FUNGSI KOMPOSISI DAN FUNGSI INVERS

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "FUNGSI KOMPOSISI DAN FUNGSI INVERS"

Transkripsi

1 -- FUNGSI KOMPOSISI DAN FUNGSI INVERS. RELASI DAN FUNGSI Relasi himpunan A ke himpunan B yaitu korespondensi/hubungan semua anggota A dengan semua anggota B. Relasi khusus yang menghubungkan setiap anggota himpunan A dengan tepat ke satu anggota himpunan B disebut fungsi/pemetaan dari himpunan A ke B. Cara menyatakan relasi ada 4 cara, yaitu :. Dengan diagram panah. Dengan himpunan pasangan berurutan. Dengan grafik/diagram 4. Dengan rumus Contoh : Diketahui himpunan A:{,,) dan B:{,,,4,5}. Nyatakan relasi kurang satu dari dari himpunan A ke himpunan B dengan 4 cara di atas! Jawab :. Dengan diagram panah A B 4 5. Dengan himpunan pasangan berurutan R:{(,),(,),(,4)}. Dengan grafik/diagram B A 4. Dengan rumus y = x + jika y B dan x A A B Himpunan A disebut daerah asal (domain) a Himpunan B disebut daerah kawan (kodomain) b c Himpunan {a,b,c} disebut daerah hasil (Range) d e

2 -- Tidak semua daerah asal (Df) dan daerah hasil (Rf) terdefinisi. Misal a 0 dan pecahan a b terdefinisi jika b 0 a hanya terdefinisi jika Contoh : Tentukan Df dan Rf yang terdefinisi dari fungsi : a) f( = x b) f( = x x Jawab : a) f( = x terdefinisi jika x 0 atau... Jadi Df : {x/..... } Karena b) f( = a 0 maka Rf : {y/...} x x Jadi Df:{x/.... } f( = x x terdefinisi jika x 0 atau... x y = x y(x -) = x + xy - y = x + xy - x = y + x(y - ) = y + y x = y Syarat pecahan di atas terdefinisi jika... 0 atau y... Jadi Rf:{y/.... }. Nyatakan relasi berikut dengan rumus! A B a b. R : {(-,-),(-,-),(-,),(0,),(,5),(,7)} c. Y X

3 --. Mana yang merupakan fungsi? Beri alasannya! A B A B f A B f a. a b. f c. a b a b c b c 4 d 4 c 4 d. Mana yang merupakan fungsi di bawah ini? Beri alasannya! a. R : {(-,4),(-,),(0,0),(,),(,4)} b. R : {(,),(,4),(5,6),(7,8)} c. R : {(0,0),(,),(,),(,)} d. R : {(-,),(,),(,4),(,5)} 4. Mana yang merupakan fungsi di bawah ini? Beri alasannya! a. Y b. Y y = x y = x + X 0 0 X c. y x d. e Y Y Y x y 4 y x 0 X 0 X 0 X 5. Tentukan daerah asal dan daerah hasil dari : a. y = x + b. y x x d. y = x x 4 e. y = x f. c. y = x 5 y x x x. MACAM-MACAM FUNGSI a. Fungsi Konstan Suatu fungsi dari himpunan A ke himpunan B disebut fungsi konstan jika setiap elemen himpunan A berpasangan dengan tepat dengan sebuah elemen himpunan B. Fungsi konstan secara umum dinyatakan dengan y = f( = c, dengan c konstanta dan x R.

4 -4- Contoh : Lukislah garis y = 5 Jawab : Y 0 X b. Fungsi Identitas Suatu fungsi disebut fungsi identitas jika untuk setiap anggota daerah asal dipasangkan dengan dirinya sendiri di daerah kawan. Secara umum dapat dinyatakan dengan y = f( = x c. Fungsi Modulus (Mutlak) Suatu fungsi disebut fungsi modulus jika setiap anggota daerah asal dipasangkan ke harga modulus/mutlaknya di daerah kawan. Secara umum dapat dinyatakan dengan y = f( = x x dibaca harga mutlak x yang besarnya : x, jika x 0 x x, jika x 0 Misal : 0 0 ( ) Contoh : Lukislah kurva y = x 5 Jawab : Dengan menggunakan bantuan tabel : x 0,5 4 5 y Kurvanya : Y 0 X

5 -5- d. Fungsi Linear Fungsi linear yaitu fungsi yang berderajat satu atau pangkat tertinggi dari variabel/peubahnya hanya satu. Secara umum dapat dinyatakan dengan y = f( = mx + c, dimana m adalah gradien/arah/kemiringan garis dan c adalah konstanta. Fungsi linear berupa garis lurus. Contoh : Lukislah garis y = x + Jawab : Untuk melukis suatu garis tertentu syaratnya minimal diketahui dua titik. Misal x = 0 maka y =. atau melalui titik (, ) Misal y = 0 maka x =. atau melalui titik (, ) Y 0 X e. Fungsi Kuadrat Fungsi kuadrat yaitu suatu fungsi yang berderajat dua atau pangkat tertingi dari variabelnya dua. Secara umum dapat dinyatakan dengan y = f( = ax bx c, dimana a 0, a, b, c R Contoh 4: Lukislah kurva y x x 8 Jawab : Cara melukisnya :. Titik potong dengan sumbu X jika y = 0 x x 8 0 (...)(...) x =, x =. Titik potong dengan sumbu Y jika x = y =.. Titik Puncak = TP = (.,.. ) =. 4. Beberapa titik bantu jika perlu. X Y Kurvanya : Y 0 X

6 -6-. SIFAT-SIFAT FUNGSI Sifat-sifat fungsi ada 4, yaitu : a. Fungsi Injektif (Satu-satu) Jika a a A, a a maka f ( a ) f ( ), a b. Fungsi Surjektif (Onto) Jika dan hanya jika daerah hasil fungsi f sama dengan himpunan B (daerah kawan). c. Fungsi Bijektif (Korespondensi Satu-satu) Jika dan hanya jika fungsi f bersifat injektif dan surjektif.. Fungsi-fungsi berikut termasuk fungsi into, fungsi onto, fungsi satu-satu atau fungsi korespondensi satu-satu dari : a. a b. a c. a d. a b b b b c c c c d 4. Lukislah fungsi-fungsi berikut ini : a. y x b. 4x y c. y 5 d. y x x 8 e. y x 4 x f. y x g. y x 4 h. i. x, untuk x 5 y 6, untuk x 5 x, untuk x y x, untuk x 6 x, untuk x 6 4. ALJABAR FUNGSI Misalkan diketahui dua fungsi f( dan g( yang akan dioperasikan secara aljabar, maka berlaku sifat-sifat sebagai berikut :. f g ( f ( g(. ( f g)( f ( g(. ( f. g)( f (. g( f g f ( g( 4. (, g( 0 Contoh : Diketahui f( = x + dan g( = x. Tentukan :

