8. FUNGSI TRANSENDEN 1

Ukuran: px
Mulai penontonan dengan halaman:

Download "8. FUNGSI TRANSENDEN 1"

Transkripsi

1 8. FUNGSI TRANSENDEN

2 8. Fngsi Invers Mislkn : D R dengn Deinisi 8. Fngsi = disebt st-st jik = v mk = v t jik v mk v v ngsi = st-st ngsi =- st-st ngsi tidk st-st

3 Secr geometri grik ngsi st-st dn gris ng sejjr dengn smb berpotongn di st titik. Teorem : Jik ngsi st-st mk mempni invers notsi : R D R R Berlk hbngn D R = D R, R D 3

4 Teorem : jik monoton mrnisell nik/sell trn mk mempni invers = ' 0, R sell nik =- ' 0, R sell trn 0, ' 0, nik ntk >0 trn ntk <0 0 0 v d d tidk d 4

5 Contoh : Dikethi. Periks pkh mempni invers b. Jik d, tentkn inversn Jwb:. '.. 3 0, D Kren sell nikmonoton mrni mk mempni invers b. Misl 5

6 St ngsi ng tidk mempni invers pd derh sln dpt dibt mempni invers dengn cr membtsi derh sln. v Untk >0 d Untk R tidk d Untk <0 d 6

7 Grik ngsi invers Titik, terletk pd grik Titik, terletk pd grik Titik, dn, simetri terhdp gris = Grik dn semetri terhdp gris = 7

8 Sol Ltihn Tentkn ngsi invers bil d dri.. 3 8

9 9 8. Fngsi Logritm Asli Fngsi Logritm sli ln dideinisikn sebgi : Dengn Teorem Dsr Klkls II, diperoleh : Secr mm, jik = mk ln, t dt 0 dt t D D ln d d dt t D D ln.

10 Contoh : Diberikn Jik Jdi, mk ln d Sit-sit Ln :. ln = 0. lnb = ln + ln b Dri sini diperoleh :, ln, 0 ln, 0 d ln d 3. ln/b=ln lnb ln4 ' D 4 4 0, 4. ln r r ln ln ' ln ' ln C 0

11 Contoh: Hitng Jwb: Misl 4 0 d d d d d d d d ln c sehingg ln c 4 0 d ln 0 4 ln8 ln ln 9.

12 Grik ngsi logritm sli =ln Dikethi. b. dt ln, 0 t ' 0 D sell monoton nik pd D c. '' 0 D Grik sell cekng kebwh d. = 0

13 8.3 Fngsi Eksponen Asli, Kren ln 0 ntk 0 mk ngsi logritm sli D monoton mrni, sehingg mempni invers. Invers dri ngsi logritm sli disebt ngsi eksponen sli, notsi ep. Jdi berlk hbngn ep Dri sini didpt : = epln dn =lnep Deinisi 8. Bilngn e dlh bilngn Rel positi ng bersit ln e =. Dri sit iv ngsi logritm diperoleh ln e r epln e r ep r ln e ep r ep e MA4 KALKULUS I 3

14 Trnn dn integrl ngsi eksponen sli Dengn menggnkn trnn ngsi invers Dri hbngn e ln d d d / d e d d Jdi, D e e Secr mm D e e. ' Sehingg e d e C 4

15 Grik ngsi eksponen sli Kren ngsi ekponen sli merpkn invers dri ngsi logritm sli mk grik ngsi eksponen sli diperoleh dengn cr mencerminkn grik ngsi logritm sli terhdp gris = =ep =ln Contoh: D e e. D e. 5

16 Contoh :Hitng e 4 d Jwb : Mislkn 4 d 4d d d 4 Sehingg e 4 d e d 4 4 e C 4 e 4 C. 6

17 7 h g Penggnn ngsi logritm dn eksponen sli Menghitng trnn ngsi berpngkt ngsi Dikethi ln ln g h ln ln g h D D ' ln ' ' g g h g h ' ln ' ' g g h g h? ',

18 Contoh : Tentkn trnn ngsi 4 Jwb: Ubh bentk ngsi pngkt ngsi menjdi perklin ngsi dengn menggnkn ngsi logritm sli D ln ln ' ln Trnkn ked rs ' ' D 4 4ln 4ln 4ln 4 4ln 4 4 4ln 4 8

19 Sol ltihn A.Tentkn ' dri. e e sin 6. ln e 3 tn e e 3 e tn ln cos 3 ln ln sin 5. sin 0. sinln 9

20 B. Selesikn integrl tk tent berikt. 4 d 6. e 3 d. d 3 7. sin cos d e d 8. cos sin d 4. e 3 d 5. cos e sin d 0

21 C. Selesikn integrl tent berikt 4 3. d. 3 e d e 4 d 4. ln 0 3 e d

22 8.5 Fngsi Eksponen Umm Fngsi, > 0 disebt ngsi eksponen mm Untk > 0 dn R, deinisikn ln e Trnn dn integrl D D e ln e ln ln ln Jik =, mk D D e ln e ln ln. ' ' ln Dri sini diperoleh : : d ln C

23 Sit sit ngsi eksponen mm Untk > 0, b > 0,, bilngn riil berlk b b 5. b b 3

24 Contoh: Hitng trnn pertm dri 3 sin Jwb : '.3 ln 3. sin cos ln. Hitng 4. d Jwb : Misl d d d d 4. d d C ln 4 ln 4 C 4

25 Grik ngsi eksponen mm, Dikethi., 0 D, b. ln 0, 0 ' ln ln 0, monoton nik jik > monoton trn jik 0 < < c. '' ln 0 D,0 Grik sell cekng kets d. 0 = 5

