2. A dan B titik-titik ujung sebuah terowongan yang dilihat dari C dengan sudut lihat

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "2. A dan B titik-titik ujung sebuah terowongan yang dilihat dari C dengan sudut lihat"

Transkripsi

1 . Dikethui segitig ABC dengn sudut B= dn CT gris tinggi dri titik C. Jik BC = dn AT = mk tentukn AC! C A T B AC ( CT CT ) ( ). A dn B titik-titik ujung seuh terowongn yng diliht dri C dengn sudut liht ACB. Jik jrk CB = dn CA =, mk tentukn njng terowongn! B C AB AC BC A AC. BC cos AB 8... AB 0.cos.tn. Tentukn nili 0.cos 0.cos.tn 0.cos.(.( ).( ) ) ( )( ). Jik x mk tentukn cos x cos( x) ( x) x cos x cos x cos( x) ( x) cos x ( x) x cos x x 9

2 tn x sec x. Jik dim n 0 x 90 mk tentukn x! x tn x sec x.cos x cos x cos x cos x cos x 0 (cos x )(cos x ) 0 cos x x 60 cos x x 80 ( tidk memenuhi kren 0 x 90 ) 6. Y Tentukn ersmn kurv di sming! 0 X - y cosx ( ) Jdi y cos x. Dlm segitig siku-siku ABC, dikethui njng sisi BC = dn ABC. Tentukn njng gris tinggi AD! C D A B AB cos AD AB AB cos AD AB cos

3 8. Segitig ABC siku-siku di A. Jik BC =, AD tegk lurus BC, DE tegk lurus AC, sudut B = mk tentukn njng DE! C D E B A AD cos DAC DE AD DE AD cos 9. Untuk memerendek lintsn A menuju C mellui B diut jln ints dri A lngsung ke C. Jik AB = dn BC =, sedngkn ABC 0, mk tentukn njng AC! AC AC AC 9...cos0 0. Pd segitig ABC, dikethui njng sisi AB = 0 cm, AC = cm dn B = /. Tentukn nili cos C! B cos C 0 C 0. C C ( ). Dikethui segitig ABC dengn AC =, AB = dn sudut A = 60. Tentukn nili cos C! BC 60 cos C 9..cos 60 C. C C BC

4 . Seuh segitig ABC dikethui AB = 6 cm, BC = cm dn AC = cm.tentukn nili cos B cos B Pd segitig ABC dikethui + = 0, sudut A = 0 dn sudut B =.Tentukn njng sisi! () 0 0 ( ) ( ) (0 ) 0. Dri segitig ABC dikethui 0 dn 60. Jik + c = 6 mk tentukn njng C 90 c c0. (6 ).. Sutu segitig dengn njng sisi-siy, dn stun. Tentukn lusny! s L 9 s( s )( s )( s c) ( )( )( ) 6. Dikethui lus segitig ABC cm. Jik AC = 8 cm dn AB = cm, mk tentukn cos A! L. AC. AB. A.8.. A A 0 cos A cos0

5 . Dikethui segitig ABC dengn AC = 8 cm, B 0 dn C 0. Tentukn lus segitig ABC! A 80 (0 0 ) AB 0 Lus ABC 8 AB.. AB. AC A cm. 60 cos tn0.tn60 8. Tentukn nili.cos 60 ( ).( ). ( ).( ) 9. Tentukn nili cos 0 8.cos ( ) ( ) 8.( )( ) 0. Jik tn x = - dn x sudut tumul, mk tentukn cos x! tn x cos x cos0 x 0 ( kren x tumul). Jik dn tn 0 mk tentukn cos! Kren 0 dn tn 0 mk di kudrn III sehingg x 0 dn y 0 y x r x cos r. Jik tn x = mk tentukn x + (x + ) + cos ( -x)

6 tn x x dn cos x x ( x ) cos( x) x cos x cos x x.. Jik x dn tn x mk tentukn nili ( x cos x) tn x x ( x cos x) dn cos x. Jik tn x mk tentukn x x cos x tn x cos x cos x cos x cos x x cos x. Jik sudut dn lnci, dn mk tentukn cos ( )! cos cos cos( ) cos cos.. 6. Dlm segitig ABC, jik tn dn tn B A mk tentukn C!

7 tn A A dn cos A tn B B dn cos B C (80 ( A B)) ( A B) Acos B cos A B... Pd segitig ABC yng siku-siku di C, dikethui A. B dn ( A B), mk tentukn! A B 90 A B B ( A 90 B (90 B) B cos B cos B B A B) (90 B B) cosb 8. Dikethui cos 8. Tentukn! cos Misl x mk : cos cos cos x x cos cos 8 cos. x x x ( cos ) ( ) Sederhnkn ( ) tn tn! cos cos cos cos cos cos cos cos ( cos cos )( ) cos cos 0. Jik, dn menytkn esr sudut-sudut segitig ABC dengn tn dn tn mk tentukn tn!

