Dalam koordinat Euclid

Ukuran: px
Mulai penontonan dengan halaman:

Download "Dalam koordinat Euclid"

Transkripsi

1 Curve

2 Diberikan adalah sebuah kurva. Pada Bab 1, bagian 4, telah didefinisikan vektor kelajuan dari saat t. Sekarang kita definisikan kecepatan dari saat t yaitu panjang dari vektor kelajuan. Dengan demikian, kecepatan merupakan sebuah fungsi bernilai real pada interval I. Dalam koordinat Euclid

3 Oleh karena itu, fungsi kecepatan dari dinyatakan dengan perumusan : Dalam fisika, jarak yang dilalui oleh perpindahan titik dapat ditentukan dengan mengintegralkan kecepatannya terhadap waktu. Dengan demikian, kita definisikan panjang busur untuk dari ke yaitu

4 Panjang busur ini hanya melibatkan batasan dari (didefinisikan pada beberapa interval terbuka) untuk interval tertutup. Batasan seperti disebut segmen kurva, dan panjangnya dilambangkan dengan. Perhatikan bahwa kecepatan dari terdefinisi dengan baik di titik-titik terakhir dan dari. Terkadang salah satu yang menarik hanya rute yang dilalui oleh sebuah kurva dan bukan pada kecepatan tertentu dimana sebuah kurva melintasi rutenya. Salah satu cara untuk mengabaikan kecepatan dari kurva yaitu dengan reparameterisasi kurva yang memiliki kecepatan unit. Maka menggambarkan perjalanan standar sepanjang rute.

5 2.1 Teorema

6 Teorema 2.1 Jika adalah kurva regular di, maka terdapat suatu reparameterisasi ß dari sedemikian hingga ß memiliki kecepatan satuan.

7 Bukti: Akan dibuktikan terdapat ß suatu reparameterisasi dari sehingga. Misal diberikan nilai (fixed) pada domain I dari fungsi dan fungsi panjang busur Kemudian derivatif dari fungsi adalah fungsi kecepatan dari dari -. Karena - regular maka menurut definisi, sehingga. Menurut Teorema Dasar Kalkulus, fungsi memiliki fungsi invers dimana derivatif pada adalah kebalikan dari pada. Secara sama berarti. Sekarang misalkan ß reparameterisasi aturan rantai diperoleh dari -. Dengan menggunakan Dari sini maka diperoleh kecepatan ß Sehingga terbukti bahwa reparameterisasi ß dari - kecepatan satuan. sedemikian hingga ß memiliki

8 Contoh: Helix. Maka kelajuan Sehingga Maka mempunyai kecepatan konstan. Dengan panjang busur dari t=0:..

9 Dengan mensubstitusikan t(s)=s/c ke, maka didapat: Dan mudah diketahui bahwa untuk semua s, sehingga punya kecepatan satuan.

10 2.2 Definisi

11 Definisi 2.2 Medan vector Y pada kurva adalah sebuah fungsi yang mengawankan setiap sebagai tangent vector Y(t) terhadap pada (t) Y(t) = (y 1 (t), y 2 (t), y 3 (t)) (t) = y i (t)u i ( (t)) Dengan y i pada I disebut fungsi koordinat Euclidean pada Y. Operasi-operasi: Jika diberikan Y, Z medan vector pada kurva (Y + Z) (t) = Y(t) + Z(t) (f Y) (t) = f(t) Y(t) dan f fungsi, maka

12

13 Jika diberikan Maka

14 Jika maka. Contoh: Turunan dari yaitu merupakan percepatan dari. Misal maka. Dan berbeda dengan kecepatan, percepatan tidak menyinggung kurva

15 Diferensiasi selalu memenuhi sifat linear dan sifat Leibnizian. Sifat linear: Sifat Leibnizian: Jika adalah fungsi konstan maka Jika mempunyaipanjang konstan maka dan orthogonal di setiap titik. Sedemikian hingga konstan maka

16 2.3 Lemma

17 2.3 Lemma 1. Suatu kurva konstan jika dan hanya jika kecepatannya nol, =0; 2. Kurva tidak konstan adalah garis lurus jika dan hanya jika percepatannya nol, =0; 3. Suatu medan vector Y pada kurva adalah sejajar jika dan hanya jika turunannya nol, Y =0.

18 Bukti Lemma: Karena kurva konstan,, maka. Jika, berarti dengan sebarang konstanta, maka kurva konstan,. 1

19 Bukti Lemma: Karena kurva tidak konstan dan garis lurus,.. jika dan hanya jika masing-masing dengan, sehingga, tidak lain merupakangaris lurus, maka yang merupakan kurva tidak konstan. 2

20 Bukti Lemma: Suatu medan vector, pada kurva sejajar jika semua tangent vector-nya sejajar, Tangen vector dan sejajar jika dan sehingga konstanta, dan. Karena, maka, sedangkan diketahui pula kesejajaran medan vector ekuivalen dengan kekonstanan dari fungsi kordinat Euclidan. Berarti Y sejajar. 3