26 8.6 Fngsi Logritm Umm Kren ngsi eksponen mm monoton mrni mk d Inversn. Invers dri ngsi eksponen mm disebt ngsi Logritm Umm log logritm dengn bilngn pokok, notsi, sehingg berlk : log Dri hbngn ini, didpt ln ln ln ln ln log ln ln Sehingg D Jik =, mk ln log D ln D ln ln log D ln ' ln 6

27 Contoh: Tentkn trnn pertm dri 3 log Jwb : log ln ln 3 3 ' ln 3 7

28 Grik ngsi logritm mm Grik ngsi logritm mm diperoleh dengn mencerminkn grik ngsi eksponen mm terhdp gris = Untk > Untk 0 < < log log 8

29 Sol Ltihn A. Tentkn ' dri log 9 9

30 8.7 Fngsi Invers Trigonometri Fngsi trigonometri dlh ngsi ng periodik sehingg tidk st-st, jik derh sln dibtsi, ngsi trigonometri bis dibt menjdi stst sehingg mempni invers.. Invers ngsi sins Dikethi = sin, Kren pd =sin monoton mrni mk inversn d. Invers dri ngsi sins disebt rcs sins, notsi rcsin,t sin Sehingg berlk sin sin 30

31 Trnn Dri hbngn sin sin dn rms trnn ngsi invers diperoleh, d d d / d cos sin, t D sin Jik = D sin ' Dri rms trnn diperoleh d sin C 3

32 b. Invers ngsi cosins Fngsi = cos,0 monoton mrnisell monoton trn, sehingg mempni invers cos Deinisi : Invers ngsi cos disebt rcscos, notsi rc cos t cos Berlk hbngn cos cos Trnn Dri cos cos,, 0 diperoleh d d d / d sin cos, 3

33 t D cos Jik = D cos ' Dri rms trnn dits diperoleh d cos C Contoh: D sin D 4 33

34 Contoh: Hitng Jwb : 4 d Gnkn rms d sin C 4 Misl d 4 4 d d d d d d 4 d d sin C sin C 34

35 c. Invers ngsi tngen Fngsi = tn, Monoton mrni sell nik sehingg mempni invers. =tn Deinisi Invers dri tn disebt ngsi rcs tn, notsi rc tn t tn Berlk hbngn Trnn Dri d d tn tn d / d sec tn tn dn trnn ngsi invers diperoleh, tn 35

36 t D tn d tn C Jik = D tn ' d. Invers ngsi cotngen Fngsi = cot,0 sell monoton trnmonoton mrni sehingg mempni invers =cot Trnn d d Deinisi Invers dri ngsi cot disebt Arcs cot, notsi rc cot t cot Berlk hbngn d / d cot csc cot cot 36

37 t D cot Jik = Contoh : D cot ' d cot D tn D C Contoh: Hitng d 4 37

38 Jwb : 4 d d d d d d d 4 4 d d tn C Gnkn rms d tn C tn C 38

39 e. Invers ngsi secn Diberikn = sec 0,, ' sec tn 0,0, = sec monoton mrni Ad inversn Deinisi Invers dri ngsi sec disebt rcs sec, notsi rc sec t sec Sehingg sec sec 39

40 Trnn Dri sec sec sec cos cos cos Sehingg D sec D cos Jik = D sec ' d sec c 40

41 e. Invers ngsi cosecn Diberikn = csc, 0, ' csc cot 0,, 0 = sec monoton mrni Ad inversn Deinisi Invers dri ngsi csc disebt rcs csc, notsi rc csc t csc Sehingg csc csc 4

42 Trnn Dri csc csc csc sin sin sin Sehingg D csc D sin Jik = D sec ' d csc c 4

43 43 Contoh: A. Hitng trnn pertm dri sec ' 4 D 4 Jwb:

44 44 B. Hitng d 4 d d d Jwb: Misl d d d d d d d 4 C C sec sec

45 Sol Ltihn A. Tentkn trnn pertm ngsi berikt, sederhnkn jik mngkin. sin. tn e 3. tn 45

46 B. Hitng. d d 6 3. / 0 sin d 46

Pertemuan 9 DIFFERENSIAL

Pertemuan 9 DIFFERENSIAL Pertemn 9 DIFFERENSIAL Y' d f '() f( h) - f() h Rms rms diferensil ng perl dikethi : n n Y Y n Y e Y e Y Y ln 4 Y ln Y 5 Y log Y ' ln 6 Y V Y V 7 Y - V Y - V 8 Y V Y V V 9 Y ' V - V' V V Y Y cos Y cos

Lebih terperinci

III. LIMIT DAN KEKONTINUAN

III. LIMIT DAN KEKONTINUAN KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY III. LIMIT DAN KEKONTINUAN 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

LIMIT DAN KONTINUITAS

LIMIT DAN KONTINUITAS LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

KAKLULUS INTEGRAL. Oleh: ABDUL RAHMAN

KAKLULUS INTEGRAL. Oleh: ABDUL RAHMAN KAKLULUS INTEGRAL Oleh: ABDUL RAHMAN FUNGSI LOGARITMA DAN FUNGSI EKSPONEN . FUNGSI LOGARITMA ASLI Definisi Fngsi logritm sli didefinisikn dt, > 0 t Dengn TDK diperoleh: D ( ) D dt t Teorem Jik st fngsi

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN . LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

VEKTOR DEPARTEMEN TEKNIK ELEKTRO UNIVERSITAS INDONESIA

VEKTOR DEPARTEMEN TEKNIK ELEKTRO UNIVERSITAS INDONESIA VEKTOR DEPARTEMEN TEKNIK ELEKTRO UNIVERSITAS INDONESIA Pengertin Dsr Vektor merpkn kombinsi dri st besrn dn st rh Vektor dpt dintkn dlm pnh-pnh, pnjng pnh mentkn besrn ektor dn rh pnh mennjkkn rh ektor