8 tn tn tn tn(80 ( )) tn( ) tn tn ( ).. Tentukn q cos q q. q q q. Jik tn x t mk tentukn x! t tn x t x dn cos x t t t t x xcos x.. t t t. Dikethui tn x (0 x 90 ). Tentukn nili cos x + cos x! tn x x dn cos x cosx cos x cos xcos x (cos ( ) ( ) x )cos x cos x cos x. Jik sudut lnci yng memenuhi cos mk tentukn tn! cos tn tn tn 0 tn tn tn

9 . Jik cos x ( x) 0 mk tentukn cos x! (cos x )(cosx ) 0 cos x cos x cos x Bil x cos x mk tentukn x! ( x cos x) x x. Dikethui segitig ABC siku-siku di C. Jik cos (A+ C) = k mk tentukn A + cos B Kren C 90 mk : cos (A+C) = - A = k tu A = -k cos (A+C) = cos(80 -B) = -cos B = k tu cos B = -k A + cos B = -k k = -k 8. Jik dn sudut lnci, cos( ) cos( ) cos ( ) cos cos dn mk tentukn cos( ) cos cos cos( ) cos cos ( ) cos( ) cos( ) 9. Jik sudut lnci dn x x mk tentukn tn! cos x tn x. x x x

10 0. Jik ( A ) cos( A ) 0 mk tentukn tn A! Acos cos A (cos Acos A ) cos A A A cos A tn A. Tentukn nili cos cos 0 0 cos! cos60 cos0 (cos 0 cos0 ) ( 0 0 ) cos0 0 cos0 cos0. Dikethui cos dn Tentukn nili cos! ( cos ) cos Misl cos x mk : ( cos ) ( ) x x x cos x cos. Jik q = cos A dn q A mk tentukn q! ( q) cos A q q cos A A cos A. Jik x cos x 0 dn 0 x 80 mk tentukn x! ( cos x) cos x 0 (cos x )(cos x ) 0 cos x x 0. Jik x memenuhi ( x ) x 0 dn x mk tentukn cos x! ( x )( x ) 0 x x 0 cos x

11 6. Jik 0 x dn x memenuhi ersmn tn x tn x 6 0 mk tentukn x! (tn x )(tn x ) 0 tn x x 0 0 tn x x dengn k cos ( x )!. Nytkn cos x x k ( tn ) ( ) 6 Jdi cos x x cos( x 6 ) 8. Tentukn nili x ntr 0 dn 60 yng memenuhi ersmn cos x x cos( x 0 ) cos( x 0 ) cos x 0 k.60 tu x 0 k.60 x k.60 tu x k.60 k 0 x k x 9. Jik tn x x cos x x mk tentukn tn x! x(tn x ) cos x tn tn x x tn x 0 0. Tentukn ersmn kurv di wh ini! Y 0 X - y ( x 0 ) ( xcos0 cos x0 ) x cos x

Bank soal Trigonometri Page 1 of 7 C. 3 + A. 3 D. 2 B. 3 E. 2 C Nilai x yang memenuhi cos3x

Bank soal Trigonometri Page 1 of 7 C. 3 + A. 3 D. 2 B. 3 E. 2 C Nilai x yang memenuhi cos3x Bnk sl Trignmetri Pge f. Jik tn =, mk sin + sin + + cs( ) =... 0. sin cs =... sin cs sin cs sin cs sin + cs sin + cs sin cs. Jik tn = dn mk cs + sin =... 0. Jik sin + cs = 0 dn 0 80 mk nili yng memenuhi

Lebih terperinci

TRIGONOMETRI. . Nilai dari Sin ( 2π. - A) o adalah. 6. Segitiga PQR siku-siku di Q. Jika panjang PR = 15 cm dan sec < P = 35

TRIGONOMETRI. . Nilai dari Sin ( 2π. - A) o adalah. 6. Segitiga PQR siku-siku di Q. Jika panjang PR = 15 cm dan sec < P = 35 TRIGONOMETRI. Dri segitig ABC dikethui sudut A = 0, sudut B= 0 dn AC = cm, njng sisi BC =.. Krdint cntesius dri titik (,0 ) dlh. (, -) (-, -) (, - ) (-, - ) (-, ). Cs 0 senili dengn. cs 0 cs 0 sin 0 cs

Lebih terperinci

CONTOH SOAL BERIKUT KUNCI JAWABNYA. Dimensi Tiga

CONTOH SOAL BERIKUT KUNCI JAWABNYA. Dimensi Tiga ONO SOL RIKU KUNI JWNY imensi ig. ikethui kubus. dengn rusuk. Mellui digonl dn titik tengh rusuk dibut bidng dtr. entukn lus bgin bidng di dlm kubus! Q L Q.Q... 6. Kubus. berusuk cm. itik, Q dn R dlh titik-titik

Lebih terperinci

TRIGONOMETRI. cos ec. sec. cot an

TRIGONOMETRI. cos ec. sec. cot an TRIGONOMETRI Bb. Perbndingn Trigonometri Y y r r tn y. Hubungn fungsi-fungsi trigonometri r T(,b y X ctg ec tn sec tg ;ctg co s co s ec sec cot n tn Ltihn. Titik-titik sudut segitig sm kki ABC terletk

Lebih terperinci

SIMAK UI DIMENSI TIGA

SIMAK UI DIMENSI TIGA IMK I IMNI I. IMK I Mtemtik I, 00 ikethui blok. di mn = cm, = cm, = cm. Mislkn dlh sudut ntr dn, mk cos.... olusi: []. 0... 00 0 cos 0 cos cos cos. IMK I Mtemtik I, 00 Kubus. mempunyi rusuk cm. itik M