7 -7- f g a. (f + g)( b. (f g)( c. (f x g)( d. ( Jawab : a. (f + g)( =. b. (f g)( =. c. (f x g)( =. f g d. ( =.. Tentukan rumus f + g, f g, g f dan f x g, untuk f dan g pada R dengan ketentuan sebagai berikut : f( = x +, g( = 5x. Tentukan g f lalu tentukan domainnya agar g f merupakan fungsi dari : a. f( = x, g( = + 5x b. f( = x, g( = x x c. f( = x, g( = x +. Jika f( = x 5 dan g( = x + 7 dengan f dan g fungsi-fungsi pada bilangan real, maka tentukan : a. rumus f + g, g f dan f x g b. (f + g)(5), (f g)() dan (f x g)(-) c. Gambar grafik f + g, g f dan f x g 4. Fungsi f(, g( dan h( di definisikan sebagai berikut : f( = {(,),(4,4),(5,5),(6,6)} g( = {(,),(,),(,4),(4,5)} h( = {(,),(,),(4,),(5,4)} Tentukan : a. f + g, f + h dan g + h b. f g, f h dan g h c. f x g, f x h dan g x h 5. FUNGSI KOMPOSISI Fungsi komposisi berarti gabungan dari beberapa fungsi. f g f memetakan x ke y ditulis y = f( x y z g memetakan y ke z ditulis z = g(y) h memetakan x ke z ditulis z = h( h h merupakan komposisi dari fungsi f dilanjutkan g ditulis h = g o f dibaca g noktah f atau g bundaran f z = h( = g(y) = g(f() Karena h( = (gof)(, maka : (gof)( = g(f() Begitupun untuk komposisi tiga fungsi akan berlaku :

8 -8- (gofoh)( = g(f(h()) Contoh : Jika f( = x-, g( = x+4 dan h( = x, maka tentukan : a) (fog)( b) (fogoh)( c) (goh)(-) Jawab : a) (fog)( =. b) (fogoh)( =. c) (goh)(-) = g(h(-)) =..... Contoh : Diketahui f( = x- dan (fog)( = 6x+5, maka tentukan g(! Jawab : (fog)( = f(g()... =.... Contoh : Diketahui f( = x- dan (gof)( = 9x x 7, maka tentukan g(! Jawab : (gof)( = g(f()... =... Misal y =... x =... Sehingga : g(y) =... =... Jadi g( =.... Jika f( = 5x -, g( = x dan h( = x, maka tentukan : a. (foh)( b. (hog)() c. (fogoh)( d. (gofoh)( e. (hofog)() f. (gohof)( 5 ). Tentukan : a. Jika f( = 4x + dan (fog)( = 5x -, maka g( =... b. Jika g( = x - dan (fog)( = 0x+7, maka f( =... c. Jika f( = x + dan (gof)( = x x, maka g( =... d. Jika g( = x - 5 dan (gof)( = x 9x 5, maka f( =... e. Jika g( = x x dan (gof)( = x 5x 5, maka f( =.... Jika f( = - x, h( = x x dan (hof)(a) = 7, maka tentukan a! 4. Diketahui f( = x 4 dan g( = x + p. Apabila f o g = g o f, maka tentukan nilai p! 5. Jika f( = x + dan (gof) ( = x 4x, maka tentukan g(! 6. SIFAT-SIFAT FUNGSI KOMPOSISI Untuk mengetahui sifat-sifat fungsi komposisi, kita gunakan contoh-contoh berikut :

9 -9- Contoh : Misal f( = x + dan g( = x. Tentukan : a. (fog)( b. (gof)( Jawab : a. (fog)( =. b. (gof)( =. Jadi bersifat :. Contoh : Jika f( = x, g( = x dan h( = x, maka tentukan : a. ((fog)oh)( b. (fo(goh))( Jawab : a. (fog)( = ((fog)oh)( =. b. (goh)( =. (fo(goh))( =. Jadi bersifat :. Contoh : Jika f( = x + dan I( = x, maka tentukan : a. (foi)( b. (Iof)( Jawab : a. (foi)( =. b. (Iof)( =. Jadi bersifat :... Jika f( = 4x -, g( =, h( = x dan I( = x, maka buktikan : x a. fog gof b. foh hof c. fo(goh) = (fog)oh d. go(hof) = (goh)of e. goi = Iog = g f. hoi = Ioh = h x. Jika f( = 0x -, g( = x + 4 dan h( =, maka buktikan : x a. (fog)() (gof)() b. (foh)(-) (hof)(-) c. ((fog)oh)() = (fo(goh))() d. (ho(gof))(m) = ((hog)of)(m). Jika f( = x +, g( = 5x dan h( = 6 x, maka buktikan : a. (foh) () (hof) () b. (gof) (-) (fog) (-) c. ((hog)of) () = (ho(gof)) () d. (fo(goh)) (s) = ((fog)oh) (s) 7. INVERS SUATU FUNGSI Perhatikan gambar berikut ini : A B

10 -0- x f y y merupakan peta dari x oleh fungsi f dan x merupakan peta dari y oleh fungsi f maka dikatakan fungsi f dan f saling invers. f Jadi y = f( dan x = f ( y) Sifat invers : fof x f of x I( Syarat fungsi mempunyai invers jika fungsi itu korespondensi satu-satu. Cara menentukan invers dari y = f( :. Ubah y = f( menjadi x = g(y). Ubah x = g(y) menjadi f ( y) g( y). Ubah y dengan x Contoh : Tentukan invers dari y = 5x + Jawab : y = 5x + 5x =... x =... f ( y)... f ( x ) Contoh : Tentukan invers dari Jawab : f x y x x y y(... ) = x - x (... = =... x (... ) =... x = Contoh : Jika f( = 5, maka tentukan daerah asal dan daerah hasil f! x Jawab : f( = 5 x y = =... x =... Jadi daerah asal Df:{x/... } dan daerah hasil Rf: {y/... }. Tentukan invers dari :