Lebih terperinci

KALKULUS 2. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI

KALKULUS 2. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI KALKULUS KALKULUS Oleh : SRI ESTI TRISNO SAMI, ST, MMSI 0805 Bhn Bcn / Refferensi :. Frnk Ayres J. R., Clcls, Shcm s Otline Series, Mc Grw-Hill Book Compny.. Ysf Yhy, D. Srydi H. S. Dn Ags S, Mtemtik ntk

Lebih terperinci

FUNGSI TRANSENDEN. Sifat satu kesatu yang mengakibatkan fungsi

FUNGSI TRANSENDEN. Sifat satu kesatu yang mengakibatkan fungsi FUNGSI TRANSENDEN I. Pendhulun. Pokok Bhsn Logritm Fungsi Eksponen.2 Tujun Mengethui entuk fungsi trnsenden dlm klkulus. Mengethui dn memhmi entuk fungsi trnseden itu logritm dn fungsi eksponen sert dlm

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

MODUL 1 INTEGRAL. Sekilas Info

MODUL 1 INTEGRAL. Sekilas Info MODUL INTEGRAL Sekils Info Orng yng pertm kli menemkn integrl tertent dlh George Friedrih Bernhrd Riemnn, seorng Mtemtikwn sl Jermn yng lhir pd thn 6. Riemnn menjelskn integrl tertent dengn menggnkn ls

Lebih terperinci

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a.

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a. DEFINISI Notsi dibc tu berrti bhw IMIT FUNGSI it bil mendekti sm dengn mendekti bil mendekti nili dpt dibut sedekt mungkin dengn bil cukup dekt dengn, tetpi tidk sm dengn. Perhtikn bhw dlm deinisi tersebut

Lebih terperinci

VEKTOR. Bab 20. a. Penjumlahan dan Pengurangan Vektor. ; OB b. maka OA AB OB. dan. maka. Contoh : Tentukan nilai x dan y dari Jawab :

VEKTOR. Bab 20. a. Penjumlahan dan Pengurangan Vektor. ; OB b. maka OA AB OB. dan. maka. Contoh : Tentukan nilai x dan y dari Jawab : VEKTOR B Penjmlhn dn Pengrngn Vektor. OA ; OB mk OA AB OB AB OB OA AB dn v c d mk v c c d d Contoh : Tentkn nili x dn y dri Jw : Jdi nili x - 8 dn y - ½ Pnjng Vektor Misl, mk pnjng (esr/nili) vector ditentkn

Lebih terperinci

RUANG VEKTOR REAL. Kania Evita Dewi

RUANG VEKTOR REAL. Kania Evita Dewi RUANG VEKTOR REAL Kni Eit Dewi Definisi Vektor dlh besrn yng mempnyi rh. Notsi: Notsi pnjng ektor: k j i ˆ ˆ ˆ Vektor stn Vektor dengn pnjng t norm sm dengn st Opersi ektor Penjmlhn ntr ektor Mislkn dn

Lebih terperinci

KALKULUS I Dr. Wuryansari Muharini Kusumawinahyu Program Sarjana Matematika Universitas Brawijaya

KALKULUS I Dr. Wuryansari Muharini Kusumawinahyu Program Sarjana Matematika Universitas Brawijaya KALKULUS I Dr. Wurnsri Muhrini Kusumwinhu Progrm Srjn Mtemtik Universits Brwij Deinisi: Mislkn A dn B dlh himpunn tk kosong. Fungsi dri A ke B dlh sutu ATURAN ng MEMADANKAN SETIAP ELEMEN di A dengn tept

Lebih terperinci

PERSAMAAN DAN FUNGSI KUADRAT. Oleh Shahibul Ahyan

PERSAMAAN DAN FUNGSI KUADRAT. Oleh Shahibul Ahyan PERSAMAAN DAN FUNGSI KUADRAT Oleh Shhil Ahyn A. Bentk Umm Persmn Kdrt Definisi : Mislkn,, Rdn, mk persmn yng erentk + + = dinmkn persmn kdrt dlm peh. Berkitn dengn nili-nili dri,, dikenl eerp persmn kdrt

Lebih terperinci

Limit & Kontinuitas. Oleh: Hanung N. Prasetyo. Calculus/Hanung N. Prasetyo/Politeknik Telkom Bandung

Limit & Kontinuitas. Oleh: Hanung N. Prasetyo. Calculus/Hanung N. Prasetyo/Politeknik Telkom Bandung imit & Kontinuits Oleh: Hnung N. Prsetyo Clculus/Hnung N. Bb. IMIT.1. Du mslh undmentl klkulus... Gris Tngen.. Konsep imit.4. Teorem imit.5. Konsep kontinuits Clculus/Hnung N. Du Mslh Fundmentl Klkulus

Lebih terperinci

Bab 4. Contoh 4.1 : Berikut adalah beberapa contoh notasi vektor : b. b = b 1 i ˆ +b kˆ

Bab 4. Contoh 4.1 : Berikut adalah beberapa contoh notasi vektor : b. b = b 1 i ˆ +b kˆ B 4 Vektor di Bidng dn di Rng Vektor merpkn esrn yng mempnyi rh. Pd ini kn dijelskn tentng ektor di idng dn di rng, yng diserti opersi dot prodct, cross prodct, dn penerpnny pd proyeksi ektor dn perhitngn

Lebih terperinci

FUNGSI TRANSENDEN. Definisi 1 Fungsi logaritma natural, ditulis sebagai ln, didefenisikan dengan

FUNGSI TRANSENDEN. Definisi 1 Fungsi logaritma natural, ditulis sebagai ln, didefenisikan dengan 2 FUNGSI TRANSENDEN Fungsi trnsenen tu fungsi non-ljbr lh fungsi yng tik pt inytkn lm sejumlh berhingg opersi ljbr. Fungsi trnsenen yng bis ijumpi lm hl ini teriri ri fungsi eksponensil, fungsi logritmik,

Lebih terperinci

INTEGRAL OLEH : WILDAN SUHARTINI (KELAS L)

INTEGRAL OLEH : WILDAN SUHARTINI (KELAS L) Tgs Mtemtik indstri TIP-FTP-UB INTEGRAL OLEH : WILDAN SUHARTINI 5 (KELAS L) A. INTEGRAL TENTU DAN INTEGRAL TAK TENTU Integrl dlh kelikn dri trnn (diferensil). Oleh kren it integrl diset jg nti diferensil.

