PETA STANDAR KOPETENSI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "PETA STANDAR KOPETENSI"

Transkripsi

1 Program Linear PETA STANDAR KOPETENSI MATEMATIKA NON TEKNIK II TINGKAT II SEMESTES SEMESTER STANDAR KOPETENSI G STANDAR KOPETENSI I STANDAR KOPETENSI H STANDAR KOPETENSI J KETERANGAN : SEMESTER Standar Kopetensi G Standar Kopetensi H SEMESTER Standar Kopetensi I Standar Kopetensi J : Meneelesakan Masalah Program Linier : Menerapakan Logika Matematika Dalam Penelesaian Masalah Yang Berkaitan Dengan Pernaaataan Majemuk Dan Pernataan Kuantor : Menerapkan Konsep Barisan Dan Deret Dalam Pemecahan Masalah : Memecahkan Masalah Keuangan Menggunakan Konsep Matematika

2 Standar Kopetensi G Menelesaikan Masalah Program Linier Tingkat 2 ; Semester ; Waktu menit ============================================================== A. Membuat Grafik Himpunan Penelesaian Sistem Pertidaksamaan 1. Pengertian Program Linier Program linier adalah suatu cara penelesaian masalah dengan menggunakan konsep pertidaksamaan linier. a. Pertidaksamaan linier dengan ditentukan daerah penelesaian na. Sebelum kita membahas lebih lanjut kita harus mengetahui terlebih dahulu tentang perstidaksamaan linier dan juga cara menentukan daerah penelsaian ( himpunan penlesaian). Petidasamaan linier adalah kalimat terbuka ang menggunakan tanda <, >,, dan Contoh : 1.Tentukan himpunan penelesaian dari a. < d. > 2 b. 2 e. -1 c. > - Jawab : 1.a. < =

3 b. 2 = 2 c. > - = - d. > 2 = 2

4 e. -1 = Tentukan himpunan penelesaian dari -2 < untuk R Jawab : < untuk R = -2. = b. Sistem pertidaksamaan linier dengan dua variable ditentukan daerah penelesaian Contoh 1 : Tunjukan himpunan penelesaian ang memenuhi sstem pertidaksamaan 2 + ; ;, untuk, R Jawab : Langkah langkah : Lukislah grafik 2 + dengan cara : i. Tentukan titik potong sumbu dan sumbu dengan table Jika = maka = Jika = maka = Tabel ii. Buatlah garis =, ang merupakan sumbu, derah ang memenuhi adalah daerah di sebelah kanan sumbu. iii.buatlah garis =, ang merupakan sumbu, derah ang memenuhi adalah daerah di atas sumbu.

5 iv.ganbar grafik dalam koordinatkartesius sehingga terlihat himpunan penlesaianna : v. Daerah grafik ang diarsir. Uji titik (, ) maka 2. + maka titik (, ) memenuhi (,) (,) Contoh 2 : Diketahui sebuah daerah himpunan penelesaian OABC ang digambarkan pada grafik di bawah ini : untuk O(,),A(7,),B(,5),dan C(,7). Tentukan nilai maksimum dari fungsi obektif z = + pada daerah OABC di bawah ini! c B A Jawab : Nilai optimum terletak pada titik titik sudut dari daerah penelesaian, sehingga carilah nilaina untuk setiap titik tersebut : Untuk titik O(,) maka z = Untuk titik A(7,) maka z =.7 + = 21 Untuk titik B(,5) maka z =. + 5 = 17 Untuk titik C(,7) maka z =. + 7 = 7 Jadi nilai maksimum dari + adalah 21 di titik A(7,)

6 B. Menetukan Model Matematika Dari Soal Cerita ( Kalimat Verbal ) Model matematika adalah suatu cara penelesaian masalah dengan cara mengubah bentuk kalimat verbal menjadi suatu model ang selanjutna diselesaikan dengan pendekatan matematika. Contoh : Seorang pembuat paku membuat jenis paku dari bahan ang tersedia aitu 5,5 kg A dan 2 kg bahan B. Paku jenis I tiap buah memerlukan 2 gram bahan A dan 75 gram bahan B sedangkan paku jenis II tiap buah memerlukan 15 gram bahan jenis A dan 5 gram bahan jenis B. Jika pengusaha menjual paku I dengan harga Rp 5, dan paku II dengan harga Rp 5, maka hitunglah berapa buah paku I dan paku II ang harus dibuat agar penghasilan pengusaha maksimum? Jawab : Mengubah bentuk verbal menjadi model matematika dari soal diatas Misalkan : Paku jenis I = dan Paku jenis II = Tabel Barang Bahan A Bahan B Paku jenis I 2 gram 75 gram Paku jenis II 15 gram 5 gram Jumlah 5.5 gram 2. gram Berdasarkan table sebelumna didapat persamaan sebagai berikut : Sedangkan fungsi objektifna adalah z = Kita sederhanakan dulu persamaan diatas Mencari dearah penelesaian untuk sstem pertidaksamaan di atas

7 Titik potong garis + = 11 dan + 2 = 8 adalah + = = = = 2 - = -2 = 2 untuk = = = 8 2 = 8 = 2 = 1 maka titik potong (2,1) 2 Gambar grafik fungsi penelesaianna C(,11/) B(2,1) + = 11 A(8/,) + 2 = 8 Daerah himpunan penelesaian adalah OABC, sedangkan titik titik optimumna adalah O(,), A(8/,), B(2,1), dan C(,11/) Nilai fungsi obekna adalah : Untuk O(,) z = = UntukA(8/,) z = 5.8/ + 5. = 1. UntukB(2,1) z = = 1.5 UntukC(,11/ z = / = 12. Jadi agar mendapat penghasilan maksimum aitu Rp 1.5, maka pengusaha harus membuat 2 buah paku I dan 1 buah paku II. C. Menentukan Nilai Optimum dari Sistem Pertidaksamaan Linier. D. Garis Selidik dengan Prsamaan a + b = k Untuk menentukan nilai optimum,selain dengan mencari titik titik ang koordinat koordinatna memenuhi sarat ang diberikan, dapat juga dilakukan dengan menggunakan garis garis sejajar itu mempunai persamaan a + b = k,dengan k R dan a + b merupakan bentuk obektif. Kerena garis garis ang sejajar itu di gunakan untuk menelidiki nilai optimum,maka garis garis itu disebut garis selidik.agar himpunan garis garis sejajar a + b = k mudah dilukis, maka mulailah dengan melukis garis ang melalui tttik pangkal, aitu

8 jika k =. Kemudian, garis garis a + b = k untuk k = 1,2,,, dilukis dengan penggaris. Contoh : Tentukan nilai maksimum dari + 2 ang memenuhi : + 5 ; ; Jawab ; +2 = k 2 maka = 1 +2 = k 2 maka = 15 Jadi nilai maksimum adalah 15 + =5 + 2 = k + 2 = k = k 2 A. Latihan 1 : 1. Hitunglah nilai maksimum dari daerah ang diarsir pada gambar ini merupakan daerah penelesaian sstem prtidaksamaan linear. Dimana fungsi obektif z = +

