RELASI DAN FUNGSI. 2. Misalkan A = {2,3,4,5} dan B = {2,3,4,5,6}. Buatlah relasi dari A ke B yang

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "RELASI DAN FUNGSI. 2. Misalkan A = {2,3,4,5} dan B = {2,3,4,5,6}. Buatlah relasi dari A ke B yang"

Transkripsi

1 RELASI DAN FUNGSI A. Relasi I. Pengertian Relasi Relasi dari himpunan A ke himpunan B adalah hubungan yang memasangkan anggota himpunan A dengan anggota-anggota himpunan B. Misalkan A={Adi, Boni, Chris} dan B={Matematika, IPA, IPS}, maka dapat dibentuk suatu relasi antara himpunan A dan himpunan B. Relasi yang tepat dari himpunan A ke himpunan B adalah menyukai. Dan relasi dari himpunan B ke himpunan A adalah disukai. II. Cara menyatakan relasi Ada 3 cara untuk menyatakan relasi yaitu : a. Diagram panah b. Diagram Cartesius c. Himpunan pasangan berurutan Dari kedua contoh sebelumnya, dapat dibentuk suatu himpunan pasangan berurutan yang menyatakan relasi dari himpunan A ke himpunan B = {(1, A), (1, B), (2, B), (3, B), (3, C)}. 1. Misalkan A = {1,2,3,4,5} dan B = {2,3,4,5,6,7}. Buatlah relasi dari A ke B yang menyatakan 1 kurangnya dari dan nyatakan dalam diagram panah. 2. Misalkan A = {2,3,4,5} dan B = {2,3,4,5,6}. Buatlah relasi dari A ke B yang menyatakan faktor dari dan nyatakan dalam diagram Cartesius. 3. Suatu relasi dari himpunan A ke himpunan B dapat dinyatakan dengan {(1,1), (2,4), (3, 9), (4, 16)}. Relasi apakah yang tepat untuk masalah tersebut. Nyatakan relasi tersebut dalam diagram Cartesius. B. Fungsi (Pemetaan) I. Pengertian Fungsi Fungsi atau pemetaan dari himpunan A ke himpunan B adalah relasi khusus yang memasangkan setiap anggota himpunan A dengan tepat satu anggota himpunan B. Syarat suatu relasi dari himpunan A ke himpunan B merupakan fungsi adalah :

2 Setiap anggota himpunan A mempunyai pasangan di himpunan B Setiap anggota himpunan A dipasangkan dengan tepat satu anggota himpunan B. Contoh fungsi Contoh bukan fungsi Tentukan apakah setiap relasi berikut merupakan fungsi atau tidak : 1. {(1,3), (2,4), (2,5), (3,3), (4,3), (5,6)} 2. {(1,1), (2,4), (3,6), (4,8)} II. Menentukan Banyaknya Pemetaan yang Mungkin Jika banyaknya anggota himpunan A adalah n(a) = a dan banyaknya anggota himpunan B adalah n(b) = b, maka banyak pemetaan dari A ke B adalah b a. Dan banyaknya pemetaan dari B ke A adalah a b. 1. Jika A={bilangan prima kurang dari 8} dan B={huruf vokal}. Hitung banyak pemetaan a. dari A ke B b. dari B ke A III. Notasi dan Nilai Fungsi Cara menulis notasi fungsi : f x y atau f x f(x) Dibaca : fungsi f memetakan x anggota A ke y anggota B. Himpunan A disebut domain (daerah asal). Himpunan B disebut kodomain (daerah kawan). Himpunan C B yang memuat y disebut range (daerah hasil). 1.

3 Domain = A = {1, 2, 3} Kodomain = B = {A, B, C} Range = {A, B} 2. Diketahui f(x) = 2x 2 + x 1. Tentukan nilai fungsi f(x) untuk x = 2 dan bayangan 1. f(x) = 2x 2 + x 1 f(2) = 2. (2) = = 9 f( 1) = 2. ( 1) 2 + ( 1) 1 = = 0 1. Diketahui himpunan A = {1,2,3,4} dan B = {3,4,5,6,7}. Dan relasi dari A ke B adalah 2 kurangnya dari. a. Apakah relasi tersebut merupakan fungsi? b. Tentukan domain. c. Tentukan kodomain. d. Tentukan range. 2. Diketahui suatu fungsi f(x) = 3x 5. Tentukan a. Bayangan -2 b. Asal dari 1 IV. Menentukan Rumus Fungsi Suatu fungsi didefinisikan dengan rumus f(x) = ax + b. Jika diketahui f(3) = 14 dan f(5) = 20, maka tentukan : a. Nilai a dan b b. Bentuk/rumus fungsi Cara lain : Masukkan x = 3 dan f(x) = 14 ke f(x) = ax + b, sehingga diperoleh 14 = a(3) + b 14 = 3a + b 14 3a = b Masukkan x = 5, f(x) = 20, b = 14 3a ke f(x) = ax + b sehingga 20 = a(5) a 20 = 5a a 20 = 2a = 2a a = 3

4 Lalu masukkan a = 3, x = 3, f(x) = 14 ke f(x) = ax + b sehingga 14 = b 14 = 9 + b b = 5 Jadi bentuk fungsinya f(x) = 3x Diketahui f(x) = ax + b, jika f(2) = 5 dan f( 4) = 7, maka tentukan rumus fungsinya. 2. Diketahui f(x) = ax + b, jika f(1) = 3 dan f(0) = 5, maka tentukan nilai dari f ( 5 2 ). V. Grafik Fungsi Diketahui f(x) = 3x 5 dengan domain = {x 0 x 5, x bilangan cacah}. Gambarlah grafiknya pada bidang Cartesius. f(x) = 3x 5 f(0) = = 5 f(1) = = 2 f(2) = = 1 f(3) = = 4 f(4) = = 7 f(5) = = 10 Hasilnya dapat disajikan dalam bentuk tabel Kemudian tabel tersebut disajikan dalam diagram Cartesius dan titik-titiknya dihubungkan.