11 -- x x 5x x f. f( = x 5 g. f( = 4 x x x 5 x 4 4 5x 5, maka tentukan f ( ) x ( x 4 dan ( a) 5 a. f( = 4x + 5 e. f( = b. f( = c. f( = d. f( =. Jika f( =. Jika f( = ) h. f( = f, maka tentukan a! 4. Tentukan daerah asal dan daerah hasil dari : a. 5 x f ( b. f ( x c. f ( x 4x x 8. INVERS FUNGSI KOMPOSISI A g o f C gof f og B f g fog g of x y z f gof g Contoh : Jika f( = 5x - dan g( = + 4x, maka tentukan : a) fog x b) g of ( x ) Jawab : a) fogx f gx = f(...) =... y =... x =... fog x... b) f( = 5x - g( = + 4x y = 5x - y = + 4x x =... x =... f (... g (... g of ( =... Contoh : Diketahui ( x f dan g( = 4x -. Tentukan fog

12 -- Jawab : fogx f gx =... y = =... x =... fog x... fog.... Jika f( = x + dan g( = 6x - 7, maka tentukan : a. ( gof ) ( b. ( g of )( c. ( f og )( d. ( fog ) (5). Jika f( = x dan ( ) ( x ) x gof, maka tentukan g(!. Jika f( = + x, g( = + x dan h( = x, maka tentukan x jika ( fogoh) ( 4. Diketahui f( = 5x 5 dan g( = x -. Tentukan : a. ( ) ( fog b. ( g of )( 5. Jika f( = x dan g( = x, maka tentukan ( ) fog () 6. Jika f( = x dan g( = x maka tentukan fog (

KOMPOSISI FUNGSI DAN FUNGSI INVERS

KOMPOSISI FUNGSI DAN FUNGSI INVERS 1 KOMPOSISI FUNGSI DAN FUNGSI INVERS Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

NAMA : KELAS : SMA TARAKANITA 1 JAKARTA theresiaveni.wordpress.com

NAMA : KELAS : SMA TARAKANITA 1 JAKARTA theresiaveni.wordpress.com 1 NAMA : KELAS : 2 KOMPOSISI FUNGSI DAN FUNGSI INVERS Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

BAB 3 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi Kompetensi Dasar:

BAB 3 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi Kompetensi Dasar: BAB 3 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi Kompetensi Dasar:. Menentukan komposisi fungsi dari dua fungsi. Menentukan invers suatu

Lebih terperinci

FUNGSI KOMPOSISI DAN FUNGSI INVERS

FUNGSI KOMPOSISI DAN FUNGSI INVERS FUNGSI KOMPOSISI DAN FUNGSI INVERS. Relasi dan Fungsi Pada saat di Sekolah Lanjutan Pertama (SMP) telah dipelajari tentang topik Relasi, Fungsi dan Grafik. Pada materi relasi ini selain menggunakan istilah

Lebih terperinci

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers Komposisi fungsi dan invers fungsi mempelajari Fungsi komposisi menentukan Fungsi invers terdiri dari Syarat dan aturan fungsi yang dapat dikomposisikan Nilai fungsi komposisi dan pembentuknya Syarat agar

Lebih terperinci

BAB 6 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi

BAB 6 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi BAB 6 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi A. Fungsi dan Macam-macam Fungsi Pada saat di Sekolah Lanjutan Pertama (SMP) telah dipelajari

Lebih terperinci

BAB 3 FUNGSI. f : x y

BAB 3 FUNGSI. f : x y . Hubungan Relasi dengan Fungsi FUNGSI Relasi dari himpunan P ke himpunan Q disebut fungsi atau pemetaan, jika dan hanya jika tiap unsur pada himpunan P berpasangan tepat hanya dengan sebuah unsur pada

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

FUNGSI KOMPOSISI DAN FUNGSI INVERS

FUNGSI KOMPOSISI DAN FUNGSI INVERS FUNGSI KOMPOSISI DAN FUNGSI INVERS Jika A dan B adalah dua himpunan yang tidak kosong, fungsi f dari A ke B; f : A B atau A f B adalah cara pengawanan anggota A dengan anggota B yang memenuhi aturan setiap

Lebih terperinci

3. FUNGSI DAN GRAFIKNYA

3. FUNGSI DAN GRAFIKNYA 3. FUNGSI DAN GRAFIKNYA 3.1 Pengertian Relasi Misalkan A dan B suatu himpunan. anggota A dikaitkan dengan anggota B berdasarkan suatu hubungan tertentu maka diperoleh suatu relasi dari A ke B. : A = {1,

Lebih terperinci

BAB. VI. FUNGSI. Contoh 2. Dari diagram panah diatas tentukan: a. Domain b.kodomain. d.himpunan pasangan berurutan jawab:

BAB. VI. FUNGSI. Contoh 2. Dari diagram panah diatas tentukan: a. Domain b.kodomain. d.himpunan pasangan berurutan jawab: A. FUNGSI I. Pengertian Fungsi Fungsi (pemetaan) yaitu relasi khusus, dimana setiap anggota daerah asal mempunyai pasangan tepat satu dengan anggota daerah kawan A B BAB. VI. FUNGSI Keterangan: A=Daerah

Lebih terperinci

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 N0 TOPIK FUNGSI 2.1 DEFINISI FUNGSI 2.2 DAERAH DEFINISI DAN DAERAH HASIL 2.3 JENIS-JENIS FUNGSI 2.4 OPERASI ALJABAR FUNGSI 2.5 FUNGSI GENAP, GANJIL,

Lebih terperinci

FUNGSI. Fungsi atau Pemetaan dari A ke B adalah relasi dari himpunan A ke himpunan B, dengan setiap x Є A dipasangkan tepat dengan satu y Є B.