9 5 2 1 (1,) (2,2) (,5) (5,) (,) Tentukan sstem pertidaksamaan daerah ang diarsir pada gambar di bawah ini. Adalah himpunan penelesaian dari sstem pertidaksamaan (,). Tentukan nilai minimum dengan fungsi obektif z = pada daerah ang diarsir pada gambar di bawah ini.. 2.Tentukan himpunan penelesaian untuk dan R dari sistem pertidaksamaan berikut : < 2 ; ;

10 5. Tentukan himpunan penelesaian untuk dan R dari sstem Pertidaksamaan berikut : + ; ; ;. Tentukan himpunan penelesaian untuk dan R dari sstem Pertidaksamaan berikut : + 2 ; ; ; 7.Tentukan nilai minimum fungsi obektif z = 2 + dari sstem pertidaksamaan : ; ; ; untuk, R 8.Tentukan nilai maksimum fungsi obektif z = 2 + dari sstem pertidaksamaan : + 1 ; ; ; untuk, R 9. Sebuah kereta api tiap gerbong penumpang terdiri dari kelas I dan II ang memuat penumpang. Setaip penumpang kelas I berhak membawa barang 2 kg dan penumpang kelas II hana 8 kg,tempat bagasu memiliki daa muat maksimum.8 kg. Jika penumang kelas I banakna orang dan penumpang kelas II banakna orang,ubahlah kedalam kalimat matematikana! 1. Seorang penjahit akan membuat dua model pakaian. Untuk model I, waktu ang diperlukan memotong kain 2 jam dan untuk menjahit jam. Untuk model II, Waktu an diperlukan untuk memotong jam dan menjahit 2 jam. Waktu ang disdiakan untuk memotong tidak lebih dari 2 jam dan untuk menjahit tidak lebih dari 1 jam. Jika pakaian model I seharga Rp., dan model II seharga Rp 1.,,berapa pakian harus dibuat agar pendapatan maksimum? B. Latihan 2 Pilihlah jawaban ang paling tepat dengan memberi tand silang pada huruf a, b, c, d, atau e! 1. Dari diagram dibawah ini daerah ang diarsir merupakan himpunan penelesaian dari pertidaksamaan :.. 2 a. + ; 2;

11 b. - ; 2; c. + ; 2; d. + ; 2; e. - ; 2; 2. Dari diagram dibawah ini daerah ang diarsir merupakan himpunan penelesaian dari pertidaksamaan :.. a. 2 + ; ; ; b. 2 - ; ; ; c. 2 + ; ; ; d. + 2 ; ; ; e. + 2 ; ; ; 2. Dari diagram dibawah ini daerah ang diarsir merupakan himpunan penelesaian dari pertidaksamaan :.. a. 2 + ; ; ; b. 2 - ; ; ; c. 2 + ; ; ; d. + 2 ; ; ; e. + 2 ; ; ;. Dari diagram dibawah ini daerah ang diarsir merupakan himpunan penelesaian dari pertidaksamaan : a. + 8; + 72; ; b. + 8; + 72; ; c. + 8; + 72; ; d. + 8; + 72; ; e. + 8; + 72; ;

12 5. Seorang penjual buah ang menggunakan gerobak mempuni modal Rp 1..,. Ia telah membeli jeruk denga harga Rp., per kg dan pisang Rp 1., per kg. Jika banak jeruk ang dibeli kg, sedangkan muatan gerobak tidak dapat melebihi g, maka sstem pertidaksamaan ang memenuhi permasalahan diatas adalah.. a ; + ; ; b ; + ; ; c ; + ; ; d ; + ; ; e ; + ; ;. Daerah ang diarsir pada diagram dibawah ini merupakan himpunan penelesaian dari suatu pertidaksamaan. Nilai maksimum untuk T = 5 + dari daerah penelesaian tersebut adalah. 8 a. b. 28 c. 22 d. 2 e Daerah ang merupakan himpunan penelesaian dari pertidaksamaan +2 12; +2 8; 8; adalah daerah ang di tunjukan oleh II III I IV V 8 a. I b. II c. III d. IV e. V 8. Daerah ang merupakan himpunan penelesaian dari pertidaksamaan ; ; ; ; adalah daerah ang di tunjukan oleh

13 1 I 7 II V III IV 1 a. I b. II c. III d. IV e. V 9. Nilai minimum fungsi obektif (, ) = + dari sstem pertidaksamaan 2 + 1; + 2 1; ; adalah a. 15 b. 22 c. 25 d. e. 1. Tempat parker seluas m 2,dapat menampung tidak lebih dari kendaraan. Untuk parker sebuah sedan diperlukan m 2 dan sebuah bus 2 m 2. Jika untuk sedan dinatakan dalam dan bus dinatakan dalam, maka model matematika dari pernataan diatas adalah. a. + ; + ; ; b. + ; + < ; ; c. + ; + ; ; d. + < ; + ; ; e. + < ; + ; ; 11. Daerah ang diarsir pada diagram dibawah ini merupakan himpunan penelesaian dari suatu pertidaksamaan. Nilai maksimum untuk fungsi obektif f (,) = + 8 tersebut adalah (,5) (,7) (5,) (7,) (2,1) a. b. c. 7 d. 78 e. 8

14 12. Daerah penelesaian dari pertidaksamaan 2 + ; ;, untuk, R adalah. a. d. b. - c. - e Seorang ibu penjual jamu tradisional ingin membuat porsi jamu sebanak banakna dari 2 jenis jamu A dan B dengan ketentuan seperti dibawah ini : Jenis Jamu Ramuan I Ramuan II A B 2 g 1 g 25 g 5 g Tersedia kg 1, kg Banakna porsi ang optimal adalah... a. 27 b. 2 c. d. 2 e Nilai maksimum dari 5 + ang memenuhi dari sstem pertidaksamaan 2 + 8; + 9; ; adalah. a. 1 b. 18 c. 19 d. 27 e. 15. Titik titik (,), (,5), (5,), (,) dan (,) adalah titik titik sudut suatu daerah himpunan penelesaian program linier. Nilai optimum bentuk 1(+2) adalah... a. Maksimum 18, minimum a. Maksimum 19, minimum a. Maksimum 21, minimum a. Maksimum 19, minimum 8 a. Maksimum 8, minimum 1. Perhatikan gambar berikut ini!

15 1 1 Daerah ang diarsir pad gambar di atas merupakan daerah penelesaian dari suatu sstem pertidak samaan, Nilai minimum ang dipenuhi fungsi obektif : f (, ) = + adalah a. 2 d. 2 1 b. e. c Perhatikan gambar berikut ini! 5 Nilai maksimum dari fungsi f (, ) = a. 5 d. 28 b. 1 e. 8 c. 18. Nilai maksimum dari 2 + ang memenuhi sstem pertidaksamaan : , R adalah, a. 1 d. 2 b. 15 e

16 c Jika diketahui bahwa P = + dan Q = 5 + maka nilai maksimum dari P dan Q pada sstem pertidaksamaan,, dan adalah : a. 8 dan d. dan 2 b. dan e. 8 dan 2 c. dan 2. Apabila, R terletak pada himpunan penelesaian sstem pertidak - Samaan,, + 8, maka nilai maksimum dari Z = + 2 pada himpunan penelesaian tersebut adalah a. 1 d. b. 2 e. 5 c.