5 Gambarlah grafik fungsi f(x) = x + 3 dengan domain = {x 0 x 8, x bilangan bulat}. C. Korespondensi Satu- Satu Korespondensi satu-satu dari himpunan A ke himpunan B adalah relasi khusus yang memasangkan setiap anggota himpunan A dengan tepat satu anggota himpunan B dan sebaliknya, setiap anggota himpunan B dengan tepat satu anggota himpunan A. Jadi, banyaknya anggota himpunan A dan B harus sama (n(a) = n(b)). Jika n(a) = n(b) = n, maka banyaknya korespondensi satu-satu dari A ke B adalah n! = n (n 1) (n 2) 1. (n! dibaca n faktorial) Berapa banyak korespondensi satu-satu dari himpunan A={bilangan prima kurang dari 13} ke B={huruf vokal}?

RELASI DAN FUNGSI A. Relasi 1. Pengertian Perhatikan gambar dibawah ini.

RELASI DAN FUNGSI A. Relasi 1. Pengertian Perhatikan gambar dibawah ini. RELASI DAN FUNGSI A. Relasi 1. Pengertian Perhatikan gambar dibawah ini. Gambar 1.1 Gambar 1.1 menunjukkan suatu kumpulan anak yang terdiri atas Tino, Atu, Togar, dan Nia berada di sebuah toko alat tulis.

Lebih terperinci

MAKALAH RELASI DAN FUNGSI Makalah ini Disusun untuk Memenuhi Tugas Mata Kuliah Kajian Matematika SMP 1 Dosen Pengampu: Koryna Aviory, S.Si.,M.Pd.

MAKALAH RELASI DAN FUNGSI Makalah ini Disusun untuk Memenuhi Tugas Mata Kuliah Kajian Matematika SMP 1 Dosen Pengampu: Koryna Aviory, S.Si.,M.Pd. MAKALAH RELASI DAN FUNGSI Makalah ini Disusun untuk Memenuhi Tugas Mata Kuliah Kajian Matematika SMP 1 Dosen Pengampu: Koryna Aviory, S.Si.,M.Pd. Disusun oleh: Kelompok 8 1. Yusie Kristiawan (14144100113)

Lebih terperinci

RELASI DAN FUNGSI. b. Diberikan dua himpunan:

RELASI DAN FUNGSI. b. Diberikan dua himpunan: RELASI DAN FUNGSI A. Relasi. Pengertian Relasi Relasi menurut bahasa berarti hubungan. Dalam matematika, relasi atau hubungan menyatakan hubungan antara anggota suatu himpunan dengan anggota himpunan yang

Lebih terperinci

KISI-KISI SOAL PENALARAN & KOMUNIKASI MATEMATIK

KISI-KISI SOAL PENALARAN & KOMUNIKASI MATEMATIK KISI-KISI SOAL PENALARAN & KOMUNIKASI MATEMATIK Jenis Sekolah : SMP/MTs Alokasi Waktu : 90 Menit Mata Pelajaran : Matematika Jumlah Soal : 10 butir Kelas/Semester : VIII/2 Bentuk Soal : Uraian Kurikulum

Lebih terperinci

SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA

SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA SEKOLAH STANDAR NASIONAL (SSN) Jl. RA Fadillah Komp. Kopassus Cijantung Telp. 8400005,

Lebih terperinci

BAB 3 FUNGSI. f : x y

BAB 3 FUNGSI. f : x y . Hubungan Relasi dengan Fungsi FUNGSI Relasi dari himpunan P ke himpunan Q disebut fungsi atau pemetaan, jika dan hanya jika tiap unsur pada himpunan P berpasangan tepat hanya dengan sebuah unsur pada

Lebih terperinci

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN KULIAH-4 Modul Pembelajaran Matematika Kelas X semester 1 Modul Pembelajaran Matematika Kelas X semester 1 FUNGSI DAN GRAFIKNYA PERTIDAKSAMAAN Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan

Lebih terperinci

Bimbingan Belajar FunMath LATIHAN -1

Bimbingan Belajar FunMath  LATIHAN -1 LATIHAN -1 1. Diketahui: A= {Sukabumi, Bandung, Yogyakarta, medan, Palembang, banjarmasin, makasar} B={Jawa, Sumatera, Kalimantan, Sulawesi, Papua} Jika relasi dari A ke B menyatakan hubungan terdapat

Lebih terperinci

Enrichment Test I (UAS Ganjil) *) Tulisan Warna Biru: Jawaban. Sekolah Menengah Pertama Islam Sistem Full Day School

Enrichment Test I (UAS Ganjil) *) Tulisan Warna Biru: Jawaban. Sekolah Menengah Pertama Islam Sistem Full Day School Enrichment Test I (UAS Ganjil) Mathematic: 01 / VIII / III / 1 / 013 Islamic Junior High School of Sabilillah Malang NAME / CLASS :... /.. DAY / DATE :. /.... Sekolah Menengah Pertama Islam Sistem Full

Lebih terperinci

3. FUNGSI DAN GRAFIKNYA

3. FUNGSI DAN GRAFIKNYA 3. FUNGSI DAN GRAFIKNYA 3.1 Pengertian Relasi Misalkan A dan B suatu himpunan. anggota A dikaitkan dengan anggota B berdasarkan suatu hubungan tertentu maka diperoleh suatu relasi dari A ke B. : A = {1,

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : VIII (Delapan)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : VIII (Delapan) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah Mata Pelajaran Kelas Semester : SMP Negeri 3 Magelang : Matematika : VIII (Delapan) : 1 (Satu) Standar Kompetensi : 1. Memahami bentuk aljabar, relasi,