FUNGSI. Fungsi atau Pemetaan dari A ke B adalah relasi dari himpunan A ke himpunan B, dengan setiap x Є A dipasangkan tepat dengan satu y Є B. FUNGSI Fungsi atau Pemetaan dari A ke B adalah relasi dari himpunan A ke himpunan B, dengan setiap x Є A dipasangkan tepat dengan satu y Є B. FUNGSI KOMPOSISI Daerah asal alami f : A B adalah semua unsur

Lebih terperinci

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN KULIAH-4 Modul Pembelajaran Matematika Kelas X semester 1 Modul Pembelajaran Matematika Kelas X semester 1 FUNGSI DAN GRAFIKNYA PERTIDAKSAMAAN Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan

Lebih terperinci

Oleh: Mega Inayati Rif ah, S.T., M.Sc. Institut Sains dan Teknologi AKPRIND Yogyakarta

Oleh: Mega Inayati Rif ah, S.T., M.Sc. Institut Sains dan Teknologi AKPRIND Yogyakarta Oleh: Mega Inayati Rif ah, S.T., M.Sc. Institut Sains dan Teknologi AKPRIND Yogyakarta 1 RELASI Oleh: Mega Inayati Rif ah, S.T., M.Sc. 2 RELASI Relasi adalah suatu aturan yang memasangkan anggota himpunan

Lebih terperinci

LEMBAR AKTIVITAS SISWA FUNGSI KOMPOSISI DAN INVERS FUNGSI Yang bukan merupakan fungsi nomor: Contoh: 1. y = f(x) g(x) 2. y = f(x) Syarat: f(x) 0

LEMBAR AKTIVITAS SISWA FUNGSI KOMPOSISI DAN INVERS FUNGSI Yang bukan merupakan fungsi nomor: Contoh: 1. y = f(x) g(x) 2. y = f(x) Syarat: f(x) 0 Nama Siswa Kelas LEMBAR AKTIVITAS SISWA FUNGSI KOMPOSISI DAN INVERS FUNGSI Yang bukan merupakan fungsi nomor: : : Kompetensi Dasar (KURIKULUM 2013): 3.2 Memahami konsep fungsi dan menerapkan operasi aljabar

Lebih terperinci

FUNGSI. range. Dasar Dasar Matematika I 1

FUNGSI. range. Dasar Dasar Matematika I 1 FUNGSI Pada bagian sebelumnya telah dibahas tentang relasi yaitu aturan yang menghubungkan elemen dua himpunan. Pada bagian ini akan dibahas satu jenis relasi yang lebih khusus yang dinamakan fungsi Suatu

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD SUMBER BELAJAR PENUNJANG PLPG 016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD BAB II ALJABAR Dra.Hj.Rosdiah Salam, M.Pd. Dra. Nurfaizah, M.Hum. Drs. Latri S, S.Pd., M.Pd. Prof.Dr.H. Pattabundu, M.Ed. Widya

Lebih terperinci

Produk Cartesius Relasi Relasi Khusus RELASI

Produk Cartesius Relasi Relasi Khusus RELASI Produk Cartesius Relasi Relasi Khusus RELASI Jika A dan B masing-masing menyatkan himpunan yang tidak kosong, maka produk Cartesius himpunan A dan B adalah himpunan semua pasangan terutut (x,y) dengan

Lebih terperinci

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan ANALISIS REAL 1 Perkuliahan ini dimaksudkan memberikan kemampuan pada mahasiswa agar dapat memahami pernyataan-pernyataan matematika secara baik dan benar, berpikir secara logis, kritis dan sistematis,

Lebih terperinci

Matematika

Matematika dan D3 Analis Kimia FMIPA Universitas Islam Indonesia Definisi Suatu fungsi f adalah suatu aturan korespondensi yang menghubungkan setiap objek x dalam satu himpunan, yang disebut domain, dengan sebuah

Lebih terperinci

Fungsi, Persamaaan, Pertidaksamaan

Fungsi, Persamaaan, Pertidaksamaan Fungsi, Persamaaan, Pertidaksamaan Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 9 Agustus 004 di PPPG Matematika Oleh: Drs. Markaban, M.Si. Widyaiswara PPPG

Lebih terperinci

FUNGSI. 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi. Cece Kustiawan, FPMIPA, UPI

FUNGSI. 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi. Cece Kustiawan, FPMIPA, UPI FUNGSI 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi Definisi Fungsi Suatu fungsi f atau pemetaan f dari himpunan A ke himpunan B adalah suatu

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

Matematika

Matematika Fungsi dan D3 Analis Kimia FMIPA Universitas Islam Indonesia Fungsi Definisi Suatu fungsi f adalah suatu aturan korespondensi yang menghubungkan setiap objek x dalam satu himpunan, yang disebut domain,

Lebih terperinci

1 P E N D A H U L U A N

1 P E N D A H U L U A N 1 P E N D A H U L U A N 1.1.Himpunan Himpunan (set) adalah kumpulan objek-objek yang terdefenisi dengan baik (well defined). Artinya bahwa untuk sebarang objek x yang diberikan, maka kita selalu akan dapat

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

1). Definisi Relasi Relasi dari dua himpunan A dan B adalah pemasangan anggota-anggota A dengan anggota B.

1). Definisi Relasi Relasi dari dua himpunan A dan B adalah pemasangan anggota-anggota A dengan anggota B. Bayangkan suatu fungsi seagai seuah mesin, misalnya mesin hitung. Ia mengamil suatu ilangan (masukan), maka fungsi memproses ilangan yang masuk dan hasil produksinya diseut keluaran. x Masukan Fungsi f

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Mata Pelajaran : Matematika Kelas/ Semester: XI Program IPA/2 Alokasi Waktu: 6 jam Pelajaran (3 Pertemuan) A. Standar Kompetensi Menentukan komposisi dua fungsi dan invers

Lebih terperinci

Penerapan Komposisi Fungsi Dan Invers Kehidupan Sehari-hari

Penerapan Komposisi Fungsi Dan Invers Kehidupan Sehari-hari Penerapan Komposisi Fungsi Dan Invers Kehidupan Sehari-hari Oleh kelompok 6 : Amrun Nasution Andri Fajar Irwanto Joko Saputro Muhammad Aziz F.R. Samsul Saputra Kelas XI IPA 1 Mata Pelajaran : Matematika

Lebih terperinci

5 F U N G S I. 1 Matematika Ekonomi

5 F U N G S I. 1 Matematika Ekonomi 5 F U N G S I Pemahaman tentang konsep fungsi sangat penting dalam mempelajari ilmu ekonomi, mengingat kajian ekonomi banyak bekerja dengan fungsi. Fungsi dalam matematika menyatakan suatu hubungan formal

Lebih terperinci

Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu

Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu BAB IV RELASI DAN FUNGSI Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu relasi, relasi invers, relasi identitas, pengertian fungsi, bayangan invers

Lebih terperinci

Teori Dasar Fungsi. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo

Teori Dasar Fungsi. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo December 27, 2012 PENGERTIAN DASAR Denition Misalkan A dan B himpunan. Sebuah fungsi f dari A ke B ditulis f : A B adalah aturan

