INTEGRAL. Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Ukuran: px
Mulai penontonan dengan halaman:

Download "INTEGRAL. Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs."

Transkripsi

1 INTEGRAL Instruktur : Ferry Whyu Wibowo, S.Si., M.Cs.

2 . Integrl tk tentu b. Integrl tertentu

3 Contoh : Tentukn turunn berikut ini. y b. y. y d. y

4 y y d. - y y. y y b. y y. Jwb:

5 F() F () C --- Diferensil Integrl 5

6 Kesimpuln / Konklusi: Integrltk tentudlh Prosesmenrifungsisemul F(X) turunnnyf'() dikethui Rumusny: jik f()d F(X) C 6

7 . F() FungsiIntegrlUmum (bersift)f'() f(). f() FungsiIntegrn. ConstntPengintegrln 7

8 8 f() F'() n F(). f() F'() C F(). f() F'() F(). Contoh - ontoh n n C

9 9 C C ) ( d d d d. C... 5 d C C C

10 0 C 5 - C ) ( d. d. d d. C 5 5 d C C C

11 dn F() F'() jik F(), Tentukn 5 6 F() () 6 F() 6 F() d F() Jwb:

12 log ln,dengn ln d 6. -,dengn n n d 5. -,dengn n n d. d. dlh onstnt f()d, f()d. d. e n n n n

13 Tentukn Integrl- integrl ). b). ). d). 5 d d d d tk tentuberikut ini :

14 5 d 5 ). 5 - ) ( d d b). - -

15 d d ). 7 7

16 d). d - d - 6

17 . f() g() d f()d g()d. f() g() d f()d - g()d. f()d f()d 7

18 Tentukn Integrltk tentuberikut ini. ( ) d. ( 6-5 ) d. 5 d 8

19 9 C d d d ) (.

20 0 C d d d - d ) - (

21 . 5 d 5 d 5( ) 5

22 Tentukn Integrldibwh ini :. ( ) d. (p p ) dp. ( 5) d. 5 7 d

23 . ( ) d d d - d

24 . (p p ) dp p dp p dp p p 5 5

25 . ( 5) d ( 0 5)d d 0 d 5d 5 5 5

26 . 5 7 d (7) 5 d

27 . 5 7 d. ( ) d.. ( t ) t d t dt 7

28 d d d ). ( d

29 . ( ) d ( ) d 9

30 . ( ) d ( 6 8) d 6 8 0

31 t t (t )(t ). dt dt t (t ) (t ) dt t t

32 log ln,dengn ln d 6. -,dengn n n d 5. - dengn n, n d. d. dlh onstnt f()d, f()d. d. e n n n n

33 Tentukn Integrltk tentuberikut ini :. ( ) d. ( ) d ( ). d

34 ) d ( )d ( )d (

35 5 5 5 d ) ( d ) ( d ) (. 5

36 6 d ) ( d ) ( d ) ( d ) (

37

38 .. Tentukn F(), jik F'() dn F() d y Diberikn y f()dn. Bil 0, y 0 d dn, dn y rilh hubungn ntr dn y 5 8

39 9 6 F() () 6 F() 6 F() d F()

40 0 - y Jdi dn y dn y y d ) ( d d dy y d d d y d d dy d y d

41 Sebuh kurv mellui singgung kurvitu kurv tersebut dy d titik (0,)dn grdien gris, rilh persmn

42 dy d y dy d d y d y,kurv mellui (0,) 0 Jdi persmn kurvdlh y

43 Sebuh prtikel muli bergerk dri kedn dim (keeptnwl 0) pd sepnjngsumbu dengn Tentukn formuluntuk titik fungsipereptn(t) t fungsiposisi 0 dn bergerk (t)!

44 d dt v(t) Untuk v(0) 0 d v(t) (t) v(t)dt 6t dt t dt Untuk (0) 0, diperoleh nili yitu 0 (t) t dengn v(0) (t)dt 0, diperoleh nili t dt 0 v(t) Jdi formul fungsiposisi (t) t 0 0 6t 0 6t, yitu :

45 No. 5 6 F() Sin Cos Tn Cot Se Cose F () Cos -Sin Se -Cose Tn se -Cot ose 5

46 . os d sin. sin d - os. se d tn. ose d - ot 5. tn.se d se 6. ot.ose d - ose 6

47 No 5 6 F() Sin(+b) Cos(+b) tn(+b) Cot(+b) Se(+b) Cose(+b) F () os(+b) -sin(+b) se (+b) -ose (+b) tn(+b).se(+b) -ot(+b).ose(+b) 7

48 8 b) ose( b) d b).ose( ot( 6. b) se( b) d b).se( tn( 5. b) ot( b) d ( ose. b) tn( b) d ( se. b) os( - b) d sin(. b) sin( b) d os(.

49 .... Sin α Cos β Cos α Sinβ Cos α Cos β Sin α Sin β - Sin α β Sin α β Sin α β Sin α β Sin α β Cosα β Cosα β Cosα β 9

50 Tentukn integrl- integrl. (tn )d tk tentuberikut :. (sin - os ) d. (tn se ) d. 5. (sin os) d sin d 6. os d 50

51 . (tn ) ddiubhmenjdi (tn ) d (se )d se d d tn 5

52 . (sin - os ) d diubh menjdi (-sin) d d - sin d - (- os) 5 os

53 . (tn se ) d disederhnkn menjdi: (se tn.se ) d se d tn se - tn.se d - d 5

54 . (sin os )d diubhke rumussudutrngkp (sin os )d (sin 8) d sin 8d (- os 8) 8 - os8 6 5

55 5. sin d diubh menjdi (- os) d ( os)d d - osd - ( sin) 55 - sin

56 56 sin 6 sin 6) 6 ( (os 6)d d 6)d os ( menjdi diubh d os 6.