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

TUGAS HIMPUNAN DAN FUNGSI OLEH ARNASARI MERDEKAWATI HADI EKA REZEKI AMALIA DIAH RAHMAWATI HANIYAH MATKOM II A

TUGAS HIMPUNAN DAN FUNGSI OLEH ARNASARI MERDEKAWATI HADI EKA REZEKI AMALIA DIAH RAHMAWATI HANIYAH MATKOM II A TUGAS HIMPUNAN DAN FUNGSI OLEH ARNASARI MERDEKAWATI HADI 06320003 EKA REZEKI AMALIA 06320004 DIAH RAHMAWATI 06320027 HANIYAH 06320029 MATKOM II A JURUSAN MATEMATIKA DAN KOMPUTASI FAKULTAS KEGURUAN DAN

Lebih terperinci

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan MODUL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain Pesan soal-soal matematika untuk SD, SMP dan SMA? Soal ulangan harian, ulangan mid, ulangan semester, soal-soal UAN dll. Tulis

Lebih terperinci

KISI-KISI ULANGAN HARIAN 2 RELASI DAN FUNGSI. Indikator Penilaian Pengertian relasi. kata-kata

KISI-KISI ULANGAN HARIAN 2 RELASI DAN FUNGSI. Indikator Penilaian Pengertian relasi. kata-kata KISI-KISI ULANGAN HARIAN 2 RELASI DAN FUNGSI No. Standar Kompetensi Kompetensi Dasar Materi 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus 1.3. Memahami relasi dan fungsi 1.3.1.

Lebih terperinci

K L P Q 1 2 10 2 2 4 13 4 3 8 18 8. Gambar 4.10 Gambar 4.11

K L P Q 1 2 10 2 2 4 13 4 3 8 18 8. Gambar 4.10 Gambar 4.11 B. Relasi Sebelum mendefinisikan produk Cartesius, terlebih dahulu Anda perlu mengenal pengertian pasangan terurut. Dalam sistem koordinat Cartesius dengan sumbu x dan sumbu y, kita mengetahui bahwa titik

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD SUMBER BELAJAR PENUNJANG PLPG 016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD BAB II ALJABAR Dra.Hj.Rosdiah Salam, M.Pd. Dra. Nurfaizah, M.Hum. Drs. Latri S, S.Pd., M.Pd. Prof.Dr.H. Pattabundu, M.Ed. Widya

Lebih terperinci

KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana. Bagian 3. Fungsi & Model ALZ DANNY WOWOR

KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana. Bagian 3. Fungsi & Model ALZ DANNY WOWOR KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana Bagian 3 Fungsi & Model ALZ DANNY WOWOR 1. Fungsi Sebelum membahas fungsi, akan ditunjukkan pengertian dari relasi yang

Lebih terperinci

FUNGSI. 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi. Cece Kustiawan, FPMIPA, UPI

FUNGSI. 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi. Cece Kustiawan, FPMIPA, UPI FUNGSI 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi Definisi Fungsi Suatu fungsi f atau pemetaan f dari himpunan A ke himpunan B adalah suatu

Lebih terperinci

Oleh : Winda Aprianti

Oleh : Winda Aprianti Oleh : Winda Aprianti Relasi Definisi Relasi Relasi antara himpunan A dan himpunan B merupakan himpunan yang berisi pasangan terurut yang mengikuti aturan tertentu (relasi biner). Relasi biner R antara

Lebih terperinci

Produk Cartesius Relasi Relasi Khusus RELASI

Produk Cartesius Relasi Relasi Khusus RELASI Produk Cartesius Relasi Relasi Khusus RELASI Jika A dan B masing-masing menyatkan himpunan yang tidak kosong, maka produk Cartesius himpunan A dan B adalah himpunan semua pasangan terutut (x,y) dengan

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers Komposisi fungsi dan invers fungsi mempelajari Fungsi komposisi menentukan Fungsi invers terdiri dari Syarat dan aturan fungsi yang dapat dikomposisikan Nilai fungsi komposisi dan pembentuknya Syarat agar

Lebih terperinci

RELASI DAN FUNGSI. A. Pengertian Relasi dan Fungsi

RELASI DAN FUNGSI. A. Pengertian Relasi dan Fungsi RELASI DAN FUNGSI A. Pengertian Relasi dan Fungsi Banyak enomena atau kejadian alam yang dapat dihubungkan dengan suatu relasi Sebagai contoh, misalkan diberikan dua himpunan : A = {sepeda, sepeda motor,

Lebih terperinci

1). Definisi Relasi Relasi dari dua himpunan A dan B adalah pemasangan anggota-anggota A dengan anggota B.

1). Definisi Relasi Relasi dari dua himpunan A dan B adalah pemasangan anggota-anggota A dengan anggota B. Bayangkan suatu fungsi seagai seuah mesin, misalnya mesin hitung. Ia mengamil suatu ilangan (masukan), maka fungsi memproses ilangan yang masuk dan hasil produksinya diseut keluaran. x Masukan Fungsi f

Lebih terperinci

SMP kelas 9 - MATEMATIKA BAB 17. RELASI DAN FUNGSILATIHAN SOAL BAB

SMP kelas 9 - MATEMATIKA BAB 17. RELASI DAN FUNGSILATIHAN SOAL BAB 1. Diketahui F(x) = 4x + 3, maka nilai f (-3) = SMP kelas 9 - MATEMATIKA BAB 17. RELASI DAN FUNGSILATIHAN SOAL BAB 17-12 -10-9 -8 Kunci Jawaban : C http://www.primemobile.co.id/assets/uploads/materi/mtk09-18-pembhasan1.jpg

Lebih terperinci

Matematika

Matematika dan D3 Analis Kimia FMIPA Universitas Islam Indonesia Definisi Suatu fungsi f adalah suatu aturan korespondensi yang menghubungkan setiap objek x dalam satu himpunan, yang disebut domain, dengan sebuah

Lebih terperinci

BAB V HIMPUNAN. Himpunan adalah kumpulan benda-benda atau obyek yang mempunyai definisi yang jelas.