Lebih terperinci

DIMENSI TIGA 1. SIMAK UI

DIMENSI TIGA 1. SIMAK UI IMNI I. IMK I Mtemtik I, 00 ikethui blok. di mn = cm, = 8 cm, = cm. Mislkn dlh sudut ntr dn, mk cos.... olusi: []. 8 8 80.. 8. 8 00 0 8 cos 8 0 8 cos 8 8 cos cos. IMK I Mtemtik I, 00 Kubus. mempunyi rusuk

Lebih terperinci

MATEMATIKA DIMENSI TIGA & RUANG

MATEMATIKA DIMENSI TIGA & RUANG SOL N MSN SOL ilengkpi kunci jwbn dn embhsn setip nomor sol MMIK IMNSI I & RUN Untuk SM, SMK ersipn Ujin Nsionl opyright sol-uns.blogspot.com rtikel ini boleh dicopy, dikutip, di cetk dlm medi kerts tu

Lebih terperinci

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1 PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 6y y 8y. Dikethui R dn. Temukn nili y. y y 8y 6 Solusi: 6y y 8y y y 8y 6 6y y 8y 8y y 6 y 8 0 y y y 0 y y y 0 ( y ) ( y ) 0 y y 8y 6 ( y )(y ) 0 y 0tu y 0

Lebih terperinci

Soal Latihan dan Pembahasan Dimensi Tiga

Soal Latihan dan Pembahasan Dimensi Tiga Sol Ltihn dn embhsn imensi ig i susun Oleh : Yuyun Somntri http://bimbingnbeljr.net/ i dukung oleh : ortl eduksi rtis Indonesi Open Knowledge nd duction http://oke.or.id utoril ini diperbolehkn untuk di

Lebih terperinci

matematika WAJIB Kelas X RASIO TRIGONOMETRI Kurikulum 2013 A. Definisi Trigonometri

matematika WAJIB Kelas X RASIO TRIGONOMETRI Kurikulum 2013 A. Definisi Trigonometri Kurikulum 0 Kels X mtemtik WAJIB RASIO TRIGONOMETRI Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi rsio-rsio trigonometri yng meliputi sinus, kosinus, tngen,

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kels 11 Mtemtik Persipn UAS - 0 Doc. Nme: AR11MAT0UAS Version : 016-07 hlmn 1 01. Pd ulngn mtemtik, dikethui nili rt -rt kels dlh 58. Jik rt-rt nili mtemtik untuk sisw priny dlh 65, sedngkn untuk

Lebih terperinci

SIMAK UI 2011 Matematika Dasar

SIMAK UI 2011 Matematika Dasar SIMAK UI 0 Mtemtik Dsr Kode Sol Doc. Nme: SIMAKUI0MATDAS999 Version: 0-0 hlmn 0. Sebuh segitig sm kki mempunyi ls 0 cm dn tinggi 5 cm. Jik dlm segitig tersebut dibut persegi pnjng dengn ls terletk pd ls

Lebih terperinci

SOAL DAN SOLUSI MATEMATIKA IPA UJIAN NASIONAL DIMENSI TIGA

SOAL DAN SOLUSI MATEMATIKA IPA UJIAN NASIONAL DIMENSI TIGA SOL N SOLUSI MTMTIK I UJIN NSIONL 0 0 IMNSI TI. UN 0 ikethui kubus. dengn pnjng rusuk cm. Jrk titik dn gris dlh.... cm. cm. cm. cm. cm Solusi: [] 9 Jdi, jrk titik dn gris dlh cm.. UN 0 Kubus. memiliki

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kels Mtemtik Persipn UAS 0 Doc. Nme: ARMAT0UAS Version : 06-09 hlmn 0. Pd ulngn mtemtik, dikethui nili rt -rt kels dlh 8, Jik rt-rt nili mtemtik untuk sisw priny dlh 6, sedngkn untuk sisw wnit

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

VEKTOR. seperti AB, AB, a r, a, atau a.

VEKTOR. seperti AB, AB, a r, a, atau a. VEKTOR I. KOMPETENSI YANG DICAPAI Mhsisw dpt :. Menggmr vektor dengn sistem vektor stun.. Menghitung perklin vektor. 3. Menghitung penmhn vektor dengn turn segitig, turn rn genng, dn turn poligon. 4. Menghitung

Lebih terperinci

7. APLIKASI INTEGRAL

7. APLIKASI INTEGRAL 7. APLIKASI INTEGRAL 7. Menghitung Lus Derh.Mislkn derh D (, ), f ( ) D f() Lus D =? Lngkh :. Iris D menjdi n gin dn lus stu uh irisn dihmpiri oleh lus persegi pnjng dengn tinggi f() ls(ler) A f ( ). Lus

Lebih terperinci

Menerapkan konsep vektor dalam pemecahan masalah. Menerapkan konsep vektor pada bangun ruang

Menerapkan konsep vektor dalam pemecahan masalah. Menerapkan konsep vektor pada bangun ruang VEKTOR PADA BIDANG SK : Menerpkn konsep vektor dlm pemechn mslh KD : Menerpkn konsep vektor pd bidng dtr Menerpkn konsep vektor pd bngun rung TUJUAN PELATIHAN: Pesert memiliki kemmpun untuk mengembngkn

Lebih terperinci

Matematika EBTANAS Tahun 1992

Matematika EBTANAS Tahun 1992 Mtemtik EBTANAS Thun 99 EBT-SMA-9-0 Grfik fungsi kudrt yng persmnny y = x 5x memotong sumu x. Slh stu titik potongny dlh (, 0), mk nili sm dengn EBT-SMA-9-0 Persmn x px + 5 = 0 kr-krny sm. Nili p 0 tu