Lebih terperinci

TRIGONOMETRI I. KOMPETENSI YANG DICAPAI

TRIGONOMETRI I. KOMPETENSI YANG DICAPAI TRIGONOMETRI I. KOMPETENSI YANG DICAPAI Mhsisw dpt : 1. Membuktikn identits trigonometri.. Menghitung hubungn ntr sudut dn sisi segitig dengn Rumus Sinus. 3. Menghitung hubungn ntr sudut dn sisi segitig

Lebih terperinci

Hendra Gunawan. 30 Oktober 2013

Hendra Gunawan. 30 Oktober 2013 MA MATEMATIKA A Hendr Gunwn Semester I, 2/24 Oktoer 2 Ltihn. Fungsi g =,, terintegrlkn pd [, ]. Nytkn integrl tentu g pd [, ] segi limit jumlh Riemnn dengn prtisi reguler, dn hitunglh niliny. //2 c Hendr

Lebih terperinci

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45 INTEGRAL Deprtemen Mtemtik FMIPA IPB Bogor, 2012 (Deprtemen Mtemtik FMIPA IPB) Klkulus I Bogor, 2012 1 / 45 Topik Bhsn 1 Pendhulun 2 Anti-turunn 3 Lus di Bwh Kurv 4 Integrl Tentu 5 Teorem Dsr Klkulus 6

Lebih terperinci

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi:

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi: INTEGRAL RANGKUMAN MATERI A. ANTIDERIVATIF DAN INTEGRAL TAK TENTU Jik kit mengmil uku dri temptny mk kit dpt mengemliknny lgi ke tempt semul. Opersi yng kedu menghpus opersi yng pertm. Kit ktkn hw du opersi

Lebih terperinci

Matematika SMA (Program Studi IPA)

Matematika SMA (Program Studi IPA) Smrt Solution UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 Disusun Sesui Indiktor Kisi-Kisi UN 2013 Mtemtik SMA (Progrm Studi IPA) Disusun oleh : Pk Anng - Blogspot Pge 1 of 13 5. 2. Menyelesikn sol pliksi

Lebih terperinci

Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40

Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40 Solusi Pengn Mtemtik Edisi 4 Jnuri Pekn Ke-4, 007 Nomor Sol: -40. Diberikn persmn 8 9 4 8 007 dn b, dengn b. Angk stun dri b dlh. A. B. C. D. 7 E. 9 Persmn 8 9 4 8 8 9 4 8 9 4 8 8 8 9 8 4 8 8 8 0 0 b tu

Lebih terperinci

MATEMATIKA DASAR. Bab Bilangan Irasional dan Logaritma. Drs. Sumardi Hs., M.Sc. Modul ke: 02Fakultas FASILKOM. Program Studi Teknik Informatika

MATEMATIKA DASAR. Bab Bilangan Irasional dan Logaritma. Drs. Sumardi Hs., M.Sc. Modul ke: 02Fakultas FASILKOM. Program Studi Teknik Informatika MATEMATIKA DASAR Modul ke: 0Fkults FASILKOM Progrm Studi Teknik Informtik Bb Bilngn Irsionl dn Logritm Drs. Sumrdi Hs., M.Sc. Bgin Isi Bilngn Irsionl - Berbgi bentuk kr dn opersiny Logritm - Sift-sift

Lebih terperinci

3 PANGKAT, AKAR, DAN LOGARITMA

3 PANGKAT, AKAR, DAN LOGARITMA PANGKAT, AKAR, DAN LOGARITMA.. Pngkt Pngkt dri seuh ilngn dlh sutu indeks ng menunjukkn nkn perklin ilngn ng sm secr eruntun. Notsi n errti hw hrus diklikn degn itu sendiri senk n kli. Notsi ilngn erpngkt

Lebih terperinci

Materi ke 5 Integral tak wajar

Materi ke 5 Integral tak wajar Mteri ke 5 Integrl tk wjr Senin, 3 Mret 5 ekop3@yhoo.com Jurusn Teknik Industri - Universits Seels Mret Isi Integrl Tk Wjr Pd Selng Hingg Integrl Tk Wjr Pd Selng Tk Hingg Jurusn Teknik Industri - Universits

Lebih terperinci

Penyelesaian Persamaan dengan Logaritma. Persamaan & Fungsi logaritma. Pengertian Logaritma 10/9/2013

Penyelesaian Persamaan dengan Logaritma. Persamaan & Fungsi logaritma. Pengertian Logaritma 10/9/2013 10/9/013 Penyelesin Persmn dengn Logritm Persmn & Fungsi logritm Tim Dosen Mtemtik FTP Logritm dpt digunkn untuk mencri bilngn yng belum dikethui (bilngn x) dlm sebuh persmn, khususny persmn eksponensil

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer Aljr Liner Elementer MA SKS Sils : B I Mtriks dn Opersiny B II Determinn Mtriks B III Sistem Persmn Liner B IV Vektor di Bidng dn di Rng B V Rng Vektor B VI Rng Hsil Kli Dlm B VII Trnsformsi Liner B VIII

Lebih terperinci

8. FUNGSI TRANSENDEN

8. FUNGSI TRANSENDEN 8. FUNGSI TRANSENDEN 8. Fngsi Invrs Misalkan : D R dngan Dinisi 8. Fngsi = disbt sat-sat jika = v maka = v ata jika v maka v v ngsi = sat-sat ngsi =- sat-sat ngsi tidak sat-sat INF8 Kalkls Dasar Scara