PROGRAM LINIER. B. Grafik Himpunan Penyelesaian Pertidaksamaan Linier Dua Variabel

PROGRAM LINIER. B. Grafik Himpunan Penyelesaian Pertidaksamaan Linier Dua Variabel PROGRAM LINIER A. Pengertian Program Linier Program linier adalah suatu cara ang dapat digunakan untuk memecahkan permasalahan ang berhubungan dengan optimasi linier (nilai maksimum atau nilai minimum).

Lebih terperinci

PROGRAM LINIER. Pembahasan: Jika: banyak sepatu jenis I = x banyak sepatu jenis II = y

PROGRAM LINIER. Pembahasan: Jika: banyak sepatu jenis I = x banyak sepatu jenis II = y PROGRAM LINIER A. Pengertian Program linier adalah suatu cara ang dapat digunakan untuk memecahkan permasalahan ang berhubungan dengan optimalisi linier (nilai maksimal atau nilai minimal). B. Model Matematika

Lebih terperinci

PROGRAM LINIER. x y ( x, y ) 0 1 ( 0, 1 ) 3 0 ( 3, 0 ) Titik uji (0,0): x 3y (0) 3. Benar. Sehingga titik (0,0) termasuk daerah penyelesaian.

PROGRAM LINIER. x y ( x, y ) 0 1 ( 0, 1 ) 3 0 ( 3, 0 ) Titik uji (0,0): x 3y (0) 3. Benar. Sehingga titik (0,0) termasuk daerah penyelesaian. PROGRAM LINIER ). Pengertian program linier Program linier adalah suatu cara ang dapat digunakan untuk memecahkan permasalahan ang berhubungan dengan optimasi linier (nilai maksimum atau nilai minimum).

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Mata Pelajaran : Matematika Kelas : X / 2 Pertemuan ke - : ---- Alokasi Waktu : 10 jam @ 45 menit Standar Kompetensi : Menelesaikan masalah program linier. Kompetensi Dasar

Lebih terperinci

BAB XVII. PROGRAM LINEAR

BAB XVII. PROGRAM LINEAR BAB XVII. PROGRAM LINEAR Bukti : + a + b a.b b a Pengertian Program Linear : Program Linear adalah bagian ilmu matematika terapan ang digunakan untuk memecahkan masalah optimasi (pemaksimalan atau peminimalan

Lebih terperinci

MATEMATIKA. Sesi MENCARI MAKSIMUM DAN MINIMUM FUNGSI A. METODE TITIK POJOK

MATEMATIKA. Sesi MENCARI MAKSIMUM DAN MINIMUM FUNGSI A. METODE TITIK POJOK MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 08 Sesi N MENCARI MAKSIMUM DAN MINIMUM FUNGSI Kita sudah belajar bagaimana menggambar daerah dari batas pertidaksamaan ang diketahui atau pun sebalikna. Suatu

Lebih terperinci

BAB II PROGRAM LINEAR

BAB II PROGRAM LINEAR BAB II PROGRAM LINEAR A RINGKASAN MATERI. Pengertian Program linear adalah suatu permasalahan dalam matematika dengan tujuan untuk mengoptimalkan fungsi obektif ang berbentuk linear dengan kendala/batasan

Lebih terperinci

PROGRAM LINEAR. Bukti : ax + by = a.b. Pengertian Program Linear : Gunakan persamaan 2 di atas :

PROGRAM LINEAR. Bukti : ax + by = a.b. Pengertian Program Linear : Gunakan persamaan 2 di atas : PROGRAM LINEAR Bukti : + = a + b = a.b b a Pengertian Program Linear : Program Linear adalah bagian ilmu matematika terapan ang digunakan untuk memecahkan masalah optimasi (pemaksimalan atau peminimalan

Lebih terperinci

ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN MATEMATIKA XII BAHASA

ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN MATEMATIKA XII BAHASA ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN 29-21 MATEMATIKA XII BAHASA Hari / tanggal :... Desember 29 Waktu : 12 menit Pilih salah satu jawaban ang benar dengan memberi tanda silang

Lebih terperinci

MATEMATIKA. Sesi PROGRAM LINEAR CONTOH SOAL A. BENTUK UMUM PERTIDAKSAMAAN LINEAR B. MENGGAMBAR DAERAH PERTIDAKSAMAAN. ax + by c

MATEMATIKA. Sesi PROGRAM LINEAR CONTOH SOAL A. BENTUK UMUM PERTIDAKSAMAAN LINEAR B. MENGGAMBAR DAERAH PERTIDAKSAMAAN. ax + by c MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 07 Sesi N PROGRAM LINEAR A. BENTUK UMUM PERTIDAKSAMAAN LINEAR a + b c CONTOH SOAL 1. Ubahlah 4-4 kedalam bentuk umumna 4 - -4 B. MENGGAMBAR DAERAH PERTIDAKSAMAAN

Lebih terperinci

E-learning matematika, GRATIS

E-learning matematika, GRATIS 1 Penusun Editor : Rifan Nadhifi, S.Si. ; Imam Indra Gunawan, S.Si. : Drs. Keto Susanto, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Indra Gunawan, S.Si. A. Sistem Pertidaksamaan Linear Pertidaksamaan linear

Lebih terperinci

17. SOAL-SOAL PROGRAM LINEAR

17. SOAL-SOAL PROGRAM LINEAR 17. SOAL-SOAL PROGRAM LINEAR EBTANAS2000 1. Himpunan penelesaian sistem pertidaksamaan 5x + 10 2x + 8 2 x = 2 titik (2,0 titk potong dengan sumbu jika x = 0 = 10 titik (0,10 daerah 5x + 10 berada pada

Lebih terperinci

Program Linear B A B. A. Sistem Pertidaksamaan Linear Dua Variabel. B. Model Matematika. C. Nilai Optimum Suatu Fungsi Objektif

Program Linear B A B. A. Sistem Pertidaksamaan Linear Dua Variabel. B. Model Matematika. C. Nilai Optimum Suatu Fungsi Objektif Program Linear Program Linear B A B 2 A. Sistem Pertidaksamaan Linear Dua Variabel B. Model Matematika C. Nilai Optimum Suatu Fungsi Objektif Sumber: http://blontankpoer.blogsome.com Dalam dunia usaha,

Lebih terperinci

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel.

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. NAMA : KELAS : 1 2 Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. x y PROGRAM LINEAR 2. Tentukan titik potong dengan sumbu X, yaitu saat y = 0. 3. Tentukan

Lebih terperinci

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan Kehidupan Nyata Bisa Disajikan Bahasa Matematika Diperlukan Alat Bantu Model Matematika Menggunakan Persamaan atau pertidaksamaan Matematika Tujuan Penyelesaian masalah Kemampuan yang akan dibahas Menentukan

Lebih terperinci

Menghitung nilai optimum (maksimum / minimum) dari sistem pertidaksamaan linier.