Lebih terperinci

Solusi Pengayaan Matematika Edisi 15 April Pekan Ke-3, 2010 Nomor Soal:

Solusi Pengayaan Matematika Edisi 15 April Pekan Ke-3, 2010 Nomor Soal: Solusi Pengyn Mtemtik disi 5 pril Pekn Ke-3, 00 Nomor Sol: -50. Pd segitig siku-siku di dibut gris bert dn F. Pnjng = dn F = 9. Pnjng sisi miringny dlh.. 6 5. 6 3. 6. 5 5. 6 Solusi: [] Menurut Teorem Pythgors:

Lebih terperinci

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: PERSAMAAN GARIS SINGGUNG PADA ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (,

Lebih terperinci

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: GARIS SINGGUNG PADA HIPERBOLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (, ) pd

Lebih terperinci

ELIPS. A. Pengertian Elips

ELIPS. A. Pengertian Elips ELIPS A. Pengertin Elips Elips dlh tempt kedudukn titik-titik yng jumlh jrkny terhdp du titik tertentu mempunyi nili yng tetp. Kedu titik terseut dlh titik focus / titik pi. Elips jug didefinisikn segi

Lebih terperinci

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011 LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Mempereutkn Pil Guernur Sumter Seltn Mei 0 PENYISIHAN I PERORANGAN LCCM TINGKAT SMA. Dikethui kuus ABCD.EFGH dengn rusuk 6 cm. Jik

Lebih terperinci

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 5 Sesi N INTEGRAL TENTU DAN LUAS DAERAH A. DEFINISI INTEGRAL TENTU Bentuk integrl f d = f + c diseut segi integrl tk tentu kren hsil dri pengintegrlnn msih erup

Lebih terperinci

VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama.

VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama. -1- VEKTOR PENGERTIAN VEKTOR dlh sutu esrn yng mempunyi nili (esr) dn rh. Sutu vektor dpt digmrkn segi rus gris errh. Nili (esr) vektor dinytkn dengn pnjng gris dn rhny dinytkn dengn tnd pnh. Notsi vektor

Lebih terperinci

Jika a dan b bilangan real serta n, p, q bilangan bulat positif, maka berlaku: a) a p a q = a p+q b) a p : a q = a p q

Jika a dan b bilangan real serta n, p, q bilangan bulat positif, maka berlaku: a) a p a q = a p+q b) a p : a q = a p q Modul : Pngkt dn Akr Pngkt ) Pngkt negtif dn nol Mislkn R dn 0, mk: ) n = ) 0 = tu n = n ) Sift Sift Pngkt n Jik dn ilngn rel sert n, p, q ilngn ult positif, mk erlku: ) p q = p+q ) p : q = p q p c) (

Lebih terperinci

UN SMA IPA 2004 Matematika

UN SMA IPA 2004 Matematika UN SMA IPA Mtemtik Kode Sol P Doc. Version : - hlmn. Persmn kudrt ng kr-krn dn - dlh... ² + + = ² - + = ² + + = ² + - = ² - - =. Tinggi h meter dri sebuh peluru ng ditembkkn ke ts setelh t detik dintkn

Lebih terperinci

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c BAB XVI. INTEGRAL A. Integrl Tk Tentu. Rumus Integrl Fungsi Aljr. k k n = n +. ( + ) n = ( n + ). = ln + n + + ; n - n+ (+) + ; dn n -. ( f ( ) ± g( ) ) f ( ) ± g ( ) n. os (+)sin(+) = ( n + ) os n + (+)

Lebih terperinci

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c Integrl Tk Tentu INTEGRAL. Rumus Integrl Fungsi Aljr. k x n k n +. ( x + n ( n +. x ln x + x n + + ; n - n+ (x+ + ; dn 4. ( f ( x ± g( x f ( x ± g ( x n - n. os (x+sin(x+ ( n + n+ os (x+ + ( + (. sin x

Lebih terperinci

MATEMATIKA DASAR. 1. Jika x 1 dan x 2 adalah penyelesaian. persamaan Diketahui x 1 dan x 2 akar-akar persamaan 6x 2 5x + 2m 5 = 0.

MATEMATIKA DASAR. 1. Jika x 1 dan x 2 adalah penyelesaian. persamaan Diketahui x 1 dan x 2 akar-akar persamaan 6x 2 5x + 2m 5 = 0. MATEMATIKA ASAR. Jik dn dlh penyelesin persmn mk ( ).. E. B 7 6 6 + - ( + ) ( ). ( ) ( ) 7. Jik dn y b dengn, y > + y, mk. + y + b log b. + b log b b E. + log b E log dn y log b + y + y log + log b log

Lebih terperinci

htt://meetbied.wordress.com SMN oneone, Luwu Utr, SulSel Jngn tkut untuk mengmbil stu lngkh besr bil memng itu dierlukn. nd tk kn bis melomti jurng dengn du lomtn kecil (Dvid Lloyd George) [RUMUS EPT MTEMTIK]

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MODUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYADIN EKO RAHARJO, M.PD. NIP. 9705 00 00 Penulisn Modul e Lerning ini diiyi oleh dn DIPA BLU UNY TA 00 Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor

Lebih terperinci

TRIGONOMETRI I. KOMPETENSI YANG DICAPAI

TRIGONOMETRI I. KOMPETENSI YANG DICAPAI TRIGONOMETRI I. KOMPETENSI YANG DICAPAI Mhsisw dpt : 1. Membuktikn identits trigonometri.. Menghitung hubungn ntr sudut dn sisi segitig dengn Rumus Sinus. 3. Menghitung hubungn ntr sudut dn sisi segitig

Lebih terperinci

Prestasi itu diraih bukan didapat!!!

Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 00 TIM OLIMPIADE MATEMATIKA INDONESIA 00 Prestsi itu dirih ukn didpt!!! SOLUSI SOAL Bidng Mtemtik Disusun oleh : Olimpide Mtemtik Tk Kupten/Kot 00 BAGIAN PERTAMA.

Lebih terperinci

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits

Lebih terperinci

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung

Lebih terperinci

Soal Latihan dan Pembahasan Fungsi kuadrat

Soal Latihan dan Pembahasan Fungsi kuadrat Sol Ltihn dn Pemhsn Fungsi kudrt Di susun Oleh : uun Somntri htt://imingneljr.net/ Di dukung oleh : Portl eduksi Grtis Indonesi Oen Knowledge nd Edution htt://oke.or.id Tutoril ini dierolehkn untuk di

Lebih terperinci

STATIKA (Reaksi Perletakan)

STATIKA (Reaksi Perletakan) STTIK (Reksi erletkn) Meknik Rekys I Norm uspit, ST.MT. Tumpun Tumpun merupkn tempt perletkn konstruksi tu dukungn bgi konstruksi dlm meneruskn gy gyyng bekerj ke pondsi Dlm ilmu Meknik Rekys dikenl 3

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

MATEMATIKA IPA PAKET A KUNCI JAWABAN

MATEMATIKA IPA PAKET A KUNCI JAWABAN MATEMATIKA IPA PAKET A KUNCI JAWABAN. Jwbn : A Mislkn : p : Msyrkt membung smph pd temptny. q: Kesehtn msyrkt terjg. Diperoleh: Premis : ~q ~p p q Premis : p Kesimpuln : q Jdi, kesimpuln dri premis-premis

Lebih terperinci

PEMANTAPAN BELAJAR SMA BBS INTEGRAL

PEMANTAPAN BELAJAR SMA BBS INTEGRAL BAB I PEMANTAPAN BELAJAR SMA BBS INTEGRAL I A RANGKUMAN INTEGRAL. Pengertin Apil terdpt fungsi F() yng dpt didiferensilkn pd selng I sedemikin hingg F () = f(), mk nti turunn (integrl) dri f() dlh F()

Lebih terperinci

VECTOR DI BIDANG R 2 DAN RUANG R 3. Nurdinintya Athari (NDT)

VECTOR DI BIDANG R 2 DAN RUANG R 3. Nurdinintya Athari (NDT) VECTOR DI BIDANG R DAN RUANG R Nurdininty Athri (NDT) VEKTOR DI BIDANG (R ) DAN DI RUANG (R ) Pokok Bhsn :. Notsi dn Opersi Vektor. Perklin titik dn Proyeksi Ortogonl. Perklin silng dn Apliksiny Beerp

Lebih terperinci

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar INTEGRAL Integrl Tk Tentu Dn Integrl Tertentu Dri Fungsi Aljr A. Integrl Tk Tentu Hitung integrl dlh kelikn dri hitung differensil. Pd hitung differensil yng dicri dlh fungsi turunnny, sedngkn pd hitung

Lebih terperinci

VEKTOR. Bab 20. a. Penjumlahan dan Pengurangan Vektor. ; OB b. maka OA AB OB. dan. maka. Contoh : Tentukan nilai x dan y dari Jawab :

VEKTOR. Bab 20. a. Penjumlahan dan Pengurangan Vektor. ; OB b. maka OA AB OB. dan. maka. Contoh : Tentukan nilai x dan y dari Jawab : VEKTOR B Penjmlhn dn Pengrngn Vektor. OA ; OB mk OA AB OB AB OB OA AB dn v c d mk v c c d d Contoh : Tentkn nili x dn y dri Jw : Jdi nili x - 8 dn y - ½ Pnjng Vektor Misl, mk pnjng (esr/nili) vector ditentkn

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

Erna Sri Hartatik. Aljabar Linear. Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan)

Erna Sri Hartatik. Aljabar Linear. Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan) Ern Sri Hrttik Aljr Liner Pertemun Aljr Vektor (Perklin vektor-lnjutn) Pemhsn Perklin Cross (Cross Product) - Model cross product - Sift cross product Pendhulun Selin dot product d fungsi perklin product

Lebih terperinci

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT Persmn Kudrt. Bentuk Umum Persmn Kudrt Mislkn,, Є R dn 0 mk persmn yng erentuk 0 dinmkn persmn kudrt dlm peuh. Dlm persmn kudrt 0, dlh koefisien

Lebih terperinci

PERSAMAAN KUADRAT. ac 0 p dan q sama tanda. 2. dg. Melengkapkan bentuk kuadrat ( kuadrat sempurna ) :

PERSAMAAN KUADRAT. ac 0 p dan q sama tanda. 2. dg. Melengkapkan bentuk kuadrat ( kuadrat sempurna ) : PERSAMAAN KUADRAT Bb. Bentuk Umum : b c,,, b, c Re l Menyelesikn ersmn kudrt :. dg. Memfktorkn : b c ( )( q) q q = ( q) dimn : b = + q dn c, Jik c dn q berbed tnd c dn q sm tnd. dg. Melengkkn bentuk kudrt

Lebih terperinci

Jarak Titik, Garis dan Bidang dalam Ruang

Jarak Titik, Garis dan Bidang dalam Ruang Pge of Kegitn eljr. Tujun Pembeljrn Setelh mempeljri kegitn beljr, dihrpkn sisw dpt :. Menentukn jrk titik dn gris dlm rung b. Menentukn jrk titik dn bidng dlm rung c. Menentukn jrk ntr du gris dlm rung.