Lebih terperinci

Oleh : Winda Aprianti

Oleh : Winda Aprianti Oleh : Winda Aprianti Relasi Definisi Relasi Relasi antara himpunan A dan himpunan B merupakan himpunan yang berisi pasangan terurut yang mengikuti aturan tertentu (relasi biner). Relasi biner R antara

Lebih terperinci

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA BAHAN AJAR FUNGSI LINIER & KUADRAT SMK NEGERI 1 SURABAYA Halaman 1 BAB FUNGSI A. FUNGSI DAN RELASI Topik penting yang

Lebih terperinci

Matematika Dasar FUNGSI DAN GRAFIK

Matematika Dasar FUNGSI DAN GRAFIK FUNGSI DAN GRAFIK Suatu pengaitan dari himpunan A ke himpunan B disebut fungsi bila mengaitkan setiap anggota dari himpunan A dengan tepat satu anggota dari himpunan B. Notasi : f : A B f() y Himpunan

Lebih terperinci

Wahyu Hidayat, S.Pd., M.Pd.

Wahyu Hidayat, S.Pd., M.Pd. Wahyu Hidayat, S.Pd., M.Pd. FUNGSI Definisi Fungsi Diketahui 2 buah himpunan A dan yang tidak kosong. Suatu fungsi dari A ke, ditulis f : A didefinisikan sebagai suatu aturan yang memasangkan setiap anggota

Lebih terperinci

Silabus. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL

Silabus. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL Silabus Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL Sandar Kompetensi:. Memecahkan masalah yang berkaitan dengan bentuk pangkat, akar, dan logaritma Kompetensi

Lebih terperinci

MATERI : RELASI DAN FUNGSI KELAS : X. 1. Ada hal penting yang bisa dipetik dari contoh di atas. Misalkan X menyatakan

MATERI : RELASI DAN FUNGSI KELAS : X. 1. Ada hal penting yang bisa dipetik dari contoh di atas. Misalkan X menyatakan MTERI : RELSI DN FUNGSI KELS : X Pemahaman Fungsi Dalam berbagai aplikasi, korespondensi/hubungan antara dua himpunan sering terjadi 4 3 Sebagai contoh, volume bola dengan jari-jari r diberikan oleh relasi

Lebih terperinci

Materi Kuliah Matematika Komputasi FUNGSI

Materi Kuliah Matematika Komputasi FUNGSI Materi Kuliah Matematika Komputasi FUNGSI Misalkan A dan B himpunan. FUNGSI Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam

Lebih terperinci

Aljabar 1. Modul 1 PENDAHULUAN

Aljabar 1. Modul 1 PENDAHULUAN Modul 1 Aljabar 1 Drs. H. Karso, M.Pd. PENDAHULUAN M odul yang sekarang Anda pelajari adalah modul yang pertama dari mata kuliah Materi Kurikuler Matematika SMA. Materi-materi yang disajikan dalam modul

Lebih terperinci

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan MODUL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain Pesan soal-soal matematika untuk SD, SMP dan SMA? Soal ulangan harian, ulangan mid, ulangan semester, soal-soal UAN dll. Tulis

Lebih terperinci

Buku ini ditulis berdasarkan tugas untuk memenuhi tugas progaran komputer 1 yang di bimbing oleh : Dede trie.,s.si.,m.pd.

Buku ini ditulis berdasarkan tugas untuk memenuhi tugas progaran komputer 1 yang di bimbing oleh : Dede trie.,s.si.,m.pd. Alhamdulillahirabbil aalamin, segala puja dan puji syukur penulis panjatkan kepada Allah Yang Maha Penyayang. Tanpa karunia-nya, mustahillah naskah buku ini terselesaikan tepat waktu mengingat tugas dan

Lebih terperinci

FUNGSI MATEMATIKA SISTEM INFORMASI 1

FUNGSI MATEMATIKA SISTEM INFORMASI 1 FUNGSI MATEMATIKA SISTEM INFORMASI 1 PENGERTIAN FUNGSI A disebut daerah asal (domain) dari f dan B disebut daerah hasil (Kodomain) dari f. Nama lain untuk fungsi adalah pemetaan atau transformasi. A Fungsi

Lebih terperinci

*Tambahan Grafik Fungsi Kuadrat

*Tambahan Grafik Fungsi Kuadrat *Tambahan Grafik Fungsi Kuadrat GRAFIK FUNGSI KUADRAT Langkah-langkah menggambar grafik: 1. Tentukan pembuat nol fungsi y=0 atau f(x)=0 2. Tentukan sumbu simetri x = -b/2a 3. Tentukan titik puncak P (x,y)

Lebih terperinci

FUNGSI KOMPOSISI DAN INVERS FUNGSI

FUNGSI KOMPOSISI DAN INVERS FUNGSI FUNGSI KOMPOSISI DAN INVERS FUNGSI Matematika Kelas XI Semester 2 Disusun oleh : Markus Yuniarto, S.Si Tahun Pelajaran 2016 2017 SMA Santa Angela Jl. Merdeka No. 24 Bandung PENGANTAR : Modul ini kami susun

Lebih terperinci

Contoh 4,19 Diagram panah berikut menunjukkan relasi dari himpunanj A ke himpunan B. Relasi mana yang merupakan fungsi?

Contoh 4,19 Diagram panah berikut menunjukkan relasi dari himpunanj A ke himpunan B. Relasi mana yang merupakan fungsi? C. Fungsi Perhatikan relasi anaknya dari himpunan anak-anak () ke himpunan ayahanyahnya () seperti yang ditunjukkan dengan diagram panah berikut. naknya jid Enal Naufal Nisa Muhsin Nawir Hamrun Hasan Gambar

Lebih terperinci

BAB 1. PENDAHULUAN. Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi.

BAB 1. PENDAHULUAN. Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi. BAB PENDAHULUAN Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi Himpunan Real Ada beberapa notasi himpunan yang sering digunakan dalam Analisis () merupakan

Lebih terperinci

2.6 FUNGSI DAN RELASI

2.6 FUNGSI DAN RELASI 177 Bab 3 FUNGSI P ernahkah anda memperhatikan gerakan bola yang dilempar ke atas oleh seseorang. Secara tidak langsung ternyata anda telah memperhatikan gerakan bola tersebut membentuk sebuah fungsi yang

Lebih terperinci

BAB 3 FUNGSI. 1. Pengertian Fungsi. dengan satu dan hanya satu elemen B; f disebut fungsi dari A ke B, ditulis f : A

BAB 3 FUNGSI. 1. Pengertian Fungsi. dengan satu dan hanya satu elemen B; f disebut fungsi dari A ke B, ditulis f : A BAB 3 FUNGSI 1. Pengertian Fungsi Fungsi f adalah suatu aturan padanan yang menghubungkan tiap objek x dalam satu himpunan, yang disebut daerah asal, dengan sebuah nilai unik f(x) dari himpunan kedua.