21 Benawi Adha(11/316884/PA/14004) Era Dwi Irianti(11/313469/PA/14274) Erna Dwi Astuti(11/313469/PA/13692) Farida Iin Nuraini(11/316917/PA/14036) Riska Amalia Pertiwi(11/316871/PA/13993) Risky Novita Listyorini(11/317028/PA/14145) Credits

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II KALKULUS MULTIVARIABEL II Integral Garis Medan Vektor dan (Minggu ke-8) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia 1 Integral Garis Medan Vektor 2 Terkait Lintasan Teorema Fundamental untuk

Lebih terperinci

BAB I VEKTOR DALAM BIDANG

BAB I VEKTOR DALAM BIDANG BAB I VEKTOR DALAM BIDANG I. KURVA BIDANG : Penyajian secara parameter Suatu kurva bidang ditentukan oleh sepasang persamaan parameter. ; dalam I dan kontinue pada selang I, yang pada umumnya sebuah selang

Lebih terperinci

GERAKAN KURVA PARAMETERISASI PADA RUANG EUCLIDEAN 1. PENDAHULUAN

GERAKAN KURVA PARAMETERISASI PADA RUANG EUCLIDEAN 1. PENDAHULUAN GERAKAN KURVA PARAMETERISASI PADA RUANG EUCLIDEAN Iis Herisman dan Komar Baihaqi Jurusan Matematika,Institut Teknologi Sepuluh Nopember Surabaya iis@matematika.its.ac.id, komar@matematika.its.ac.id ABSTRAK.

Lebih terperinci

INTEGRAL. Bab. Di unduh dari : Bukupaket.com. Integral tak tentu Fungsi aljabar Derivatif Antiderivatif A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR

INTEGRAL. Bab. Di unduh dari : Bukupaket.com. Integral tak tentu Fungsi aljabar Derivatif Antiderivatif A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Bab INTEGRAL A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran integral siswa mampu:. Mampu mentransformasi diri dalam berperilaku jujur, tangguh menghadapi masalah,

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Pada Bidang Bentuk Vektor dari KALKULUS MULTIVARIABEL II (Minggu ke-9) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Pada Bidang Bentuk Vektor dari 1 Definisi Daerah Sederhana x 2 Pada Bidang

Lebih terperinci

Pertemuan Minggu ke Keterdiferensialan 2. Derivatif berarah dan gradien 3. Aturan rantai

Pertemuan Minggu ke Keterdiferensialan 2. Derivatif berarah dan gradien 3. Aturan rantai Pertemuan Minggu ke-10 1. Keterdiferensialan 2. Derivatif berarah dan gradien 3. Aturan rantai 1. Keterdiferensialan Pada fungsi satu peubah, keterdiferensialan f di x berarti keujudan derivatif f (x).

Lebih terperinci

BAB I INTEGRAL TAK TENTU

BAB I INTEGRAL TAK TENTU BAB I INTEGRAL TAK TENTU TUJUAN PEMBELAJARAN: 1. Setelah mempelajari materi ini mahasiswa dapat menentukan pengertian integral sebagai anti turunan. 2. Setelah mempelajari materi ini mahasiswa dapat menyelesaikan

Lebih terperinci

integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2.

integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2. integral 13.1 PENGERTIAN INTEGRAL Untuk itu, coba tentukan turunan fungsi berikut. Perhatikan bahwa fungsi ini memiliki bentuk umum 6 2. Jadi, turunan fungsi = 2 =2 3. Setiap fungsi ini memiliki turunan

Lebih terperinci

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR DIFERENSIASI VEKTOR Materi pokok pertemuan ke 5 : 1. Turunan biasa fungsi vektor URAIAN MATERI Fungsi Vektor Jika sembarang nilai skalar t dikaitkan dengan suatu vektor, maka bisa dinyatakan sebagai fungsi

Lebih terperinci

Integral Tak Tentu. Modul 1 PENDAHULUAN

Integral Tak Tentu. Modul 1 PENDAHULUAN Modul 1 Integral Tak Tentu M PENDAHULUAN Drs. Hidayat Sardi, M.Si odul ini akan membahas operasi balikan dari penurunan (pendiferensialan) yang disebut anti turunan (antipendiferensialan). Dengan mengikuti

Lebih terperinci

asimtot.wordpress.com BAB I PENDAHULUAN

asimtot.wordpress.com BAB I PENDAHULUAN BAB I PENDAHULUAN. Latar Belakang Kalkulus Differensial dan Integral sangat luas penggunaannya dalam berbagai bidang seperti penentuan maksimum dan minimum. Suatu fungsi yang sering digunakan mahasiswa

Lebih terperinci

Program Studi Teknik Mesin S1

Program Studi Teknik Mesin S1 SATUAN ACARA PERKULIAHAN MATA KULIAH : KALKULUS 3 KODE / SKS : IT042219 / 2 SKS Pertemuan Pokok Bahasan dan TIU Geometri pada bidang, vektor vektor pada bidang : pendekatan secara geometrik dan secara

Lebih terperinci

TUJUAN INSTRUKSIONAL KHUSUS

TUJUAN INSTRUKSIONAL KHUSUS PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

