U J I A N A K H I R S E K O L A H Tahun Pelajaran Mata Diklat : MATEMATIKA Kelas : XI Prakerin Semester : Genap

Save this PDF as:
Ukuran: px
Mulai penontonan dengan halaman:

Download "U J I A N A K H I R S E K O L A H Tahun Pelajaran Mata Diklat : MATEMATIKA Kelas : XI Prakerin Semester : Genap"

Transkripsi

1 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMK NEGERI 6 MALANG Jl. Ki Ageng Gribig 28 Malang Telp Fax ISO SMM U J I A N A K H I R S E K O L A H Tahun Pelajaran Mata Diklat : MATEMATIKA Kelas : XI Prakerin Semester : Genap KERJAKAN SOAL BERIKUT DENGAN MEMILIH JAWABAN YANG PALING TEPAT! 1. Sebuah kereta api mewah tiap gerbong penumpangnya terdiri atas kelas I dan II yang dapat memuat 65 orang. Setiap penumpang kelas I berhak membawa bagasi 200kg dan penumpang kelas II hanya 80kg, tempat bagasi memiliki daya muat 6400kg. Model matematikanya yang memenuhi pernyataan di atas adalah... x 0 ; y 0 ; x + y 65 ; 200x + 80 y 6400 x 0 ; y 0 ; x + y 65 ; 5x + 2y 160 x 0 ; y 0 ; x + y 65 ; 200x + 80 y 6400 x 0 ; y 0 ; x + y 65 ; 5x + 2y 160 x 0 ; y 0 ; x + y 65 ; 5x + 2 y Himpunan penyelesaian sistem pertidaksamaan 5x + y 10 ; 2x + y 8 ; dan y 2 ditunjukkan oleh daerah I II III IV V 3. Daerah yang diarsir pada gambar di bawah adalah himpunan penyelesaian dari sistem pertidaksamaan 5x + 3y 30, x - 2y 4, x 0, y 0 5x + 3y 30, x - 2y 4, x 0, y 0 3x + 5y 30, 2x - y 4, x 0, y 0 3x + 5y 30, 2x - y 4, x 0, y 0 3x + 5y 30, 2x - y 4, x 0, y 0

2 4. Seorang tukang roti mempunyai bahan A, B dan C masing-masing sebanyak 160 kg, 110 kg dan 150 kg. Roti I memerlukan 2 kg bahan A, 1 kg bahan B dan 1 Kg bahan C Roti II memerlukan 1 kg bahan A, 2 kg bahan B dan 3 Kg bahan C Sebuah roti I dijual dengan harga Rp dan sebuah roti II dijual dengan harga Rp , pendapatan maksimum yang dpat diperoleh tukang roti tersebut adalah Rp ,- Rp ,- Rp ,- Rp ,- Rp ,- 5. Diketahui matrik A= [ ] ; dan B = [ ], maka hasil dari A + B adalah... [ ] [ ] [ ] [ ] [ ] 6. Jika diketahui matriks K= [ ]; L= [ ], dan K + L=[ ] maka nilai x dan y berturut-turut adalah dan 3 10 dan 0 10 dan 8 10 dan -4 8 dan 0 7. Nilai determinan A=[ ] adalah Determinan dari matrik A [ ]adalah Invers dari A= [ ] adalah... [ ] [ ] [ ] [ ] [ ]

3 10. Jika dan, maka nilai adalah Jika dan, maka adalah Jika, maka adalah Jika f(x) = 2 x, g(x) = x 2 3, dan h(x) = 4x, maka nilai dari ( h o g o f )(1) = Semua persamaan garis berikut mempunyai gradien m =, kecuali... 2y = x + 1 2y x + 4 = 0 2y + x = 0 y = x + 3 y = x Gradien garis yang melalui titik (-10,5) dan titik (-5,-5) adalah Gradien dari garis yang melalui titik O(0,0) dan titik (-8,6) adalah...

4 17. Suatu garis lurus melalui titik (2,-3) dan bergradien -5. Persamaan garis lurus tersebut adalah... 2y = -10x + 14 y = -5x 3 2y = -3x 5 2y = 15x 10 3y = -2x Persamaan garis yang melalui titik (1,2) dan bergradien -1 adalah... y = x + 1 y = -x + 3 y = x 2 x + y = 3 y = -x persamaan garis yang sejajar garis 2x + 5y 1 = 0 dan melalui titik (2,3) adalah... -2x + 5y = 19 2x + 5y = 19-2x 5y = 20 2x + 5y = -19 2x + 5y = Persamaan garis yang tegak lurus dengan garis 3y + 2x = 0 dan melalui titik (-3,-5) adalah... 3y = 2x 9 3y = -2x 24 2y = 3x 1 2y = -3x 19 2y = -3x Koordinat titik potong garis 4x + 3y = 7 dan 3x 2y = 1 adalah... (-1,-1) (-1,1) (1,-1) (1,1) (0,0) 22. Diketahui sebuah segitiga ABC sebagai berikut : A Panjang AB = 10 cm, besar sudut B = 30 o, sudut C = 45 o, maka panjang AC adalah.. B C Diketahui sebuah segtiga ABC dengan panjang sisi AB = 5 cm dan AC = 12 cm, sudut B = 30 o, sudut C = 60 o. Maka keliling segitiga ABC tersebut adalah. 30 cm 25 cm 20 cm 15 cm 30 cm

5 24. Perhatikan segitiga berikut. 4 A 6 Besar cos sudut ABC adalah... B 8 C 25. Diketahui segitiga seperti gambar berikut. Luas segitiga adalah... cm 2. 3 cm o 8 cm 26. Sebuah segitiga samasisi dengan panjang sisinya 6 cm. Maka Luas segitiga samasisi tersebut adalah. 27 cm 2 36 cm 2 9 cm 2 9 cm 2 6 cm Jika diketahui suku pertama 6 dengan rasio, maka jumlah deret geometri tak hingga adalah Diketahui jumlah deret geometri tak hingga 54 dengan suku pertama 18, maka rasionya adalah 29. Diketahui jumlah deret geometri tak hingga 64 dengan rasio, maka suku pertama-nya adalah