Lebih terperinci

Rchmd: rls&fngs-smk2004 1

Rchmd: rls&fngs-smk2004 1 BAB I PENDAHULUAN A. Latar Belakang Apabila kita cermati, hampir semua fenomena ang terjadi di jagad raa ini mengikuti hukum sebab akibat. Adana pergantian siang dan malam adalah sebagai akibat dari perputaran

Lebih terperinci

BAB 2. FUNGSI. Program Studi Teknik Mesin Fakultas Teknik Universitas Muhammadiyah Jember. 15th March 2017

BAB 2. FUNGSI. Program Studi Teknik Mesin Fakultas Teknik Universitas Muhammadiyah Jember. 15th March 2017 BAB 2. FUNGSI Program Studi Teknik Mesin Fakultas Teknik Universitas Muhammadiyah Jember 15th March 2017 Ilham Saifudin (TM) BAB 2. FUNGSI 15th March 2017 1 / 24 Outline 1 Fungsi Definisi Fungsi Fungsi

Lebih terperinci

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan KALKULUS 1 HADI SUTRISNO 1 Pendidikan Matematika STKIP PGRI Bangkalan BAB I PENDAHULUAN A. Sistem Bilangan Real Untuk mempelajari kalkulus kita terlebih dahulu perlu memahami bahasan tentang sistem bilangan

Lebih terperinci

KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI /

KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI / Oleh : SRI ESTI TRISNO SAMI, ST, MMSI 08125218506 / 082334051234 E-mail : sriestits2@gmail.com Bahan Bacaan / Refferensi : 1. Frank Ayres J. R., Calculus, Shcaum s Outline Series, Mc Graw-Hill Book Company.

Lebih terperinci

RELASI DAN FUNGSI. A. Pengertian Relasi dan Fungsi

RELASI DAN FUNGSI. A. Pengertian Relasi dan Fungsi RELASI DAN FUNGSI A. Pengertian Relasi dan Fungsi Banyak enomena atau kejadian alam yang dapat dihubungkan dengan suatu relasi Sebagai contoh, misalkan diberikan dua himpunan : A = {sepeda, sepeda motor,

Lebih terperinci

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real.

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real. Silabus 1 2 3 Referensi E. J. Purcell, D. Varberg, and S. E. Rigdon, Kalkulus, Jilid 1 Edisi Kedelapan, Erlangga, 2003. Penilaian 1 Ujian Tengah Semester (UTS) : 30 2 Ujian Akhir Semester (UAS) : 20 3

Lebih terperinci

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah

Lebih terperinci

PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI

PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI FUNGSI PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI PENGERTIAN FUNGSI Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap X anggota A dengan tepat

Lebih terperinci

F U N G S I. Oleh: Dimas Rahadian AM, S.TP. M.Sc.

F U N G S I. Oleh: Dimas Rahadian AM, S.TP. M.Sc. F U N G S I Oleh: Dimas Rahadian AM, S.TP. M.Sc Email: rahadiandimas@yahoo.com JURUSAN ILMU DAN TEKNOLOGI PANGAN UNIVERSITAS SEBELAS MARET SURAKARTA ...KONSEP DASAR Fungsi adalah suatu pemetaan dari satu

Lebih terperinci

untuk mempelajari matematika lebih lanjut. Untuk menunjang kemampuankemampuan tersebut diharapkan Anda dapat menguasai beberapa kompetensi khusus

untuk mempelajari matematika lebih lanjut. Untuk menunjang kemampuankemampuan tersebut diharapkan Anda dapat menguasai beberapa kompetensi khusus ix S Tinjauan Mata Kuliah elamat bertemu, selamat belajar, dan selamat berdiskusi dalam mata kuliah Matematika Dasar 1. Mata kuliah PEMA4102/Matematika Dasar 1 dengan bobot 3 sks ini sering pula dinamakan

Lebih terperinci

BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI

BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI BAB 1 OPERASI PADA HIMPUNAN Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat menggunakan operasi pada himpunan untuk memecahkan masalah dan mengidentifikasi suatu himpunan

Lebih terperinci

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT LA - WB (Lembar Aktivitas Warga Belajar) PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana

Lebih terperinci

RELASI DAN FUNGSI A. Relasi 1. Pengertian Perhatikan gambar dibawah ini.

RELASI DAN FUNGSI A. Relasi 1. Pengertian Perhatikan gambar dibawah ini. RELASI DAN FUNGSI A. Relasi 1. Pengertian Perhatikan gambar dibawah ini. Gambar 1.1 Gambar 1.1 menunjukkan suatu kumpulan anak yang terdiri atas Tino, Atu, Togar, dan Nia berada di sebuah toko alat tulis.

Lebih terperinci

BEBERAPA MACAM FUNGSI DALAM ALJABAR

BEBERAPA MACAM FUNGSI DALAM ALJABAR BEBEAA MACAM FUNGI DALAM ALJABA 1. Fungsi Komposisi Dari dua jenis fungsi f dan g kita dapat membentuk sebuah fungsi baru dengan menggunakan sistem operasi komposisi. operasi komposisi biasa dilambangkan

Lebih terperinci

Relasi, Fungsi, dan Transformasi

Relasi, Fungsi, dan Transformasi Modul 1 Relasi, Fungsi, dan Transformasi Drs. Ame Rasmedi S. Dr. Darhim, M.Si. M PENDAHULUAN odul ini merupakan modul pertama pada mata kuliah Geometri Transformasi. Modul ini akan membahas pengertian

Lebih terperinci

Hendra Gunawan. 4 September 2013

Hendra Gunawan. 4 September 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 4 September 2013 Latihan (Kuliah yang Lalu) 1. Tentukan daerah asal dan daerah nilai fungsi 2 f(x) = 1 x. sudah dijawab 2. Gambar grafik fungsi

Lebih terperinci

Fungsi Grafik Fungsi. Kalkulus 1. Fungsi dan Grafik Fungsi. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia

