muhammadamien.wordpress.com

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "muhammadamien.wordpress.com"

Transkripsi

1 1. 2. Gradien garis singgung di setiap titik dapat dinyatakan sebagai 34 maka nilai minimumnya Jika nilai maksimum 3. Jika maka

2 6. 7. Luas daerah yang dibatasi oleh parabola dan pada interval 8. Volume benda putar yang terjadi jika daerah yang dibatasi oleh 9. kurva, sumbu, garis dan garis diputar mengelilingi sumbu I III II V Himpunan penyelesaian pertidaksamaan,,, dan I II III IV V IV 2

3 Daerah yang diarsir pada gambar di atas merupakan penyelesaian dari sistem pertidaksamaan,,,,,,,,,,,,,,, 11. Dalam himpunan penyelesaian pertidaksamaan,, dan, jika maka nilai Agar fungsi dengan kendala,, dan mencapai minimum hanya di titik maka nilai konstanta yang memenuhi 13. Luas daerah parkir 176 m 2, jika lahan parkir tersebut digunakan untuk parkir mobil dan bus dengan luas rata-rata mobil 4 m 2 dan luas rata-rata bus 20 m 2. Daya muat maksimum lahan parkir tersebut hanya 20 kendaraan dengan biaya parkir untuk mobil Rp 1.000,00/jam dan biaya parkir untuk bus Rp 2.000,00/jam. Jika tempat parkir itu penuh maka hasil maksimumnya Rp ,00 Rp ,00 Rp ,00 Rp ,00 Rp ,00 3

4 14. Diketahui dan. Jika maka nilai Diketahui dan. Jika maka 16. Jika matriks dan maka determinan dari 17. Matriks memenuhi persamaan 18. Jika determinan matriks 20 maka nilai yang memenuhi atau atau atau atau atau 4

5 19. Ditentukan pernyataan (1) (2) (3) (4) Pernyataan yang benar (1) dan (2) (1) dan (3) (2) dan (3) (2) dan (4) (1), (2), (3) dan (4) 20. Empat bilangan positif membentuk barisan aritmatika. Jika bilangan pertama dan keempat 46 serta perkalian bilangan kedua dan ketiga 144 maka jumlah keempat bilangan tersebut Diketahui jumlah suku pertama suatu deret geometri. Jika dan maka 22. Batasan nilai agar deret mempunyai jumlah 5

6 23. Tiga bilangan membentuk barisan aritmatika. Jika suku ketiga ditambah 2 dan suku kedua dikurangi 2 diperoleh barisan geometri. Jika suku ketiga barisan aritmatika ditambah 2 maka hasilnya menjadi 4 kali suku pertama. Maka beda barisan aritmatika Parabola memotong sumbu di titik serta memotong sumbu di titik dan. Jika, dan membentuk barisan geometri yang jumlahnya 13, maka 25. Rheza menabung di Bank Rp ,00 setiap awal tahun dengan bunga majemuk 20% per tahun. Jumlah uang Rheza pada akhir tahun kelima Rp ,00 Rp ,00 Rp ,00 Rp ,00 Rp , Jika memenuhi persamaan maka sama dengan 27. Jarak kedua titik potong kurva dengan sumbu

7 28. Nilai yang memenuhi pertidaksamaan 29. Penyelesaian persamaan dan. Jika maka 30. Batasan nilai yang memenuhi pertidaksamaan atau atau atau atau 7

8 ESSAY 1. Tentukan a. b. 2. Sebuah pabrik mempunyai kayu, plastic dan kaca bertururt-turut kg, kg dan kg. Produk A memerlukan kayu, plastic dan kaca berturut-turut 1 kg, 3 kg dan 2 kg. Sedangkan Produk B memerlukan kayu, plastic dan kaca berturut-turut 3 kg, 4 kg dan 1 kg. Jika produk A dijual seharga Rp ,00 dan produk B dijual seharga Rp ,00 maka tentukan pendapatan maksimumnya. 3. Tentukan invers dari matriks 4. Suku pertama deret geometri tak hingga 3, sedangkan jumlah suku-suku bernomor ganjilnya 5. Tentukan jumlah deret dengan rasio positif. 5. Tentukan nilai yang memenuhi persamaan 8

Evaluasi Belajar Tahap Akhir Nasional TAHUN 1990 Matematika

Evaluasi Belajar Tahap Akhir Nasional TAHUN 1990 Matematika Evaluasi Belajar Tahap Akhir Nasional TAHUN 0 Matematika EBTANAS-IPS-0-0 x Nilai x R yang memenuhi ( ) = 8 EBTANAS-IPS-0-0 Bentuk sederhana dari + ( + ) 5 ( + 7 + EBTANAS-IPS-0-0 Ordinat titik balik grafik

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3 Pilihlah jawaban yang paling tepat!. Ordo dari matriks A = 7 A. x B. x C. x D. x x adalah.. Berikut ini yang termasuk Matriks identitas adalah... A. 7 B. 7 C. D. a b. Diketahui A = dan B = b A. B. C. D..