57 57 Simbol b f()d disebut Integrltentu fungsif(), dri smpi b.. Fungsif()disebut integrn. dn b msing - msing disebut bts bwh dn bts ts dri integrsi( Pengintegr Jdi jik f() kontinu pd intervl ln). b dn F() dlh sutu nti turunn dri f() mk integrl tentu ditentukn oleh :

58 b f()d b F() F(b)- F() RUMUS DASAR INTEGRALTENTU 58

59 b b b b f()d f()d f()d f()d Bil 0 - f() g() F(u) b f()d f()d, dengn dlh konstnt rel f()d u b f()d b b f()d, mk b g()d f()d, untuk d F(u) du f(u) b

60 Hitunglh nili setip integrl tentu dibwh ini. b. d. ( ) d d ( (6 )d - ) d 60

61 . b. d ( ) d - 8 () () -() ()

62 ) ( () )d (.

63 d. 0 - (6 (0) (0) (0) -(-) ( ) ( ) ) d 0 6

64 Hitunglh. Cos d b. 6 0 Sin d

65 . Cos d sin sin π -sin π

66 b. 0 Sin d - Cos π 0 Cos π -- Cos

67 Tentukn nili p yng memenuhisetip persmn berikut ini : p. d 0 p b. ( 6) d 6 67

68 68 p p p 0 p d d. p 0 p 0 p 0

69 b. 69 p p 8-6 p 8p. 8. p (p p ( p p 8p 8p p 6)(p 6) d ) 6 ( )

70 . f() g() d f()d g()d. f() g() d f()d - g()d. f()d f()d 70

71 7 log ln, dengn ln d 6. -,dengn n n d 5. - dengn n, n d. d. dlh onstnt f()d, f()d. d. e n n n n

72 No. 5 6 F() Sin Cos Tn Cot Se Cose F () Cos -Sin Se -Cose Tn se -Cot ose 7

73 . os d sin. sin d - os. se d tn. ose d - ot 5. tn.se d se 6. ot.ose d - ose 7

74 No 5 6 F() Sin(+b) Cos(+b) tn(+b) Cot(+b) Se(+b) Cose(+b) F () os(+b) -sin(+b) se (+b) -ose (+b) tn(+b).se(+b) -ot(+b).ose(+b) 7

75 75 b) ose( b) d b).ose( ot( 6. b) se( b) d b).se( tn( 5. b) ot( b) d ( ose. b) tn( b) d ( se. b) os( - b) d sin(. b) sin( b) d os(.

76 .... Sin α Cos β Cos α Sinβ Cos α Cos β Sin α Sin β - Sin α β Sin α β Sin α β Sin α β Sin α β Cosα β Cos α β Cos α β 76

77 . b. Integrltk tentu Integrltertentu. Integrl Prsil 77

78 Contoh substitusi A. - ontoh sol Aljbr bentuk Integrl dn Trigonomet Contoh bentuk solsubstitusialjbr. t (t 5) d ri dengn. ( 9) d. d 78

79 B. Contoh bentuk solsubstitusitrigonometri. Sin ( ) d. Cos 0 Sin d. Cos -Sin d 79

80 80 du 9u d menjdi ) ( 5) 9( Mk ) d ( du d du 5 u Mislkn Jwb: d ) ( 5) 9( Crilh : 8 8 8

81 9u 9 u 9 9 ( 5 ) 9 8

82 Selesiknlh Jwb: ( ) 7 d Mislkn u du d d du 8 ( ) 7 d Menjdi u 7. du

83 u 7 du.( ).u 8 8 u 8 6 ( ) 8 6 8

84 Tentuknlh : 7 d 8

85 Mislkn : mk u 85 7 d 7 u u du d d du u. du..du du

86 u..u ( 7)

87 87 d (-5) Crilh )du 5u (u 6 du. 5).u (u d 5) ( du d du d mk 5) (u -5 u Mislkn Jwb:

88 u 5 5 u 80 6 (-5) 5 5 ( 5)

89 89 Jwb: Mislkn u mk du u du. Crilh : d tu d. u u du du d

90 Crilh : Jwb: Mislkn mk. du sin θ. sin θ u u 8 ( - Cos θ) 90 (- Cos θ) 8 (- Cos θ) u du dθ dθ u - Cos θ sin θ du sin θ sin θ dθ sin θ dθ u du

91 Hitunglh : Jwb: ( -5) d Mislkn u Bil u -5, mk du.-5 d dn d du Bil u.-5 - ( -5) d - u du 9 u -

92 6 u ( ) 6 80 (8)

93 ) ( ) (. ) d( ) ( ) ( d Jwb: ) ( d Hitunglh :

94 Sin n.cos m d Sin Cos 9

95 Sinus dn Cosinus Pngkt genp seperti Sin,Sin,Sin 6, Cos, Cos, Cos 6 dn seterusnydirubh menjdi 95.. Sin Cos ( Cos ) dn ( Cos )

96 Sinus dn Cosinus Pngkt gnjil seperti Sin,Sin 5,Sin, Cos, Cos dn seterusnydirubh menjdi 7 5, Cos 7. Sin Sin.Sin ( Cos )Sin. Cos Cos.Cos ( Sin ).Cos 96

97 Tentuknlh : Sin Cos d Sin Sin Cos (Cos d.cos) d Sin ( Sin )Cos d (Sin Sin ) Cos d Sin Cos d - Sin Cos d Sin d(sin )- Sin d(sin )d 97 Sin - 5 Sin 5

98 Selesiknlh : Sin 5 d Sin 5.Sin d (- Cos 5).Sin 5 d Sin 5 d - Cos 5.Sin5 d - 5 Cos 5 5 Cos 5 98

99 99 d Cos Tentuknlh : Cos)}d Cos {( Cos)}d ( Cos {( )d Cos Cos ( d Cos) ( d ) (Cos d Cos