Lebih terperinci

SIMAK UI 2011 Matematika Dasar

SIMAK UI 2011 Matematika Dasar SIMAK UI 0 Mtemtik Dsr Kode Sol Doc. Nme: SIMAKUI0MATDAS999 Version: 0-0 hlmn 0. Sebuh segitig sm kki mempunyi ls 0 cm dn tinggi 5 cm. Jik dlm segitig tersebut dibut persegi pnjng dengn ls terletk pd ls

Lebih terperinci

Integral Tak Tentu dan Integral Tertentu

Integral Tak Tentu dan Integral Tertentu Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer Aljr Liner Elementer MA SKS Sils : B I Mtriks dn Opersiny B II Determinn Mtriks B III Sistem Persmn Liner B IV Vektor di Bidng dn di Rng B V Rng Vektor B VI Rng Hsil Kli Dlm B VII rnsformsi Liner B VIII

Lebih terperinci

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar INTEGRAL Integrl Tk Tentu Dn Integrl Tertentu Dri Fungsi Aljr A. Integrl Tk Tentu Hitung integrl dlh kelikn dri hitung differensil. Pd hitung differensil yng dicri dlh fungsi turunnny, sedngkn pd hitung

Lebih terperinci

CHAPTER 1 EXPONENTS, ROOTS, AND LOGARITHMS

CHAPTER 1 EXPONENTS, ROOTS, AND LOGARITHMS CHAPTER EXPONENTS, ROOTS, AND LOGARITHMS Indiktor (penunjuk): Mengubh bentuk pngkt negtif ke pngkt positif dn seblikny. (4 jp) A. EXPONENTS. Definition (ketentun): Positive Integers Exponents n = x x...

Lebih terperinci

PEMANTAPAN BELAJAR SMA BBS INTEGRAL

PEMANTAPAN BELAJAR SMA BBS INTEGRAL BAB I PEMANTAPAN BELAJAR SMA BBS INTEGRAL I A RANGKUMAN INTEGRAL. Pengertin Apil terdpt fungsi F() yng dpt didiferensilkn pd selng I sedemikin hingg F () = f(), mk nti turunn (integrl) dri f() dlh F()

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer Aljr Liner Elementer MA SKS Sils : B I Mtriks dn Opersiny B II Determinn Mtriks B III Sistem Persmn Liner B IV Vektor di Bidng dn di Rng B V Rng Vektor B VI Rng Hsil Kli Dlm B VII Trnsformsi Liner B VIII

Lebih terperinci

BAB 3 VEKTOR DI R 2 DAN R 3. Dr. Ir. Abdul Wahid Surhim, MT.

BAB 3 VEKTOR DI R 2 DAN R 3. Dr. Ir. Abdul Wahid Surhim, MT. BAB VEKTOR DI R DAN R Dr. Ir. Adl Whid Srhim, MT. KERANGKA PEMBAHASAN. Definisi Vektor di R dn R. Hsil Kli Slr. Hsil Kli Silng 4. Gris dn Bidng di R . DEFINISI VEKTOR DI R DAN R Notsi dn Opersi Vektor

Lebih terperinci

matematika WAJIB Kelas X RASIO TRIGONOMETRI Kurikulum 2013 A. Definisi Trigonometri

matematika WAJIB Kelas X RASIO TRIGONOMETRI Kurikulum 2013 A. Definisi Trigonometri Kurikulum 0 Kels X mtemtik WAJIB RASIO TRIGONOMETRI Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi rsio-rsio trigonometri yng meliputi sinus, kosinus, tngen,

Lebih terperinci

F. Logaritma EKSPONEN DAN LOGARITMA 11/9/2015. Peta Konsep. F. Logaritma. Nomor W4901. Hitunglah Log 49

F. Logaritma EKSPONEN DAN LOGARITMA 11/9/2015. Peta Konsep. F. Logaritma. Nomor W4901. Hitunglah Log 49 11/9/01 Pet Konsep Jurnl Mteri Umum Pet Konsep Pngkt Rsionl Dftr Hdir Mteri F EKSPONEN DAN LOGARITMA Kels X, Semester 1 F. ritm Pngkt Bult Positif Pngkt Nol Pngkt Bult Negtif Bentuk Akr Pngkt Pechn SolLtihn

Lebih terperinci

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

INTEGRAL TAK TENTU. x x x

INTEGRAL TAK TENTU. x x x INTEGRAL TAK TENTU Definisi : Fungsi F diktkn nti turunn dri fungsi f pd selng I jik F () = f() untuk semu di I. Notsi : F() = f() Integrl tk tentu dlh Anti/Invers/Kelikn turunn. c c Integrl tk tentu dlh

Lebih terperinci

7. APLIKASI INTEGRAL

7. APLIKASI INTEGRAL 7. APLIKASI INTEGRAL 7. Menghitung Lus Derh.Mislkn derh D (, ), f ( ) D f() Lus D =? Lngkh :. Iris D menjdi n gin dn lus stu uh irisn dihmpiri oleh lus persegi pnjng dengn tinggi f() ls(ler) A f ( ). Lus

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

SIFAT-SIFAT LOGARITMA

SIFAT-SIFAT LOGARITMA K- Kels X mtemtik PEMINATAN SIFAT-SIFAT LOGARITMA Tujun Pembeljrn Setelh memeljri mteri ini, kmu dihrkn memiliki kemmun berikut.. Memhmi definisi logritm.. Dt menentukn nili logritm dengn menggunkn tbel

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA K- Kels X mtemtik PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi persmn dn pertidksmn logritm.. Dpt