6 Sebuah pita dipotong-potong membentuk deret geometri tak hingga. Jika deret yang terbentuk sebagai berikut: 18 m + 6 m + 2 m + m +.. Hitung panjang pita sebelum dipotong! 27 m 30 m 32 m 36 m 54 m JAWABLAH PERTANYAAN DI BAWAH INI DENGAN TEPAT DAN JELAS! 1. Suatu perusahaan Real Estate akan membangun rumah di atas tanah seluas m², yang terdiri atas dua tipe rumah. Rumah tipe I memerlukan tanah seluas 300 m², dan rumah tipe II seluas 200 m². Banyak rumah yang akan dibangun tidak lebih dari 96 unit. Tentukan model matematika yang menggambarkan pernyataan tersebut? 2. Perhatikan gambar berikut! 1 Tentukan sistem pertidaksamaan yang tepat untuk melukiskan gambar di samping? 1 3. Diketahui A= [ ] ; dan B = [ ], tentukan matriks A 2B? 4. Jika A= [ ], tentukan? 5. Fungsi f, g, dan h didefinisikan sebagai berikut :, dan. Tentukan fungsi ( h o g o f )(x)? 6. Tentukan persamaan garis yang sejajar dengan garis 3x 2y + 5 = 0 dan melalui titik (0,0)? 7. Tentukan persamaan garis yang melalui (2,-3) dan mempunyai gradien 4? 8. Perhatikan segitiga PQR di bawah ini : Q Jika panjang PQ = 12 cm, besar sudut P = 60 o, panjang QR = 4 cm, tentukan besar sinus sudut R? R P 9. Diketahui barisan geometri Tentukan jumlah deret tak hingga? 10. Diketahui jumlah deret geometri tak hingga 4 dengan suku pertama 1, tentukan rasio dari deret tersebut?

PEMERINTAH KABUPATEN KEDIRI DINAS PENDIDIKAN SMA NEGERI 1 KANDANGAN JL. Hayam Wuruk No. 96 telp Kandangan

PEMERINTAH KABUPATEN KEDIRI DINAS PENDIDIKAN SMA NEGERI 1 KANDANGAN JL. Hayam Wuruk No. 96 telp Kandangan Pilihlah satu jawaban yang tepat.. (x x 4 ) dx.. ULANGAN AKHIR SEMESTER TAHUN PELAJARAN 007/008 Mata Pelajaran : Matematika Kelas / Program : XII / Ilmu Alam Hari, Tanggal : Waktu : 90 menit ( ) ` a. x

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kelas 11 Matematika Persiapan UAS -1 Doc. Name: K1AR11MATWJB01UAS doc. Version : 01-11 halaman 1 01. Nilai maksimum dari 0x + 8 untuk x dan y yang memenuhi x + y 0, x + y 8, 0 0 dan 0 y 8 adalah

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =...

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =... 1 1. Diketahui: Premis 1 : Jika hari hujan maka tanah basah. Premis : Tanah tidak basah. Ingkaran dari penarikan kesimpulan yang sah dari premis-premis di atas adalah.... Agar F(x) = (p - ) x² - (p - 3)

Lebih terperinci

PREDIKSI UAN MATEMATIKA 2008 Oleh: Heribertus Heri Istiyanto, S.Si Blog:

PREDIKSI UAN MATEMATIKA 2008 Oleh: Heribertus Heri Istiyanto, S.Si   Blog: PREDIKSI UAN MATEMATIKA 2008 Oleh: Heribertus Heri Istiyanto, S.Si Email: sebelasseptember@yahoo.com Blog: http://istiyanto.com Berikut soal-soal yang dapat Anda gunakan untuk latihan dalam menghadapi

Lebih terperinci

SOAL LATIHAN UAS 12 IPA SMT GANJIL. 1. Hasil dari. 2. Hasil dari = Hasil dari dx... dx = Hasil dari. 5. Hasil dari. dx =

SOAL LATIHAN UAS 12 IPA SMT GANJIL. 1. Hasil dari. 2. Hasil dari = Hasil dari dx... dx = Hasil dari. 5. Hasil dari. dx = SOAL LATIHAN UAS IPA SMT GANJIL. Hasil dari. Hasil dari 7 ( ) ( ) d =.... Hasil dari d.... Hasil dari. Hasil dari 6. Hasil 6 6 9 6 d =... d =... d 9 = 7. Hasil 6 d = 8. Hasil dari cos sin d = 9. Hasil

Lebih terperinci

1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah.

1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah. 1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah. Luas maksimum daerah yang dibatasi oleh kawat tersebut adalah... 3,00

Lebih terperinci

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3 Pilihlah jawaban yang paling tepat!. Ordo dari matriks A = 7 A. x B. x C. x D. x x adalah.. Berikut ini yang termasuk Matriks identitas adalah... A. 7 B. 7 C. D. a b. Diketahui A = dan B = b A. B. C. D..

Lebih terperinci

D. (1 + 2 ) 27 E. (1 + 2 ) 27

D. (1 + 2 ) 27 E. (1 + 2 ) 27 1. Nilai dari untuk x = 4 dan y = 27 adalah... A. (1 + 2 ) 9 B. (1 + 2 ) 9 C. (1 + 2 ) 18 D. (1 + 2 ) 27 E. (1 + 2 ) 27 2. Persamaan 2x² + qx + (q - 1) = 0, mempunyai akar-akar x 1 dan x 2. Jika x 1 2

Lebih terperinci

Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0

Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0 Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0 PETUNJUK UMUM :. Isikan identitas Anda ke dalam Lembar Jawaban Komputer

Lebih terperinci

Matematika EBTANAS Tahun 1986

Matematika EBTANAS Tahun 1986 Matematika EBTANAS Tahun 986 EBT-SMA-86- Bila diketahui A = { x x bilangan prima < }, B = { x x bilangan ganjil < }, maka eleman A B =.. 3 7 9 EBT-SMA-86- Bila matriks A berordo 3 dan matriks B berordo

Lebih terperinci

8. Nilai x yang memenuhi 2 log 2 (4x -

8. Nilai x yang memenuhi 2 log 2 (4x - 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 2. Fungsi kuadrat yang mempunyai nilai maksimum

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2B TAHUN 2010

TRY OUT MATEMATIKA PAKET 2B TAHUN 2010 TRY OUT MATEMATIKA PAKET B TAHUN 00. Diketahui premis- premis : () Jika Andi penurut maka ia disayang nenek. () Andi seorang anak penurut Ingkaran kesimpulan premis- premis tersebut adalah... Andi seorang

Lebih terperinci

adalah. 1. Bentuk sederhana dari A. 5 B. 5 C. 25 D. 20 E Bentuk sederhana dari ToT MATEMATIKA PARIWISATA

adalah. 1. Bentuk sederhana dari A. 5 B. 5 C. 25 D. 20 E Bentuk sederhana dari ToT MATEMATIKA PARIWISATA 1. Bentuk sederhana dari 10 a c b A. 0 a b 2 a b 2 c c 6 2 adalah. 20 a c b B. 10 a c b C. 2 0 0 20 a b c D. 20 10 a b c E. 0 0 2 2. Bentuk sederhana dari 6 12 2 27 7 adalah... A. 12 B. C. 2 D. 8 E.. Bentuk

Lebih terperinci

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C.