Lebih terperinci

PEMERINTAH KABUPATEN KEDIRI DINAS PENDIDIKAN SMA NEGERI 1 KANDANGAN JL. Hayam Wuruk No. 96 telp Kandangan

PEMERINTAH KABUPATEN KEDIRI DINAS PENDIDIKAN SMA NEGERI 1 KANDANGAN JL. Hayam Wuruk No. 96 telp Kandangan Pilihlah satu jawaban yang tepat.. (x x 4 ) dx.. ULANGAN AKHIR SEMESTER TAHUN PELAJARAN 007/008 Mata Pelajaran : Matematika Kelas / Program : XII / Ilmu Alam Hari, Tanggal : Waktu : 90 menit ( ) ` a. x

Lebih terperinci

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH. Apabila P dan q kalimat pernyataan, di mana ~p q kalimat bernilai salah, maka kalimat yang benar berikut ini, kecuali (d) p q (~p ~q) (~p ~q) ~ (~p

Lebih terperinci

B B S S B S S B S S B B S S S B B S B S S S S B B S B B

B B S S B S S B S S B B S S S B B S B S S S S B B S B B 1. Ingkaran pertanyaan: Petani panen beras atau harga beras murah. A. Petani panen beras dan harga beras mahal. B. Petani panen beras dan harga beras murah. C. Petani tidak panen beras dan harga beras

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Budi rajin menabung atau tidak mencuri, maka Ibu membelikan komputer () Ibu tidak membelikan komputer Kesimpulan yang sah adalah. a. Budi rajin menabung dan Budi mencuri

Lebih terperinci

SOAL LATIHAN UAS 12 IPA SMT GANJIL. 1. Hasil dari. 2. Hasil dari = Hasil dari dx... dx = Hasil dari. 5. Hasil dari. dx =

SOAL LATIHAN UAS 12 IPA SMT GANJIL. 1. Hasil dari. 2. Hasil dari = Hasil dari dx... dx = Hasil dari. 5. Hasil dari. dx = SOAL LATIHAN UAS IPA SMT GANJIL. Hasil dari. Hasil dari 7 ( ) ( ) d =.... Hasil dari d.... Hasil dari. Hasil dari 6. Hasil 6 6 9 6 d =... d =... d 9 = 7. Hasil 6 d = 8. Hasil dari cos sin d = 9. Hasil

Lebih terperinci

INDIKATOR 10 : Menyelesaikan masalah program linear 1. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y

INDIKATOR 10 : Menyelesaikan masalah program linear 1. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y INDIKATOR : Menyelesaikan masalah program linear. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y 8 8 X x + y 8; x + y ; x + y x + y 8; x + y ; x + y x + y 8; x + y ; x + y x + y 8; x

Lebih terperinci

M. PRAHASTOMI M. S. SISTEM PERSAMAAN LINEAR. A. a = 2 dan b = 4 B. a = 2 dan b = 4 C. a = 2 dan b = 4 D. E. a = 2

M. PRAHASTOMI M. S. SISTEM PERSAMAAN LINEAR. A. a = 2 dan b = 4 B. a = 2 dan b = 4 C. a = 2 dan b = 4 D. E. a = 2 SISTEM PERSAMAAN LINEAR M. PRAHASTOMI M. S. 0. MD-8-8 B C G E F A D H 6 7 8 6 Jika gradien garis AB = m, gradien garis CD = m, gradien garis EF = m dan gradien garis GH = m, maka... () m = () m = 0 ()

Lebih terperinci

NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1. Beda Barisan Aritmatika. b =.. RUMUS SUKU KE N: King s Learning Be Smart Without Limits

NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1. Beda Barisan Aritmatika. b =.. RUMUS SUKU KE N: King s Learning Be Smart Without Limits NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1 A. PENGERTIAN BARISAN DAN DERET Barisan bilangan adalah kelompok bilangan yang tersusun menurut aturan (pola) tertentu. Deret bilangan adalah penjumlahan

Lebih terperinci

1) Perhatikan bentuk di bawah: U 1 U 2 U 3 U 4 U n 2, 5, 8, 11, dengan: U 3 = suku

1) Perhatikan bentuk di bawah: U 1 U 2 U 3 U 4 U n 2, 5, 8, 11, dengan: U 3 = suku NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1 A. PENGERTIAN BARISAN DAN DERET Barisan bilangan adalah kelompok bilangan yang tersusun menurut aturan (pola) tertentu. Deret bilangan adalah penjumlahan

Lebih terperinci

PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09)

PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09) PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09) 1. Luas daerah yang dibatasi oleh kurva y = x + x + 5, sumbu x, dan 0 x 1... satuan luas (A) (C) (E) 5 (B) 0 (D) 5 1. Diketahui segitiga ABC, siku-siku di

Lebih terperinci

PILIHLAH SALAH SATU JAWABAN YANG BENAR

PILIHLAH SALAH SATU JAWABAN YANG BENAR PETOENJOEK OEMOEM. Periksa Soal Try Out (IPA) dan Nomor Tes sebelum Anda menjawab. Jumlah soal sebanyak 0 butir soal yang terdiri dari :. Pengisian pada lembar jawaban (LJK) yang disediakan PILIHLAH SALAH

Lebih terperinci

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010 PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh

Lebih terperinci

adalah. 3. Bentuk sederhana dari A.!!" B.!!" 4. Bentuk sederhana dari A. ( 15 5 ) B C. 4 ( 15 5 ) D. 2 ( ) E. 4 ( ) log 16

adalah. 3. Bentuk sederhana dari A.!! B.!! 4. Bentuk sederhana dari A. ( 15 5 ) B C. 4 ( 15 5 ) D. 2 ( ) E. 4 ( ) log 16 . Diketahui premis-premis berikut : Premis : Jika Dasikin belajar maka ia dapat mengerjakan soal Premis : Dasikin tidak dapat mengerjakan soal atau ia bahagia Premis : Dasikin belajar Kesimpulan yang sah

Lebih terperinci

Ujian Akhir Nasional Tahun Pelajaran 2002/2003

Ujian Akhir Nasional Tahun Pelajaran 2002/2003 DOKUMEN NEGARA SANGAT RAHASIA Ujian Akhir Nasional Tahun Pelajaran 00/00 SMK Kelompok Teknologi Industri Paket Utama (P) MATEMATIKA (E-) TEKNIK SELASA, MEI 00 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL

Lebih terperinci

ULANGAN TENGAH SEMESTER 1 KELAS XII PROGRAM IPA TAHUN PELAJARAN 2011/ = a b c d e b. 5 c.