Bil Riil. Bil Irasional. Bil Bulat - Bil Bulat 0 Bil Bulat + maka bentuk umum bilangan kompleks adalah

Bil Riil. Bil Irasional. Bil Bulat - Bil Bulat 0 Bil Bulat + maka bentuk umum bilangan kompleks adalah ANALISIS KOMPLEKS Pendahuluan Bil Kompleks Bil Riil Bil Imaginer (khayal) Bil Rasional Bil Irasional Bil Pecahan Bil Bulat Sistem Bilangan Kompleks Bil Bulat - Bil Bulat 0 Bil Bulat + Untuk maka bentuk

Lebih terperinci

Persamaan Parametrik

Persamaan Parametrik oki neswan (fmipa-itb) Persamaan Parametrik Kita telah lama terbiasa dengan kurva yang dide nisikan oleh sebuah persamaan yang menghubungkan koordinat x dan y: Contohnya persamaan eksplisit seperti y x

Lebih terperinci

Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada

Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada 5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal

Lebih terperinci

Department of Mathematics FMIPAUNS

Department of Mathematics FMIPAUNS Lecture 2: Metode Operator A. Metode Operator untuk Sistem Linear dengan Koefisien Konstan Pada bagian ini akan dibicarakan cara menentukan penyelesaian sistem persamaan diferensial linear dengan menggunakan

Lebih terperinci

Pertemuan : 4 Materi : Fungsi Bernilai Vektor dan Gerak Sepanjang Kurva Bab II. Diferensial Kalkulus Dari Vektor

Pertemuan : 4 Materi : Fungsi Bernilai Vektor dan Gerak Sepanjang Kurva Bab II. Diferensial Kalkulus Dari Vektor Pertemuan : 4 Materi : Fungsi Bernilai Vektor dan Gerak Sepanjang Kurva Bab II. Diferensial Kalkulus Dari Vektor Standar Kompetensi : Setelah mengikuti perkuliahaan ini mahasiswa diharapkan dapat : 1.

Lebih terperinci

1/32 FISIKA DASAR (TEKNIK SIPIL) KINEMATIKA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta

1/32 FISIKA DASAR (TEKNIK SIPIL) KINEMATIKA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta 1/32 FISIKA DASAR (TEKNIK SIPIL) KINEMATIKA Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Definisi KINEMATIKA Kinematika adalah cabang ilmu fisika yang

Lebih terperinci

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308)

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308) DIKTAT KULIAH (IE-308) BAB 6 INTEGRAL GARIS Diktat ini digunakan bagi mahasiswa Jurusan Teknik Industri Fakultas Teknik Universitas Kristen Maranatha Ir. Rudy Wawolumaja M.Sc JURUSAN TEKNIK INDUSTRI -

Lebih terperinci

INTEGRAL. disebut integral tak tentu dan f(x) disebut integran. = X n+1 + C, a = konstanta

INTEGRAL. disebut integral tak tentu dan f(x) disebut integran. = X n+1 + C, a = konstanta INTEGRAL Jika f(x) = F (x) adalah turunan pertama dari fungsi F(x) maka F(x) adalah antiturunan dari f(x)dan ditulis dengan F(x) = (dibaca integral f(x) terhadap x) = lambang integral, f(x) = integran.

Lebih terperinci

BAB II VEKTOR DAN GERAK DALAM RUANG

BAB II VEKTOR DAN GERAK DALAM RUANG BAB II VEKTOR DAN GERAK DALAM RUANG 1. KOORDINAT CARTESIUS DALAM RUANG DIMENSI TIGA SISTEM TANGAN KANAN SISTEM TANGAN KIRI RUMUS JARAK,,,, 16 Contoh : Carilah jarak antara titik,, dan,,. Solusi :, Persamaan

Lebih terperinci

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak 4 Lingkaran 4.1. Persamaan Lingkaran Bentuk Baku. Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak tetap dari suatu titik tetap. Titik tetap dari lingkaran disebut pusat lingkaran,

Lebih terperinci

TEOREMA FUNDAMENTAL PADA KALKULUS VEKTOR

TEOREMA FUNDAMENTAL PADA KALKULUS VEKTOR TEOREMA FUNDAMENTAL PADA KALKULUS VEKTOR Interpretasi Geometri dari Derivatif Vektor Jika C adalah kurva yang dinyatakan dalam bentuk fungsi vektor r(t) = x(t)i + y(t)j + z(t)k maka:. Derivatif dari kurva

Lebih terperinci

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR INTEGRASI VEKTOR Materi pokok pertemuan ke 11: 1. Integral Biasa 2. Integral Garis URAIAN MATERI Sebelum masuk ke integral garis, Anda pelajari dulu mengenai integral biasa dari vektor. Integral Biasa

Lebih terperinci

= + atau = - 2. TURUNAN 2.1 Definisi Turunan fungsi f adalah fungsi yang nilainya di setiap bilangan sebarang c di dalam D f diberikan oleh