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C. 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 Kunci : C Persamaan fungsi : F(x)

Lebih terperinci

Matematika EBTANAS Tahun 1991

Matematika EBTANAS Tahun 1991 Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Persamaan sumbu simetri dari parabola y = 8 x x x = 4 x = x = x = x = EBT-SMA-9-0 Salah satu akar persamaan kuadrat mx 3x + = 0 dua kali akar yang lain, maka nilai

Lebih terperinci

SOAL PREDIKSI VI. I. Pilihlah jawaban yang paling benar!

SOAL PREDIKSI VI. I. Pilihlah jawaban yang paling benar! SOAL PREDIKSI VI I. Pilihlah jawaban yang paling benar! 1. Kiki melakukan perjalanan Surabaya Solo mengendarai sepeda motor dengan kecepatan rata-rata 80 km/jam dalam waktu 2 jam. Jika kecepatannya menjadi

Lebih terperinci

muhammadamien.wordpress.com

muhammadamien.wordpress.com 1. 2. Gradien garis singgung di setiap titik dapat dinyatakan sebagai 34 maka nilai minimumnya 1 3 5 7 9. Jika nilai maksimum 3. Jika maka 4. 5. 1 3 4 5 6 1 6. 7. Luas daerah yang dibatasi oleh parabola

Lebih terperinci

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R}

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R} 1. Persamaan (m - 1)x 2-8x - 8m = 0 mempunyai akar-akar real, maka nilai m adalah... -2 m -1-2 m 1-1 m 2 Kunci : C D 0 b 2-4ac 0 (-8)² - 4(m - 1) 8m 0 64-32m² + 32m 0 m² - m - 2 0 (m - 2)(m + 1) 0 m -1

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kelas 11 Matematika Persiapan UAS - Latihan Soal Doc. Name: K13AR11MATWJB0UAS doc. Version : 016-0 halaman 1 01. Nilai maksimum dari 0x + 8 untuk x dan y yang memenuhi x + y 0, x + y 8, 0 0 dan

Lebih terperinci

04-05 P23-P UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A )

04-05 P23-P UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A ) 0-0 P3-P 0-3 UJIAN NASIONAL SMA/MA Tahun Pelajaran 00/00 MATEMATIKA (D0) PROGRAM STUDI IPA ( U T A M A ) P 0-0 P3-P 0-3 MATEMATIKA Program Studi : IPA MATA PELAJARAN Hari/Tanggal : Rabu, Juni 00 Jam :

Lebih terperinci

A. 100 B. 25 C. 20 D. 10 E Bentuk sederhana dari pecahan bentuk akar. adalah. A B C D

A. 100 B. 25 C. 20 D. 10 E Bentuk sederhana dari pecahan bentuk akar. adalah. A B C D , PEMERINTAH KABUPATEN KENDAL DINAS PENDIDIKAN PEMUDA DAN OLAH RAGA SMK NEGERI KENDAL Alamat : Jl. Boja - Limbangan KM Salamsari, Boja, Kendal Telp.(9) 88 Fax. (9) e-mail : smktelukendal@yahoo.com. Pak

Lebih terperinci

TRY OUT UJIAN NASIONAL SMA/MA MATEMATIKA IPS 02 MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA DINAS PENDIDIKAN DAN KEBUDAYAAN PEMERINTAH KOTA BATAM

TRY OUT UJIAN NASIONAL SMA/MA MATEMATIKA IPS 02 MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA DINAS PENDIDIKAN DAN KEBUDAYAAN PEMERINTAH KOTA BATAM TRY OUT UJIAN NASIONAL SMA/MA 01 MATEMATIKA IPS 0 MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA DINAS PENDIDIKAN DAN KEBUDAYAAN PEMERINTAH KOTA BATAM 01 hakcipta MGMP Matematika Kota Batam paket 0 MATA

Lebih terperinci

SOAL ToT MATEMATIKA TEKNIK 2018

SOAL ToT MATEMATIKA TEKNIK 2018 1. Nilai dari =... A. 4 B. 6 C. 1 D. 12 E. 18 2. Bentuk sederhana dari ( ) =... A. a 5. b 8. c 4 B. a 5. b 2. c 4 C. a 6. b 8. c 4 D. a 6. b 8. c 4 E. a 6. b 2. c 4 3. Bentuk sederhana dari A. B. C. D.

Lebih terperinci

TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2016/2017

TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2016/2017 TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2016/2017 LEMBAR SOAL Mata Pelajaran : MATEMATIKA Satuan Pendidikan : SMA/MA Program : BAHASA Hari, Tanggal : Sabtu, 18 Februari 2017 Waktu : 120 Menit PETUNJUK UMUM

Lebih terperinci

Matematika EBTANAS Tahun 1999

Matematika EBTANAS Tahun 1999 Matematika EBTANAS Tahun 999 EBT-SMA-99-0 Akar-akar persamaan kuadrat + = 0 adalah α dan β. Persamaan kuadrat baru yang akar-akarnya (α + ) dan (β + ) + = 0 + 7 = 0 + = 0 + 7 = 0 + = 0 EBT-SMA-99-0 Akar-akar

Lebih terperinci

Soal dan Pembahasan UN Matematika Program IPA 2008

Soal dan Pembahasan UN Matematika Program IPA 2008 Soal dan Pembahasan UN Matematika Program IPA 2008. Diketahui premis premis : () Jika hari hujan, maka udara dingin. (2) Jika udara dingin, maka ibu memakai baju hangat. (3) Ibu tidak memakai baju hangat