ULANGAN TENGAH SEMESTER 1 KELAS XII PROGRAM IPA TAHUN PELAJARAN 2011/ = a b c d e b. 5 c. ULANGAN TENGAH SEMESTER KELAS XII PROGRAM IPA TAHUN PELAJARAN 0/0. = ln+ b. log+ + ln+ log+. 8 + + = + + b. + ++ + ++ + ++ 8 + ++. + = + + b. + + + + + + + +. + = b. sin++ sin ++ cos++. = b.. 7. Luas daerah

Lebih terperinci

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan

Lebih terperinci

UN SMA IPS 2012 Matematika

UN SMA IPS 2012 Matematika UN SMA IPS 01 Matematika Kode Soal A Doc. Name: UNSMAIPS01MATA Doc. Version : 01-1 halaman 1 01. Ingkaran pernyataan Pada hari Senin siswa SMAN memakai sepatu hitam dan atribut lengkap adalah. Pada hari

Lebih terperinci

KISI-KISI SOAL UJIAN SEKOLAH TAHUN PELAJARAN 2014/2015

KISI-KISI SOAL UJIAN SEKOLAH TAHUN PELAJARAN 2014/2015 KISI-KISI SOAL UJIAN SEKOLAH TAHUN PELAJARAN 2014/2015 Mata Pelajaran : Matematika Alokasi Waktu : 120 menit Kelas : XII IPA Penyusun Standar Kompetensi Kompetensi Dasar Indikator Materi No Soal Menggunakan

Lebih terperinci

B. y = 1 x 2 1 UN-SMK-TEK Jika A = 2 0

B. y = 1 x 2 1 UN-SMK-TEK Jika A = 2 0 UN-SMK-TEK-04-0 Jarak kota A ke kota B pada peta 0 cm. Jika skala peta : 0.000, maka jarak kedua kota sebenarnya adalah..., km km 0 km.00 km.000 km UN-SMK-TEK-04-0 Hasil perkalian dari (4a) - (a) =...

Lebih terperinci

PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA

PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 49 PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut

Lebih terperinci

SOAL LATIHAN UN MATEMATIKA IPS 00. Negasi dari pernyataan Matematika tidak mengasyikkan dan membosankan adalah. Matematika mengasyikkan atau membosankan Matematika mengasyikkan atau tidak membosankan Matematika

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Ibu tidak memasak nasi, maka Ayah membeli nasi di warung dan makan di rumah () Ibu memasak nasi Kesimpulan yang sah adalah. a. Ayah tidak membeli nasi di warung atau

Lebih terperinci

BANK SOAL MATEMATIKA IPS

BANK SOAL MATEMATIKA IPS BANK SOAL MATEMATIKA IPS Tim Guru Matematika SMAN 1 Kendari KENDARI 2013 1. Bentuk sederhana dari adalah... A. B. E. Jawaban : E Bentuk sederhana dari : 2. Nilai x yang memenuhi persamaan adalah... A.

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2008

SOAL UN DAN PENYELESAIANNYA 2008 1. Ingkaran dari pernyataan, "Beberapa bilangan prima adalah bilangan genap." adalah... Semua bilangan prima adalah bilangan genap Semua bilangan prima bukan bilangan genap Beberapa bilangan prima bukan

Lebih terperinci

Matematika EBTANAS Tahun 1995

Matematika EBTANAS Tahun 1995 Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Grafik fungsi kuadrat di samping (,) persamaannya y = + + y = + y = + (0,) y = + y = + EBT-SMA-9-0 Akar-akar persamaan kuadrat = 0 adalah dan. Persamaan kuadrat

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Ayah tidak memarahi Badu, maka Badu bahagia dan tidak nakal () Jika Ayah tidak menyayangi Badu, maka Badu tidak bahagia atau nakal Kesimpulan yang sah adalah. a. Jika

Lebih terperinci

1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah.

1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah. 1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah. Luas maksimum daerah yang dibatasi oleh kawat tersebut adalah... 3,00

Lebih terperinci

Siap UAN Matematika. Oleh. Arwan Hapsan. Portal Pendidikan Gratis Indonesia.

Siap UAN Matematika. Oleh. Arwan Hapsan. Portal Pendidikan Gratis Indonesia. Siap UAN Matematika Oleh Arwan Hapsan Portal Pendidikan Gratis Indonesia Http://okor.id Copyright okor.id Artikel ini boleh dicopy,diubah, dikutip, di cetak dalam media kertas atau yang lain, dipublikasikan

Lebih terperinci

SOAL PENJAJAKAN UN MATEMATIKA 2012 PROVINSI DIY

SOAL PENJAJAKAN UN MATEMATIKA 2012 PROVINSI DIY SOAL PENJAJAKAN UN MATEMATIKA 0 PROVINSI DIY. Suatu proyek akan selesai dalam waktu 0 hari oleh 0 orang pekerja. Tambahan pekerja yang dibutuhkan agar proyek tersebut selesai dalam waktu 90 hari adalah.