BAB V HIMPUNAN. Himpunan adalah kumpulan benda-benda atau obyek yang mempunyai definisi yang jelas. BAB V HIMPUNAN A. Pengertian Himpunan Himpunan adalah kumpulan benda-benda atau obyek yang mempunyai definisi yang jelas. Contoh: 1. A adalah himpunan bilangan genap antara 1 sampai dengan 11. Anggota

Lebih terperinci

Mendeskripsikan Himpunan

Mendeskripsikan Himpunan BASIC STRUCTURE 2.1 SETS Himpunan Himpunan adalah koleksi tak terurut dari obyek, yang disebut anggota himpunan Notasi. a A : a adalah anggota himpunan A a A : a bukan anggota himpunan A Contoh 1. Himpunan

Lebih terperinci

Logika, Himpunan, dan Fungsi

Logika, Himpunan, dan Fungsi Logika, Himpunan, dan Fungsi A. Logika Matematika Logika matematika adalah ilmu untuk berpikir dan menalar dengan menggunakan bahasa serta simbol-simbol matematika dengan benar. 1) Kalimat Matematika Kalimat

Lebih terperinci

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT LA - WB (Lembar Aktivitas Warga Belajar) PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana

Lebih terperinci

LAMPIRAN 1 SURAT IJIN PENELITIAN

LAMPIRAN 1 SURAT IJIN PENELITIAN 30 LAMPIRAN SURAT IJIN PENELITIAN 3 32 LAMPIRAN 2 PERANGKATPEMBELAJARAN 33 Lampiran 2a Silabus Pembelajaran Mata Pelajaran Matematika Kelas VIII Semester II Tahun Pelajaran 205/206.3 Memahami relasi dan

Lebih terperinci

Mendeskripsikan Himpunan

Mendeskripsikan Himpunan BASIC STRUCTURE 2.1 SETS Himpunan Himpunan adalah koleksi tak terurut dari obyek, yang disebut anggota himpunan Notasi. a A : a adalah anggota himpunan A a A : a bukan anggota himpunan A Contoh 1. Himpunan

Lebih terperinci

PENDAHULUAN. 1. Himpunan

PENDAHULUAN. 1. Himpunan PENDAHULUAN 1. Himpunan Definisi 1. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek yang dimaksud biasa disebut dengan elemen-elemen atau anggota-anggota dari himpunan. Suatu himpunan biasanya

Lebih terperinci

Lampiran 1. Daftar Terjemah

Lampiran 1. Daftar Terjemah 84 Lampiran 1. Daftar Terjemah No BAB Terjemah 1 1 Dan dialah yang menjadikan matahari bersinar dan bulan bercahaya dan ditetapkan_nya manzilah (tempattempat) bagi perjalanan bulan itu, supaya kamu mengetahui

Lebih terperinci

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

Bab 2. Relasi dan Fungsi. Standar Kompetensi. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar

Bab 2. Relasi dan Fungsi. Standar Kompetensi. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar Bab 2 Relasi dan Fungsi Standar Kompetensi Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar 1.3 Memhami relasi dan fu ngsi 1.4 Menentukan nilai fungsi. 1.5 Membuat sketsa

Lebih terperinci

KOMPOSISI FUNGSI DAN FUNGSI INVERS

KOMPOSISI FUNGSI DAN FUNGSI INVERS 1 KOMPOSISI FUNGSI DAN FUNGSI INVERS Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMP Negeri 3 Singaraja Mata Pelajaran : Matematika Kelas / Semester : VIII / Ganjil Alokasi Waktu : 2 40 menit A. Standar Kompetensi x. Memahami bentuk

Lebih terperinci

NAMA : KELAS : SMA TARAKANITA 1 JAKARTA theresiaveni.wordpress.com

NAMA : KELAS : SMA TARAKANITA 1 JAKARTA theresiaveni.wordpress.com 1 NAMA : KELAS : 2 KOMPOSISI FUNGSI DAN FUNGSI INVERS Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

Sedangkan bilangan real yang tidak dapat dinyatakan sebagai pembagian dua bilangan bulat adalah bilangan irasional, contohnya

Sedangkan bilangan real yang tidak dapat dinyatakan sebagai pembagian dua bilangan bulat adalah bilangan irasional, contohnya BAB I A. SISTEM BILANGAN REAL Sistem bilangan real dan berbagai sifatnya merupakan basis dari kalkulus. Sistem bilangan real terdiri dari himpunan unsur yang dinamakan Bilangan Real yang sering dinyatakan

Lebih terperinci

FUNGSI DAN LIMIT FUNGSI

FUNGSI DAN LIMIT FUNGSI 2 FUNGSI DAN LIMIT FUNGSI 2.1 Fungsi dan Grafiknya Definisi Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap x anggota A dengan tepat satu y anggota B. A disebut

Lebih terperinci

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 N0 TOPIK FUNGSI 2.1 DEFINISI FUNGSI 2.2 DAERAH DEFINISI DAN DAERAH HASIL 2.3 JENIS-JENIS FUNGSI 2.4 OPERASI ALJABAR FUNGSI 2.5 FUNGSI GENAP, GANJIL,

Lebih terperinci

5 F U N G S I. 1 Matematika Ekonomi

5 F U N G S I. 1 Matematika Ekonomi 5 F U N G S I Pemahaman tentang konsep fungsi sangat penting dalam mempelajari ilmu ekonomi, mengingat kajian ekonomi banyak bekerja dengan fungsi. Fungsi dalam matematika menyatakan suatu hubungan formal