100 00 Sin Sin 8 Cos d() 8. Cos d() d 8 d Cos Cos d d Cos)d Cos (

101 0

102 Tentuknlh :. tn.se d. ot.ose d. tn d. ot d 5. 0 ose d

103 INVERS FUNGSI TRIGONOMETRI... - u u du u du du r sin u r tn - r os u u,dengn,dengn,dengn 0 dn - 0 u 0 dn - u 0

104 Fungsi Integrl Dengn > 0 Substitusi Trigonometri u sin θ u u u tn θ u u seθ 0

105 05 r tn d 9 d d 9 d. 7 r os - d 9- b. r sin d 6-. : Integrltk tentuberikut ini Tentukn

106 Hitunglh Integrlberikut ini : d ; substitusikn u mk, sin θ dn du u d mk u osθ dθ d sin sin osθ dθ θ sin osθ dθ θ ( sin θ θ) 06

107 osθ dθ sin θ.osθ ose θ dθ dθ sin θ - otθ sinθ sin θ - - ot θ - 07

108 Digunkn untuk Mengintegr lkn hsil kli du fungsi Penurunn Rumus Dsr d(uv) u dv d(uv) u dv vdu ( Kedu vdu IntegrlPrsil rus diintegrlkn) uv u dv vdu u dv uv - v du 08

109 Hitunglh IntegrlPrsilberikut ini.. sin d sin d. - d. ln d 09

110 . sin d Selesikn dengn rtbulsi sbb: Turunkn X 0 Integrlkn Sin d -Cos - Sin + - Jdi Sin d - os sin 0

111 . sin d Turunkn X 0 Integrlkn Sin d -Cos - Sin Cos Jdi sin d os sin os

112 Dengn Cr Tbulsi. - d Turunkn Integrlkn - d. ( ) 0.. ( ) d 6 () 60 ( )

113 . ln d Mislkn u dv ln d ln d du v d d ln. d ln d ln

114 TERIMA KASIH

PEMANTAPAN BELAJAR SMA BBS INTEGRAL

PEMANTAPAN BELAJAR SMA BBS INTEGRAL BAB I PEMANTAPAN BELAJAR SMA BBS INTEGRAL I A RANGKUMAN INTEGRAL. Pengertin Apil terdpt fungsi F() yng dpt didiferensilkn pd selng I sedemikin hingg F () = f(), mk nti turunn (integrl) dri f() dlh F()

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Mtemtik. ANTI TURUNAN Definisi Mislkn fungsi f terdefinisi pd selng teruk I. Fungsi F ng memenuhi F () = f () pd I dinmkn nti turunn tu fungsi primitif dri fungsi f pd I.. F() = cos nti turunn dri

Lebih terperinci

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L. INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl

Lebih terperinci

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar INTEGRAL Integrl Tk Tentu Dn Integrl Tertentu Dri Fungsi Aljr A. Integrl Tk Tentu Hitung integrl dlh kelikn dri hitung differensil. Pd hitung differensil yng dicri dlh fungsi turunnny, sedngkn pd hitung

Lebih terperinci

E. INTEGRASI BAGIAN ( PARSIAL )

E. INTEGRASI BAGIAN ( PARSIAL ) E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )

Lebih terperinci

INTEGRAL. Kelas XII IIS Semester Genap. Oleh : Markus Yuniarto, S.Si. SMA Santa Angela Tahun Pelajaran 2017/2018

INTEGRAL. Kelas XII IIS Semester Genap. Oleh : Markus Yuniarto, S.Si. SMA Santa Angela Tahun Pelajaran 2017/2018 Modul Integrl INTEGRAL Kels XII IIS Semester Genp Oleh : Mrkus Yunirto, SSi SMA Snt Angel Thun Peljrn 7/8 Modul Mtemtik Kels XII IIS Semester TA 7/8 Modul Integrl INTEGRAL Stndr Kompetensi: Menggunkn konsep

Lebih terperinci

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi:

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi: INTEGRAL RANGKUMAN MATERI A. ANTIDERIVATIF DAN INTEGRAL TAK TENTU Jik kit mengmil uku dri temptny mk kit dpt mengemliknny lgi ke tempt semul. Opersi yng kedu menghpus opersi yng pertm. Kit ktkn hw du opersi

Lebih terperinci

Integral Tak Tentu dan Integral Tertentu

Integral Tak Tentu dan Integral Tertentu Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi

Lebih terperinci

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1 HITUNG INTEGRA BAB.Integrl tk tentu (tnp ts). Rumus-rumus ) ) n n n d c, n ) d c n n n. d c, n ). Sift-sift Integrl Contoh :... ) k. f ( ) d k. f ( ) d d d ln c ) ( ( ) ( )) ( ) ( ) d c ( ) ( ) d ( ) d

Lebih terperinci

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45 INTEGRAL Deprtemen Mtemtik FMIPA IPB Bogor, 2012 (Deprtemen Mtemtik FMIPA IPB) Klkulus I Bogor, 2012 1 / 45 Topik Bhsn 1 Pendhulun 2 Anti-turunn 3 Lus di Bwh Kurv 4 Integrl Tentu 5 Teorem Dsr Klkulus 6

Lebih terperinci

RANGKUMAN INTEGRAL. Di Susun Oleh : Syaiful Hamzah Nasution, S.Si., S.Pd.