Lebih terperinci

Matematika Ebtanas IPS Tahun 1997

Matematika Ebtanas IPS Tahun 1997 Matematika Ebtanas IPS Tahun 99 EBTANAS-IPS-9-0 Bentuk sederhana dari 86 6 + 8 6 9 6 0 6 6 6 EBTANAS-IPS-9-0 Bentuk sederhana dari 8 + 6 + + 6 6 + + EBTANAS-IPS-9-0 x+ Nilai x yang memenuhi persamaan =

Lebih terperinci

2009 ACADEMY QU IDMATHCIREBON

2009 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPA Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Perhatikan

Lebih terperinci

5. Jika n memenuhi 25

5. Jika n memenuhi 25 1. Bima naik taksi dari Kota A ke Kota B yang berjarak 7 kilometer. Besarnya argo taksi adalah Rp 7.000,- untuk 1 kilometer pertama, kemudian bertambah Rp 5.000,- untuk tiap 500 meter berikutnya. Besarnya

Lebih terperinci

INDIKATOR 10 : Menyelesaikan masalah program linear 1. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y

INDIKATOR 10 : Menyelesaikan masalah program linear 1. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y INDIKATOR : Menyelesaikan masalah program linear. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y 8 8 X x + y 8; x + y ; x + y x + y 8; x + y ; x + y x + y 8; x + y ; x + y x + y 8; x

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK TEKNOLOGI PAKET II A KOTA SURABAYA

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK TEKNOLOGI PAKET II A KOTA SURABAYA LATIHAN UJIAN NASIONAL TAHUN PELAJARAN 00-0 SMK NEGERI DAN SWASTA KOTA SURABAYA MATEMATIKA KELOMPOK TEKNOLOGI PAKET II A MGMP MATEMATIKA SMK NEGERI / SWASTA KOTA SURABAYA M A T E M A T I K A S M K T E

Lebih terperinci

Matematika Ujian Akhir Nasional Tahun 2004

Matematika Ujian Akhir Nasional Tahun 2004 Matematika Ujian Akhir Nasional Tahun 00 UAN-SMA-0-0 Persamaan kuadrat yang akar-akarnya dan adalah x + x + 0 = 0 x + x 0 = 0 x x + 0 = 0 x x 0 = 0 x + x + 0 = 0 UAN-SMA-0-0 Suatu peluru ditembakkan ke

Lebih terperinci

7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian

7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian 1. Persamaan kuadrat yang akarakarnya 5 dan -2 x² + 7x + 10 = 0 x² - 7x + 10 = 0 x² + 3x + 10 = 0 x² + 3x - 10 = 0 x² - 3x - 10 = 0 2. Suatu peluru ditembakkan ke atas. Tinggi peluru pada t detik dirumuskan

Lebih terperinci

a. Rp ,00 b. Rp ,00 c. Rp ,00 d. Rp ,00 e. Rp ,00

a. Rp ,00 b. Rp ,00 c. Rp ,00 d. Rp ,00 e. Rp ,00 , PEMERINTAH KABUPATEN KENDAL DINAS PENDIDIKAN PEMUDA DAN OLAH RAGA SMK NEGERI KENDAL Alamat : Jl. Boja - Limbangan KM Salamsari, Boja, Kendal Telp.(94) 788 Fa. (94) 76 e-mail : smktelukendal@yahoo.com.

Lebih terperinci

Ujian Nasional Tahun Pelajaran 2005/2006

Ujian Nasional Tahun Pelajaran 2005/2006 Ujian Nasional Tahun Pelajaran 005/006 P Copyright oke.or.id Artikel ini boleh dicopy,diubah, dikutip, di cetak dalam media kertas atau yang lain, dipublikasikan kembali dalam berbagai bentuk dengan tetap

Lebih terperinci

B. x = C. x = 2 3, x = 2 7, y = 21 dan P (1, 25) D. x = 2 3, x = 2 7, y = 21 dan P (1, 25) E. x = 2 3, x = 2 7, y = 21 dan P ( 1, 25) Diketahui A = 1

B. x = C. x = 2 3, x = 2 7, y = 21 dan P (1, 25) D. x = 2 3, x = 2 7, y = 21 dan P (1, 25) E. x = 2 3, x = 2 7, y = 21 dan P ( 1, 25) Diketahui A = 1 UN-SMK-PERT-0-0 Skala suatu peta : 00.000. Jika jarak kota A dan kota B pada peta, cm, maka jarak kota A dan kota B sebenarnya adalah... 0, km, km, km km.0 km UN-SMK-PERT-0-0 Pada suatu sensus pertanian

Lebih terperinci

Soal Paket A. adalah. 1. Nilai dari 27 A. 12 B. 1 C. 1 D. 11 E Bentuk sederhana dari. 3. Bentuk sederhana dari E B. 6 C. 3 D. 9 E.

Soal Paket A. adalah. 1. Nilai dari 27 A. 12 B. 1 C. 1 D. 11 E Bentuk sederhana dari. 3. Bentuk sederhana dari E B. 6 C. 3 D. 9 E. Soal Paket A. Nilai dari 7 4 adalah. A. B. C. D. E.. Bentuk sederhana dari adalah. A. B. C. D. 9 E.. Bentuk sederhana dari A. 4 6 B. 6 C. 6 D. 6 ( ) adalah. E. 6 4 9 4. Nilai dari log log log adalah. A.

Lebih terperinci

SOAL PREDIKSI XIV. I. Pilihlah jawaban yang paling benar!