Lebih terperinci

Vektor di R 2 dan R 3

Vektor di R 2 dan R 3 Vektor di R dn R Pengertin Vektor dlh besrn yng mempunyi besr dn rh Vektor digmbrkn oleh rus gris yng dilengkpi dengn nk pnh vektor dimuli dri titik wl (initil point) dn dikhiri oleh titik khir (terminl

Lebih terperinci

Materi IX A. Pendahuluan

Materi IX A. Pendahuluan Mteri IX Tujun :. Mhsisw dpt memhmi vektor. Mhsisw mmpu mengunkn vektor dlm persoln sederhn 3. Mhsisw mengimplementsikn konsep vektor pd rngkin listrik. Pendhulun Sudh menjdi kesepktn umum hw untuk menentukn

Lebih terperinci

Matematika SKALU Tahun 1978

Matematika SKALU Tahun 1978 Mtemtik SKALU Thun 978 MA-78-0 Persmn c + b + = 0, mempunyi kr-kr dn, mk berlku A. + = b B. + = c C. = c = c = c MA-78-0 Akr dri persmn 5 - = 7 + dlh A. B. C. 4 5 MA-78-0 Hrg dri log b. b log c. c log

Lebih terperinci

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi:

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi: INTEGRAL RANGKUMAN MATERI A. ANTIDERIVATIF DAN INTEGRAL TAK TENTU Jik kit mengmil uku dri temptny mk kit dpt mengemliknny lgi ke tempt semul. Opersi yng kedu menghpus opersi yng pertm. Kit ktkn hw du opersi

Lebih terperinci

[RUMUS CEPAT MATEMATIKA]

[RUMUS CEPAT MATEMATIKA] http://meetied.wordpress.com SMAN BoneBone, Luwu Utr, SulSel Keslhn teresr yng diut mnusi dlm kehidupnny dlh terusmenerus mers tkut hw merek kn melkukn keslhn (Elert Hud) [RUMUS CEPAT MATEMATIKA] Vektor

Lebih terperinci

2. Jika a > 0, maka. 3. Bentuk sederhana dari adalah Jika 4.log x + log 6x log 3x 2 log 16 = 0, maka nilai x adalah...

2. Jika a > 0, maka. 3. Bentuk sederhana dari adalah Jika 4.log x + log 6x log 3x 2 log 16 = 0, maka nilai x adalah... . Pk Edi menjul mobil sehrg R. 3.500.000,00 dengn hrg tersebut mendt untung 5%. Keuntungn k Edi dlh... A. R. 500.000,00 D. R..500.000,00 B. R..575.000,00 E. R..000.000,00 C. R..575.000,00. Jik > 0, mk

Lebih terperinci

VEKTOR. Adri Priadana. ilkomadri.com

VEKTOR. Adri Priadana. ilkomadri.com VEKTOR Adri Pridn ilkomdri.com Pengertin Dlm Fisik dikenl du buh besrn, yitu 1. Besrn Sklr. Besrn Vektor Pengertin Besrn Sklr dlh sutu besrn yng hny mempunyi nili dn dinytkn dengn sutu bilngn tunggl diserti

Lebih terperinci

MATEMATIKA IPA PAKET B KUNCI JAWABAN SOAL

MATEMATIKA IPA PAKET B KUNCI JAWABAN SOAL MATEMATIKA IPA PAKET KUNCI JAWAAN SOAL. Jwn : Mislkn p: ir sungi jernih q: Tidk terkndung zt pencemr r: Semu ikn tidk mti Diperoleh : Premis : p q Premis : ~r ~q q r Jdi, kesimpuln dri premis-premis terseut

Lebih terperinci

TRIGONOMETRI. 06. EBT-SMP Pada gambar di samping nilai cos BAC adalah cm

TRIGONOMETRI. 06. EBT-SMP Pada gambar di samping nilai cos BAC adalah cm TRIGONOMETRI 0. UN-SMK-TEK-0- Koordint kutub titk A (, 0 o ), koordint krtesiusny dlh... (, ) (, ) (, ) (, ) (, ) 0. EBT-SMP-0-9 Seorng nk yng tingginy, m berdiri pd jrk 0 m dri sebuh menr di tnh dtr.

Lebih terperinci

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah satuan luas. a. 54 b. 32. d. 18 e.