Fungsi Grafik Fungsi. Kalkulus 1. Fungsi dan Grafik Fungsi. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia Kalkulus 1 Fungsi dan Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Fungsi Definisi Suatu fungsi f adalah suatu aturan korespondensi yang menghubungkan setiap objek x dalam satu

Lebih terperinci

PENGANTAR TOPOLOGI. Dosen Pengampu: Siti Julaeha, M.Si EDISI PERTAMA UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015

PENGANTAR TOPOLOGI. Dosen Pengampu: Siti Julaeha, M.Si EDISI PERTAMA UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015 PENGANTAR TOPOLOGI EDISI PERTAMA Dosen Pengampu: Siti Julaeha, M.Si UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015 by Matematika Sains 2012 UIN SGD, Copyright 2015 BAB 0. HIMPUNAN, RELASI, FUNGSI,

Lebih terperinci

PENDAHULUAN. 1. Himpunan

PENDAHULUAN. 1. Himpunan PENDAHULUAN 1. Himpunan Definisi 1. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek yang dimaksud biasa disebut dengan elemen-elemen atau anggota-anggota dari himpunan. Suatu himpunan biasanya

Lebih terperinci

FUNGSI DAN GRAFIK FUNGSI.

FUNGSI DAN GRAFIK FUNGSI. FUNGSI DAN GRAFIK FUNGSI Materi ke-4 eko@uns.ac.id ekop2003@yahoo.com Materi Fungsi ( deinisi, daerah asal dan daerah hasil ) Fungsi Surjekti, Injekti, Bijekti dan Invers Operasi Pada Fungsi dan Fungsi

Lebih terperinci

Ringkasan Materi Kuliah Bab II FUNGSI

Ringkasan Materi Kuliah Bab II FUNGSI Ringkasan Materi Kuliah Bab II FUNGSI. FUNGSI REAL, FUNGSI ALJABAR, DAN FUNGSI TRIGONOMETRI. TOPIK-TOPIK YANG BERKAITAN DENGAN FUNGSI.3 FUNGSI KOMPOSISI DAN FUNGSI INVERS. FUNGSI REAL, FUNGSI ALJABAR,

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN 01 (RPP 01)

RENCANA PELAKSANAAN PEMBELAJARAN 01 (RPP 01) RENCN PELKSNN PEMELJRN 01 (RPP 01) Sekolah Mata Pelajaran Kelas/Semester lokasi Waktu : SM Saraswati Singaraja : Matematika : X/Ganjil : 2 x 4 menit I. Standar Kompetensi: 2. Memecahkan masalah yang berkaitan

Lebih terperinci

FUNGSI DAN LIMIT FUNGSI

FUNGSI DAN LIMIT FUNGSI 2 FUNGSI DAN LIMIT FUNGSI 2.1 Fungsi dan Grafiknya Definisi Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap x anggota A dengan tepat satu y anggota B. A disebut

Lebih terperinci

Fungsi. Adri Priadana ilkomadri.com

Fungsi. Adri Priadana ilkomadri.com Fungsi Adri Priadana ilkomadri.com Fungsi Definisi : Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam

Lebih terperinci

SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA

SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA SEKOLAH STANDAR NASIONAL (SSN) Jl. RA Fadillah Komp. Kopassus Cijantung Telp. 8400005,

Lebih terperinci

RELASI DAN FUNGSI. 2. Misalkan A = {2,3,4,5} dan B = {2,3,4,5,6}. Buatlah relasi dari A ke B yang

RELASI DAN FUNGSI. 2. Misalkan A = {2,3,4,5} dan B = {2,3,4,5,6}. Buatlah relasi dari A ke B yang RELASI DAN FUNGSI A. Relasi I. Pengertian Relasi Relasi dari himpunan A ke himpunan B adalah hubungan yang memasangkan anggota himpunan A dengan anggota-anggota himpunan B. Misalkan A={Adi, Boni, Chris}

Lebih terperinci

HAND OUT ANALISIS REAL 1 (MT403) KOSIM RUKMANA

HAND OUT ANALISIS REAL 1 (MT403) KOSIM RUKMANA HAND OUT ANALISIS REAL 1 (MT403) KOSIM RUKMANA JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN IPA UNIVERSITAS PENDIDIKAN INDONESIA 2008 1 Identitas Mata Kuliah 1. Nama Mata Kuliah : Analisis

Lebih terperinci

matematika K-13 FUNGSI KOMPOSISI K e l a s

matematika K-13 FUNGSI KOMPOSISI K e l a s K-1 matematika K e l a s XI FUNGSI KOMPOSISI Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi fungsi dan sifat-sifat fungsi.. Memahami

Lebih terperinci

Matematik Ekonom Fungsi nonlinear

Matematik Ekonom Fungsi nonlinear 1 FUNGSI Fungsi adalah hubungan antara 2 buah variabel atau lebih, dimana masing-masing dari dua variabel atau lebih tersebut saling pengaruh mempengaruhi. Variabel merupakan suatu besaran yang sifatnya

Lebih terperinci

Sumber: Mesin Frais CNC

Sumber:  Mesin Frais CNC Sumber: www.abltechnology.com Mesin Frais CNC Di dalam memroduksi bentuk suatu benda dikenal adanya beberapa jenis mesin produksi, antara lain mesin milling CNC, mesin frais, dan mesin bubut. Mesin bubut

Lebih terperinci

PENGERTIAN FUNGSI. ATURAN : setiap anggota A harus habis terpasang dengan anggota B. tidak boleh membentuk cabang seperti ini.