= + atau = - 2. TURUNAN 2.1 Definisi Turunan fungsi f adalah fungsi yang nilainya di setiap bilangan sebarang c di dalam D f diberikan oleh JURUSAN PENDIDIKAN MATEMATIKA FPMIPA-UPI BANDUNG HAND OUT TURUNAN DAN DIFERENSIASI OLEH: FIRDAUS-UPI 0716 1. GARIS SINGGUNG 1.1 Definisi Misalkan fungsi f kontinu di c. Garis singgung ( tangent line )

Lebih terperinci

Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada

Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada 5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal adanya

Lebih terperinci

Linear Lokal = Mempunyai Turunan

Linear Lokal = Mempunyai Turunan oki neswan FMIPA-ITB Linear Lokal = Mempunyai Turunan De nisi turunan fungsi untuk dua peubah tampak sangat berbeda dari turunan untuk fungsi satu peubah De nition 1 Fungsi f : A! R; A R; dikatakan mempunyai

Lebih terperinci

DIFERENSIASI VEKTOR. Fungsi Vektor

DIFERENSIASI VEKTOR. Fungsi Vektor DIFERENSIASI VEKTOR Fungsi Vektor Jika sembarang nilai skalar dikaitkan dengan suatu vektor, maka bisa dinyatakan sebagai fungsi vektor dari atau, yaitu suatu vektor yang komponen-komponennya merupakan

Lebih terperinci

Nama: Gilang Ramadhan NPM : Tugas: Fisika Dasar DINAMIKA

Nama: Gilang Ramadhan NPM : Tugas: Fisika Dasar DINAMIKA Nama: Gilang Ramadhan NPM :4320070016510014 Tugas: Fisika Dasar DINAMIKA Dinamika merupakan ilmu yang mempelajari gerak suatu benda dengan meninjau penyebabnya, bagian dari mekanika. Beda halnya dengan

Lebih terperinci

Pertemuan Minggu ke Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange

Pertemuan Minggu ke Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange Pertemuan Minggu ke-11 1. Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange 1. BIDANG SINGGUNG, HAMPIRAN Tujuan mempelajari: memperoleh persamaan bidang singgung terhadap permukaan z

Lebih terperinci

Asimtot.wordpress.com FUNGSI TRANSENDEN

Asimtot.wordpress.com FUNGSI TRANSENDEN FUNGSI TRANSENDEN 7.1 Fungsi Logaritma Asli 7.2 Fungsi-fungsi Balikan dan Turunannya 7.3 Fungsi-fungsi Eksponen Asli 7.4 Fungsi Eksponen dan Logaritma Umum 7.5 Pertumbuhan dan Peluruhan Eksponen 7.6 Persamaan

Lebih terperinci

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan KALKULUS 1 HADI SUTRISNO 1 Pendidikan Matematika STKIP PGRI Bangkalan BAB I PENDAHULUAN A. Sistem Bilangan Real Untuk mempelajari kalkulus kita terlebih dahulu perlu memahami bahasan tentang sistem bilangan

Lebih terperinci

MODUL PEMBELAJARAN KALKULUS II. ALFIANI ATHMA PUTRI ROSYADI, M.Pd

MODUL PEMBELAJARAN KALKULUS II. ALFIANI ATHMA PUTRI ROSYADI, M.Pd MODUL PEMBELAJARAN KALKULUS II ALFIANI ATHMA PUTRI ROSYADI, M.Pd IDENTITAS MAHASISWA NAMA : KLS/NIM :. KELOMPOK:. Daftar Isi Kata Pengantar Peta Konsep Materi. BAB I Analisis Vektor a. Vektor Pada Bidang.6

Lebih terperinci

BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak

BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak BAB II DASAR TEORI Ada beberapa teori yang berkaitan dengan konsep-konsep umum mengenai aliran fluida. Beberapa akan dibahas pada bab ini. Diantaranya adalah hukum kekekalan massa dan hukum kekekalan momentum.

Lebih terperinci

APLIKASI TURUNAN ALJABAR. Tujuan Pembelajaran. ) kemudian menyentuh bukit kedua pada titik B(x 2

APLIKASI TURUNAN ALJABAR. Tujuan Pembelajaran. ) kemudian menyentuh bukit kedua pada titik B(x 2 Kurikulum 3/6 matematika K e l a s XI APLIKASI TURUNAN ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menerapkan aturan turunan aljabar untuk

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci

BAB III TURUNAN DALAM RUANG DIMENSI-n

BAB III TURUNAN DALAM RUANG DIMENSI-n BAB III TURUNAN DALAM RUANG DIMENSI-n 1. FUNGSI DUA PEUBAH ATAU LEBIH fungsi bernilai riil dari peubah riil, fungsi bernilai vektor dari peubah riil Fungsi bernilai riil dari dua peubah riil yakni, fungsi

Lebih terperinci

TURUNAN. Ide awal turunan: Garis singgung. Kemiringan garis singgung di titik P: lim. Definisi