Menghitung nilai optimum (maksimum / minimum) dari sistem pertidaksamaan linier. LEMBAR KEGIATAN SISWA 4 Materi : Menghitung nilai optimum (maksimum / minimum) dari sistem pertidaksamaan linier. Kelas Kelompok : :.. Nama Anggota : Kalian telah mempelajari cara membuat grafik dari sisem

Lebih terperinci

MODUL 1 : PROGRAM LINEAR

MODUL 1 : PROGRAM LINEAR MODUL 1 : PROGRAM LINEAR E. Kegiatan Belajar 2 PENERAPAN PROGRAM LINEAR 1. K A. Nilai Optimum Fungsi Obyektif Fungsi objektif merupakan fungsi yang menjelaskan tujuan (meminimumkan atau memaksimumkan)

Lebih terperinci

Ujian Nasional 2008 MATEMATIKA Kelompok : Teknologi, Kesehatan dan Pertanian

Ujian Nasional 2008 MATEMATIKA Kelompok : Teknologi, Kesehatan dan Pertanian Ujian Nasional 8 MATEMATIKA Kelompok : Teknologi, Kesehatan dan Pertanian. Seorang pedagang membeli ½ lusin gelas seharga Rp 5., dan pedagang tesebut telah menjual 5 gelas seharga Rp.,. Jika semua gelas

Lebih terperinci

Menentukan Nilai Optimum dengan Garis Selidik

Menentukan Nilai Optimum dengan Garis Selidik D Menentukan Nilai ptimum dengan Garis Selidik Selain dengan menggunakan uji titik pojok, nilai optimum juga dapat ditentukan dengan menggunakan garis selidik. Persamaan garis selidik dibentuk dari fungsi

Lebih terperinci

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan: -2x + y 0 x - 2y 0 dan x + 2y 8, maka a + b =. (A) 2 (B) 1 (C) 2 (D) (E) 6 02. Nilai maksimum dari

Lebih terperinci

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang :

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : 1. Menggambar daerah yang memenuhi 2. Menentukan system pertidaksamaan suatu daerah 3. Menentukan nilai optimum

Lebih terperinci

SOAL DAN PEMBAHASAN UN SMK 2011 teknologi

SOAL DAN PEMBAHASAN UN SMK 2011 teknologi 1. Himpunan penelesaian pertidaksamaan adalah. A. * * * D. * E. * x = 0 ( x ( x 2. Persamaan grafik fungsi kuadrat ang memotong sumbu X di titik (-2,0 dan (2,0 serta melalui titik (0,-4 A. D. E. ( x =

Lebih terperinci

>> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER 1 SMA KELAS XII IPA <<

>> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER 1 SMA KELAS XII IPA << >> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER SMA KELAS XII IPA

Lebih terperinci

Bab 1. Program Linear. Program Linear. Sumber: dianekawhy.blogspot.com

Bab 1. Program Linear. Program Linear. Sumber: dianekawhy.blogspot.com Bab 1 Pada bab ini, Anda diajak menelesaikan masalah program linear dengan cara membuat grafik himpunan penelesaian sistem pertidaksamaan linear, menentukan model matematika dari soal cerita, menentukan

Lebih terperinci

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear Bab w. me da li.c om : er mb Su ww Program Linear Program linear merupakan salah satu bidang matematika terapan ang banak digunakan untuk memecahkan permasalahan dalam kehidupan sehari-hari. Misalna, program

Lebih terperinci

PROGRAM LINEAR. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII

PROGRAM LINEAR. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII LA - WB (Lembar Aktivitas Warga Belajar) PROGRAM LINEAR Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII Created By Ita Yuliana 9 Program Linear Kompetensi

Lebih terperinci

Siswa dapat menggambar grafik himpunan penyelesaikan sistim pertidaksamaan linier dengan 2 varabel

Siswa dapat menggambar grafik himpunan penyelesaikan sistim pertidaksamaan linier dengan 2 varabel RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah :... Mata Pelajaran : Matematika Kelas/Semester : XI/3 Pertemuan ke : 1,2, dan 3 Alokasi Waktu : 6 x 45 menit Standar Kompetensi : Menyelesaikan program

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.9 Sukoharjo Telp. 0-906 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/ Mata Pelajaran : MATEMATIKA

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.9 Sukoharjo Telp. 0-90 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran : MATEMATIKA

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.9 Sukoharjo Telp. 0-90 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran : MATEMATIKA

Lebih terperinci

Bab 4. Sistem Persamaan Linier dan Variabel. Standar Kompetensi

Bab 4. Sistem Persamaan Linier dan Variabel. Standar Kompetensi Bab 4 Sistem Persamaan Linier dan Variabel Standar Kompetensi Memahami sistem persamaan linear dua variabel, dan menggunakanna dalam pemecahan masalah Kompetensi Dasar.1 Menelesaikan sistem persamaan linear

Lebih terperinci

SOAL ToT MATEMATIKA BISNIS-MANAJEMEN adalah...

SOAL ToT MATEMATIKA BISNIS-MANAJEMEN adalah... SOAL ToT MATEMATIKA BISNIS-MANAJEMEN 08. Bentuk sederhana dari 0 0 3 0 3 8 0 4 0 3 5 8 adalah.... Nilai dari log 6 3 log 4 log6 log 48 adalah... 7 3 3 3. Jika diketahui log 5 = a dan log 3 = b maka nilai

Lebih terperinci

Xpedia Matematika Dasar

Xpedia Matematika Dasar Xpedia Matematika Dasar Soal Program Linear Doc. Name: XPMATDAS0999 Doc. Version : 01-09 halaman 1 01. Nilai z = 3x + y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan

Lebih terperinci

Contoh : Gambarlah daerah x + y 0. Jika daerah tersebut dibatasi untuk nilai-nilai x 0, dan y 0, maka diperoleh gambar seperti berikut.

Contoh : Gambarlah daerah x + y 0. Jika daerah tersebut dibatasi untuk nilai-nilai x 0, dan y 0, maka diperoleh gambar seperti berikut. Setelah mempelajari materi pada kompetensi dasar ini, kalian diharapkan dapat: menjelaskan pengertian program linier, menggambar grafik himpunan penyelesaian pertidaksamaan linier, dan menggambar grafik

Lebih terperinci

Gambar 1.1 Mesin dan SDM perusahaan

Gambar 1.1 Mesin dan SDM perusahaan BAB I PROGRAM LINEAR Tujuan Pembelajaran Setelah mempelajari materi bab ini, Anda diharapkan dapat: 1. menyelesaikan sistem pertidaksamaan linear dua variabel, 2. merancang model matematika dari masalah

Lebih terperinci

1. Fungsi Objektif z = ax + by

1. Fungsi Objektif z = ax + by Nilai Optimum Suatu Fungsi Objektif, Program Linear, Fungsi Objektif, Cara Menentukan, Contoh Soal, Rumus, Pembahasan, Metode Uji Titik Sudut, Metode Garis Selidik, Matematika Nilai Optimum Suatu Fungsi