RANGKUMAN INTEGRAL. Di Susun Oleh : Syaiful Hamzah Nasution, S.Si., S.Pd. Generted y Foxit PDF Cretor Foxit Softwre http://www.foxitsoftwre.om For evlution only. RANGKUMAN INTEGRAL Di Susun Oleh : Syiful Hmzh Nsution, S.Si., S.Pd. Di dukung oleh : Portl eduksi Indonesi Open

Lebih terperinci

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

INTEGRAL. y dx. x dy. F(x)dx F(x)dx

INTEGRAL. y dx. x dy. F(x)dx F(x)dx Drs. Mtrisoni www.mtemtikdw.wordpress.om INTEGRAL PENGERTIAN Bil dikethui : = F() + C mk = F () dlh turunn dri sedngkn dlh integrl (nti turunn) dri dn dpt digmrkn : differensil differensil Y Y Y Integrl

Lebih terperinci

INTEGRAL TAK TENTU. x x x

INTEGRAL TAK TENTU. x x x INTEGRAL TAK TENTU Definisi : Fungsi F diktkn nti turunn dri fungsi f pd selng I jik F () = f() untuk semu di I. Notsi : F() = f() Integrl tk tentu dlh Anti/Invers/Kelikn turunn. c c Integrl tk tentu dlh

Lebih terperinci

MATEMATIKA INTEGRAL SUBSTITUSI TRIGONOMETRI. Teknik substitusi aljabar yang telah dipelajari sebelumnya memiliki bentuk

MATEMATIKA INTEGRAL SUBSTITUSI TRIGONOMETRI. Teknik substitusi aljabar yang telah dipelajari sebelumnya memiliki bentuk MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN 04 Sesi NGAN INTEGRAL SUBSTITUSI TRIGONOMETRI Teknik substitusi ljbr yng telh dipeljri sebelumny memiliki bentuk n+ n n u [ f ( )] f ( ) u n + + Di mn: u f()

Lebih terperinci

TRIGONOMETRI I. KOMPETENSI YANG DICAPAI

TRIGONOMETRI I. KOMPETENSI YANG DICAPAI TRIGONOMETRI I. KOMPETENSI YANG DICAPAI Mhsisw dpt : 1. Membuktikn identits trigonometri.. Menghitung hubungn ntr sudut dn sisi segitig dengn Rumus Sinus. 3. Menghitung hubungn ntr sudut dn sisi segitig

Lebih terperinci

Integral. Konstanta dari Integrasi. Integral Tak Tentu. AntiTurunan (Antiderivative)

Integral. Konstanta dari Integrasi. Integral Tak Tentu. AntiTurunan (Antiderivative) Integrl AntiTurunn (Antiderivtive) AntiTurunn dri seuh fungsi f dl seuh fungsi F sedemikin hingg Dierikn Pd Peltihn Guru-Guru Aceh Jy 5 Septemer 0 Oleh: Ridh Ferdhin, M.Sc F f E. AntiTurunn dri f ( ) 6

Lebih terperinci

Solusi Pengayaan Matematika

Solusi Pengayaan Matematika Solusi Pengn Mtemtik Edisi pril Pekn Ke-, 00 Nomor Sol: -0 Tentukn bnk psngn bilngn rel, ng memenuhi persmn ot ot Solusi: ot ot tnπ otπ π tnπ tn π π π π k π k 00 k 00 k k 00 k k 00 k k 00 k k 00 Kren k

Lebih terperinci

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 5 Sesi N INTEGRAL TENTU DAN LUAS DAERAH A. DEFINISI INTEGRAL TENTU Bentuk integrl f d = f + c diseut segi integrl tk tentu kren hsil dri pengintegrlnn msih erup

Lebih terperinci

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c BAB XVI. INTEGRAL A. Integrl Tk Tentu. Rumus Integrl Fungsi Aljr. k k n = n +. ( + ) n = ( n + ). = ln + n + + ; n - n+ (+) + ; dn n -. ( f ( ) ± g( ) ) f ( ) ± g ( ) n. os (+)sin(+) = ( n + ) os n + (+)

Lebih terperinci

SUKU BANYAK ( POLINOM)

SUKU BANYAK ( POLINOM) SUKU BANYAK ( POLINOM) Bb 16 Skl 8.Menyelesikn mslh yng berkitn dengn teorem sis tu teorem fktor A. PENGERTIAN SUKU BANYAK. Bentuk x x x... x x, dengn 0 dn n { bil. cch} 1 0 disebut dengn Suku bnyk (Polinomil)

Lebih terperinci

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1 PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 6y y 8y. Dikethui R dn. Temukn nili y. y y 8y 6 Solusi: 6y y 8y y y 8y 6 6y y 8y 8y y 6 y 8 0 y y y 0 y y y 0 ( y ) ( y ) 0 y y 8y 6 ( y )(y ) 0 y 0tu y 0

Lebih terperinci

Matematika SMA (Program Studi IPA)

Matematika SMA (Program Studi IPA) Smrt Solution UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 Disusun Sesui Indiktor Kisi-Kisi UN 2013 Mtemtik SMA (Progrm Studi IPA) Disusun oleh : Pk Anng - Blogspot Pge 1 of 13 5. 2. Menyelesikn sol pliksi

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat.

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat. Husn Arifh,M.Sc : Persmn Legendre Emil : husnrifh@uny.c.id Persmn diferensil Legendre (1) 1 x 2 y 2xy + n n + 1 y = 0 Prmeter n pd (1) dlh bilngn rill yng diberikn. Setip penyelesin dri (1) dinmkn fungsi

Lebih terperinci

Tiara Ariqoh Bawindaputri TIP / kelas L

Tiara Ariqoh Bawindaputri TIP / kelas L Tir Ariqoh Bwindputri 500008 TIP / kels L INTEGRAL Integrl Tk tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C Untuk

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan APLIKASI INTEGRAL APLIKASI INTEGRAL PENERAPAN INTEGRAL Lus derh kelengkungn PENERAPAN INTEGRAL Indiktor 1 Indiktor 9 Lus derh di bwh kurv berdsr prinsip Riemn Volume bend putr, jik kurv diputr mengelilingi

Lebih terperinci

SUKU BANYAK ( POLINOM)

SUKU BANYAK ( POLINOM) SUKU BANYAK ( POLINOM) B 15 A. PENGERTIAN SUKU BANYAK. Bentuk 1 0 x x x x x, dengn 0 dn n { il. cch } n diseut dengn Suku nyk (Polinomil) dlm x erderjt n ( n dlh pngkt tertinggi dri x),,,., diseut keofisien

Lebih terperinci

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan.

