pedagogik mahasiswa setelah megikuti mata kuliah

Lebih terperinci

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia Himpua Suatu himpua atau gugus adalah merupaka sekumpula obyek. Pada umumya aggota dari gugus tersebut memiliki suatu sifat yag sama. Suatu himpua bagia atau aak gugus merupaka sekumpula obyek yag aggotaya

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. : Lux meter dilengkapi sensor jarak berbasis arduino. : panjang 15,4 cm X tinggi 5,4 cm X lebar 8,7 cm

BAB IV HASIL DAN PEMBAHASAN. : Lux meter dilengkapi sensor jarak berbasis arduino. : panjang 15,4 cm X tinggi 5,4 cm X lebar 8,7 cm BAB IV HASIL DAN PEMBAHASAN 4.1. Spesifikasi Alat Nama Alat Tegaga Ukura Berat : Lux meter dilegkapi sesor jarak berbasis arduio : 5 V (DC) : pajag 15,4 cm tiggi 5,4 cm lebar 8,7 cm : 657 gram 4.. Gambar

Lebih terperinci