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah satuan luas. a. 54 b. 32. d. 18 e. . Lus derh yng ditsi oleh kurv y = x dn gris x + y = dlh stun lus... c. d. 8 e. Sol Ujin Nsionl Thun 7 Kurv y = x dn gris x + y = ( y = x ) Sustikn nili y pd y = x sehingg didpt : x = x x = x x + x = (

Lebih terperinci

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah . Lus derh yng ditsi oleh kurv y = x dn gris x + y = dlh stun lus... c. d. 8 Sol Ujin Nsionl Thun 7 Kurv y = x dn gris x + y = ( y = x ) Sustikn nili y pd y = x sehingg didpt : x = x x = x x + x = ( =,

Lebih terperinci

UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul

UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul 0-0 D0-P-0- DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/00 SMA/MA Mtemtik (D0) PROGRAM STUDI IPA PAKET (UTAMA) SELASA, MEI 00 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hk Cipt

Lebih terperinci

UNTUK MENDAPATKAN SOAL PREDIKSI SBMPTN 2015

UNTUK MENDAPATKAN SOAL PREDIKSI SBMPTN 2015 -. UNTUK MENDAPATKAN SOAL PREDIKSI SBMPTN 015 SILAHKAN KLIK KUNJUNGI: WWW.E-SBMPTN.COM Ltihn Sol Fisik 1. Thun hy dlh stun dri... (A) jrk (D) momentum (B) keeptn (E) energi (C) wktu. Stu wtt hour sm dengn...

Lebih terperinci

E. INTEGRASI BAGIAN ( PARSIAL )

E. INTEGRASI BAGIAN ( PARSIAL ) E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )

Lebih terperinci

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier 8. Dri fungsi-fungsi ng disjikn dengn digrm pnh erikut ini mnkh ng merupkn fungsi onto, injektif tu ijektif, jik relsi dri A ke B? A c d IV B A c d V B A c d VI B B. Konsep Fungsi Linier. Tujun Setelh

Lebih terperinci

MODUL MATEMATIKA SMA IPA Kelas 12

MODUL MATEMATIKA SMA IPA Kelas 12 SMA IPA Kels KUBUS Kubus dlh bngun rung yng dibtsi enm sisi yng berbentuk persegi yng kongruen. Nm lin dri kubus dlh heksder (bidng enm berturn). E A D H F B G C Kubus ABCEFGH mempunyi : sisi yng berbentuk

Lebih terperinci

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a.

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a. DEFINISI Notsi dibc tu berrti bhw IMIT FUNGSI it bil mendekti sm dengn mendekti bil mendekti nili dpt dibut sedekt mungkin dengn bil cukup dekt dengn, tetpi tidk sm dengn. Perhtikn bhw dlm deinisi tersebut

Lebih terperinci

didefinisikan sebagai bilangan yang dapat ditulis dengan b

didefinisikan sebagai bilangan yang dapat ditulis dengan b 1 PENDAHULUAN 1.1 Sistem Bilngn Rel Untuk mempeljri klkulus perlu memhmi hsn tentng system ilngn rel, kren klkulus didsrkn pd system ilngn rel dn siftsiftny. Sistem ilngn yng pling sederhn dlh ilngn sli,

Lebih terperinci

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik Hiperol 7.1. Persmn Hiperol Bentuk Bku Hiperol dlh himpunn semu titik (, ) pd idng sedemikin hingg selisih positif jrk titik (, ) terhdp psngn du titik tertentu ng diseut titik fokus (foci) dlh tetp. Untuk

Lebih terperinci

PRINSIP DASAR SURVEYING

PRINSIP DASAR SURVEYING POKOK HSN : PRINSIP DSR SURVEYING Metri system, Dsr Mtemtik, Prinsip pengkurn : pengkurn jrk, pengkurn sudut dn pengukurn jrk dn sudut,.. Sistem Ukurn Jrk Unit pling dsr dlm sistem metrik dlh meter, dimn

Lebih terperinci

INTEGRAL. y dx. x dy. F(x)dx F(x)dx

INTEGRAL. y dx. x dy. F(x)dx F(x)dx Drs. Mtrisoni www.mtemtikdw.wordpress.om INTEGRAL PENGERTIAN Bil dikethui : = F() + C mk = F () dlh turunn dri sedngkn dlh integrl (nti turunn) dri dn dpt digmrkn : differensil differensil Y Y Y Integrl

Lebih terperinci

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan.

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan. 1. Identits Trigonometri Pengertin Identits Trigonometri dlh kesmn yng memut entuk trigonometri dn erlku untuk semrng sudut yng dierikn. Jenis Identits Trigonometri 1. Identits trigonometri dsr erikut

Lebih terperinci

FISIKA BESARAN VEKTOR

FISIKA BESARAN VEKTOR K-3 Kels X FISIKA BESARAN VEKTOR TUJUAN PEMBELAJARAN Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi pengertin besrn vektor.. Mengusi konsep penjumlhn vektor dengn berbgi metode.

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan III FUNGSI 15 1. Definisi Fungsi Definisi 1 Mislkn dn dlh himpunn. Relsi iner f dri ke merupkn sutu fungsi jik setip elemen di dlm dihuungkn dengn tept stu elemen di dlm. Jik f dlh fungsi dri ke, mk f

Lebih terperinci

III. LIMIT DAN KEKONTINUAN

III. LIMIT DAN KEKONTINUAN KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY III. LIMIT DAN KEKONTINUAN 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi

Lebih terperinci

MATERI I : VEKTOR. Pertemuan-01

MATERI I : VEKTOR. Pertemuan-01 MATERI I : VEKTOR Pertemun-0. Pendhulun Definisi Vektor didefinisikn segi esrn yng memiliki rh. Keeptn, gy dn pergesern merupkn ontoh ontoh dri vektor kren semuny memiliki esr dn rh wlupun untuk keeptn