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan. 1. Identits Trigonometri Pengertin Identits Trigonometri dlh kesmn yng memut entuk trigonometri dn erlku untuk semrng sudut yng dierikn. Jenis Identits Trigonometri 1. Identits trigonometri dsr erikut

Lebih terperinci

MATEMATIKA IPA PAKET A KUNCI JAWABAN

MATEMATIKA IPA PAKET A KUNCI JAWABAN MATEMATIKA IPA PAKET A KUNCI JAWABAN. Jwbn : A Mislkn : p : Msyrkt membung smph pd temptny. q: Kesehtn msyrkt terjg. Diperoleh: Premis : ~q ~p p q Premis : p Kesimpuln : q Jdi, kesimpuln dri premis-premis

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c Integrl Tk Tentu INTEGRAL. Rumus Integrl Fungsi Aljr. k x n k n +. ( x + n ( n +. x ln x + x n + + ; n - n+ (x+ + ; dn 4. ( f ( x ± g( x f ( x ± g ( x n - n. os (x+sin(x+ ( n + n+ os (x+ + ( + (. sin x

Lebih terperinci

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan APLIKASI INTEGRAL APLIKASI INTEGRAL PENERAPAN INTEGRAL Lus derh kelengkungn Integrl digunkn pd design Menr Petrons di Kul lumpur, untuk perhitungn kekutn menr. Sdne Oper House di design berdsrkn irisn-irisn

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

1 B. Mengkonversi dari pecahan ke persen. 1 Operasi bilangan berpangkat. 2. Menyederhanakan bilangan berpangkat bentuk:

1 B. Mengkonversi dari pecahan ke persen. 1 Operasi bilangan berpangkat. 2. Menyederhanakan bilangan berpangkat bentuk: KISI KISI SOAL UJI COBA UJIAN NASIONAL MATA PELAJARAN MATEMATIKA TAHUN 009 / 00 MGMP MATEMATIKA SMK TEKNIK KABUPATEN KLATEN Bhn/ X / Opersi bilngn rel. Sisw dpt: A. Mengkonversi dri desiml ke persen B.

Lebih terperinci

GEOMETRI PADA BIDANG: VEKTOR

GEOMETRI PADA BIDANG: VEKTOR GEOMETRI PADA BIDANG: VEKTOR A. Kurv Bidng: Representsi Prmetrik Sutu kurv bidng ditentukn oleh sepsng persmn prmetrik: x f () t, y f () t t dlm intervl I dengn f dn g kontinu pd intervl I. Secr umum,

Lebih terperinci

Teorema Dasar Integral Garis

Teorema Dasar Integral Garis ISBN: 978-979-79-55-9 Teorem Dsr Integrl Gris Erdwti Nurdin Progrm Studi Pendidikn Mtemtik FKIP UIR d_1910@yhoo.com Abstrk Slh stu generlissi integrl tentu (definite integrl) f x dx diperoleh dengn menggnti

Lebih terperinci

LIMIT DAN KONTINUITAS

LIMIT DAN KONTINUITAS LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

Bab 3 Terapan Integral Ganda

Bab 3 Terapan Integral Ganda Surdi Siregr Metode Mtemtik Astronomi Bb 3 Terpn Integrl Gnd 3. Integrl Gnd dlm koordint Krtesis dn Polr Koordint Krtesis Koordint Polr Ilustrsi b g f ={,, } Mss M, da, dd r ={,, r )},, M r da r rdrd sin

Lebih terperinci

Deret Fourier. (Pertemuan X) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Deret Fourier. (Pertemuan X) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 47 Mtemtik III Deret Fourier (Pertemun X) Dr. AZ Jurusn Teknik Sipil Fkults Teknik Universits Brwijy Pendhulun Deret Fourier ditemukn oleh ilmun Perncis, Jen Bptiste Joseph Fourier (768-83) yng menytkn

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN . LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: PERSAMAAN GARIS SINGGUNG PADA ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (,

Lebih terperinci

Penyelesaian Persamaan dengan Logaritma. Persamaan & Fungsi logaritma. Pengertian Logaritma 10/9/2013

Penyelesaian Persamaan dengan Logaritma. Persamaan & Fungsi logaritma. Pengertian Logaritma 10/9/2013 10/9/013 Penyelesin Persmn dengn Logritm Persmn & Fungsi logritm Tim Dosen Mtemtik FTP Logritm dpt digunkn untuk mencri bilngn yng belum dikethui (bilngn x) dlm sebuh persmn, khususny persmn eksponensil

Lebih terperinci

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1 Pge of 8 Kegitn eljr 5. Tujun Pembeljrn Setelh mempeljri kegitn beljr 5, dihrpkn sisw dpt. Menentukn unsur-unsur segitig dengn turn sinus b. Menentukn unsur-unsur segitig dengn turn kosinus. Menghitung

Lebih terperinci

BAB 7. LIMIT DAN LAJU PERUBAHAN

BAB 7. LIMIT DAN LAJU PERUBAHAN BAB 7. LIMIT DAN LAJU PERUBAHAN 7. LIMIT FUNGSI 7.. Limit fungsi di sutu titik Menggmbrkn perilku fungsi jik peubhn mendekti sutu titik Illustrsi: Dikethui f( ) f(), 3,30,0 3,030,00 3,003 3 f() = f() 3,000?