Lebih terperinci

Departemen Pendidikan Nasional TRY OUT I MKKS DKI JAKARTA UJIAN NASIONAL Tahun Pelajaran

Departemen Pendidikan Nasional TRY OUT I MKKS DKI JAKARTA UJIAN NASIONAL Tahun Pelajaran Departemen Pendidikan Nasional TRY OUT I MKKS DKI JAKARTA UJIAN NASIONAL Tahun Pelajaran 009 00 Petunjuk Umum:. Tulislah nomor dan nama pada lembar jawaban!. Periksa dan bacalah soal dengan teliti!. Dahulukam

Lebih terperinci

1. Fungsi Objektif z = ax + by

1. Fungsi Objektif z = ax + by Nilai Optimum Suatu Fungsi Objektif, Program Linear, Fungsi Objektif, Cara Menentukan, Contoh Soal, Rumus, Pembahasan, Metode Uji Titik Sudut, Metode Garis Selidik, Matematika Nilai Optimum Suatu Fungsi

Lebih terperinci

SEKOLAH TINGGI ILMU STATISTIK BADAN PUSAT STATISTIK SOAL UJIAN MASUK PROGRAM D-IV TAHUN AKADEMIK 2011/2012 MINGGU, 5 JUNI 2011 MATEMATIKA 90 MENIT

SEKOLAH TINGGI ILMU STATISTIK BADAN PUSAT STATISTIK SOAL UJIAN MASUK PROGRAM D-IV TAHUN AKADEMIK 2011/2012 MINGGU, 5 JUNI 2011 MATEMATIKA 90 MENIT SEKOLAH TINGGI ILMU STATISTIK BADAN PUSAT STATISTIK SOAL UJIAN MASUK PROGRAM D-IV TAHUN AKADEMIK 2011/2012 MINGGU, 5 JUNI 2011 MATEMATIKA 90 MENIT Petunjuk Di bawah setiap soal dicantumkan 5 kemungkinan

Lebih terperinci

PREDIKSI SOAL UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPA

PREDIKSI SOAL UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPA Pilihlah salah satu jawaban yang paling benar! PREDIKSI SOAL UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPA TAHUN PELAJARAN 2012 / 2013 1. Ditentukan premis-premis: I. Jika Badu rajin bekerja, maka ia disayang

Lebih terperinci

UN SMA IPS 2011 Matematika

UN SMA IPS 2011 Matematika UN SMA IPS 0 Matematika Kode Soal Doc. Name: UNSMAIPS0MAT999 Version: 0- halaman 0. Koordinat titik potong grafik fungsi kuadrat y = - - dengan sumbu X dan sumbu Y (A) (-,0),(,0), dan (0,) (B) (-,0),(,0),dan

Lebih terperinci

7. Bentuk sederhana dari. adalah.. 4. Jika log 2 = a dan log 3 = b, maka nilai log 18 = a. a + 2b b. 2a + b c. a + b d. a 2 + b e.

7. Bentuk sederhana dari. adalah.. 4. Jika log 2 = a dan log 3 = b, maka nilai log 18 = a. a + 2b b. 2a + b c. a + b d. a 2 + b e. 1. Suatu pekerjaan jika dikerjakan 15 orang dapat diselesaikan dalam waktu 30 hari. Apabila pekerjaan tersebut ingin diselesaikan dalam waktu 25 hari, jumlah pekerja yang harus ditambah a. 3 orang b. 5

Lebih terperinci

Prediksi US Mat Wajib log16 log9 =

Prediksi US Mat Wajib log16 log9 = Bentuk Eksponen dan Logaritma Bentuk sederhana dari =.... + + Bentuk sederhana dari =.... 3 2 2 2 + 3 2 3 + 2 2 1 2 2 3 2 Nilai dari + log16 log9 =.... Persamaan dan Pertidaksamaan Nilai Mutlak jika >

Lebih terperinci

Dengan merasionalkan penyebut, hasil dari. 1. Diketahui premis-premis: I Jika cuaca cerah, maka Andi pergi sekolah

Dengan merasionalkan penyebut, hasil dari. 1. Diketahui premis-premis: I Jika cuaca cerah, maka Andi pergi sekolah 00-008-00- . Diketahui premis-premis: I Jika cuaca cerah, maka Andi pergi sekolah II Andi tidak pergi sekolah atau Andi bermain bola Kesimpulan yang sah dari premis-premis tersebut adalah.... cuaca cerah

Lebih terperinci

1. Dari suatu barisan aritmetika diketahui suku ke-15 adalah 222 dan suku ke-12 adalah 57. Suku ke-15 barisan ini adalah. A. 62 B. 68 C. 72 D. 74 E.

1. Dari suatu barisan aritmetika diketahui suku ke-15 adalah 222 dan suku ke-12 adalah 57. Suku ke-15 barisan ini adalah. A. 62 B. 68 C. 72 D. 74 E. . Dari suatu barisan aritmetika diketahui suku ke-5 adalah dan suku ke- adalah 57. Suku ke-5 barisan ini adalah. A. 6 B. 68 7 D. 74 E. 76. Suku ketiga dan suku keenam barisan geometri berturut-turut adalah

Lebih terperinci

ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN MATEMATIKA XII BAHASA

ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN MATEMATIKA XII BAHASA ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN 29-21 MATEMATIKA XII BAHASA Hari / tanggal :... Desember 29 Waktu : 12 menit Pilih salah satu jawaban ang benar dengan memberi tanda silang

Lebih terperinci

SMA / MA Bahasa Mata Pelajaran : Matematika

SMA / MA Bahasa Mata Pelajaran : Matematika Latihan Soal UN 0 Paket Sekolah Menengah Atas / Madrasah Aliyah SMA / MA Bahasa Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban Ujian

Lebih terperinci

UN SMA IPA 2008 Matematika

UN SMA IPA 2008 Matematika UN SMA IPA 008 Matematika Kode Soal D0 Doc. Version : 0-06 halaman 0. Ingkaran dari pernataan "Ada bilangan prima adalah bilangan genap." Semua bilangan prima adalah bilangan genap. Semua bilangan prima