Lebih terperinci

Faktorisasi Bentuk Aljabar

Faktorisasi Bentuk Aljabar Faktorisasi Bentuk Aljabar Satuan Pendidikan Bidang Study Kelas / Semester : SMP. N 2 Jatipuro : MATEMATIKA : VIII / I 1. STANDAR KOMPETENSI Memahami bentuk aljabar. 2. KOMPETENSI DASAR 1.1 Melakukan operasi

Lebih terperinci

BAB II KAJIAN TEORITIS DAN HIPOTESIS TINDAKAN. belajar adalah pola-pola perbuatan, nilai-nilai, pengertianpengertian,

BAB II KAJIAN TEORITIS DAN HIPOTESIS TINDAKAN. belajar adalah pola-pola perbuatan, nilai-nilai, pengertianpengertian, BAB II KAJIAN TEORITIS DAN HIPOTESIS TINDAKAN 2.1 Kajian Teori 2.1.1 Hasil Belajar Hasil belajar adalah pola-pola perbuatan, nilai-nilai, pengertianpengertian, apresiasi, dan keterampilan. Merujuk pemikiran

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN 01 (RPP 01)

RENCANA PELAKSANAAN PEMBELAJARAN 01 (RPP 01) RENCN PELKSNN PEMELJRN 01 (RPP 01) Sekolah Mata Pelajaran Kelas/Semester lokasi Waktu : SM Saraswati Singaraja : Matematika : X/Ganjil : 2 x 4 menit I. Standar Kompetensi: 2. Memecahkan masalah yang berkaitan

Lebih terperinci

BAB V PENUTUP. matematika yang diajarkan dengan modelproblem Based Learning dengan. Fungsi di SMP Negeri 10 Kupang Tahun Ajaran 2014/2015.

BAB V PENUTUP. matematika yang diajarkan dengan modelproblem Based Learning dengan. Fungsi di SMP Negeri 10 Kupang Tahun Ajaran 2014/2015. BAB V PENUTUP A. Kesimpulan Berdasarkan hasil analisis data dan pembahasan maka dapat ditarik simpulan bahwa ada perbedaan yang signifikan terhadap prestasi belajar matematika yang diajarkan dengan modelproblem

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

1 P E N D A H U L U A N

1 P E N D A H U L U A N 1 P E N D A H U L U A N 1.1.Himpunan Himpunan (set) adalah kumpulan objek-objek yang terdefenisi dengan baik (well defined). Artinya bahwa untuk sebarang objek x yang diberikan, maka kita selalu akan dapat

Lebih terperinci

Relasi dan Fungsi. Bab. Di unduh dari : Bukupaket.com. Relasi Fungsi Daerah asal (domain) Daerah kawan (kodomain) Daerah hasil (range)

Relasi dan Fungsi. Bab. Di unduh dari : Bukupaket.com. Relasi Fungsi Daerah asal (domain) Daerah kawan (kodomain) Daerah hasil (range) Bab Relasi dan Fungsi A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran ini siswa mampu: 1. Memiliki motivasi internal, kemampuan bekerjasama, konsisten, sikap

Lebih terperinci

MATERI : RELASI DAN FUNGSI KELAS : X. 1. Ada hal penting yang bisa dipetik dari contoh di atas. Misalkan X menyatakan

MATERI : RELASI DAN FUNGSI KELAS : X. 1. Ada hal penting yang bisa dipetik dari contoh di atas. Misalkan X menyatakan MTERI : RELSI DN FUNGSI KELS : X Pemahaman Fungsi Dalam berbagai aplikasi, korespondensi/hubungan antara dua himpunan sering terjadi 4 3 Sebagai contoh, volume bola dengan jari-jari r diberikan oleh relasi

Lebih terperinci

Materi Kuliah Matematika Komputasi FUNGSI

Materi Kuliah Matematika Komputasi FUNGSI Materi Kuliah Matematika Komputasi FUNGSI Misalkan A dan B himpunan. FUNGSI Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam

Lebih terperinci

FUNGSI KOMPOSISI DAN FUNGSI INVERS

FUNGSI KOMPOSISI DAN FUNGSI INVERS FUNGSI KOMPOSISI DAN FUNGSI INVERS Jika A dan B adalah dua himpunan yang tidak kosong, fungsi f dari A ke B; f : A B atau A f B adalah cara pengawanan anggota A dengan anggota B yang memenuhi aturan setiap

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. penelitian ini adalah untuk mengetahui kemampuan penalaran matematik pada

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. penelitian ini adalah untuk mengetahui kemampuan penalaran matematik pada BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 Hasil an Sebagaimana yang telah diuraikan pada bagian pendahuluan, bahwa tujuan penelitian ini adalah untuk mengetahui kemampuan penalaran matematik pada siswa

Lebih terperinci

FUNGSI. range. Dasar Dasar Matematika I 1

FUNGSI. range. Dasar Dasar Matematika I 1 FUNGSI Pada bagian sebelumnya telah dibahas tentang relasi yaitu aturan yang menghubungkan elemen dua himpunan. Pada bagian ini akan dibahas satu jenis relasi yang lebih khusus yang dinamakan fungsi Suatu

Lebih terperinci

OPERASI BINER. Yus Mochamad Cholily Program Studi Pendidikan Matematika Universitas Muhammadiyah Malang

OPERASI BINER. Yus Mochamad Cholily Program Studi Pendidikan Matematika Universitas Muhammadiyah Malang OPERASI BINER Yus Mochamad Cholily Program Studi Pendidikan Matematika Universitas Muhammadiyah Malang email:ymcholily@gmail.com March 4, 2013 1 Daftar Isi 1 Tujuan 3 2 Relasi 3 3 Fungsi 4 4 Operasi Biner

Lebih terperinci

KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI /

KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI / Oleh : SRI ESTI TRISNO SAMI, ST, MMSI 08125218506 / 082334051234 E-mail : sriestits2@gmail.com Bahan Bacaan / Refferensi : 1. Frank Ayres J. R., Calculus, Shcaum s Outline Series, Mc Graw-Hill Book Company.