Lebih terperinci

Bab 3 Terapan Integral Ganda

Bab 3 Terapan Integral Ganda Surdi Siregr Metode Mtemtik Astronomi Bb Terpn Integrl Gnd. Integrl Gnd dlm koordint Krtesis dn Polr Koordint Krtesis Koordint Polr Ilustrsi b g f ={,, } Mss M, da, Momen-, M dd Momen- M, d d dd r ={,,

Lebih terperinci

F. Logaritma EKSPONEN DAN LOGARITMA 11/9/2015. Peta Konsep. F. Logaritma. Nomor W4901. Hitunglah Log 49

F. Logaritma EKSPONEN DAN LOGARITMA 11/9/2015. Peta Konsep. F. Logaritma. Nomor W4901. Hitunglah Log 49 11/9/01 Pet Konsep Jurnl Mteri Umum Pet Konsep Pngkt Rsionl Dftr Hdir Mteri F EKSPONEN DAN LOGARITMA Kels X, Semester 1 F. ritm Pngkt Bult Positif Pngkt Nol Pngkt Bult Negtif Bentuk Akr Pngkt Pechn SolLtihn

Lebih terperinci

BAB. I INTEGRAL. (Orang tuanya) (Anaknya)

BAB. I INTEGRAL. (Orang tuanya) (Anaknya) BAB. I INTEGRAL A. Pendhulun.. Pengertin integrl. Integrl dlh lwn kelikn) dri diferensil. Dpt diumpmkn hw opersi diferensil itu, dikethui orng tuny, disuruh menri nkny, sedngkn opersi integrl, dikethui

Lebih terperinci

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT Persmn Kudrt. Bentuk Umum Persmn Kudrt Mislkn,, Є R dn 0 mk persmn yng erentuk 0 dinmkn persmn kudrt dlm peuh. Dlm persmn kudrt 0, dlh koefisien

Lebih terperinci

Integral Kompleks (Bagian Kesatu)

Integral Kompleks (Bagian Kesatu) Integrl Kompleks (Bgin Kestu) Supm Jurusn Mtemtik, FMIPA UGM Yogykrt 55281, INDONESIA Emil:mspomo@yhoo.com, supm@ugm.c.id (Pertemun Minggu XI) Outline 1 Fungsi Bernili Kompleks 2 Lintsn tu Kontur 3 Integrl

Lebih terperinci

Hendra Gunawan. 30 Oktober 2013

Hendra Gunawan. 30 Oktober 2013 MA MATEMATIKA A Hendr Gunwn Semester I, 2/24 Oktoer 2 Ltihn. Fungsi g =,, terintegrlkn pd [, ]. Nytkn integrl tentu g pd [, ] segi limit jumlh Riemnn dengn prtisi reguler, dn hitunglh niliny. //2 c Hendr

Lebih terperinci

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung

Lebih terperinci

TURUNAN FUNGSI. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI

TURUNAN FUNGSI. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI LA - WB (Lembr Aktivits Wrg Beljr) TURUNAN FUNGSI Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI Creted By It Yulin 33 Turunn Fungsi Kompetensi Dsr 1. Menggunkn

Lebih terperinci

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan definisi definisi, istilah istilah dan teoremateorema. yang berhubungan dengan penelitian ini.

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan definisi definisi, istilah istilah dan teoremateorema. yang berhubungan dengan penelitian ini. II. LANDASAN TEORI Dlm ini kn didiskusikn definisi definisi, istilh istilh dn teoremteorem yng erhuungn dengn penelitin ini. 2.1 Anlitik Geometri Definisi 2.1.1 Titik dlh unsur yng tidk memiliki pnjng,

Lebih terperinci

MATEMATIKA DASAR. 1. Jika x 1 dan x 2 adalah penyelesaian. persamaan Diketahui x 1 dan x 2 akar-akar persamaan 6x 2 5x + 2m 5 = 0.

MATEMATIKA DASAR. 1. Jika x 1 dan x 2 adalah penyelesaian. persamaan Diketahui x 1 dan x 2 akar-akar persamaan 6x 2 5x + 2m 5 = 0. MATEMATIKA ASAR. Jik dn dlh penyelesin persmn mk ( ).. E. B 7 6 6 + - ( + ) ( ). ( ) ( ) 7. Jik dn y b dengn, y > + y, mk. + y + b log b. + b log b b E. + log b E log dn y log b + y + y log + log b log

Lebih terperinci

TINGKAT SMA KOMET 2018 SE-JAWA TIMUR

TINGKAT SMA KOMET 2018 SE-JAWA TIMUR . Dlm cr jln seht yng didkn oleh HIMATIKA menyedikn kupon hdih. Kode-kode kupon tersebut disusun dri ngkngk,,, 6, 8. Nomor dri kupon-kupon tersebut disusun berdsrkn kodeny muli dri yng terkecil smpi dengn

Lebih terperinci

Vektor di R 2 dan R 3

Vektor di R 2 dan R 3 Vektor di R dn R Pengertin Vektor dlh besrn yng mempunyi besr dn rh Vektor digmbrkn oleh rus gris yng dilengkpi dengn nk pnh vektor dimuli dri titik wl (initil point) dn dikhiri oleh titik khir (terminl

Lebih terperinci

MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo.

MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo. MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT Supriyono Jurusn Pendidikn Mtemtik FKIP Universits Muhmmdiyh Purworejo Abstrk Tulisn ini terdiri bgin yitu () bgin pendhulun yng membhs bentuk umum persmn pngkt

Lebih terperinci

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0 PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh c 0,,,c R, 0 Penyelesin Persmn Kudrt. Rumus c Rumus menentukn kr persmn kudrt c 0;,, c R dn 0, = ± 4c. Memfktorkn

Lebih terperinci

ELIPS. A. Pengertian Elips

ELIPS. A. Pengertian Elips ELIPS A. Pengertin Elips Elips dlh tempt kedudukn titik-titik yng jumlh jrkny terhdp du titik tertentu mempunyi nili yng tetp. Kedu titik terseut dlh titik focus / titik pi. Elips jug didefinisikn segi

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

(c) lim. (d) lim. (f) lim

(c) lim. (d) lim. (f) lim FMIPA - ITB. MA Mtemtik A Semester, 6-7. Pernytn enr dn slh. () ()! e Solusi. Benr. Fungsi eksonensil (enyeut) memesr leih cet drid fungsi olinom (emilng) sehingg emginny menghsilkn nili Dengn Hoitl s

Lebih terperinci

15. INTEGRAL SEBAGAI LIMIT

15. INTEGRAL SEBAGAI LIMIT 15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

KINEMATIKA Kelas XI. Terdiri dari sub bab : 1. persamaan gerak 2. Gerak Parabola 3. Gerak Melingkar