Lebih terperinci

UN SMA IPS 2009 Matematika

UN SMA IPS 2009 Matematika UN SMA IPS 009 Matematika Kode Soal P88 Doc. Name: UNSMAIPS009MATP88 Doc. Version : 011-06 halaman 1 01. Diberikan beberapa pernyataan: Premis 1: Jika Santi sakit maka ia pergi ke dokter Premis : Jika

Lebih terperinci

ISTIYANTO.COM PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPS. Kemampuan yang diuji UN 2009 = UN Materi. Soal UN 2009 Prediksi UN 2010

ISTIYANTO.COM PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPS. Kemampuan yang diuji UN 2009 = UN Materi. Soal UN 2009 Prediksi UN 2010 PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPS Materi Logika Matematika Kemampuan yang diuji UN 009 = UN 00 Menentukan nilai kebenaran suatu pernyataan majemuk Menentukan ingkaran suatu pernyataan Perhatikan

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPS

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPS PEMBAHASAN UN SMA TAHUN PELAJARAN 009/010 MATEMATIKA PROGRAM STUDI IPS PEMBAHAS : 1. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si.. Marfuah, M.T. 4. Rohmitawati, S.Si. EDITOR : Dra. Puji Iryanti, M.Sc.

Lebih terperinci

2009 ACADEMY QU IDMATHCIREBON

2009 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPA Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Perhatikan

Lebih terperinci

8. Nilai x yang memenuhi 2 log 2 (4x -

8. Nilai x yang memenuhi 2 log 2 (4x - 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 2. Fungsi kuadrat yang mempunyai nilai maksimum

Lebih terperinci

UN SMK AKP 2015 Matematika

UN SMK AKP 2015 Matematika UN SMK AKP 015 Matematika Soal Doc. Name: UNSMKAKP015MAT999 Doc. Version : 016-03 halaman 1 01. Seorang peternak yang memiliki 0 ekor kambing mempunyai persediaan pakan untuk 30 hari. Jika 5 kambing laku

Lebih terperinci

Ujian Nasional Tahun 2003 Matematika

Ujian Nasional Tahun 2003 Matematika Ujian Nasional Tahun 00 Matematika MK-TEK-0-0 Skala suatu peta : 00.000. Jika jarak kota A dan kota B pada peta,5 cm, maka jarak kota A dan kota B sebenarnya 0,5 km,5 km,5 km 5 km.50 km MK-TEK-0-0 Pada

Lebih terperinci

SOAL ToT MATEMATIKA TEKNIK 2018

SOAL ToT MATEMATIKA TEKNIK 2018 1. Nilai dari =... A. 4 B. 6 C. 1 D. 12 E. 18 2. Bentuk sederhana dari ( ) =... A. a 5. b 8. c 4 B. a 5. b 2. c 4 C. a 6. b 8. c 4 D. a 6. b 8. c 4 E. a 6. b 2. c 4 3. Bentuk sederhana dari A. B. C. D.

Lebih terperinci

SOLUSI DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 2013/2014

SOLUSI DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 SOLUSI DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 0/0 TES UJI COBA UJIAN NASIONAL SMA/MA MATEMATIKA IPS 7 7.... SOAL B6

Lebih terperinci

U J I A N A K H I R S E K O L A H Tahun Pelajaran Mata Diklat : MATEMATIKA Kelas : XI Prakerin Semester : Genap

U J I A N A K H I R S E K O L A H Tahun Pelajaran Mata Diklat : MATEMATIKA Kelas : XI Prakerin Semester : Genap PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMK NEGERI 6 MALANG Jl. Ki Ageng Gribig 28 Malang 65138 Telp. 0341-722216 Fax. 0341-720138 www.smkn6-malang.sch.id E-mail : @smkn6-malang.sch.id ISO SMM 9001-2008

Lebih terperinci

UN SMA 2013 PRE Matematika IPS

UN SMA 2013 PRE Matematika IPS UN SMA 201 PRE Matematika IPS Kode Soal Doc. Name: UNSMA2014PREMATIPS999 Doc. Version : 2014-01 halaman 1 01. (1) Jika jalan basah maka hari hujan (2) Jika hari tidak hujan maka jalan tidak basah () Jika

Lebih terperinci

B. x = C. x = 2 3, x = 2 7, y = 21 dan P (1, 25) D. x = 2 3, x = 2 7, y = 21 dan P (1, 25) E. x = 2 3, x = 2 7, y = 21 dan P ( 1, 25) UN-SMK-TEK-03-09

B. x = C. x = 2 3, x = 2 7, y = 21 dan P (1, 25) D. x = 2 3, x = 2 7, y = 21 dan P (1, 25) E. x = 2 3, x = 2 7, y = 21 dan P ( 1, 25) UN-SMK-TEK-03-09 UN-SMK-TEK-0-0 Skala suatu peta : 00.000. Jika jarak kota A dan kota B pada peta, cm, maka jarak kota A dan kota B sebenarnya 0, km, km, km km.0 km UN-SMK-TEK-0-0 Pada sensus pertanian di suatu desa, dari

Lebih terperinci

Antiremed Kelas 10 Matematika

Antiremed Kelas 10 Matematika Antiremed Kelas 10 Matematika Persiapan UAS -1 Doc. Name: K1AR10MATWJB01UAS doc. Version : 015-04 halaman 1 01. Nilai dari a 1 a 6 adalah. a 8 a 9 a 10 a 11 a 1 0. 8 60. ( B) 6 5 6 5 5 A, B, C, dan D salah