SOAL PREDIKSI XIV. I. Pilihlah jawaban yang paling benar! SOAL PREDIKSI XIV I. Pilihlah jawaban yang paling benar! 1. Kiki melakukan perjalanan Surabaya Solo mengendarai sepeda motor dengan kecepatan rata-rata 85 km/jam dalam waktu 7 jam. Jika Dika menempuh jarak

Lebih terperinci

A. 3 B. 1 C. 1 D. 2 E. 5 B. 320 C. 240 D. 200 E x Fungsi invers dari f x ( 1. adalah.

A. 3 B. 1 C. 1 D. 2 E. 5 B. 320 C. 240 D. 200 E x Fungsi invers dari f x ( 1. adalah. . Diketahui premis premis : () Jika Badu rajin belajar dan, maka Ayah membelikan bola basket () Ayah tidak membelikan bola basket Kesimpulan yang sah A. Badu rajin belajar dan Badu patuh pada orang tua

Lebih terperinci

UN SMK PSP 2015 Matematika

UN SMK PSP 2015 Matematika UN SMK PSP 201 Matematika Soal Doc. Name: UNSMKPSP201MAT999 Doc. Version : 2016-0 halaman 1 01. Sebuah mobil menghabiskan 8 liter bensin untuk menempuh jarak 20 km, apabila mobil tersebut menghabiskan

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010 TRY OUT MATEMATIKA PAKET A TAHUN 00. Diketahui premis premis () Jika hari hujan terus menerus maka masyarakat kawasan Kaligawe gelisah atau mudah sakit. () Hujan terus menerus. Ingkaran kesimpulan premis

Lebih terperinci

TRY OUT UN MATEMATIKA SMA IPA 2013

TRY OUT UN MATEMATIKA SMA IPA 2013 TRY OUT UN MATEMATIKA SMA IPA 0 Berilah tanda silang (x) pada huruf a, b, c, d, atau e di depan jawaban yang benar!. Diketahui premis-premis berikut. Jika Yudi rajin belajar maka ia menjadi pandai. Jika

Lebih terperinci

SOAL PREDIKSI XIII. I. Pilihlah jawaban yang paling benar!

SOAL PREDIKSI XIII. I. Pilihlah jawaban yang paling benar! SOAL PREDIKSI XIII I. Pilihlah jawaban yang paling benar! 1. Kiki melakukan perjalanan Surabaya Solo mengendarai sepeda motor dengan kecepatan rata-rata 80 km/jam dalam waktu 2 jam. Jika kecepatannya menjadi

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2009

SOAL UN DAN PENYELESAIANNYA 2009 1. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis diatas adalah... A. Saya giat belajar dan

Lebih terperinci

UN SMA 2017 Matematika IPS

UN SMA 2017 Matematika IPS UN SMA 017 Matematika IPS Soal UN SMA 017 - Matematika IPS Doc. Name: UNSMA017MATIPS999 Version: 017-10 Halaman 1 01. Persamaan grafik fungsi kuadrat pada gambar berikut adalah... X 8 0 4 Y (A) y = x -

Lebih terperinci

6. Perhatikan grafik berikut! Y x

6. Perhatikan grafik berikut! Y x 1. Jika Jarak sebenarnya antara kota Surakarta dan kota Semarang adalah 125 km, maka jarak kedua kota pada peta dengan skala 1 : 2.000.000 adalah. a. 62,5 cm b. 25 cm c. 6,25 cm d. 2,5 cm e. 0,625 cm 2.

Lebih terperinci

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3 Nama : Ximple Education No. Peserta : 08-6600-77. Nilai dari A. B. C. D. E. 6 0 0 7. Bentuk sederhana 6 =. A. 9 B. 9 + C. 9 D. 9 E. + 9. Nilai dari ( A. B. 7 8 C. 9 6 log log log 6 6 log 0 log 6 + log

Lebih terperinci

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010 PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 00 Mata Pelajaran : Matematika Kelas : XII IPA Alokasi Waktu : 0

Lebih terperinci

2 - x. 5. Persamaan garis k yang sejajar dengan garis l : x 3y + 6 = 0 dan melalui titik (3, 2) adalah

2 - x. 5. Persamaan garis k yang sejajar dengan garis l : x 3y + 6 = 0 dan melalui titik (3, 2) adalah . Dari sebidang tanah diketahui 0 % dari luas tanah digunakan untuk mendirikan rumah, ½ % dari sisanya untuk taman dan sisanya tanah kosong. Jika luas tanah kosong 45 m, maka luas taman adalah.. 4 m m.

Lebih terperinci

Antiremed Kelas 12 Matematika

Antiremed Kelas 12 Matematika Antiremed Kelas Matematika Persiapan UAS Doc. Name: ARMAT0UAS Doc. Version : 06-08 halaman 0. Jika f(x)= (x x 5)dx dan f()=0, maka f(x) =... x + x - 5x - 6 4x - x + 5x - 4 5 5 x x x x - x + 5x - 5 x +

Lebih terperinci

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 33 PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut

Lebih terperinci

adalah. 3. Bentuk sederhana dari A.!!" B.!!" 4. Bentuk sederhana dari A. ( 15 5 ) B C. 4 ( 15 5 ) D. 2 ( ) E. 4 ( ) log 16

adalah. 3. Bentuk sederhana dari A.!! B.!! 4. Bentuk sederhana dari A. ( 15 5 ) B C. 4 ( 15 5 ) D. 2 ( ) E. 4 ( ) log 16 . Diketahui premis-premis berikut : Premis : Jika Dasikin belajar maka ia dapat mengerjakan soal Premis : Dasikin tidak dapat mengerjakan soal atau ia bahagia Premis : Dasikin belajar Kesimpulan yang sah

Lebih terperinci

UAN MATEMATIKA SMA IPA 2009 P45

UAN MATEMATIKA SMA IPA 2009 P45 1. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut bertanding Ingkaran dari kesimpulan kedua premis di atas adalah.

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Ibu tidak memasak nasi, maka Ayah membeli nasi di warung dan makan di rumah () Ibu memasak nasi Kesimpulan yang sah adalah. a. Ayah tidak membeli nasi di warung atau

Lebih terperinci

7. Bentuk sederhana dari. adalah.. 4. Jika log 2 = a dan log 3 = b, maka nilai log 18 = a. a + 2b b. 2a + b c. a + b d. a 2 + b e.