Lebih terperinci

LEMBAR AKTIVITAS SISWA PROGRAM LINEAR

LEMBAR AKTIVITAS SISWA PROGRAM LINEAR LEMBAR AKTIVITAS SISWA PROGRAM LINEAR c) Subtitusikan titik (0,0) kedalam pertidaksamaan. Nama Siswa : Jika hasil benar, maka penyelesaiaannya adalah daerah Kelas : yang memuat titik tersebut. Jika hasil

Lebih terperinci

PENDAHULUAN KALKULUS

PENDAHULUAN KALKULUS . BILANGAN REAL PENDAHULUAN KALKULUS Ada beberapa jenis bilangan ang telah kita kenal ketika di bangku sekolah. Bilangan-bilangan tersebut adalah bilangan asli, bulat, cacah, rasional, irrasional. Tahu

Lebih terperinci

LEMBAR KEGIATAN SISWA 2

LEMBAR KEGIATAN SISWA 2 LEMBAR KEGIATAN SISWA 2 Materi : Membuat grafik himpunan penelesaian pertidaksamaan linier dua variabel. Kelompok : Nama Anggota: Kelas : Tanggal : Kalian telah mempelajari cara membuat kalimat matematika

Lebih terperinci

U J I A N A K H I R S E K O L A H Tahun Pelajaran Mata Diklat : MATEMATIKA Kelas : XI Prakerin Semester : Genap

U J I A N A K H I R S E K O L A H Tahun Pelajaran Mata Diklat : MATEMATIKA Kelas : XI Prakerin Semester : Genap PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMK NEGERI 6 MALANG Jl. Ki Ageng Gribig 28 Malang 65138 Telp. 0341-722216 Fax. 0341-720138 www.smkn6-malang.sch.id E-mail : @smkn6-malang.sch.id ISO SMM 9001-2008

Lebih terperinci

BAB III. PROGRAM LINEAR

BAB III. PROGRAM LINEAR BAB III. PROGRAM LINEAR Salah satu pokok bahasan dalam mata pelajaran matematika kelas III IPA semester gasal, menurut Kurikulum 2004 (KBK) SMA / MA, memuat : Kompetensi dasar : Siswa menggunakan dan menghargai

Lebih terperinci

h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m

h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m 1. Dalam permasalahan program linear dikenal dua istilah, yaitu : a. Fungsi Kendala/ pembatas, berupa pertidaksamaan pertidaksamaan linear ax by 0; ax by p; ax by 0; ax by 0 b. Fungsi/ bentuk objektif,

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP Nama Sekolah : SMP Negeri 3 Singaraja Mata Pelajaran : Matematika Kelas / Semester : VIII / Ganjil Alokasi Waktu : 2 40 menit A. Standar Kompetensi Memahami Sistem

Lebih terperinci

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear Bab w. me da li.c om : er mb Su ww Program Linear Program linear merupakan salah satu bidang matematika terapan ang banak digunakan untuk memecahkan permasalahan dalam kehidupan sehari-hari. Misalna, program

Lebih terperinci

PERTIDAKSAMAAN LINEAR DUA VARIABEL

PERTIDAKSAMAAN LINEAR DUA VARIABEL PRGRAM LINEAR Intisari Teori A. PERTIDAKSAMAAN LINEAR DUA VARIABEL (PtLDV) Suatu pernyataan yang berbentuk a by c 0 (tanda ketidaksamaan dapat diganti dengan, >, atau < ) dengan a dan b tidak semuanya

Lebih terperinci

Program Linear - IPA

Program Linear - IPA Program Linear - IPA Tahun 2005 1. Tanah seluas 10.000 m² akan dibangun rumah tipe A dan tipe B. Untuk rumah tipe A diperlukan 100 m² dan tipe B diperlukan 75 m². Jumlah rumah yang dibangun paling banyak

Lebih terperinci

BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA

BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA Masalah 1.1 Sekelompok tani transmigran mendapatkan 10 hektar tanah yang dapat ditanami padi, jagung, dan palawija lain. Karena keterbatasan sumber daya petani

Lebih terperinci

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3 Pilihlah jawaban yang paling tepat!. Ordo dari matriks A = 7 A. x B. x C. x D. x x adalah.. Berikut ini yang termasuk Matriks identitas adalah... A. 7 B. 7 C. D. a b. Diketahui A = dan B = b A. B. C. D..

Lebih terperinci

CONTOH SOAL UAN PROGRAM LINIER

CONTOH SOAL UAN PROGRAM LINIER 1. Luas daerah parkir 1.760 m 2. Luas rata rata untuk mobil kecil 4 m 2 dan mobil besar 20 m 2. Daya tampung maksimum hanya 200 kendaraan, biaya parkir mobil kecil Rp 1.000,00/jam dan mobil besar Rp 2.000,00/jam.

Lebih terperinci

MATEMATIKA BISNIS BAB 2 FUNGSI LINIER

MATEMATIKA BISNIS BAB 2 FUNGSI LINIER MATEMATIKA BISNIS BAB FUNGSI LINIER Hikmah Agustin, S.P.,MM DEFINISI FUNGSI Fungsi adalah hubungan matematis antara suatu variabel dengan variabel lainna. Unsur-unsur pembentukan fungsi : 1. Variabel Variabel

Lebih terperinci

K13 Revisi Antiremed Kelas 11 Matematika Wajib

K13 Revisi Antiremed Kelas 11 Matematika Wajib K13 Revisi Antiremed Kelas 11 Matematika Wajib Program Linier - Latihan Soal Doc. Name: RK13AR11MATWJB0401 Version : 2016-10 halaman 1 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan

Lebih terperinci

muhammadamien.wordpress.com

muhammadamien.wordpress.com 1. 2. Gradien garis singgung di setiap titik dapat dinyatakan sebagai 34 maka nilai minimumnya 1 3 5 7 9. Jika nilai maksimum 3. Jika maka 4. 5. 1 3 4 5 6 1 6. 7. Luas daerah yang dibatasi oleh parabola

Lebih terperinci

Unit 2 KONSEP DASAR ALJABAR. Clara Ika Sari Pendahuluan

Unit 2 KONSEP DASAR ALJABAR. Clara Ika Sari Pendahuluan Unit KONSEP DASAR ALJABAR Clara Ika Sari Pendahuluan P ada unit ini kita akan mempelajari beberapa konsep dasar dalam aljabar seperti persamaan dan pertidaksamaan ang berbentuk linear dan kuadrat, serta

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL TAHUN PELAJARAN

SOAL DAN PEMBAHASAN UJIAN NASIONAL TAHUN PELAJARAN OAL DAN PEMBAHAAN UJIAN NAIONAL TAHUN PELAJARAN / MA/MA PROGRAM TUDI IP MATEMATIKA PAKET B Disusun KHAIRUL BAARI khairulfaiq.wordpress.com e-mail :muh_abas@ahoo.com OAL DAN PEMBAHAAN UN BIDANG TUDI MATEMATIKA

Lebih terperinci

MATEMATIKA UJIAN NASIONAL SMK2. Tes Persiapan

MATEMATIKA UJIAN NASIONAL SMK2. Tes Persiapan Tes Persiapan UJIAN NASIONAL SMK MATEMATIKA. Dengan orang pekerja selama hari dapat dihasilkan buah kain batik. Jika banak pekerja orang dan bekerja selama hari maka banak kain ang dihasilkan adalah A.