Lebih terperinci

SIAP UN 2013 SMK NEGERI 2 WONOGIRI 1

SIAP UN 2013 SMK NEGERI 2 WONOGIRI 1 SMK NEGERI 2 WONOGIRI 1 Pilihlah salah satu jawaban ang paling tepat! 1. Pembangunan suatu gedung akan diselesaikan dalam waktu 40 hari oleh 48 pekerja. Agar pembangunan tersebut dapat diselesaikan dalam

Lebih terperinci

Matematika EBTANAS Tahun 1991

Matematika EBTANAS Tahun 1991 Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Persamaan sumbu simetri dari parabola y = 8 x x x = 4 x = x = x = x = EBT-SMA-9-0 Salah satu akar persamaan kuadrat mx 3x + = 0 dua kali akar yang lain, maka nilai

Lebih terperinci

2. Hasil dari =. a. 4 3 b. 2 3 c. 3 d. 3 2 e adalah. 3. Bentuk sederhana pecahan. a. 4 ( ) b. d. ( ) c.

2. Hasil dari =. a. 4 3 b. 2 3 c. 3 d. 3 2 e adalah. 3. Bentuk sederhana pecahan. a. 4 ( ) b. d. ( ) c. 1. Untuk menempuh jarak 80 km diperlukan 16 liter bensin. Jika bensin yang diperlukan 12 liter, maka jarak yang dapat ditempuh adalah. a. 171 km b. 300 km c. 360 km 00 km e. 60 km 2. Hasil dari 8 3 12

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 00/009. BAB VI Logika Matematika p q Konjungsi Bernilai salah jika ada yang salah (jika salah satu dari p dan q salah atau kedua-duanya

Lebih terperinci

>> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER 1 SMA KELAS XII IPA <<

>> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER 1 SMA KELAS XII IPA << >> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER SMA KELAS XII IPA

Lebih terperinci

SOAL: MATEMATIKA Kelas : XII Mipa

SOAL: MATEMATIKA Kelas : XII Mipa SOAL: MATEMATIKA Kelas : XII Mipa Pilihlah salah satu jawaban yang tepat! Diberikan premis-preimis:. Jika Siti sakit maka dia pergi ke dokter.. Jika Siti pergi ke dokter maka dia diberi obat. Negasi dari

Lebih terperinci

SMA / MA Bahasa Mata Pelajaran : Matematika

SMA / MA Bahasa Mata Pelajaran : Matematika Latihan Soal UN Paket Sekolah Menengah Atas / Madrasah Aliyah SMA / MA Bahasa Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban Ujian

Lebih terperinci

SOAL PREDIKSI VI. I. Pilihlah jawaban yang paling benar!

SOAL PREDIKSI VI. I. Pilihlah jawaban yang paling benar! SOAL PREDIKSI VI I. Pilihlah jawaban yang paling benar! 1. Kiki melakukan perjalanan Surabaya Solo mengendarai sepeda motor dengan kecepatan rata-rata 80 km/jam dalam waktu 2 jam. Jika kecepatannya menjadi

Lebih terperinci

SMA / MA IPA Mata Pelajaran : Matematika

SMA / MA IPA Mata Pelajaran : Matematika Latihan Soal UN 00 Paket Sekolah Menengah Atas / Madrasah Aliyah IPA SMA / MA IPA Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

A. 100 B. 25 C. 20 D. 10 E Bentuk sederhana dari pecahan bentuk akar. adalah. A B C D

A. 100 B. 25 C. 20 D. 10 E Bentuk sederhana dari pecahan bentuk akar. adalah. A B C D , PEMERINTAH KABUPATEN KENDAL DINAS PENDIDIKAN PEMUDA DAN OLAH RAGA SMK NEGERI KENDAL Alamat : Jl. Boja - Limbangan KM Salamsari, Boja, Kendal Telp.(9) 88 Fax. (9) e-mail : smktelukendal@yahoo.com. Pak

Lebih terperinci

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C.

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C. 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 Kunci : C Persamaan fungsi : F(x)

Lebih terperinci

LEMBAR SOAL National Math Olympiad 4 th PDIM UB 2015

LEMBAR SOAL National Math Olympiad 4 th PDIM UB 2015 LEMBAR SOAL National Math Olympiad 4 th PDIM UB 015 PETUNJUK UNTUK PESERTA 1. Tes terdiri dari dua bagian. Bagian pertama terdiri dari 50 soal pilihan ganda dan bagian kedua terdiri dari 5 soal uraian..

Lebih terperinci

DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 LEMBAR SOAL

DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 LEMBAR SOAL DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 03/0 LEMBAR SOAL Mata Pelajaran : Matematika Jenjang : SMA/MA Program Studi

Lebih terperinci

Matematika Ebtanas IPS Tahun 1996

Matematika Ebtanas IPS Tahun 1996 Matematika Ebtanas IPS Tahun 6 EBTANAS-IPS-6-0 Koordinattitik balik grafik y = adalah (, ) (, ) (, ) (, 0) (, ) EBTANAS-IPS-6-0 Akar-akar persamaan kuadrat + = 0 adalah α dan β. Persamaan kuadrat baru

Lebih terperinci

Pilihlah jawaban yang paling tepat. 1. Ingkaran dari pernyataan: (~ q r) adalah... A. ~ ~ (~ q r) B. ( q ~ r ) C. ( ~ q) ~ r D. ~ (~ q r) E.