Lebih terperinci

BAB. VI. FUNGSI. Contoh 2. Dari diagram panah diatas tentukan: a. Domain b.kodomain. d.himpunan pasangan berurutan jawab:

BAB. VI. FUNGSI. Contoh 2. Dari diagram panah diatas tentukan: a. Domain b.kodomain. d.himpunan pasangan berurutan jawab: A. FUNGSI I. Pengertian Fungsi Fungsi (pemetaan) yaitu relasi khusus, dimana setiap anggota daerah asal mempunyai pasangan tepat satu dengan anggota daerah kawan A B BAB. VI. FUNGSI Keterangan: A=Daerah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA A. Pembelajaran Matematika Menurut Corey (Susanto, 2013: 186), pembelajaran adalah suatu proses dimana lingkungan seseorang secara sengaja dikelola untuk memungkinkan ia turut

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah :... Mata Pelajaran : Matematika Kelas : VIII (Delapan) Semester : 1 (Satu) Standar Kompetensi : 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan

Lebih terperinci

Matematika

Matematika Fungsi dan D3 Analis Kimia FMIPA Universitas Islam Indonesia Fungsi Definisi Suatu fungsi f adalah suatu aturan korespondensi yang menghubungkan setiap objek x dalam satu himpunan, yang disebut domain,

Lebih terperinci

FUNGSI KOMPOSISI DAN FUNGSI INVERS

FUNGSI KOMPOSISI DAN FUNGSI INVERS FUNGSI KOMPOSISI DAN FUNGSI INVERS. Relasi dan Fungsi Pada saat di Sekolah Lanjutan Pertama (SMP) telah dipelajari tentang topik Relasi, Fungsi dan Grafik. Pada materi relasi ini selain menggunakan istilah

Lebih terperinci

BAB 3 FUNGSI. 1. Pengertian Fungsi. dengan satu dan hanya satu elemen B; f disebut fungsi dari A ke B, ditulis f : A

BAB 3 FUNGSI. 1. Pengertian Fungsi. dengan satu dan hanya satu elemen B; f disebut fungsi dari A ke B, ditulis f : A BAB 3 FUNGSI 1. Pengertian Fungsi Fungsi f adalah suatu aturan padanan yang menghubungkan tiap objek x dalam satu himpunan, yang disebut daerah asal, dengan sebuah nilai unik f(x) dari himpunan kedua.

Lebih terperinci

2) Drs. Mustafa, M.Pd., selaku Kepala Dinas Pendidikan Kota Langsa.

2) Drs. Mustafa, M.Pd., selaku Kepala Dinas Pendidikan Kota Langsa. Ucapan Terima Kasih Syukur Alhamdulillah, akhirnya kami dapat menyelesaikan Lembar Kerja Siswa (LKS) Matematika untuk SMP/MTs Kelas VIII Semester 1 dengan bantuan berbagai pihak. Untuk itu, pada kesempatan

Lebih terperinci

HAND OUT ANALISIS REAL 1 (MT403) KOSIM RUKMANA

HAND OUT ANALISIS REAL 1 (MT403) KOSIM RUKMANA HAND OUT ANALISIS REAL 1 (MT403) KOSIM RUKMANA JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN IPA UNIVERSITAS PENDIDIKAN INDONESIA 2008 1 Identitas Mata Kuliah 1. Nama Mata Kuliah : Analisis

Lebih terperinci

Sumber: Dokumen Kemdikbud

Sumber: Dokumen Kemdikbud Bab 3 Fungsi K ata Kunci Relasi Fungsi Diagram Panah Tabel Grafik Rumus Fungsi K D ompetensi asar Menyajikan fungsi dalam berbagai bentuk relasi, pasangan terurut, rumus fungsi, tabel, grafik, dan diagram.

Lebih terperinci

BAB 6 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi

BAB 6 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi BAB 6 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi A. Fungsi dan Macam-macam Fungsi Pada saat di Sekolah Lanjutan Pertama (SMP) telah dipelajari

Lebih terperinci

BAB 3 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi Kompetensi Dasar:

BAB 3 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi Kompetensi Dasar: BAB 3 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi Kompetensi Dasar:. Menentukan komposisi fungsi dari dua fungsi. Menentukan invers suatu

Lebih terperinci

FUNGSI. setiap elemen di dalam himpunan A mempunyai pasangan tepat satu elemen di himpunan B.

FUNGSI. setiap elemen di dalam himpunan A mempunyai pasangan tepat satu elemen di himpunan B. FUNGSI Dalam matematika diskrit, konsep fungsi sangat penting, dimana fungsi merupakan relasi yang mempunyai syarat setiap anggota dari daerah definisi (domain) mempunyai pasangan tepat satu anggota dari

Lebih terperinci

BAB I PEMBAHASAN 1. PENGERTIAN RELASI

BAB I PEMBAHASAN 1. PENGERTIAN RELASI BAB I PEMBAHASAN 1. PENGERTIAN RELASI Misalkan relasi pada himpunan A dan B adalah dua himpunan sebarang, suatu relasi dari A ke B adalah himpunan bagian dari A x B yaitu pasangan terurut (a,b) dimana

Lebih terperinci

Fungsi. Adri Priadana ilkomadri.com

Fungsi. Adri Priadana ilkomadri.com Fungsi Adri Priadana ilkomadri.com Fungsi Definisi : Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam

Lebih terperinci

INFORMASI PENTING. No 1 Bilangan Bulat. 2 Pecahan Bentuk pecahan campuran p dapat diubah menjadi pecahan biasa Invers perkalian pecahan adalah