7. Bentuk sederhana dari. adalah.. 4. Jika log 2 = a dan log 3 = b, maka nilai log 18 = a. a + 2b b. 2a + b c. a + b d. a 2 + b e. 1. Suatu pekerjaan jika dikerjakan 15 orang dapat diselesaikan dalam waktu 30 hari. Apabila pekerjaan tersebut ingin diselesaikan dalam waktu 25 hari, jumlah pekerja yang harus ditambah a. 3 orang b. 5

Lebih terperinci

TRY OUT KE 1 UJIAN NASIONAL SEKOLAH MENENGAH KEJURUAN (SMK) TAHUN PELAJARAN 2016/2017

TRY OUT KE 1 UJIAN NASIONAL SEKOLAH MENENGAH KEJURUAN (SMK) TAHUN PELAJARAN 2016/2017 TRY OUT KE UJIAN NASIONAL SEKOLAH MENENGAH KEJURUAN (SMK) TAHUN PELAJARAN 6/7 Hari/Tanggal : Kelas Waktu : XII (duabelas) : Menit Petunjuk Umum :. Isikan identitas Anda ke dalam lembar jawaban komputer

Lebih terperinci

SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN

SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN SOLUSI PREDIKSI SOAL MATEMATIKA UN 0 TUGAS KELOMPOK SATUAN PENDIDIKAN MATA PELAJARAN PROGRAM BANYAK SOAL WAKTU : SMA : MATEMATIKA : IPA : 0 BUTIR : 0 MENIT. Diketahui premis-prmis berikut: Premis : Jika

Lebih terperinci

7. Himpunan penyelesaian dari 2(x 3) 4(2x + 3) adalah... a. x -1 c. X 1 e. x -3 b. x 1 d. x -3

7. Himpunan penyelesaian dari 2(x 3) 4(2x + 3) adalah... a. x -1 c. X 1 e. x -3 b. x 1 d. x -3 . 4% uang Ani diberikan kepada adiknya dan 5% dari uang tersebut untuk membayar rekening listrik dan 5% untuk membayar rekening telpon, sisa uang Ani adalah Rp 4.,. Berapakah jumlah uang Ani a. Rp 4.,

Lebih terperinci

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010 . Perhatikan argumen berikut ini. p q. q r. r ~ s TRY OUT MATEMATIKA PAKET B TAHUN 00 Negasi kesimpulan yang sah dari argumen di atas adalah... A. p ~s B. p s C. p ~s D. p ~s E. p s. Diketahui npersamaan

Lebih terperinci

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Jika a = 1 A. 6 B. 4 C. 1 6 D. 1 4 E

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Jika a = 1 A. 6 B. 4 C. 1 6 D. 1 4 E 1 Nama : Ximple Education No. Peserta : 08-6600-747 1 1. Jika a = 1, b = 6, maka nilai dari 6 a b 1 4 =. a b A. 6 B. 4 C. 1 6 D. 1 4 E.. Nilai dari ( log + log log log ) log 7+ log =. A. B. C. 4 D. 4 8

Lebih terperinci

4. Nilai x yang memenuhi

4. Nilai x yang memenuhi . Di sebuah toko bahan bangunan terdapat tumpukan batu bat Banyak batu bata pada tumpukan paling atas adalah 0 buah dan selalu bertambah buah pada tumpukan di bawahny Jika terdapat 50 tumpukan batu bata

Lebih terperinci

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH. Apabila P dan q kalimat pernyataan, di mana ~p q kalimat bernilai salah, maka kalimat yang benar berikut ini, kecuali (d) p q (~p ~q) (~p ~q) ~ (~p

Lebih terperinci

KOMPETISI MATEMATIKA 2017 TINGKAT SMA SE-SULUT SOAL BABAK PENYISIHAN Rabu, 22 Februari 2017

KOMPETISI MATEMATIKA 2017 TINGKAT SMA SE-SULUT SOAL BABAK PENYISIHAN Rabu, 22 Februari 2017 KOMPETISI MATEMATIKA 2017 TINGKAT SMA SE-SULUT SOAL BABAK PENYISIHAN Rabu, 22 Februari 2017 Petunjuk: 1. Babak penyisihan ini terdiri dari 30 soal pilihan ganda. 2. Waktu yang disediakan 120 menit. 3.

Lebih terperinci

UJIAN NASIONAL UTAMA SMA/MA PEMBAHASAN MATEMATIKA IPS + - TAHUN PELAJARAN 2017/2018 PROGRAM STUDI. Matematika SMA/MA IPS

UJIAN NASIONAL UTAMA SMA/MA PEMBAHASAN MATEMATIKA IPS + - TAHUN PELAJARAN 2017/2018 PROGRAM STUDI. Matematika SMA/MA IPS DOKUMEN M4THLAB www.m4th-lab.net https://soalunbk.info Matematika SMA/MA IPS PEMBAHASAN UJIAN NASIONAL TAHUN PELAJARAN 01/018 UTAMA SMA/MA PROGRAM STUDI IPS MATEMATIKA Selasa, 11 April 01 (10.0-1.0) X

Lebih terperinci

2. Ditentukan nilai a = 9, b = 16 dan c = 36. Nilai A. 3 B. 1 C. 9 D. 12 E Rasionalkan bentuk C. D. E.

2. Ditentukan nilai a = 9, b = 16 dan c = 36. Nilai A. 3 B. 1 C. 9 D. 12 E Rasionalkan bentuk C. D. E. . Suatu peternakan memiliki 00 ekor ayam peliharaan. Persediaan pakan setiap 00 kg akan habis dalam waktu 5 hari. Bila ayam tersebut dijual 50 ekor, maka persediaan pakan akan habis dalam... hari. A. 0

Lebih terperinci

PEMBAHASAN SOAL UN MATEMATIKA SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran

PEMBAHASAN SOAL UN MATEMATIKA SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran PEMBAHASAN SOAL UN MATEMATIKA SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran TAHUN PELAJARAN 9/ MATEMATIKA PEMBAHAS: UJIAN NASIONAL

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2007

SOAL UN DAN PENYELESAIANNYA 2007 1. Bentuk sederhana dari (1 + 3 ) - (4 - ) adalah... A. -2-3 B. -2 + 5 C. 8-3 D. 8 + 3 8 + 5 (1 + 3 ) - (4 - ) = (1 + 3 ) - (4-5 ) = 1 + 3-4 + 5 = 8-3 2. Jika 2 log 3 = a dan 3 log 5 = b, maka 15 log 20

Lebih terperinci

PREDIKSI UJIAN NASIONAL SMK

PREDIKSI UJIAN NASIONAL SMK PREDIKSI UJIAN NASIONAL SMK TAHUN PELAJARAN / Mata Pelajaran Waktu : Matematika SMK TKP : menit PETUNJUK UMUM Isikan identitas Anda ke dalam Lembar Jawaban Ujian Nasional (LJUN) yang tersedia dengan menggunakan