Lebih terperinci

skala = 550 mm = 55 cm 2. Nilai dari 8 81 A. 0 B. 1 C. 3 KUNCI D. 5 E. 7 Pembahasan: = = 3 3. Bentuk sederhana dari A. 74 C.

skala = 550 mm = 55 cm 2. Nilai dari 8 81 A. 0 B. 1 C. 3 KUNCI D. 5 E. 7 Pembahasan: = = 3 3. Bentuk sederhana dari A. 74 C. Andri Nurhidaat, S.Pd http://www.asiknabelajar.wrdpress.cm PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMK KELOMPOK TEKNOLOGI, KESEHATAN, DAN PERTANIAN /. Sebuah benda kerja jika digambar dengan skala

Lebih terperinci

A. Persamaan Kuadrat dan Fungsi Kuadrat. Salah satu akar persamaan kuadrat ( a ) (3a ) 3a 0 adalah, maka akar lainna adalah. Nilai m ang memenuhi agar persamaan kuadrat ( m ) (m ) ( m ) 0 mempunai dua

Lebih terperinci

Soal dan Pembahasannya.

Soal dan Pembahasannya. Soal dan Pembahasanna Perhatikan tabel di bawah ini! p q p q ~ q B B B S S B S S Nilai kebenaran dari pernataan majemuk p q ~ q pada tabel di atas adalah p q p q ~ q p q ~ q B B B S B B S S B B S B B S

Lebih terperinci

PROGRAM LINEAR. sudir15mks

PROGRAM LINEAR. sudir15mks PROGRAM LINEAR A. Sistem Pertidaksamaan Linear Dua Variabel Suatu garis dalam bidang koordinat dapat dinyatakan dengan persamaan yang berbentuk: x a x b a1 1 2 2 Persamaan semacam ini dinamakan persamaan

Lebih terperinci

a. Y= x 2-3x + 8 b. Y= x 2-6x + 8 c. Y= x 2-6x - 8 d. Y= -x 2 + 6x + 8 e. Y= x 2-3x + 8

a. Y= x 2-3x + 8 b. Y= x 2-6x + 8 c. Y= x 2-6x - 8 d. Y= -x 2 + 6x + 8 e. Y= x 2-3x + 8 1. Sebuah baju setelah dikenakan potongan harga dijual dengan harga Rp 0.000,00. Diskon baju tersebut 0 %. Maka harga baju sebelum didiskon adalah Rp 1.000,00 Rp 15.000,00 Rp.000,00 Rp 7.000,00 e. Rp 75.000,00.

Lebih terperinci

MODUL 1 : PROGRAM LINEAR

MODUL 1 : PROGRAM LINEAR MODUL 1 : PROGRAM LINEAR A. Pendahuluan Dalam kehidupan sehari-hari sering dijumpai aplikasi program linear, seperti pembangunan perumahan atau apartemen, pemakaian obat-obatan dalam penyembuhan pasien,

Lebih terperinci

TRY OUT UJIAN NASIONAL SMA TAHUN PELAJARAN 2016/2017

TRY OUT UJIAN NASIONAL SMA TAHUN PELAJARAN 2016/2017 TRY OUT UNBK KODE SOAL : TRY OUT UJIAN NASIONAL SMA TAHUN PELAJARAN / KERJASAMA BINTANG PELAJAR Bidang Studi Hari, Tanggal Waktu LEMBAR SOAL : MATEMATIKA IPA : Oktober M / Muharram H : Menit PETUNJUK UMUM.

Lebih terperinci

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0 BIDANG STUDI : MATEMATIKA 1. Harga 3 kg pepaya dan 5 kg jeruk adalah Rp 13.000, sedangkan harga 4 kg papaya dan 3 kg jeruk adalah Rp 10.000, maka harga 2 kg papaya dan 4 kg jeruk adalah. A. Rp 10.000 B.

Lebih terperinci

PROGRAM LINIER. Sumber: Art & Gallery

PROGRAM LINIER. Sumber: Art & Gallery 4 PROGRAM LINIER Sumber: Art & Gallery 114 Matematika X SMK Kelompok: Penjualan dan Akuntansi Standar kompetensi program linier terdiri atas empat kompetensi dasar. Dalam penyajian pada buku ini setiap

Lebih terperinci

Geri Achmadi Dwi Gustanti Dani Wildan Hakim Willi Sutanto

Geri Achmadi Dwi Gustanti Dani Wildan Hakim Willi Sutanto Geri Achmadi Dwi Gustanti Dani Wildan Hakim Willi Sutanto Hak Cipta pada Departemen Pendidikan Nasional Dilindungi Undang-undang Mahir Matematika untuk Kelas XII SMA/MA Program Bahasa Penulis : Geri Achmadi

Lebih terperinci

DINAS PENDIDIKAN DAN TENAGA KERJA MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA SMA KABUPATEN TANAH DATAR

DINAS PENDIDIKAN DAN TENAGA KERJA MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA SMA KABUPATEN TANAH DATAR DINAS PENDIDIKAN DAN TENAGA KERJA MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA SMA KABUPATEN TANAH DATAR NASKAH SOAL ULANGAN UMUM SEMESTER I Tahun Pelajaran / Mata Pelajaran : Matematika Kelas/Program

Lebih terperinci

Bab. Program Linear. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id)

Bab. Program Linear. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id) Bab II Program Linear 51 Tujuan Pembelajaran Setelah mempelajari bab ini, diharapkan kalian dapat 1. menjelaskan sistem pertidaksamaan linear dua variabel dan penyelesaiannya; 2. menentukan fungsi tujuan

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 05 PAKET Pilihan Ganda: Pilihlah satu jawaban ang paling tepat.. Ingkaran dari pernataan Jika air sungai meluap, maka kota kebanjiran dan semua warga kota

Lebih terperinci

2 adalah... adalah... a. 3 2

2 adalah... adalah... a. 3 2 Pilihlah salah satu jawaban ang tepat!. Bentuk sederhana dari adalah... a. d. ( ) b. e. c. 7. Nilai dari log 6 log log adalah... a. d. b. e. 6 c.. Sebuah toko bangunan membeli sak semen seharga Rp 600.000,00.