Pilihlah jawaban yang paling tepat. 1. Ingkaran dari pernyataan: (~ q r) adalah... A. ~ ~ (~ q r) B. ( q ~ r ) C. ( ~ q) ~ r D. ~ (~ q r) E. Pilihlah jawaban yang paling tepat. Ingkaran dari pernyataan: (~ q r) adalah... A. ~ ~ (~ q r) B. ( q ~ r ) C. ( ~ q) ~ r D. ~ (~ q r) E. ( q ~ r) Jawaban : B Ingkaran p ( q r ) adalah (p ( q r )) p (q

Lebih terperinci

Pembahasan Matematika IPA SIMAK UI 2009

Pembahasan Matematika IPA SIMAK UI 2009 Pembahasan Matematika IPA SIMAK UI 2009 Kode 924 Oleh Kak Mufidah 1. Diketahui fungsi. Agar fungsi tersebut senantiasa berada di bawah sumbu x, maka nilai m yang mungkin adalah Agar fungsi tersebut senantiasa

Lebih terperinci

UN SMA 2014 Matematika IPS

UN SMA 2014 Matematika IPS UN SMA 04 Matematika IPS Kode Soal Doc. Name: UNSMA04MATIPS999 Doc. Version : 0-0 halaman 0. Negasi dari pernyataan Semua bilangan rasional adalah bilangan real dan prima adalah... Tidak ada bilangan rasional

Lebih terperinci

Uji Coba Ujian Nasional tahun 2009 Satuan pendidikan

Uji Coba Ujian Nasional tahun 2009 Satuan pendidikan Uji Coba Ujian Nasional tahun 009 Satuan pendidikan Mata pelajaran Program Waktu. Diketahui premis-premis berikut : ). p ~ q ). q r : SMA : Matematika : IPA : 0 menit.. Negasi (ingkaran) dari kesimpulan

Lebih terperinci

SANGGAR 14 SMA JAKARTA TIMUR

SANGGAR 14 SMA JAKARTA TIMUR SANGGAR 4 SMA JAKARTA TIMUR SOAL DAN SOLUSI TRY OUT BERSAMA KE- Selasa, 0 Januari 05. Diketahui dua premis: Premis : Jika Romeo sakit maka Juliet menangis Premis : Juliet tersenyum-senyum Negasi dari kerimpulan

Lebih terperinci

Matematika EBTANAS Tahun 1986

Matematika EBTANAS Tahun 1986 Matematika EBTANAS Tahun 986 EBT-SMA-86- Bila diketahui A = { x x bilangan prima < }, B = { x x bilangan ganjil < }, maka eleman A B =.. 3 7 9 EBT-SMA-86- Bila matriks A berordo 3 dan matriks B berordo

Lebih terperinci

DAPATKAN SOAL SBMPTN & PEMBAHASAN 2015/2016, KLIK DI >> 1

DAPATKAN SOAL SBMPTN & PEMBAHASAN 2015/2016, KLIK DI >>  1 DAPATKAN SOAL SBMPTN & PEMBAHASAN 2015/2016, KLIK DI >> WWW.E-SBMPTN.COM 1 DAPATKAN SOAL SBMPTN & PEMBAHASAN 2015/2016, KLIK DI >> WWW.E-SBMPTN.COM 2 NAMA : NO PESERTA : 1. Perhatikan premis-premis berikut.

Lebih terperinci

IPS. Untuk Sekolah Menengah Atas. þ Program Tahunan (Prota) þ Program Semester (Promes) þ Silabus. þ Rencana Pelaksanaan Pembelajaran (RPP)

IPS. Untuk Sekolah Menengah Atas. þ Program Tahunan (Prota) þ Program Semester (Promes) þ Silabus. þ Rencana Pelaksanaan Pembelajaran (RPP) PEMBELAJARAN STANDAR ISI 2006 þ Program Tahunan (Prota) þ Program Semester (Promes) þ Silabus þ Rencana Pelaksanaan Pembelajaran (RP MATEMATIKA Untuk Menengah Atas 12 IPS CV. SINDHUNATA Matematika 12 A

Lebih terperinci

adalah. 1. Bentuk sederhana dari A. 5 B. 5 C. 25 D. 20 E Bentuk sederhana dari ToT MATEMATIKA PARIWISATA

adalah. 1. Bentuk sederhana dari A. 5 B. 5 C. 25 D. 20 E Bentuk sederhana dari ToT MATEMATIKA PARIWISATA 1. Bentuk sederhana dari 10 a c b A. 0 a b 2 a b 2 c c 6 2 adalah. 20 a c b B. 10 a c b C. 2 0 0 20 a b c D. 20 10 a b c E. 0 0 2 2. Bentuk sederhana dari 6 12 2 27 7 adalah... A. 12 B. C. 2 D. 8 E.. Bentuk

Lebih terperinci

UN SMA 2015 Matematika IPS

UN SMA 2015 Matematika IPS UN SMA 05 Matematika IPS Kode Soal Doc. Name: UNSMA05MATIPS999 Doc. Version : 05- halaman 0. Negasi dari pernyataan Matematika tidak mengasyikkan atau membosankan Matematika mengasyikkan atau membosankan.

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPS

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPS PEMBAHASAN UN SMA TAHUN PELAJARAN 009/010 MATEMATIKA PROGRAM STUDI IPS PEMBAHAS : 1. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. EDITOR : Dra. Puji Iryanti, M.Sc.

Lebih terperinci

SOAL PREDIKSI XIV. I. Pilihlah jawaban yang paling benar!