TURUNAN. Ide awal turunan: Garis singgung. Kemiringan garis singgung di titik P: lim. Definisi TURUNAN Ide awal turunan: Garis singgung Tali busur c +, f c + Garis singgung c, f c c P h c+h f c + f c Kemiringan garis singgung di titik P: f c + f c lim Definisi Turunan fungsi f adalah fungsi lain

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini (minggu 2) Gerak dalam Satu Dimensi (Kinematika) Kerangka Acuan & Sistem Koordinat Posisi dan Perpindahan Kecepatan Percepatan GLB dan GLBB Gerak Jatuh Bebas Mekanika

Lebih terperinci

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada BAB III FUNGSI TERUKUR LEBESGUE Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada Bab II, selanjutnya pada bab ini akan dipelajari gagasan mengenai fungsi terukur Lebesgue. Gagasan mengenai

Lebih terperinci

BAB IV TRANSFORMASI LINEAR. sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka kita mengatakan F

BAB IV TRANSFORMASI LINEAR. sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka kita mengatakan F BAB IV TRANSFORMASI LINEAR 4.. Transformasi Linear Jika V dan W adalah ruang vektor dan F adalah sebuah fungsi yang mengasosiasikan sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka

Lebih terperinci

MODUL PEMBELAJARAN ANALISIS VARIABEL KOMPLEKS 2/22/2012 IKIP BUDI UTOMO MALANG ALFIANI ATHMA PUTRI ROSYADI

MODUL PEMBELAJARAN ANALISIS VARIABEL KOMPLEKS 2/22/2012 IKIP BUDI UTOMO MALANG ALFIANI ATHMA PUTRI ROSYADI MODUL PEMBELAJARAN ANALISIS VARIABEL KOMPLEKS 2/22/2012 IKIP BUDI UTOMO MALANG ALFIANI ATHMA PUTRI ROSYADI IDENTITAS MAHASISWA NAMA NPM KELOMPOK : : : DAFTAR ISI Kata Pengantar Daftar Isi BAB I Bilangan

Lebih terperinci

BAB II TEOREMA NILAI RATA-RATA (TNR)

BAB II TEOREMA NILAI RATA-RATA (TNR) BAB II TEOREMA NILAI RATA-RATA (TNR) Teorema nilai rata-rata menghubungkan nilai suatu fungsi dengan nilai derivatifnya (turunannya), dimana TNR merupakan salah satu bagian penting dalam kuliah analisis

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU Sistem persamaan linear orde/ tingkat satu memiliki bentuk standard : = = = = = = = = = + + + + + + + + + + Diasumsikan koefisien = dan fungsi adalah menerus

Lebih terperinci

Materi Aljabar Linear Lanjut

Materi Aljabar Linear Lanjut Materi Aljabar Linear Lanjut TRANSFORMASI LINIER DARI R n KE R m ; GEOMETRI TRANSFORMASI LINIER DARI R 2 KE R 2 Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA

Lebih terperinci

Kalkulus II. Diferensial dalam ruang berdimensi n

Kalkulus II. Diferensial dalam ruang berdimensi n Kalkulus II Diferensial dalam ruang berdimensi n Minggu ke-9 DIFERENSIAL DALAM RUANG BERDIMENSI-n 1. Fungsi Dua Peubah atau Lebih 2. Diferensial Parsial 3. Limit dan Kekontinuan 1. Fungsi Dua Peubah atau

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini (minggu 2) Gerak dalam Satu Dimensi (Kinematika) Kerangka Acuan & Sistem Koordinat Posisi dan Perpindahan Kecepatan Percepatan GLB dan GLBB Gerak Jatuh Bebas Mekanika

Lebih terperinci

KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP)

KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) PERANGKAT PEMBELAJARAN PROGRAM TAHUNAN ( PROTA ) Mata Pelajaran : Matematika Program : IPA Satuan Pendidikan : SMA / MA Kelas/Semester : XI / 2 Nama Guru NIP/NIK

Lebih terperinci

BAB III PEMODELAN PERSAMAAN INTEGRAL PADA ALIRAN FLUIDA

BAB III PEMODELAN PERSAMAAN INTEGRAL PADA ALIRAN FLUIDA BAB III PEMODELAN PERSAMAAN INTEGRAL PADA ALIRAN FLUIDA 3.1 Deskripsi Masalah Permasalahan yang dibahas di dalam Tugas Akhir ini adalah mengenai aliran fluida yang mengalir keluar melalui sebuah celah

Lebih terperinci

BAB III TENSOR. Berdasarkan uraian bab sebelumnya yang telah menjelaskan beberapa

BAB III TENSOR. Berdasarkan uraian bab sebelumnya yang telah menjelaskan beberapa BAB III TENSOR Berdasarkan uraian bab sebelumnya yang telah menjelaskan beberapa istilah dan materi pendukung yang berkaitan dengan tensor, pada bab ini akan dijelaskan pengertian dasar dari tensor. Tensor

Lebih terperinci

Fungsi Linear dan Fungsi Kuadrat

Fungsi Linear dan Fungsi Kuadrat Modul 1 Fungsi Linear dan Fungsi Kuadrat Drs. Susiswo, M.Si. K PENDAHULUAN ompetensi umum yang diharapkan, setelah mempelajari modul ini, adalah Anda dapat memahami konsep tentang persamaan linear dan