Lebih terperinci

( sman 4 yogyakarta) Page 1

( sman 4 yogyakarta) Page 1 PENYELESAIAN MASALAH PROGRAM LINIER Contoh : 1. Sekelompok tani transmigran mendapatkan 10 hektar tanah ang dapat di tanami padi, jagung, dan palawija lain. Karena keterbatasan sumber daa petani harus

Lebih terperinci

diunduh dari

diunduh dari diunduh dari http://www.pustakasoal.com Hak Cipta pada Departemen Pendidikan Nasional Dilindungi Undang-undang Hak Cipta Buku ini dibeli oleh Departemen Pendidikan Nasional dari Penerbit PT Visindo Media

Lebih terperinci

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER X IBROHIM AJI KUSUMA Pendekatan Sainti k Buku Siswa Nama Kelas No. Absen Matematika Lembar Kerja Siswa Program Linier Kurikulum

Lebih terperinci

e. y 8. Himpunan penyelesaian dari sistem persamaan 2x - 3y = - 4 dan 3x + 4y = 11 adalah x dan y. Nilai dari 2x + y = a. 2 d. 5 b. 3 e. 6 c.

e. y 8. Himpunan penyelesaian dari sistem persamaan 2x - 3y = - 4 dan 3x + 4y = 11 adalah x dan y. Nilai dari 2x + y = a. 2 d. 5 b. 3 e. 6 c. . Agar mendapat untung %, sebuah rumah harus dijual dengan harga Rp. 0.000.000,00. Harga pembelian rumah tersebut adalah. a. Rp 7.00.000,00 d. Rp.00.000,00 b. Rp 8.00.000,00 e. Rp.000.000,00 c. Rp 0.000.000,00.

Lebih terperinci

KUMPULAN SOAL SOAL. SOAL PILIHAN GANDA A. Berilah tanda silang (X) paad huruf a, b, c, d, e sesuai dengan pilihan jawaban yang paling tepat!

KUMPULAN SOAL SOAL. SOAL PILIHAN GANDA A. Berilah tanda silang (X) paad huruf a, b, c, d, e sesuai dengan pilihan jawaban yang paling tepat! KUMPULAN SOAL SOAL APROKSIMASI KESALAHAN SOAL PILIHAN GANDA A. Berilah tanda silang (X) paad huruf a, b, c, d, e sesuai dengan pilihan jawaban ang paling tepat!. Banakna angka sinifikan dari bilangan,

Lebih terperinci

Program Linear. Bab I

Program Linear. Bab I Program Linear 1 Bab I Program Linear Sumber: Ensiklopedia Pelajar, 1999 Motivasi Setiap pedagang, pengusaha, atau orang yang berkecimpung di bidang usaha pasti menginginkan keuntungan sebanyak-banyaknya

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007 UJIAN NASIONAL TAHUN PELAJARAN 2006/2007 PANDUAN MATERI MATEMATIKA Kelompok Sosial, Administrasi Perkantoran, dan Akuntansi (Bisnis dan Manajemen) PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS Hak Cipta

Lebih terperinci

E. Grafik Fungsi Kuadrat

E. Grafik Fungsi Kuadrat /9/05 Jurnal Materi Umum Persamaan Kuadrat Peta Konsep Fungsi Kuadrat Peta Konsep Daftar Hadir MateriE SoalLatihan5 PERSAMAAN DAN FUNGSI KUADRAT Kelas X, Semester E. Grafik Fungsi Kuadrat Menelesaikan

Lebih terperinci

Bab. Persamaan Garis Lurus. Pengertian Persamaan Garis Lurus Gradien Menentukan Persamaan Garis lurus

Bab. Persamaan Garis Lurus. Pengertian Persamaan Garis Lurus Gradien Menentukan Persamaan Garis lurus Bab Sumb er: Scien ce Enclopedia, 997 Persamaan Garis Lurus Dalam suatu perlombaan balap sepeda, seorang pembalap mengauh sepedana dengan kecepatan tetap. Setiap 5 detik, pembalap tersebut menempuh jarak

Lebih terperinci

SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS

SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS UJI KOMPETENSI 1.1 1. PT Lasin adalah suatu pengembang perumahan di daerah pemukiman baru. PT tersebut memiliki tanah seluas 12.000 meter persegi berencana

Lebih terperinci

SOAL-SOAL LATIHAN UN A35

SOAL-SOAL LATIHAN UN A35 SAL-SAL LATIHAN 1. UN A5 01 Penjahit Hidah Pantes akan membuat pakaian wanita dan pria. Untuk membuat pakaian wanita diperlukan bahan bergaris m dan bahan polos 1 m. Untuk membuat pakaian pria diperlukan

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007 UJIAN NASIONAL TAHUN PELAJARAN 006/007 PANDUAN MATERI MATEMATIKA Kelompok Seni, Pariwisata, dan Teknologi Kerumahtanggaan PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS Hak Cipta pada Pusat Penilaian Pendidikan

Lebih terperinci

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER X IBROHIM AJI KUSUMA Pendekatan Sainti k Buku Guru Nama Kelas No. Absen Matematika Lembar Kerja Siswa Program Linier Kurikulum

Lebih terperinci

DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/2014 LEMBAR SOAL

DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/2014 LEMBAR SOAL DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN / LEMBAR SOAL Mata Pelajaran : Matematika Jenjang : SMA/MA Program Studi : IPA Hari/Tanggal : Pebruari Jam : PETUNJUK UMUM. Isilah lembar jawaban tes uji coba

Lebih terperinci

ULANGAN SEMESTER GENAP TAHUN PELAJARAN 2009/2010. Hari, Tanggal : Senin, 17 Mei 2010 Waktu : WIB (120 menit)

ULANGAN SEMESTER GENAP TAHUN PELAJARAN 2009/2010. Hari, Tanggal : Senin, 17 Mei 2010 Waktu : WIB (120 menit) PEMERINTAH KABUPATEN DEMAK DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA SMK NEGERI 1 DEMAK Jalan Sultan Trenggono No. 87 Telp/Fax : (0291) 685519 Demak (Email : smk1dmk@yahoo.com) ULANGAN SEMESTER GENAP TAHUN

Lebih terperinci

B. Fungsi Sasaran dan Kendala dalam Program Linier

B. Fungsi Sasaran dan Kendala dalam Program Linier Peta Konsep Jurnal PetaKonsep Daftar Hadir MateriB SoalLatihan2 Materi Umum PROGRAM LINIER Kelas XI, Semester 3 B. Fungsi Sasaran dan Kendala dalam Program Linier Sistem Pertidaksamaan Linier Fungsi Sasaran

Lebih terperinci

SIAP UN 2013 SMK NEGERI 2 WONOGIRI 1

SIAP UN 2013 SMK NEGERI 2 WONOGIRI 1 SMK NEGERI 2 WONOGIRI 1 Pilihlah salah satu jawaban ang paling tepat! 1. Pembangunan suatu gedung akan diselesaikan dalam waktu 40 hari oleh 48 pekerja. Agar pembangunan tersebut dapat diselesaikan dalam

Lebih terperinci

PROGRAM LINEAR. Dasar Matematis

PROGRAM LINEAR. Dasar Matematis PROGRAM LINEAR Dasar Matematis PROGRAM LINIER adalah suatu teknik optimalisasi dimana variabel-variabelnya linier. Metode ini dipakai pada saat kita dihadapkan pada beberapa pilihan dengan batasan-batasan

Lebih terperinci

BOCORAN UJIAN NASIONAL TAHUN PELAJARAN 2015/2016 UTAMA. SMA/MA PROGRAM STUDI Bahasa. MATEMATIKA Selasa, 5 April 2016 ( )