SOAL PREDIKSI XIV. I. Pilihlah jawaban yang paling benar! SOAL PREDIKSI XIV I. Pilihlah jawaban yang paling benar! 1. Kiki melakukan perjalanan Surabaya Solo mengendarai sepeda motor dengan kecepatan rata-rata 85 km/jam dalam waktu 7 jam. Jika Dika menempuh jarak

Lebih terperinci

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPA UJIAN AKHIR TAHUN 2015

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPA UJIAN AKHIR TAHUN 2015 UHMK (UNIVERSITS MUHMMDYH FROF. DR. HMK) LTIHN SOL DN SOLUSI MTEMTIK IP UJIN KHIR THUN 0 I. Pilihlah jawaban yang paling benar!. Diberikan premis-premis seperti berikut. ) Dia bukan pujaan hatiku atau

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM 2 GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 2010/2011

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM 2 GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 2010/2011 PEMERINTAH KAUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 00/0 Mata Pelajaran : Matematika Satuan Pendidikan : SMA/MA Program : ahasa Hari/ Tanggal

Lebih terperinci

( )( ) ISTIYANTO.COM. Pembahasan: Nomor 2 Bentuk sederhana dari A. B. C. D. E. 5 a b. Pembahasan: Nomor 3. Bentuk sederhana dari

( )( ) ISTIYANTO.COM. Pembahasan: Nomor 2 Bentuk sederhana dari A. B. C. D. E. 5 a b. Pembahasan: Nomor 3. Bentuk sederhana dari ISTIYANTO.COM Pembahasan: Nomor (a b Bentuk sederhana dari (a b A. a b a b a b ab 9 a b 8 adalah Pembahasan: Soal UN Matematika IPA Dapatkan Buku Bank Soal Matematika SMA karangan Istiyanto untuk memudahkan

Lebih terperinci

Matematika Ebtanas IPS Tahun 1997

Matematika Ebtanas IPS Tahun 1997 Matematika Ebtanas IPS Tahun 99 EBTANAS-IPS-9-0 Bentuk sederhana dari 86 6 + 8 6 9 6 0 6 6 6 EBTANAS-IPS-9-0 Bentuk sederhana dari 8 + 6 + + 6 6 + + EBTANAS-IPS-9-0 x+ Nilai x yang memenuhi persamaan =

Lebih terperinci

BARISAN DAN DERET 1. A. Barisan dan Deret Aritmatika 11/13/2015. Peta Konsep. A. Barisan dan Deret Aritmatika

BARISAN DAN DERET 1. A. Barisan dan Deret Aritmatika 11/13/2015. Peta Konsep. A. Barisan dan Deret Aritmatika Jurnal Peta Konsep Daftar Hadir MateriA SoalLatihan Materi Umum BARISAN DAN DERET 1 Kelas X, Semester A. Barisan dan Deret Aritmatika Barisan dan Deret Aritmatika Barisan dan Deret Soal Aplikasi dalam

Lebih terperinci

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =...

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =... 1 1. Diketahui: Premis 1 : Jika hari hujan maka tanah basah. Premis : Tanah tidak basah. Ingkaran dari penarikan kesimpulan yang sah dari premis-premis di atas adalah.... Agar F(x) = (p - ) x² - (p - 3)

Lebih terperinci

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 33 PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut

Lebih terperinci

SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012

SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 1. Akar-akar persamaan kuadrat x 2 +ax - 4=0 adalah p dan q. Jika p 2-2pq + q 2 =8a, maka nilai a =... A. -8 B. -4 C. 4 D. 6 E. 8 2. Persamaan

Lebih terperinci

Matematika SMA/MA. Nama : No. Peserta :

Matematika SMA/MA. Nama : No. Peserta : DOKUMEN NEGARA SANGAT RAHASIA Matematika SMA/MA Nama : No. Peserta : 1. Ujian Nasional 2014 Diketahui premis-premis berikut Premis 1: Jika semua pejabat negara kuat imannya, maka korupsi tidak merajalela.

Lebih terperinci

2013 ACADEMY QU IDMATHCIREBON

2013 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2012/2013 Jenjang Sekolah : SMA Hari/Tanggal : Rabu/17 April 2013 Program Studi : IPA Waktu : 07.30 09.30 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Diketahui

Lebih terperinci

MATEMATIKA DASAR 16. Jika maka Jawab : E 17. Diketahui premis-premis sebagai berikut : 1) Jika maka 2) atau Jika adalah peubah pada himpunan bilangan real, nilai yang memenuhi agar kesimpulan dari kedua

Lebih terperinci

m, selalu di atas sumbu x, batas batas nilai m yang memenuhi grafik fungsi tersebut adalah.

m, selalu di atas sumbu x, batas batas nilai m yang memenuhi grafik fungsi tersebut adalah. . Di berikan premis sebagai berikut : Premis : Jika terjadi hujan lebat atau mendapat air kiriman maka Jakarta banjir Premis : Jalan menjadi macet dan aktivitas kerja terhambat jika Jakarta banjir Kesimpulan

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

SOAL TO UN SMA MATEMATIKA

SOAL TO UN SMA MATEMATIKA 1 1) Perhatikan premis-premis berikut. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis di atas

Lebih terperinci

SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 2012

SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 2012 SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 0. Negasi dari semua siswa rajin belajar untuk menghadapi UN, adalah... A. tidak semua siswa rajin belajar untuk menghadapi UN B. semua siswa

Lebih terperinci

SOAL PREDIKSI XIII. I. Pilihlah jawaban yang paling benar!

SOAL PREDIKSI XIII. I. Pilihlah jawaban yang paling benar! SOAL PREDIKSI XIII I. Pilihlah jawaban yang paling benar! 1. Kiki melakukan perjalanan Surabaya Solo mengendarai sepeda motor dengan kecepatan rata-rata 80 km/jam dalam waktu 2 jam. Jika kecepatannya menjadi

Lebih terperinci

PREDIKSI UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPS TAHUN PELAJARAN

PREDIKSI UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPS TAHUN PELAJARAN PREDIKSI UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPS TAHUN PELAJARAN 0-0. Negasi dari pernyataan, Jika Harmelia lulus ujian maka ia akan melanjutkan kuliah di luar negeri adalah... Harmelia lulus ujian

Lebih terperinci