Lebih terperinci

PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA

PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 49 PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut

Lebih terperinci

MATEMATIKA (Paket 1) Waktu : 120 Menit

MATEMATIKA (Paket 1) Waktu : 120 Menit MATEMATIKA (Paket ) Waktu : 0 Menit (0) 77 0 Website : Pilihlah jawaban yang paling tepat!. Hasil dari 0 : 7 + ( ) adalah.... 0 0. Agus mempunyai sejumlah kelereng, diberikan kepada Rahmat, bagian diberikan

Lebih terperinci

TAHUN PELAJARAN 2003/2004 UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul

TAHUN PELAJARAN 2003/2004 UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/004 SMA/MA Matematika (D0) PROGRAM STUDI IPA PAKET (UTAMA) SELASA, MEI 004 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hak Cipta pada

Lebih terperinci

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009 SOAL UJIAN NASIONAL PROGRAM STUDI IPA ( kode P 4 ) TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh

Lebih terperinci

SOAL PERSIAPAN UJIAN NASIONAL TAHUN PELAJARAN 2016 / 2017

SOAL PERSIAPAN UJIAN NASIONAL TAHUN PELAJARAN 2016 / 2017 SOAL PERSIAPAN UJIAN NASIONAL TAHUN PELAJARAN 06 / 07 MATA PELAJARAN : Matematika KELOMPOK : TEKNIK (RPL, TKJ). Bentuk sederhana dari p q r 0 0 0 0 p q r 8 0 p q r 8 pqr 6 5 5 p q r p q r p q r 5 adalah....

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2005

SOAL UN DAN PENYELESAIANNYA 2005 1. Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... 4 D. (8-2 ) cm (4 - ) cm E. (8-4 ) cm (4-2 ) cm Diketahui segitiga sama kaki = AB = AC Misalkan : AB = AC = a BC² = a² + a² = 2 a²

Lebih terperinci

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK TEKNOLOGI PAKET II B KOTA SURABAYA

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK TEKNOLOGI PAKET II B KOTA SURABAYA LATIHAN UJIAN NASIONAL TAHUN PELAJARAN 00-0 SMK NEGERI DAN SWASTA KOTA SURABAYA MATEMATIKA KELOMPOK TEKNOLOGI PAKET II B MGMP MATEMATIKA SMK NEGERI / SWASTA KOTA SURABAYA M A T E M A T I K A S M K T E

Lebih terperinci

Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4

Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4 1. Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4 D. (8-2 ) cm B. (4 - ) cm E. (8-4 ) cm C. (4-2 ) cm Jawaban : E Diketahui segitiga sama kaki = AB = AC Misalkan : AB = AC = a

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Budi rajin menabung atau tidak mencuri, maka Ibu membelikan komputer () Ibu tidak membelikan komputer Kesimpulan yang sah adalah. a. Budi rajin menabung dan Budi mencuri

Lebih terperinci

USBN SMA IPA 2018 Matematika IPA

USBN SMA IPA 2018 Matematika IPA USBN SMA IPA 08 Matematika IPA Soal USBN SMA 08-Matematika IPA Doc. Name: USBNSMAIPA08MATIPA999 Version: 08-0 Halaman 0. Bentuk sederhana dari - - - a b b. : - b a a a b b a a b a b a b 0. Jika log = x

Lebih terperinci

Pembahasan Matematika IPA SIMAK UI 2009

Pembahasan Matematika IPA SIMAK UI 2009 Pembahasan Matematika IPA SIMAK UI 2009 Kode 924 Oleh Kak Mufidah 1. Diketahui fungsi. Agar fungsi tersebut senantiasa berada di bawah sumbu x, maka nilai m yang mungkin adalah Agar fungsi tersebut senantiasa

Lebih terperinci

SILABUS MATA PELAJARAN

SILABUS MATA PELAJARAN SILABUS MATA PELAJARAN Nama Sekolah Bidang Keahlian Kompetensi Keahlian Mata Pelajaran Durasi (Waktu) KOMPETENSI INTI KI 3 (Pengetahuan) KI 4 (Keterampilan) : SMKN 1 Balongan : Rekayasa : DPIB dan TITL

Lebih terperinci

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75 Here is the Problem and the Answer. Diketahui premis premis berikut! a. Jika sebuah segitiga siku siku maka salah satu sudutnya 9 b. Jika salah satu sudutnya 9 maka berlaku teorema Phytagoras Ingkaran

Lebih terperinci

6. Perhatikan gambar berikut! y (0,4)

6. Perhatikan gambar berikut! y (0,4) 1. Jarak sebenarnya antara kota A dan kota B adalah 60 km. Jika digambarkan pada peta yang berskala 1 : 500.000, maka jarak antara kota A dan kota B pada peta adalah. a. 30 cm b. 12 cm c. 3 cm d. 1,2 cm

Lebih terperinci

PAKET 4. Paket : 4. No Soal Jawaban 1 Luas Segiempat PQRS pada gambar di bawah ini adalah. A. 120 cm 2 B. 216 cm 2 C. 324 cm 2 D. 336 cm 2 E.

PAKET 4. Paket : 4. No Soal Jawaban 1 Luas Segiempat PQRS pada gambar di bawah ini adalah. A. 120 cm 2 B. 216 cm 2 C. 324 cm 2 D. 336 cm 2 E. PAKET 4 Jumlah Soal : 0 soal Kompetensi :. Bangun Datar. Trigonometri. Bangun Ruang 4. Barisan dan Deret Compile By : Syaiful Hamzah Nasution No Soal Jawaban Luas Segiempat PQRS pada gambar di bawah ini

Lebih terperinci

LATIHAN PRA UN Diketahui a = 625 dan b = 27, maka nilai dari ( ) adalah... A. B. C. D. E.

LATIHAN PRA UN Diketahui a = 625 dan b = 27, maka nilai dari ( ) adalah... A. B. C. D. E. LATIHAN PRA UN 0. Suatu proyek pembuatan jembatan dikerjakan oleh pekerja dan diperkirakan akan selesai dalam waktu 0 hari. Jika ada 6 pekerja yang tidak bisa lagi bekerja,maka proyek tersebut akan selesai

Lebih terperinci

PREDIKSI UN MATEMATIKA PAKET - 3

PREDIKSI UN MATEMATIKA PAKET - 3 01. Dalam sederhana dari (p2 q r 2 ) 2 A. p10 r q B. p10 r q C. p 10 r q D. p10 r 2 q E. p 10 r q (p 2 q r) 02. Nilai dari ( 1 ) 2. (2 2 + 2 2 )=... A. 1.02 B. 2.1 C. 2.2 D..2 E..6 0. Bentuk sederhana

Lebih terperinci

SOLUSI. p q r p q r p q r Jadi, pernyataannya adalah Hujan tidak deras atau angin tidak kencang atau semua pohon tumbang.