Lebih terperinci

D E F I N I S I. Contoh 1: 08/11/2015. Anita T. Kurniawati. Mendefinisikan fungsi f yang mengawankan bilangan dengan bilangan x

D E F I N I S I. Contoh 1: 08/11/2015. Anita T. Kurniawati. Mendefinisikan fungsi f yang mengawankan bilangan dengan bilangan x 08//05 Anit T. Kurniwti disebut unsi dri jik dpt ditentukn sutu hubunn ntr dn SDH untuk setip nili menentukn secr tunl nili. Hubunn ntr dn bisn ditulis : Contoh : ) ) Mendeinisikn unsi n menwnkn bilnn

Lebih terperinci

E. INTEGRASI BAGIAN ( PARSIAL )

E. INTEGRASI BAGIAN ( PARSIAL ) E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )

Lebih terperinci

BAB 7. LIMIT DAN LAJU PERUBAHAN

BAB 7. LIMIT DAN LAJU PERUBAHAN BAB 7. LIMIT DAN LAJU PERUBAHAN 7. LIMIT FUNGSI 7.. Limit fungsi di sutu titik Menggmbrkn perilku fungsi jik peubhn mendekti sutu titik Illustrsi: Dikethui f( ) f(), 3,30,0 3,030,00 3,003 3 f() = f() 3,000?

Lebih terperinci

SISTEM BILANGAN REAL. Purnami E. Soewardi. Direktorat Pembinaan Tendik Dikdasmen Ditjen GTK Kementerian Pendidikan dan Kebudayaan

SISTEM BILANGAN REAL. Purnami E. Soewardi. Direktorat Pembinaan Tendik Dikdasmen Ditjen GTK Kementerian Pendidikan dan Kebudayaan SISTEM BILANGAN REAL Purnmi E. Soewrdi Direktort Peminn Tendik Dikdsmen Ditjen GTK Kementerin Pendidikn dn Keudyn Himpunn Bilngn Asli (N) Bilngn sli dlh ilngn yng pertm kli dikenl dn digunkn oleh mnusi

Lebih terperinci

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: GARIS SINGGUNG PADA HIPERBOLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (, ) pd

Lebih terperinci

Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 2006

Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 2006 www.purwntowhyudi.com Hl- Sol-sol dn Pemhsn Mtemtik Dsr SBMPTN-SNMPTN 006. Jik > 0, > 0 dn mk A. C. E. B. D. Jw:. Jwnny dlh A. Jik p - dn q -, mk q p. A. C. E. B. D. Jw: q p Jwnny dlh A . Grfik y terletk

Lebih terperinci

Fungsi Transenden. Fungsi Transenden

Fungsi Transenden. Fungsi Transenden Invers sutu fungsi dn turunnn Fungsi logritm sli Fungsi eksponen sli Fungsi eksponen dn logritm umum Pertumbuhn dn peluruhn eksponen f D R : f f Fungsi stu-ke-stu Fungsi diktkn stu-ke-stu jik untuk setip

Lebih terperinci

Integral. Konstanta dari Integrasi. Integral Tak Tentu. AntiTurunan (Antiderivative)

Integral. Konstanta dari Integrasi. Integral Tak Tentu. AntiTurunan (Antiderivative) Integrl AntiTurunn (Antiderivtive) AntiTurunn dri seuh fungsi f dl seuh fungsi F sedemikin hingg Dierikn Pd Peltihn Guru-Guru Aceh Jy 5 Septemer 0 Oleh: Ridh Ferdhin, M.Sc F f E. AntiTurunn dri f ( ) 6

Lebih terperinci

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1 HITUNG INTEGRA BAB.Integrl tk tentu (tnp ts). Rumus-rumus ) ) n n n d c, n ) d c n n n. d c, n ). Sift-sift Integrl Contoh :... ) k. f ( ) d k. f ( ) d d d ln c ) ( ( ) ( )) ( ) ( ) d c ( ) ( ) d ( ) d

Lebih terperinci

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c BAB XVI. INTEGRAL A. Integrl Tk Tentu. Rumus Integrl Fungsi Aljr. k k n = n +. ( + ) n = ( n + ). = ln + n + + ; n - n+ (+) + ; dn n -. ( f ( ) ± g( ) ) f ( ) ± g ( ) n. os (+)sin(+) = ( n + ) os n + (+)

Lebih terperinci

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c Integrl Tk Tentu INTEGRAL. Rumus Integrl Fungsi Aljr. k x n k n +. ( x + n ( n +. x ln x + x n + + ; n - n+ (x+ + ; dn 4. ( f ( x ± g( x f ( x ± g ( x n - n. os (x+sin(x+ ( n + n+ os (x+ + ( + (. sin x

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

Sistem Persamaan Linier

Sistem Persamaan Linier b I Sistem Persmn Linier I Sistem Persmn Linier TUJUN PEMELJRN: Mhsisw memhmi konsep-konsep tentng sistem persmn linier, eksistensi dn keunikn sistem persmn linier, keunikn sistem persmn linier homogen,

Lebih terperinci

15. INTEGRAL SEBAGAI LIMIT

15. INTEGRAL SEBAGAI LIMIT 15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini

Lebih terperinci

MATEMATIKA IPA PAKET A KUNCI JAWABAN

MATEMATIKA IPA PAKET A KUNCI JAWABAN MATEMATIKA IPA PAKET A KUNCI JAWABAN. Jwbn : A Mislkn : p : Msyrkt membung smph pd temptny. q: Kesehtn msyrkt terjg. Diperoleh: Premis : ~q ~p p q Premis : p Kesimpuln : q Jdi, kesimpuln dri premis-premis

Lebih terperinci

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: PERSAMAAN GARIS SINGGUNG PADA ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (,

Lebih terperinci

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik Hiperol 7.1. Persmn Hiperol Bentuk Bku Hiperol dlh himpunn semu titik (, ) pd idng sedemikin hingg selisih positif jrk titik (, ) terhdp psngn du titik tertentu ng diseut titik fokus (foci) dlh tetp. Untuk