Lebih terperinci

OPTIMISASI PEMROGRAMAN CEMBUNG MENGGUNAKAN SYARAT KUHN-TUCKER SKRIPSI

OPTIMISASI PEMROGRAMAN CEMBUNG MENGGUNAKAN SYARAT KUHN-TUCKER SKRIPSI OPTIMISASI PEMROGRAMAN CEMBUNG MENGGUNAKAN SYARAT KUHN-TUCKER SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan Guna

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

Dosen Pengampu : Puji Andayani, S.Si, M.Si, M.Sc

Dosen Pengampu : Puji Andayani, S.Si, M.Si, M.Sc KALKULUS III Teorema Integral Dosen Pengampu : Puji Andayani, S.Si, M.Si, M.Sc 1 INTEGRAL GARIS Integral Garis pada Fungsi Skalar Definisi : Jika f didefinisikan pada kurva diberikan secara parametrik

Lebih terperinci

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom KINEMATIKA Fisika Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sasaran Pembelajaran Indikator: Mahasiswa mampu mencari besaran

Lebih terperinci

SILABUS. Deskripsi Mata Kuliah : Merupakan lanjutan dari kalkulus-2 yang menitikberatkan pada pemahaman dan penguasaan konsep dan aplikasi integral

SILABUS. Deskripsi Mata Kuliah : Merupakan lanjutan dari kalkulus-2 yang menitikberatkan pada pemahaman dan penguasaan konsep dan aplikasi integral SILABUS Kode Mata Kuliah : IT043223 Nama Mata kuliah : KALKULUS 3 Jumlah SKS : 2 Semester : III Deskripsi Mata Kuliah : Merupakan lanjutan dari -2 yang menitikberatkan pada pemahaman dan penguasaan konsep

Lebih terperinci

Teorema Divergensi, Teorema Stokes, dan Teorema Green

Teorema Divergensi, Teorema Stokes, dan Teorema Green TEOREMA DIVERGENSI, STOKES, DAN GREEN Materi pokok pertemuan ke 13: 1. Teorema divergensi Gauss URAIAN MATERI Untuk memudahkan perhitungan seringkali dibutuhkan penyederhanaan bentuk integral yang berdasarkan

Lebih terperinci

Catatan Kuliah KALKULUS II BAB V. INTEGRAL

Catatan Kuliah KALKULUS II BAB V. INTEGRAL BAB V. INTEGRAL Anti-turunan dan Integral TakTentu Persamaan Diferensial Sederhana Notasi Sigma dan Luas Daerah di Bawah Kurva Integral Tentu Teorema Dasar Kalkulus Sifat-sifat Integral Tentu Lebih Lanjut

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI 1 I PENDAHULUAN 1.1 Latar Belakang Dewasa ini pemodelan matematika telah berkembang seiring perkembangan matematika sebagai alat analisis berbagai masalah nyata. Dalam pengajaran mata kuliah pemodelan

Lebih terperinci

Jika titik O bertindak sebagai titik pangkal, maka ruas-ruas garis searah mewakili

Jika titik O bertindak sebagai titik pangkal, maka ruas-ruas garis searah mewakili 4.5. RUMUS PERBANDINGAN VEKTOR DAN KOORDINAT A. Pengertian Vektor Posisi dari Suatu Titik Misalnya titik A, B, C Dan D. adalah titik sebarang di bidang atau di ruang. Jika titik O bertindak sebagai titik

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Konsep integral sering digunakan untuk menentukan luas daerah di bawah kurva. Selain itu, integral juga sering digunakan untuk mencari penyelesaian dari suatu

Lebih terperinci

BAB II TINJAUAN PUSTAKA. (b) Variabel independen yang biasanya dinyatakan dengan simbol

BAB II TINJAUAN PUSTAKA. (b) Variabel independen yang biasanya dinyatakan dengan simbol BAB II TINJAUAN PUSTAKA A. Regresi Regresi adalah suatu studi statistik untuk menjelaskan hubungan dua variabel atau lebih yang dinyatakan dalam bentuk persamaan. Salah satu variabel merupakan variabel

Lebih terperinci

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308)

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308) DIKTAT KULIAH (IE-308) BAB 3 TURUNAN PARSIAL Diktat ini digunakan bagi mahasiswa Jurusan Teknik Industri Fakultas Teknik Universitas Kristen Maranatha Ir. Rudy Wawolumaja M.Sc JURUSAN TEKNIK INDUSTRI -

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

III. HASIL DAN PEMBAHASAN

III. HASIL DAN PEMBAHASAN III. HASIL DAN PEMBAHASAN 3.1 Perumusan Masalah Misalkan adalah proses Poisson nonhomogen pada interval dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas diasumsikan terintegralkan lokal

Lebih terperinci

PERTIDAKSAMAAN PECAHAN

PERTIDAKSAMAAN PECAHAN PERTIDAKSAMAAN PECAHAN LESSON Pada topik sebelumnya, kalian telah mempelajari topik tentang konsep pertidaksamaan dan nilai mutlak. Dalam topik ini, kalian akan belajar tentang masalah pertidaksamaan pecahan.