KINEMATIKA Kelas XI. Terdiri dari sub bab : 1. persamaan gerak 2. Gerak Parabola 3. Gerak Melingkar Terdiri dri sub bb : 1. persmn gerk. Gerk Prbol 3. Gerk Melingkr KINEMATIKA Kels XI 1. PERSAMAAN GERAK Membhs tentng posisi, perpindhn, keceptn dn perceptn dengn menggunkn vector stun. Pembhnsn meliputi

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M3 3 SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bb berikut ini kn disjikn mteri pendukung yng dpt membntu penulis untuk menyelesikn permslhn yng kn dibhs pd bb selnjutny. Adpun mteri pendukungny dlh pengertin mtriks, jenis-jenis

Lebih terperinci

Matematika SKALU Tahun 1978

Matematika SKALU Tahun 1978 Mtemtik SKALU Thun 978 MA-78-0 Persmn c + b + = 0, mempunyi kr-kr dn, mk berlku A. + = b B. + = c C. = c = c = c MA-78-0 Akr dri persmn 5 - = 7 + dlh A. B. C. 4 5 MA-78-0 Hrg dri log b. b log c. c log

Lebih terperinci

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0. DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT . PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT A. Persmn Kudrt. Bentuk umum persmn kudrt : x + bx + c = 0, 0. Nili determinn persmn kudrt : D = b c. Akr-kr persmn kudrt dpt dicri dengn memfktorkn tupun

Lebih terperinci

A. Pengertian Integral

A. Pengertian Integral A. Pengertin Integrl Di Kels XI, klin telh mempeljri konsep turunn. Pemhmn tentng konsep turunn ini dpt klin gunkn untuk memhmi konsep integrl. Untuk itu, co tentukn turunn fungsi-fungsi erikut. f () f

Lebih terperinci

PENGANTAR KALKULUS. Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 19 Agustus 2004 di PPPG Matematika

PENGANTAR KALKULUS. Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 19 Agustus 2004 di PPPG Matematika PENGANTAR KALKULUS Dismpikn pd Diklt Instruktur/Pengemng Mtemtik SMA Jenjng Dsr Tnggl 6 s.d. 9 Agustus di PPPG Mtemtik Oleh: Drs. SETIAWAN, M. Pd. Widyiswr PPPG Mtemtik Yogykrt DEPARTEMEN PENDIDIKAN NASIONAL

Lebih terperinci

FISIKA BESARAN VEKTOR

FISIKA BESARAN VEKTOR K-3 Kels X FISIKA BESARAN VEKTOR TUJUAN PEMBELAJARAN Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi pengertin besrn vektor.. Mengusi konsep penjumlhn vektor dengn berbgi metode.

Lebih terperinci

Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40

Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40 Solusi Pengn Mtemtik Edisi 4 Jnuri Pekn Ke-4, 007 Nomor Sol: -40. Diberikn persmn 8 9 4 8 007 dn b, dengn b. Angk stun dri b dlh. A. B. C. D. 7 E. 9 Persmn 8 9 4 8 8 9 4 8 9 4 8 8 8 9 8 4 8 8 8 0 0 b tu

Lebih terperinci

Integral Agus Yodi Gunawan

Integral Agus Yodi Gunawan Integrl Agus Yodi Gunwn Teknik pengintegrln.. Metode substitusi pd integrl tk tentu. Mislkn g() sutu fungsi yng terdiferensilkn. Mislkn pul F () merupkn ntiturunn dri fungsi f(). Jik u = g(), mk f(g())g

Lebih terperinci

2. A dan B titik-titik ujung sebuah terowongan yang dilihat dari C dengan sudut lihat

2. A dan B titik-titik ujung sebuah terowongan yang dilihat dari C dengan sudut lihat . Dikethui segitig ABC dengn sudut B= dn CT gris tinggi dri titik C. Jik BC = dn AT = mk tentukn AC! C A T B AC ( CT CT ) ( ). A dn B titik-titik ujung seuh terowongn yng diliht dri C dengn sudut liht

Lebih terperinci

matematika WAJIB Kelas X RASIO TRIGONOMETRI Kurikulum 2013 A. Definisi Trigonometri

matematika WAJIB Kelas X RASIO TRIGONOMETRI Kurikulum 2013 A. Definisi Trigonometri Kurikulum 0 Kels X mtemtik WAJIB RASIO TRIGONOMETRI Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi rsio-rsio trigonometri yng meliputi sinus, kosinus, tngen,

Lebih terperinci

KAKLULUS INTEGRAL. Oleh: ABDUL RAHMAN

KAKLULUS INTEGRAL. Oleh: ABDUL RAHMAN KAKLULUS INTEGRAL Oleh: ABDUL RAHMAN FUNGSI LOGARITMA DAN FUNGSI EKSPONEN . FUNGSI LOGARITMA ASLI Definisi Fngsi logritm sli didefinisikn dt, > 0 t Dengn TDK diperoleh: D ( ) D dt t Teorem Jik st fngsi

Lebih terperinci

VEKTOR. Adri Priadana. ilkomadri.com

VEKTOR. Adri Priadana. ilkomadri.com VEKTOR Adri Pridn ilkomdri.com Pengertin Dlm Fisik dikenl du buh besrn, yitu 1. Besrn Sklr. Besrn Vektor Pengertin Besrn Sklr dlh sutu besrn yng hny mempunyi nili dn dinytkn dengn sutu bilngn tunggl diserti

Lebih terperinci

8. FUNGSI TRANSENDEN 1

8. FUNGSI TRANSENDEN 1 8. FUNGSI TRANSENDEN 8. Fngsi Invers Mislkn : D R dengn Deinisi 8. Fngsi = disebt st-st jik = v mk = v t jik v mk v v ngsi = st-st ngsi =- st-st ngsi tidk st-st Secr geometri grik ngsi st-st dn gris ng