Lebih terperinci

BENTUK PANGKAT, AKAR DAN LOGARITMA

BENTUK PANGKAT, AKAR DAN LOGARITMA BENTUK PANGKAT, AKAR DAN LOGARITMA Stndr Kompetensi Memhmi dn menggunkn turn dn sift sert mnipulsi Aljr dlm pemechn mslh ng erkitn dengn entuk pngkt, kr dn logritm. Kompetensi Dsr Menggunkn sift, turn

Lebih terperinci

BAB I PENDAHULUAN. Olimpiade Matematika Mahasiswa Persamaan Kuadrat 1

BAB I PENDAHULUAN. Olimpiade Matematika Mahasiswa Persamaan Kuadrat 1 BAB I PENDAHULUAN A. Ltr Belkng Mtemtik merpkn slh st disiplin ilm yng srt dengn st ilngn. Mtemtik jg merpkn st hs dimn hs pd mtemtik tidk memiliki mkn yng mig t pemknn dri hs mtemtik tidk menimlkn mkn

Lebih terperinci

4. VEKTOR-VEKTOR DI RUANG-2 DAN RUANG-3

4. VEKTOR-VEKTOR DI RUANG-2 DAN RUANG-3 Diktt Aljbr Liner Vektor di Rng dn Rng 4. VEKTOR-VEKTOR DI RUANG- DAN RUANG- 4.. PENGANTAR DEFINISI 4.: VEKTOR Vektor dlh st besrn yng memiliki besr dn rh. Vektor yng memiliki pnjng dn rh yng sm diktkn

Lebih terperinci

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L. INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl

Lebih terperinci

INTEGRAL. Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

INTEGRAL. Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. INTEGRAL Instruktur : Ferry Whyu Wibowo, S.Si., M.Cs. . Integrl tk tentu b. Integrl tertentu Contoh : Tentukn turunn berikut ini. y b. y. y d. y y y d. - y y. y y b. y y. Jwb: F() F () ---------- C ---

Lebih terperinci

5. RUANG-RUANG VEKTOR

5. RUANG-RUANG VEKTOR 5. RUANG-RUANG VEKTOR Rng-Rng Vektor 5.. RUANG-N EUCLIDIS DEFINISI 5.: RUANG -N Jik n dlh sebh bilngn blt positif mk n-psngn terrt dlh (.. n ) dimn i i..n dlh bilngn riil. Himpnn sem n-psngn terrt ini

Lebih terperinci

1 B. Mengkonversi dari pecahan ke persen. 1 Operasi bilangan berpangkat. 2. Menyederhanakan bilangan berpangkat bentuk:

1 B. Mengkonversi dari pecahan ke persen. 1 Operasi bilangan berpangkat. 2. Menyederhanakan bilangan berpangkat bentuk: KISI KISI SOAL UJI COBA UJIAN NASIONAL MATA PELAJARAN MATEMATIKA TAHUN 009 / 00 MGMP MATEMATIKA SMK TEKNIK KABUPATEN KLATEN Bhn/ X / Opersi bilngn rel. Sisw dpt: A. Mengkonversi dri desiml ke persen B.

Lebih terperinci

Menerapkan konsep vektor dalam pemecahan masalah. Menerapkan konsep vektor pada bangun ruang

Menerapkan konsep vektor dalam pemecahan masalah. Menerapkan konsep vektor pada bangun ruang VEKTOR PADA BIDANG SK : Menerpkn konsep vektor dlm pemechn mslh KD : Menerpkn konsep vektor pd bidng dtr Menerpkn konsep vektor pd bngun rung TUJUAN PELATIHAN: Pesert memiliki kemmpun untuk mengembngkn

Lebih terperinci

MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X

MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 6 Sesi N INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR Apliksi integrl erikutn dlh menentukn volume end ng memiliki sumu putr. Contoh endn dlh tung,

Lebih terperinci

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real SISTEM BILANGAN REAL Dlm terminologi Aljbr Abstrk, sistem bilngn rel disebut dengn field (lpngn) pd opersi penjumlhn dn perklin. Sutu opersi biner bis ditulis dengn sutu psngn terurut (, b) yng unik dri

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Mtemtik. ANTI TURUNAN Definisi Mislkn fungsi f terdefinisi pd selng teruk I. Fungsi F ng memenuhi F () = f () pd I dinmkn nti turunn tu fungsi primitif dri fungsi f pd I.. F() = cos nti turunn dri

Lebih terperinci

Matematika X Semester 1 SMAN 1 Bone-Bone

Matematika X Semester 1 SMAN 1 Bone-Bone http://meetbied.wordpress.com Mtemtik X Semester SMAN Bone-Bone Hsil yng pling berhrg dri semu jenis pendidikn dlh kemmpun untuk membut diri kit melkukn sesutu yng hrus kit lkukn, pd st hl itu hrus dilkukn,

Lebih terperinci

6. Himpunan Fungsi Ortogonal

6. Himpunan Fungsi Ortogonal 6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn

Lebih terperinci

7. Ruang L 2 (a, b) f(x) 2 dx < }.

7. Ruang L 2 (a, b) f(x) 2 dx < }. 7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f

Lebih terperinci

Bab 3 Terapan Integral Ganda

Bab 3 Terapan Integral Ganda Surdi Siregr Metode Mtemtik Astronomi Bb 3 Terpn Integrl Gnd 3. Integrl Gnd dlm koordint Krtesis dn Polr Koordint Krtesis Koordint Polr Ilustrsi b g f ={,, } Mss M, da, dd r ={,, r )},, M r da r rdrd sin