Lebih terperinci

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR VEKTOR DAN SKALAR Materi pokok pertemuan ke I: 1. Vektor dan skalar 2. Komponen vektor 3. Operasi dasar aljabar vektor URAIAN MATERI Masih ingatkah Anda tentang vektor? Apa beda vektor dengan skalar? Ya,

Lebih terperinci

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA gambar 5.1 Luasan di bawah permukaan 61 Pada Matematika Dasar I telah dipelajari integral tertentu b f ( x) dx yang dapat didefinisikan, apabila f

Lebih terperinci

KALKULUS TINGKAT LANJUT, oleh A.B. Panggabean Hak Cipta 2014 pada penulis

KALKULUS TINGKAT LANJUT, oleh A.B. Panggabean Hak Cipta 2014 pada penulis KALKULUS TINGKAT LANJUT, oleh A.B. Panggabean Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-882262; 0274-889398; Fax: 0274-889057; E-mail: info@grahailmu.co.id Hak

Lebih terperinci

BAB 2 PDB Linier Order Satu 2

BAB 2 PDB Linier Order Satu 2 BAB Konsep Dasar BAB 2 PDB Linier Order Satu 2 BAB 3 Aplikasi PDB Order Satu 3 BAB 4 PDB Linier Order Dua 4 BAB 5 Aplikasi PDB Order Dua 5 BAB 6 Sistem PDB 6 BAB 7 PDB Nonlinier dan Kesetimbangan Dalam

Lebih terperinci

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308)

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308) DIKTAT KULIAH (IE-308) BAB 2 RUANG 3 DIMENSI Diktat ini digunakan bagi mahasiswa Jurusan Teknik Industri Fakultas Teknik Universitas Kristen Maranatha Ir. Rudy Wawolumaja M.Sc JURUSAN TEKNIK INDUSTRI -

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

BAB IV HITUNG DIFERENSIAL

BAB IV HITUNG DIFERENSIAL BAB IV HITUNG DIFERENSIAL (Pertemuan ke 5 s/d 8) PENDAHULUAN Diskripsi singkat Pada bab ini dibahas tentang derivatif macam-macam fungsi, yaitu fungsi aljabar, fungsi trigonometri, fungsi logaritma, fungsi

Lebih terperinci

KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana. Bagian 4. Derivatif ALZ DANNY WOWOR

KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana. Bagian 4. Derivatif ALZ DANNY WOWOR KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana Bagian 4 Derivatif ALZ DANNY WOWOR Cakupan Materi A. Defenisi Derivatif B. Rumus-rumus Derivatif C. Aplikasi Derivatif

Lebih terperinci

Turunan Fungsi. h asalkan limit ini ada.

Turunan Fungsi. h asalkan limit ini ada. Turunan Fungsi q Definisi Turunan Fungsi Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat a. Turunan pertama fungsi f di =a ditulis f (a) didefinisikan dengan f ( a h) f ( a) f '( a) lim

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

= F (x)= f(x)untuk semua x dalam I. Misalnya F(x) =

= F (x)= f(x)untuk semua x dalam I. Misalnya F(x) = Nama : Deami Astenia Purtisari Nim : 125100300111014 Kelas : L / TIP A. Integral Integral merupakan konsep yang bermanfaat, kegunaan integral terdapat dalam berbagai bidang. Misalnya dibidang ekonomi,

Lebih terperinci

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya.

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teoriteori yang mendukung karya tulis ini. Teoriteori tersebut meliputi persamaan diferensial penurunan persamaan KdV yang disarikan dari (Ihsanudin, 2008;

Lebih terperinci

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R}

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R} 1. Persamaan (m - 1)x 2-8x - 8m = 0 mempunyai akar-akar real, maka nilai m adalah... -2 m -1-2 m 1-1 m 2 Kunci : C D 0 b 2-4ac 0 (-8)² - 4(m - 1) 8m 0 64-32m² + 32m 0 m² - m - 2 0 (m - 2)(m + 1) 0 m -1

Lebih terperinci

untuk setiap x sehingga f g

untuk setiap x sehingga f g Jadi ( f ( f ) bernilai nol untuk setiap x, sehingga ( f ( f ) fungsi nol atau ( f ( f ) Aksioma 5 Ambil f, g F, R, ( f g )( f g ( g( g( ( f g)( Karena ( f g )( ( f g)( untuk setiap x sehingga f g Aksioma

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. HASIL PENELITIAN 1. Hasil Pengembangan Produk Penelitian ini merupakan penelitian pengembangan yang bertujuan untuk mengembangkan produk berupa Skema Pencapaian

Lebih terperinci

BAB III TRANSFORMASI MATRIKS DERET DIRICHLET HOLOMORFIK. A. Transformasi Matriks Mengawetkan Kekonvergenan