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kels Mtemtik Persipn UAS 0 Doc. Nme: ARMAT0UAS Version : 06-09 hlmn 0. Pd ulngn mtemtik, dikethui nili rt -rt kels dlh 8, Jik rt-rt nili mtemtik untuk sisw priny dlh 6, sedngkn untuk sisw wnit

Lebih terperinci

Integral B A B. A. Pengertian Integral. B. Integral Tak Tentu. C. Integral Tertentu. D. Menentukan Luas Daerah. E. Menentukan Volume Benda Putar

Integral B A B. A. Pengertian Integral. B. Integral Tak Tentu. C. Integral Tertentu. D. Menentukan Luas Daerah. E. Menentukan Volume Benda Putar Integrl B A B A. Pengertin Integrl B. Integrl Tk Tentu C. Integrl Tertentu D. Menentukn Lus Derh E. Menentukn Volume Bend Putr Sumer: www.wllpperse.com Pernhkh klin meliht ling-ling peswt? Bgimnkh entukny?

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kels 11 Mtemtik Persipn UAS - 0 Doc. Nme: AR11MAT0UAS Version : 016-07 hlmn 1 01. Pd ulngn mtemtik, dikethui nili rt -rt kels dlh 58. Jik rt-rt nili mtemtik untuk sisw priny dlh 65, sedngkn untuk

Lebih terperinci

III. LIMIT DAN KEKONTINUAN

III. LIMIT DAN KEKONTINUAN KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY III. LIMIT DAN KEKONTINUAN 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi

Lebih terperinci

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2008 Nomor Soal: 21-30

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2008 Nomor Soal: 21-30 Solusi Pengn Mtemtik Edisi Jnuri Pekn Ke-, 00 Nomor Sol: -0. Crilh himpunn penelesin dri sistem persmn log log. () log Misln 0 ( )( ) 0 tu, mk persmn () menjdi: log tu log log log log tu log log log log

Lebih terperinci

Bank soal Trigonometri Page 1 of 7 C. 3 + A. 3 D. 2 B. 3 E. 2 C Nilai x yang memenuhi cos3x

Bank soal Trigonometri Page 1 of 7 C. 3 + A. 3 D. 2 B. 3 E. 2 C Nilai x yang memenuhi cos3x Bnk sl Trignmetri Pge f. Jik tn =, mk sin + sin + + cs( ) =... 0. sin cs =... sin cs sin cs sin cs sin + cs sin + cs sin cs. Jik tn = dn mk cs + sin =... 0. Jik sin + cs = 0 dn 0 80 mk nili yng memenuhi

Lebih terperinci

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = =

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = = IRISAN KERUCUT Bb 9 A. LINGKARAN. Persmn lingkrn dengn pust (0,0) dn jri-jri r 0 r T(x,y) X Persmn = TK titik T = { T / OT r } = = {( x, y) / r } {( x, y) / r }. Persmn lingkrn dengn pust (,b) dengn jri-jri

Lebih terperinci

1 Sifat Penambahan Selang

1 Sifat Penambahan Selang BAB : INTEGRAL TOPIK: Sift-sift Integrl Tentu Kometensi yng iukur lh kemmun mhsisw menyelesikn integrl tentu engn menggunkn sift-sift integrl tentu. Sift Penmbhn Selng. UAS Klkulus, Semester Penek 4 no.

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN

NILAI EIGEN DAN VEKTOR EIGEN Pert 9 (mengjrkomputer.wordpress.com) NILAI EIGEN DAN VEKTOR EIGEN 9. Definisi Sebuh mtriks bujur sngkr dengn orde n n mislkn A, dn sebuh vektor kolom X. Vektor X dlh vektor dlm rung Euklidin n R yng dihubungkn

Lebih terperinci

KALKULUS 2. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI

KALKULUS 2. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI KALKULUS KALKULUS Oleh : SRI ESTI TRISNO SAMI, ST, MMSI 0805 Bhn Bcn / Refferensi :. Frnk Ayres J. R., Clcls, Shcm s Otline Series, Mc Grw-Hill Book Compny.. Ysf Yhy, D. Srydi H. S. Dn Ags S, Mtemtik ntk

Lebih terperinci

Matematika EBTANAS Tahun 1992

Matematika EBTANAS Tahun 1992 Mtemtik EBTANAS Thun 99 EBT-SMA-9-0 Grfik fungsi kudrt yng persmnny y = x 5x memotong sumu x. Slh stu titik potongny dlh (, 0), mk nili sm dengn EBT-SMA-9-0 Persmn x px + 5 = 0 kr-krny sm. Nili p 0 tu

Lebih terperinci

matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma

matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma K-3 Kels mtemtik PEMINATAN FUNGSI LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi fungsi logritm.. Dpt menggunkn konsep fungsi logritm dlm menyelesikn

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA MATEMATIKA A Hendr Gunwn Semester II, 6/7 Februri 7 Kulih yng Llu 8. Bentuk Tk Tentu Tipe / Menghitung limit bentuk tk tentu / dengn menggunkn Aturn l Hopitl 8. Bentuk Tk Tentu Linny Menghitung bentuk

Lebih terperinci

MODEL POTENSIAL 1 DIMENSI

MODEL POTENSIAL 1 DIMENSI MODEL POTENSIAL 1 DIMENSI 1. Sumur Potensil Tk Berhingg Kit tinju prtikel bermss m dengn energi positif, berd dlm sumur potensil stu dimensi dengn dinding potensil tk berhingg dn potensil didlmny nol,

Lebih terperinci

SIMAK UI 2011 Matematika Dasar

SIMAK UI 2011 Matematika Dasar SIMAK UI 0 Mtemtik Dsr Kode Sol Doc. Nme: SIMAKUI0MATDAS999 Version: 0-0 hlmn 0. Sebuh segitig sm kki mempunyi ls 0 cm dn tinggi 5 cm. Jik dlm segitig tersebut dibut persegi pnjng dengn ls terletk pd ls

Lebih terperinci