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

IX. RANCANGAN ACAK LENGKAP POLA FAKTORIAL AxB

IX. RANCANGAN ACAK LENGKAP POLA FAKTORIAL AxB Respons Respons IX. RANCANGAN ACAK LENGKAP POLA FAKTORIAL AxB Rncngn Ack Lengkp Pol Fktoril AxB dlh rncngn ck lengkp yng terdiri dri d peh es (Fktor dlm klsfiksi silng yit fktor A yng terdiri dri trf dn

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi

Lebih terperinci

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 5 Sesi N INTEGRAL TENTU DAN LUAS DAERAH A. DEFINISI INTEGRAL TENTU Bentuk integrl f d = f + c diseut segi integrl tk tentu kren hsil dri pengintegrlnn msih erup

Lebih terperinci

Tiara Ariqoh Bawindaputri TIP / kelas L

Tiara Ariqoh Bawindaputri TIP / kelas L Tir Ariqoh Bwindputri 500008 TIP / kels L INTEGRAL Integrl Tk tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C Untuk

Lebih terperinci

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat.

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat. Husn Arifh,M.Sc : Persmn Legendre Emil : husnrifh@uny.c.id Persmn diferensil Legendre (1) 1 x 2 y 2xy + n n + 1 y = 0 Prmeter n pd (1) dlh bilngn rill yng diberikn. Setip penyelesin dri (1) dinmkn fungsi

Lebih terperinci

14. SIFAT-SIFAT INTEGRAL RIEMANN

14. SIFAT-SIFAT INTEGRAL RIEMANN 4. SIFAT-SIFAT INTEGRAL RIEMANN 4. Sift-sift Dsr Integrl Riemnn Pd bb ini kit kn mempeljri sift-sift dsr integrl Riemnn. Sift pertm dlh sift kelinern, yng dinytkn dlm Proposisi. Sepnjng bb ini, I menytkn

Lebih terperinci

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1 PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 6y y 8y. Dikethui R dn. Temukn nili y. y y 8y 6 Solusi: 6y y 8y y y 8y 6 6y y 8y 8y y 6 y 8 0 y y y 0 y y y 0 ( y ) ( y ) 0 y y 8y 6 ( y )(y ) 0 y 0tu y 0

Lebih terperinci

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2008 Nomor Soal: 21-30

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2008 Nomor Soal: 21-30 Solusi Pengn Mtemtik Edisi Jnuri Pekn Ke-, 00 Nomor Sol: -0. Crilh himpunn penelesin dri sistem persmn log log. () log Misln 0 ( )( ) 0 tu, mk persmn () menjdi: log tu log log log log tu log log log log

Lebih terperinci

Matematika SKALU Tahun 1978

Matematika SKALU Tahun 1978 Mtemtik SKALU Thun 978 MA-78-0 Persmn c + b + = 0, mempunyi kr-kr dn, mk berlku A. + = b B. + = c C. = c = c = c MA-78-0 Akr dri persmn 5 - = 7 + dlh A. B. C. 4 5 MA-78-0 Hrg dri log b. b log c. c log

Lebih terperinci

Solusi Pengayaan Matematika

Solusi Pengayaan Matematika Solusi Pengn Mtemtik Edisi pril Pekn Ke-, 00 Nomor Sol: -0 Tentukn bnk psngn bilngn rel, ng memenuhi persmn ot ot Solusi: ot ot tnπ otπ π tnπ tn π π π π k π k 00 k 00 k k 00 k k 00 k k 00 k k 00 Kren k

Lebih terperinci

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan.

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan. 1. Identits Trigonometri Pengertin Identits Trigonometri dlh kesmn yng memut entuk trigonometri dn erlku untuk semrng sudut yng dierikn. Jenis Identits Trigonometri 1. Identits trigonometri dsr erikut

Lebih terperinci

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0. DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn

Lebih terperinci

RUANG VEKTOR (lanjut..)

RUANG VEKTOR (lanjut..) RUANG VEKTOR (Vector Spce) dn Rung Bgin (Subspce) 8/0/009 budi murtiys ums surkrt RUANG VEKTOR (VECTOR SPACE) Dikethui himpunn V dengn u, v, w V dn opersi i(+)b berlku dintr nggot-nggot t V. Dikethui Field

Lebih terperinci

Jarak Titik, Garis dan Bidang dalam Ruang

Jarak Titik, Garis dan Bidang dalam Ruang Pge of Kegitn eljr. Tujun Pembeljrn Setelh mempeljri kegitn beljr, dihrpkn sisw dpt :. Menentukn jrk titik dn gris dlm rung b. Menentukn jrk titik dn bidng dlm rung c. Menentukn jrk ntr du gris dlm rung.

Lebih terperinci

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan APLIKASI INTEGRAL APLIKASI INTEGRAL PENERAPAN INTEGRAL Lus derh kelengkungn Integrl digunkn pd design Menr Petrons di Kul lumpur, untuk perhitungn kekutn menr. Sdne Oper House di design berdsrkn irisn-irisn

Lebih terperinci

Bab 3 Terapan Integral Ganda

Bab 3 Terapan Integral Ganda Surdi Siregr Metode Mtemtik Astronomi Bb Terpn Integrl Gnd. Integrl Gnd dlm koordint Krtesis dn Polr Koordint Krtesis Koordint Polr Ilustrsi b g f ={,, } Mss M, da, Momen-, M dd Momen- M, d d dd r ={,,

Lebih terperinci

BAB 6 INTEGRAL DAN PENGGUNAANNYA

BAB 6 INTEGRAL DAN PENGGUNAANNYA Dik Klih TK Memik BB 6 INTEGRL DN PENGGUNNNY 6 Inegrl Tken nirnn) F Fngsi F ise nirnn inegrl) ri f p inervl I jik f ) Jik ng ikehi lh f), nk menpkn F) ilkkn penginegrln Secr mm ilis, engn lh konsn Simol

Lebih terperinci