BOCORAN UJIAN NASIONAL TAHUN PELAJARAN 2015/2016 UTAMA. SMA/MA PROGRAM STUDI Bahasa. MATEMATIKA Selasa, 5 April 2016 ( ) BOCORAN UJIAN NASIONAL TAHUN PELAJARAN 0/06 UTAMA SMA/MA PROGRAM STUDI Bahasa MATEMATIKA Selasa, April 06 (0.0 09.0) BALITBANG PAK ANANG KEMENTARIAN PAK ANANG DAN KEBUDAYAAN Mata Pelajaran Jenjang Program

Lebih terperinci

Mengubah kalimat verbal menjadi model matematika

Mengubah kalimat verbal menjadi model matematika LEMBAR KEGIATAN SISWA 3 Materi : Mengubah kalimat verbal menjadi model matematika Kelas Kelompok : : Nama Anggota : Kalian telah mempelajari cara membuat kalimat matematika, membuat grafik dari kalimat

Lebih terperinci

ISTIYANTO.COM PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPS. Kemampuan yang diuji UN 2009 = UN Materi. Soal UN 2009 Prediksi UN 2010

ISTIYANTO.COM PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPS. Kemampuan yang diuji UN 2009 = UN Materi. Soal UN 2009 Prediksi UN 2010 PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPS Materi Logika Matematika Kemampuan yang diuji UN 009 = UN 00 Menentukan nilai kebenaran suatu pernyataan majemuk Menentukan ingkaran suatu pernyataan Perhatikan

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) A. Kompetensi Inti SMK kelas XI : RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Satuan Pendidikan : SMK Negeri 1 Klaten Mata Pelajaran : Matematika Kelas/Semester : XI/3 Topik : Program Linier Waktu : 10 45 menit

Lebih terperinci

PETUNJUK UMUM TRY OUT UJIAN NASIONAL MATEMATIKA 2 5 0, 20; ;15%; ; ;25%;0, %; ;0, 20; ;0, 20;15%; 6 3

PETUNJUK UMUM TRY OUT UJIAN NASIONAL MATEMATIKA 2 5 0, 20; ;15%; ; ;25%;0, %; ;0, 20; ;0, 20;15%; 6 3 TRY OUT UJIAN NASIONAL MATEMATIKA SEKOLAH DASAR/MADRASAH IBTIDAIYAH TAHUN AJARAN 2012/2013 (Paket 1) PETUNJUK UMUM 1. Isikan nomor ujian, nama peserta, dan tanggal lahir pada Lembar Jawaban, sesuai petunjuk.

Lebih terperinci

Model soal Ujian Matematika kelas XII AP- UPW - TB. Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e!

Model soal Ujian Matematika kelas XII AP- UPW - TB. Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e! Model soal Ujian Matematika kelas XII AP- UPW - TB Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e!. Diketahui sistem pertidaksamaan x + 2y 0 ; 3x + 2y

Lebih terperinci

Sistem Persamaan Linier FTI-UY

Sistem Persamaan Linier FTI-UY BAB V Sistem Persamaan Linier Salah satu hal penting dalam aljabar linear dan dalam banak masalah matematika terapan adalah menelesaikan suatu sistem persamaan linear. Representasi Sistem Persamaan Linear

Lebih terperinci

3 4y = a. 3x + 5y 1 5 x + 5y 5. c. 5x 6y 30 x + 2y 2. e. 4x + 3y 16 2x 3y 10 y = x x + 9y x + y 100

3 4y = a. 3x + 5y 1 5 x + 5y 5. c. 5x 6y 30 x + 2y 2. e. 4x + 3y 16 2x 3y 10 y = x x + 9y x + y 100 Kunci Jawaban Bab I Program Linear Kuis 40 Daerah penelesaian 20 3 4 = 8 6 0 2 8 3 + 4 = 24 1. berbentuk segiempat Tes Pemahaman 1.1 1. a. 20 40 e. 7 + 5 = 35 7 5 4 3 d. f. 2 0 6 6 + 3 = 6 5 3. a. 3 +

Lebih terperinci

SOAL-SOAL LATIHAN PROGRAM LINEAR UJIAN NASIONAL

SOAL-SOAL LATIHAN PROGRAM LINEAR UJIAN NASIONAL SAL-SAL LATIHAN PRGRAM LINEAR UJIAN NASINAL Peserta didik memiliki kemampuan memahami konsep pada topik program linear. Peserta didik memilki kemampuan mengaplikan konsep kalkulus dalam masalah kontekstual

Lebih terperinci

PROGRAM LINIER. SOAL LATIHAN 01 A. Sistem Pertidaksamaan Linier Dua Variabel

PROGRAM LINIER. SOAL LATIHAN 01 A. Sistem Pertidaksamaan Linier Dua Variabel PROGRAM LINIER SOAL LATIHAN 01 A. Sistem Pertidaksamaan Linier Dua Variabel 01. Lukislah daerah penyelesaian sistem pertidaksamaan : 3x + y 6 3x + 5y 15 02. Lukislah daerah penyelesaian sistem pertidaksamaan

Lebih terperinci

KARTU SOAL UJIAN SEKOLAH TAHUN PELAJARAN 2010/2011. No. Soal. a. b. c. d. e.

KARTU SOAL UJIAN SEKOLAH TAHUN PELAJARAN 2010/2011. No. Soal. a. b. c. d. e. YYSN INSN INONSI MNIRI SKOLH MNNGH KJURUN SMK WIJY PUTR Kompetensi Keahlian : kuntansi, Multimedia, Teknik Kendaraan Ringan STTUS : TRKRITSI Jalan Raya enowo 1-3, (031) 7413061, 7404404 Fax. 7458343 Surabaya

Lebih terperinci

LATIHAN 2 PREDIKSI UJIAN NASIONAL 2010 MGMP MATEMATIKA SMK TEKNIK KAABUPATEN KLATEN

LATIHAN 2 PREDIKSI UJIAN NASIONAL 2010 MGMP MATEMATIKA SMK TEKNIK KAABUPATEN KLATEN LATIHAN PREDIKSI UJIAN NASIONAL 00 MGMP MATEMATIKA SMK TEKNIK KAABUPATEN KLATEN Pilihlah jawaban ang tepat di antara alternatip ang ada, dengan memberikan tanda bulatan pada a, b, c, d atau d!. Harga lusin

Lebih terperinci

Sistem Bilangan 06. UN-SMK-BIS adalah... Jika a = 4, b = 5 maka nilai dari

Sistem Bilangan 06. UN-SMK-BIS adalah... Jika a = 4, b = 5 maka nilai dari Sistem Bilangan 0. UN-SMK-PERT-0-0 Bentuk sederhana dari ( ) =... 7 8 9 8 0. UN-SMK-TEK-0-0 Hasil perkalian dari (a) - (a) =... a a a a a 0. UN-SMK-PERT-0-0 Bentuk sederhana dari 0. UN-SMK-TEK-0-0 6 6.

Lebih terperinci