BAB III TRANSFORMASI MATRIKS DERET DIRICHLET HOLOMORFIK. A. Transformasi Matriks Mengawetkan Kekonvergenan BAB III TRANSFORMASI MATRIKS DERET DIRICHLET HOLOMORFIK A. Transformasi Matriks Mengawetkan Kekonvergenan Pada bagian A ini pembahasan dibagi menjadi dua bagian, yang pertama membahas mengenai transformasi

Lebih terperinci

Integral dan Aplikasinya

Integral dan Aplikasinya Nama : Mutiara Devita Sari NIM : 125100301111020 Kelas : L/TIP Integral dan Aplikasinya Pengertian Integral Integral merupakan invers atau kebalikan dari diferensial. Integral memiliki banyak kegunaan

Lebih terperinci

WARP PADA SEBUAH SEGITIGA

WARP PADA SEBUAH SEGITIGA Jurnal Matematika UNAND Vol. 3 No. 3 Hal. 26 33 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND WARP PADA SEBUAH SEGITIGA ABDUL ZAKY, MAHDHIVAN SYAFWAN Program Studi Matematika, Fakultas Matematika dan

Lebih terperinci

VEKTOR. Gambar 1.1 Gambar 1.2 Gambar 1.3. Liduina Asih Primandari, S.Si., M.Si.

VEKTOR. Gambar 1.1 Gambar 1.2 Gambar 1.3. Liduina Asih Primandari, S.Si., M.Si. VEKTOR 1 A. Definisi vektor Beberapa besaran Fisika dapat dinyatakan dengan sebuah bilangan dan sebuah satuan untuk menyatakan nilai besaran tersebut. Misal, massa, waktu, suhu, dan lain lain. Namun, ada

Lebih terperinci

4.4. KERAPATAN FLUKS LISTRIK

4.4. KERAPATAN FLUKS LISTRIK 4.4. KERAPATAN FLUKS LISTRIK Misalkan D adalah suatu medan vektor baru yang tidak bergantung pada medium dan didefinisikan oleh Didefinisikan fluks listrik dalam D sebagai Dalam satuan SI, satu garis fluks

Lebih terperinci

Untuk mengetahui kebenaran apakah proses pembclajaran berjalan dengan

Untuk mengetahui kebenaran apakah proses pembclajaran berjalan dengan diberikan dan lain sebagainya. Dengan membaca outline kuliah ini orang akan dapat melihat keleluasaan dan kedalaman isi kuliah itu, kcmampuan mahasiswa yang sudah mengikuti kuliah ini dan bagaimana bentuk

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral merupakan salah satu konsep penting dalam matematika dan banyak aplikasinya. Dalam kehidupan sehari-hari integral dapat diaplikasikan dalam berbagai

Lebih terperinci

UMPky. Matematika Dasar. Bahan Ajar. Haryadi. NIDN Universitas Muhammadiyah Palangkaraya

UMPky. Matematika Dasar. Bahan Ajar. Haryadi. NIDN Universitas Muhammadiyah Palangkaraya Bahan Ajar Matematika Dasar Haryadi NIDN 0003116401 Universitas Muhammadiyah Palangkaraya 2013 2 Daftar Isi 1 Aljabar Pernyataan 7 1.1 Pernyataan.............................. 7 1.2 Proposisi...............................

Lebih terperinci

II. LANDASAN TEORI ( ) =

II. LANDASAN TEORI ( ) = II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu

Lebih terperinci

Geometri di Bidang Euclid

Geometri di Bidang Euclid Modul 1 Geometri di Bidang Euclid Dr. Wono Setya Budhi G PENDAHULUAN eometri merupakan ilmu pengetahuan yang sudah lama, mulai dari ribuan tahun yang lalu. Berpikir secara geometris dari satu bentuk ke

Lebih terperinci

Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor

Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor Besaran skalar adalah besaran yang hanya memiliki nilai saja. Contoh :

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 15 Maret 2017 Kuliah yang Lalu 10.1-2 Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kurva di Bidang 10.5 Sistem Koordinat Polar 11.1

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER

RENCANA PEMBELAJARAN SEMESTER RENCANA PEMBELAJARAN SEMESTER Program Studi: Statistika Fakultas: Sains dan Matematika Mata Kuliah: Kalkulus I Kode: AST21-312 SKS: 3 Sem: I Dosen Pengampu: Drs. Agus Rusgiyono, M.Si., Sutrisno, S.Si,

Lebih terperinci

PERSAMAAN BIDANG RATA

PERSAMAAN BIDANG RATA 1 KEGIATAN BELAJAR 5 PERSAMAAN BIDANG RATA Setelah mempelajari kegiatan belajar 5 ini, mahasiswa diharapkan mampu: 1. Menentukan persamaan vektoris bidang rata 2. Menentukan persamaan linier bidang rata

Lebih terperinci

Open Source. Not For Commercial Use

Open Source. Not For Commercial Use Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Limit dan Kekontinuan Misalkan z = f(, y) fungsi dua peubah dan (a, b) R 2. Seperti pada limit fungsi satu peubah, limit fungsi dua peubah bertujuan untuk mengamati

Lebih terperinci