SOLUSI. p q r p q r p q r Jadi, pernyataannya adalah Hujan tidak deras atau angin tidak kencang atau semua pohon tumbang. SOLUSI SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

B. y = 1 x 2 1 UN-SMK-TEK Jika A = 2 0

B. y = 1 x 2 1 UN-SMK-TEK Jika A = 2 0 UN-SMK-TEK-04-0 Jarak kota A ke kota B pada peta 0 cm. Jika skala peta : 0.000, maka jarak kedua kota sebenarnya adalah..., km km 0 km.00 km.000 km UN-SMK-TEK-04-0 Hasil perkalian dari (4a) - (a) =...

Lebih terperinci

Try Out Matematika MIPA

Try Out Matematika MIPA . Diketahui fungsi f dan g dirumuskan oleh f(x) = x x + 6 dan g(x) = x. Jika nilai fog x = 0, maka nilai x yang memenuhi adalah. / dan / dan / dan / dan / dan. Fungsi g : R R ditentukan oleh g ( x) x x

Lebih terperinci

SMK WIJAYA PUTRA SURABAYA UJIAN SEKOLAH TERTULIS TAHUN PELAJARAN 2010 / 2011 LEMBAR SOAL

SMK WIJAYA PUTRA SURABAYA UJIAN SEKOLAH TERTULIS TAHUN PELAJARAN 2010 / 2011 LEMBAR SOAL DOKUMEN SEKOLAH SANGAT RAHASIA SMK WIJAYA PUTRA SURABAYA UJIAN SEKOLAH TERTULIS TAHUN PELAJARAN 20 / 2011 LEMBAR SOAL Satuan Pendidikan : Sekolah Menengah Kejuruan Mata Pelajaran : Matematika Program Keahlian

Lebih terperinci

Contoh Soal Ujian Nasional UN Matematika Kelas 9 SMP/MTs

Contoh Soal Ujian Nasional UN Matematika Kelas 9 SMP/MTs Contoh Soal Ujian Nasional UN Matematika Kelas 9 SMP/MTs Pilihlah salah satu jawaban yang paling tepat! 1. Ibu membeli 40 kg gula pasir. Gula itu akan dijual eceran dengan dibungkus plastik masing-masing

Lebih terperinci

PEMERINTAH KOTA MALANG DINAS PENDIDIKAN Jl. Veteran No. 19 Malang Telp. (0341) TRY OUT KOTA I. Tahun Pelajaran

PEMERINTAH KOTA MALANG DINAS PENDIDIKAN Jl. Veteran No. 19 Malang Telp. (0341) TRY OUT KOTA I. Tahun Pelajaran PEMERINTAH KOTA MALANG DINAS PENDIDIKAN Jl. Veteran No. 9 Malang 7 Telp. (0) TRY OUT KOTA I Tahun Pelajaran 0 0 Mata Pelajaran : Matematika Pariwisata B Hari, tanggal : PETUNJUK UMUM. Perhatikan dan ikuti

Lebih terperinci

UJIAN NASIONAL TAHUN 2009/2010 MATEMATIKA (E-4.2) SMK

UJIAN NASIONAL TAHUN 2009/2010 MATEMATIKA (E-4.2) SMK UJIAN NASIONAL TAHUN 009/00 MATEMATIKA (E-.) SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran (P UTAMA). Konveksi milik Bu Nina mengerjakan

Lebih terperinci

1. Himpunan penyelesaian adalah {(x, y, z)}. Nilai dari y + z adalah... D. -4 E. -5

1. Himpunan penyelesaian adalah {(x, y, z)}. Nilai dari y + z adalah... D. -4 E. -5 1. Himpunan penyelesaian adalah {(x, y, z)}. Nilai dari y + z adalah... A. 5 3 2 Kunci : C 3x + y = 5 y - 2z = -7-3x + 2z = 12 2x + 2z = 10 - x = 2-4 -5 x + z = 5 2 + z = 5 z = 3 3x + y = 5 3. 2 + y =

Lebih terperinci

UNIVERSITAS GUNADARMA

UNIVERSITAS GUNADARMA SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

PAKET 03 MATEMATIKA NON TEKNIK UJI COBA UJIAN NASIONAL SMK. Tahun Pelajaran 2014 / 2015

PAKET 03 MATEMATIKA NON TEKNIK UJI COBA UJIAN NASIONAL SMK. Tahun Pelajaran 2014 / 2015 UJI COBA UJIAN NASIONAL SMK Tahun Pelajaran 2014 / 2015 MATEMATIKA NON TEKNIK KELOMPOKPARIWISATA, SENI DAN KERAJINAN, PEKERJAAN SOSIAL TEKNOLOGI KERUMAHTANGGAAN, DAN ADMINISTRASI PERKANTORAN (UTAMA) 1

Lebih terperinci

PREDIKSI UJIAN NASIONAL 2009

PREDIKSI UJIAN NASIONAL 2009 LEMBAGA PENJAMINAN MUTU PENDIDIKAN (LPMP) PROVINSI DAERAH KHUSUS IBU KOTA JAKARTA Alamat : Jl. Nangka No. 60, Tanjung Barat, Jagakarsa, Jakarta Selatan, Telp. (0) 79, 7099, 7067, Fax. (0) 7067 PREDIKSI

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Ayah tidak memarahi Badu, maka Badu bahagia dan tidak nakal () Jika Ayah tidak menyayangi Badu, maka Badu tidak bahagia atau nakal Kesimpulan yang sah adalah. a. Jika

Lebih terperinci

UN MATEMATIKA IPA PAKET

UN MATEMATIKA IPA PAKET UN MATEMATIKA IPA PAKET Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Diberikan pernyataan berikut: P: Semua pramugari berwajah cantik P: Catherine seorang pramugari

Lebih terperinci