INFORMASI PENTING. No 1 Bilangan Bulat. 2 Pecahan Bentuk pecahan campuran p dapat diubah menjadi pecahan biasa Invers perkalian pecahan adalah No RUMUS 1 Bilangan Bulat Sifat penjumlahan bilangan bulat a. Sifat tertutup a + b = c; c juga bilangan bulat b. Sifat komutatif a + b = b + a c. Sifat asosiatif (a + b) + c = a + (b + c) d. Mempunyai

Lebih terperinci

Rencana Pelaksanaan Pembelajaran (RPP)

Rencana Pelaksanaan Pembelajaran (RPP) Rencana Pelaksanaan Pembelajaran (RPP) Nama Sekolah : SMP N Ayo Belajar 1 Mata Pelajaran : Matematika Kelas/Semester : VIII/ 1 (Satu) Standar Kompetensi : 1. Memahami bentuk aljabar, relasi, fungsi, dan

Lebih terperinci

Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. 1 FUNGSI Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam B. Jika f adalah fungsi dari A ke B kita

Lebih terperinci

Menegaskan kembali inti materi pelajaran Menutup pelajaran dan memberikan PR serta latihan mandiri

Menegaskan kembali inti materi pelajaran Menutup pelajaran dan memberikan PR serta latihan mandiri Menegaskan kembali inti materi pelajaran Menutup pelajaran dan memberikan PR serta latihan mandiri Memperhatikan penjelasan guru 5 BAHAN AJAR 1. Kegiatan Belajar : Tujuan kegiatan belajar : Setelah mempelajari

Lebih terperinci

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan KALKULUS 1 HADI SUTRISNO 1 Pendidikan Matematika STKIP PGRI Bangkalan BAB I PENDAHULUAN A. Sistem Bilangan Real Untuk mempelajari kalkulus kita terlebih dahulu perlu memahami bahasan tentang sistem bilangan

Lebih terperinci

FUNGSI KOMPOSISI DAN FUNGSI INVERS

FUNGSI KOMPOSISI DAN FUNGSI INVERS -- FUNGSI KOMPOSISI DAN FUNGSI INVERS. RELASI DAN FUNGSI Relasi himpunan A ke himpunan B yaitu korespondensi/hubungan semua anggota A dengan semua anggota B. Relasi khusus yang menghubungkan setiap anggota

Lebih terperinci

FUNGSI Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu

FUNGSI Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu FUNGSI FUNGSI Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam B. Jika f adalah fungsi dari A ke

Lebih terperinci

PEMBAHASAN. Fungsi adalah relasi khusus yang memasangkan setiap anggota suatu himpunan dengan tepat satu anggota himpunan lain.

PEMBAHASAN. Fungsi adalah relasi khusus yang memasangkan setiap anggota suatu himpunan dengan tepat satu anggota himpunan lain. PEMHSN 1. Fungsi ( pemetaan ) Fungsi adalah relasi khusus yang memasangkan setiap anggota suatu himpunan dengan tepat satu anggota himpunan lain. Fungsi dalam matematika adalah mengacu adanya reaksi binar

Lebih terperinci

C. { 0, 1, 2, 3, 4 } D. { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

C. { 0, 1, 2, 3, 4 } D. { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } 1. Himpunan penyelesaian dari 2x - 3 7, x { bilangan cacah }, adalah... A. { 0, 1, 2 } B. { 0, 1, 2, 3, 4, 5 } 2x - 3 7, x {bilangan cacah} 2x 7 + 3 2x 10 x 5 Hp : { 0, 1, 2, 3, 4, 5 } C. { 0, 1, 2, 3,

Lebih terperinci

Wahyu Hidayat, S.Pd., M.Pd.

Wahyu Hidayat, S.Pd., M.Pd. Wahyu Hidayat, S.Pd., M.Pd. FUNGSI Definisi Fungsi Diketahui 2 buah himpunan A dan yang tidak kosong. Suatu fungsi dari A ke, ditulis f : A didefinisikan sebagai suatu aturan yang memasangkan setiap anggota

Lebih terperinci

FUNGSI MATEMATIKA SISTEM INFORMASI 1

FUNGSI MATEMATIKA SISTEM INFORMASI 1 FUNGSI MATEMATIKA SISTEM INFORMASI 1 PENGERTIAN FUNGSI A disebut daerah asal (domain) dari f dan B disebut daerah hasil (Kodomain) dari f. Nama lain untuk fungsi adalah pemetaan atau transformasi. A Fungsi

Lebih terperinci

*Tambahan Grafik Fungsi Kuadrat

*Tambahan Grafik Fungsi Kuadrat *Tambahan Grafik Fungsi Kuadrat GRAFIK FUNGSI KUADRAT Langkah-langkah menggambar grafik: 1. Tentukan pembuat nol fungsi y=0 atau f(x)=0 2. Tentukan sumbu simetri x = -b/2a 3. Tentukan titik puncak P (x,y)

Lebih terperinci

DAFTAR SISWA KELAS VIII A

DAFTAR SISWA KELAS VIII A DAFTAR SISWA KELAS VIII A No Nama Alamat 1 Abdul aziz Mlokolegi Temon 2 Ady Bagus Prasetya Senarang Temon 3 Ahmad Zainal Abidin Mlokolegi Temon 4 Alfi Zackyatul Husna Temon Temon 5 Danang Senarang Temon

Lebih terperinci

BAB 3. FUNGSI. Jurusan Teknik Informatika Fakultas Teknik Universitas Muhammadiyah Jember. 1st November 2016

BAB 3. FUNGSI. Jurusan Teknik Informatika Fakultas Teknik Universitas Muhammadiyah Jember. 1st November 2016 BAB 3. FUNGSI Jurusan Teknik Informatika Fakultas Teknik Universitas Muhammadiyah Jember 1st November 2016 Ilham Saifudin (TI) BAB 3. FUNGSI 1st November 2016 1 / 23 Outline 1 Fungsi Definisi Fungsi Bentuk