PENGERTIAN FUNGSI. ATURAN : setiap anggota A harus habis terpasang dengan anggota B. tidak boleh membentuk cabang seperti ini. FUNGSI PENGERTIAN FUNGSI Definisi : Misalkan A dan B dua himpunan takkosong. Fungsi dari A ke B adalah aturan yang mengaitkan setiap anggota A dengan tepat satu anggota B. ATURAN : setiap anggota A harus

Lebih terperinci

Mendeskripsikan Himpunan

Mendeskripsikan Himpunan BASIC STRUCTURE 2.1 SETS Himpunan Himpunan adalah koleksi tak terurut dari obyek, yang disebut anggota himpunan Notasi. a A : a adalah anggota himpunan A a A : a bukan anggota himpunan A Contoh 1. Himpunan

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana. Bagian 3. Fungsi & Model ALZ DANNY WOWOR

KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana. Bagian 3. Fungsi & Model ALZ DANNY WOWOR KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana Bagian 3 Fungsi & Model ALZ DANNY WOWOR 1. Fungsi Sebelum membahas fungsi, akan ditunjukkan pengertian dari relasi yang

Lebih terperinci

Himpunan. Modul 1 PENDAHULUAN

Himpunan. Modul 1 PENDAHULUAN Modul 1 Himpunan Dra. Kusrini, M.Pd. PENDAHULUAN D alam Modul 1 ini ada 3 kegiatan belajar, yaitu Kegiatan Belajar 1, Kegiatan Belajar 2, dan Kegiatan Belajar 3. Dalam Kegiatan Belajar 1, Anda akan mempelajari

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

BAB IV PENYAJIAN DATA DAN ANALISIS DATA. A. Deskripsi Buku Ajar Matematika SMA/MA Kelas X yang digunakan di

BAB IV PENYAJIAN DATA DAN ANALISIS DATA. A. Deskripsi Buku Ajar Matematika SMA/MA Kelas X yang digunakan di BAB IV PENYAJIAN DATA DAN ANALISIS DATA A. Deskripsi Buku Ajar Matematika SMA/MA Kelas X yang digunakan di SMA/MA Kecamatan Anjir Muara Berdasarkan BAB III telah diuraikan bahwa penelitian ini bertujuan

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : Mata Pelajaran : Matematika Kelas / Program : XI (Sebelas) Semester : Genap

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : Mata Pelajaran : Matematika Kelas / Program : XI (Sebelas) Semester : Genap RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : Mata Pelajaran : Matematika Kelas / Program : XI (Sebelas) Semester : Genap Standar Kompetensi : 2. Menentukan komposisi dua fungsi dan invers suatu

Lebih terperinci

asimtot.wordpress.com BAB I PENDAHULUAN

asimtot.wordpress.com BAB I PENDAHULUAN BAB I PENDAHULUAN. Latar Belakang Kalkulus Differensial dan Integral sangat luas penggunaannya dalam berbagai bidang seperti penentuan maksimum dan minimum. Suatu fungsi yang sering digunakan mahasiswa

Lebih terperinci

Bab 2. Relasi dan Fungsi. Standar Kompetensi. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar

Bab 2. Relasi dan Fungsi. Standar Kompetensi. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar Bab 2 Relasi dan Fungsi Standar Kompetensi Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar 1.3 Memhami relasi dan fu ngsi 1.4 Menentukan nilai fungsi. 1.5 Membuat sketsa

Lebih terperinci

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier MINGGU 4 Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum : Hubungan dan : 1. Hubungan 2. a. Pengertian fungsi b. Jenis-jenis fungsi c. Diagram fungsi d. Pengertian fungsi linier e. Penggambaran

Lebih terperinci

FUNGSI DAN GRAFIK FUNGSI.

FUNGSI DAN GRAFIK FUNGSI. FUNGSI DAN GRAFIK FUNGSI Materi ke-4 eko@uns.ac.id Materi Fungsi Fungsi Surjekti, Fungsi Injekti, dan Fungsi Bijekti Operasi Pada Fungsi Fungsi Invers Fungsi Komposisi Graik Fungsi Dalam Sistem Koordinat

Lebih terperinci

y

y Menyelesaikan Persamaan Kuadrat dengan Grafik Menyesaikan persamaan ax 2 +bx+c=0. Berarti menentukan nilai-nilai x bila f(x) = 0, dimana f(x) = ax 2 +bx+c. apabila grafik fungsi f(x) telah dilukis, maka

Lebih terperinci

1 P E N D A H U L U A N

1 P E N D A H U L U A N 1 P E N D A H U L U A N Pemetaan (fungsi) f dari himpunan A ke himpunan B adalah suatu hubuungan yang memasangkan setiap unsur di A dengan tepat satu unsur di B. Jika a A dan pasangannya b B, maka ditulis

Lebih terperinci

LATIHAN SOAL MATEMATIKA KELAS XI IPS. adalah. A. 6 C. 2 E. 1 B. 3 D. 0.. Maka rumus fungsi invers f adalah.d

LATIHAN SOAL MATEMATIKA KELAS XI IPS. adalah. A. 6 C. 2 E. 1 B. 3 D. 0.. Maka rumus fungsi invers f adalah.d LATIHAN SOAL MATEMATIKA KELAS XI IPS. Diketahui fungsi f x px qx c dan f dan f, maka p c adalah. 6 E. 0. Jika g x x dan h x x, maka g h0... E. 0. Diketahui f x x, g x x, dan h x x. Maka nilai f g h...

Lebih terperinci

LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) ANALISIS MATERI KOMPETENSI SISWA SMP (SILABUS)

LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) ANALISIS MATERI KOMPETENSI SISWA SMP (SILABUS) LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL SEKOLAH KELAS MATA PELAJARAN SEMESTER BILANGAN Standar Kompetensi KOMPETENSI DASAR 1.1 Melakukan operasi hitung bilangan bulat. : SMP : VII : MATEMATIKA

Lebih terperinci

Mendeskripsikan Himpunan

Mendeskripsikan Himpunan BASIC STRUCTURE 2.1 SETS Himpunan Himpunan adalah koleksi tak terurut dari obyek, yang disebut anggota himpunan Notasi. a A : a adalah anggota himpunan A a A : a bukan anggota himpunan A Contoh 1. Himpunan

Lebih terperinci

Pengertian Fungsi. MA 1114 Kalkulus I 2

Pengertian Fungsi. MA 1114 Kalkulus I 2 Fungsi Pengertian Fungsi Relasi : aturan yang mengawankan himpunan Fungsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu ungsi jika setiap elemen di dalam A dihubungkan dengan tepat

Lebih terperinci

APA ITU FUNGSI? x f : x y atau y=f(x) f : x y y=f(x) y=f(x)=x 2. Imajinasi : bermain golf

APA ITU FUNGSI? x f : x y atau y=f(x) f : x y y=f(x) y=f(x)=x 2. Imajinasi : bermain golf FUNGSI TEP FTP UB APA ITU FUNGSI? Imajinasi : bermain golf x f f : x y atau y=f(x) y Sebuah fungsi adalah transformasi dari input x pada output y = f(x). f : x y y=f(x) y=f(x)=x 2 Fungsi adalah hubungan

Lebih terperinci