Lebih terperinci

Silabus. Kegiatan Pembelajaran Instrumen

Silabus. Kegiatan Pembelajaran Instrumen NAMA SEKOLAH : MATA PELAJARAN : Matematika KELAS : XI STANDAR KOMPETENSI : Menerapkan logika matematka dalam pemecahan masalah yang berkaitan dengan pernyataan majemuk dan pernyataan berkuantor KODE KOMPETENSI

Lebih terperinci

MATEMATIKA DISKRIT RELASI

MATEMATIKA DISKRIT RELASI MATEMATIKA DISKRIT RELASI Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh

Lebih terperinci

Relasi dan Fungsi. Bab. Relasi Fungsi Daerah asal (domain) Daerah kawan (kodomain) Daerah hasil (range) A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR

Relasi dan Fungsi. Bab. Relasi Fungsi Daerah asal (domain) Daerah kawan (kodomain) Daerah hasil (range) A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Bab Relasi dan Fungsi A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran ini siswa mampu: 1. menghayati pola hidup disiplin, kritis, bertanggungjawab, konsisten

Lebih terperinci

RELASI DAN FUNGSI. Nur Hasanah, M.Cs

RELASI DAN FUNGSI. Nur Hasanah, M.Cs RELASI DAN FUNGSI Nur Hasanah, M.Cs Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan

Lebih terperinci

BAB V SIMPULAN DAN SARAN

BAB V SIMPULAN DAN SARAN BAB V SIMPULAN DAN SARAN A. Simpulan Penelitian tindakan kelas dengan menggunakan pembelajaran kooperatif tipe Group Investigation telah dilaksanakan dalam dua siklus dan telah meningkatkan kemampuan penalaran

Lebih terperinci

0 bocormatematika.wordpress.com. Oleh: TIM Guru MATEMATIKA MA Negeri Purbalingga

0 bocormatematika.wordpress.com. Oleh: TIM Guru MATEMATIKA MA Negeri Purbalingga 0 bocormatematika.wordpress.com Oleh: TIM Guru MATEMATIKA MA Negeri Purbalingga BAB I BILANGAN A. Bilangan Bulat Bilangan bulat diberi lambang B terdiri dari bilangan bulat positif, nol, dan bilangan bulat

Lebih terperinci

Contoh 4,19 Diagram panah berikut menunjukkan relasi dari himpunanj A ke himpunan B. Relasi mana yang merupakan fungsi?

Contoh 4,19 Diagram panah berikut menunjukkan relasi dari himpunanj A ke himpunan B. Relasi mana yang merupakan fungsi? C. Fungsi Perhatikan relasi anaknya dari himpunan anak-anak () ke himpunan ayahanyahnya () seperti yang ditunjukkan dengan diagram panah berikut. naknya jid Enal Naufal Nisa Muhsin Nawir Hamrun Hasan Gambar

Lebih terperinci

HIMPUNAN. Himpunan yang tidak mempunyai anggota disebut himpunan kosong, ditulis φ atau { }. Banyaknya anggota himpunan A dinotasikan dengan n(a).

HIMPUNAN. Himpunan yang tidak mempunyai anggota disebut himpunan kosong, ditulis φ atau { }. Banyaknya anggota himpunan A dinotasikan dengan n(a). HIMPUNAN Himpunan adalah kumpulan objek yang mempunyai sifat tertentu. Objek-objek yang membentuk himpunan dinamakan elemen atau anggota himpunan. Nama himpunan dituliskan dengan huruf kapital. Jika a

Lebih terperinci

LEMBAR AKTIVITAS SISWA PERSAMAAN DAN PERTIDAKSAMAAN NILAI MUTLAK

LEMBAR AKTIVITAS SISWA PERSAMAAN DAN PERTIDAKSAMAAN NILAI MUTLAK Nama Siswa LEMBAR AKTIVITAS SISWA PERSAMAAN DAN PERTIDAKSAMAAN NILAI MUTLAK : Kelas : KOMPETENSI DASAR: 3.2 Mendeskripsikan dan menganalisis konsep nilai mutlak dalam persamaan dan pertidaksamaan serta

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 4. Fungsi Kontinu 4.1 Konsep Kekontinuan Fungsi kontinu Limit fungsi dan limit barisan Prapeta himpunan buka 4.2 Sifat-Sifat Fungsi

Lebih terperinci

Teori Dasar Fungsi. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo

Teori Dasar Fungsi. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo December 27, 2012 PENGERTIAN DASAR Denition Misalkan A dan B himpunan. Sebuah fungsi f dari A ke B ditulis f : A B adalah aturan

Lebih terperinci

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan ANALISIS REAL 1 Perkuliahan ini dimaksudkan memberikan kemampuan pada mahasiswa agar dapat memahami pernyataan-pernyataan matematika secara baik dan benar, berpikir secara logis, kritis dan sistematis,

Lebih terperinci

4. Himpunan penyelesaian dari sistem persamaan linear x + y = 5 dan x - 2y = -4 adalah... A.{ (1, 4) }

4. Himpunan penyelesaian dari sistem persamaan linear x + y = 5 dan x - 2y = -4 adalah... A.{ (1, 4) } 1. Diketahui himpunan P = ( bilangan prima kurang dari 13 ) Banyak himpunan bagian dari P adalah... 5 25 10 32 P = {Bilangan prima kurang dari 13} = {2, 3, 5, 7, 11} n(p) = 5 2. Dari diagram Venn di bawah,

Lebih terperinci

FUNGSI DAN GRAFIK FUNGSI.

FUNGSI DAN GRAFIK FUNGSI. FUNGSI DAN GRAFIK FUNGSI Materi ke-4 eko@uns.ac.id ekop2003@yahoo.com Materi Fungsi ( deinisi, daerah asal dan daerah hasil ) Fungsi Surjekti, Injekti, Bijekti dan Invers Operasi Pada Fungsi dan Fungsi

Lebih terperinci