Lebih terperinci

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn

Lebih terperinci

(c) lim. (d) lim. (f) lim

(c) lim. (d) lim. (f) lim FMIPA - ITB. MA Mtemtik A Semester, 6-7. Pernytn enr dn slh. () ()! e Solusi. Benr. Fungsi eksonensil (enyeut) memesr leih cet drid fungsi olinom (emilng) sehingg emginny menghsilkn nili Dengn Hoitl s

Lebih terperinci

Matematika SMA (Program Studi IPA)

Matematika SMA (Program Studi IPA) Smrt Solution UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 Disusun Sesui Indiktor Kisi-Kisi UN 2013 Mtemtik SMA (Progrm Studi IPA) Disusun oleh : Pk Anng - Blogspot Pge 1 of 13 5. 2. Menyelesikn sol pliksi

Lebih terperinci

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1 Pge of 8 Kegitn eljr 5. Tujun Pembeljrn Setelh mempeljri kegitn beljr 5, dihrpkn sisw dpt. Menentukn unsur-unsur segitig dengn turn sinus b. Menentukn unsur-unsur segitig dengn turn kosinus. Menghitung

Lebih terperinci

Tiara Ariqoh Bawindaputri TIP / kelas L

Tiara Ariqoh Bawindaputri TIP / kelas L Tir Ariqoh Bwindputri 500008 TIP / kels L INTEGRAL Integrl Tk tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C Untuk

Lebih terperinci

UJIAN SEMESTER GANJIL SMA SANG DEWA JAKARTA TAHUN PELAJARAN

UJIAN SEMESTER GANJIL SMA SANG DEWA JAKARTA TAHUN PELAJARAN UJIAN SEMESTER GANJIL SMA SANG DEWA JAKARTA TAHUN PELAJARAN - Mt Peljrn : ILMU HITUNG MODERN Kels / Progrm : XII AIA ( Du Bels ) / Ajin Ilmu Api Hri / Tnggl : Minggu Nopemer Wktu :.. WIB ( Menit) Pilihlh

Lebih terperinci

Hendra Gunawan. 15 November 2013

Hendra Gunawan. 15 November 2013 MA1101 MATEMATIKA 1A Hendr Gunwn Semester I, 2013/2014 15 Novemer 2013 Ltihn 1. Pnjng lmi sutu pegs dlh 0.08 m. Gy seesr 0.6 N diperlukn untuk menekn dn menhnny pd pnjng 0.07 m. Tentukn kerjyng dilkukn

Lebih terperinci

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1 HITUNG INTEGRA BAB.Integrl tk tentu (tnp ts). Rumus-rumus ) ) n n n d c, n ) d c n n n. d c, n ). Sift-sift Integrl Contoh :... ) k. f ( ) d k. f ( ) d d d ln c ) ( ( ) ( )) ( ) ( ) d c ( ) ( ) d ( ) d

Lebih terperinci

Vektor di R2 ( Baca : Vektor di ruang dua ) adalah Vektor- di ruang dua )

Vektor di R2 ( Baca : Vektor di ruang dua ) adalah Vektor- di ruang dua ) A Pengertin Vektor Di R Vektor di R ( B : Vektor di rung du ) dlh Vektor- di rung du ) dlh Vektor-vektor ng terletk pd idng dtr pengertin vektor ng leih singkt dlh sutu esrn ng memiliki esr dn rh tertentu

Lebih terperinci

Yohanes Private Matematika ,

Yohanes Private Matematika , Yohnes Privte Mtemtik 3 081519611185, 08119605588 Irisn keruut: Lingkrn Prol Elis Hierol LINGKARAN Bentuk umum : 2 + 2 = r 2 ust: (0, 0) ; jri-jri = r ( ) 2 + ( ) 2 = r 2 ust: (, ) ; jri-jri = r r r 2

Lebih terperinci

Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah

Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah VEKTOR Definisi Vektor Vektor dlh esrn yng mempunyi esr dn rh Besr vektor rtiny pnjng vektor Arh vektor rtiny sudut yng dientuk dengn sumu X positif Vektor disjikn dlm entuk rus gris errh Gmr Vektor B

Lebih terperinci

LIMIT DAN KONTINUITAS

LIMIT DAN KONTINUITAS LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN . LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

INTEGRAL. Kelas XII IIS Semester Genap. Oleh : Markus Yuniarto, S.Si. SMA Santa Angela Tahun Pelajaran 2017/2018

INTEGRAL. Kelas XII IIS Semester Genap. Oleh : Markus Yuniarto, S.Si. SMA Santa Angela Tahun Pelajaran 2017/2018 Modul Integrl INTEGRAL Kels XII IIS Semester Genp Oleh : Mrkus Yunirto, SSi SMA Snt Angel Thun Peljrn 7/8 Modul Mtemtik Kels XII IIS Semester TA 7/8 Modul Integrl INTEGRAL Stndr Kompetensi: Menggunkn konsep

Lebih terperinci

Pengertian Matriks. B. Notasi Matriks. a 21 adalah elemen baris 2 kolom 1. Banyaknya baris : Banyaknya kolom : Ordo Matrik :

Pengertian Matriks. B. Notasi Matriks. a 21 adalah elemen baris 2 kolom 1. Banyaknya baris : Banyaknya kolom : Ordo Matrik : MATRIKS Segi gmrn wl mengeni mteri mtriks mri kit ermti urin erikut ini. Dikethui dt hsil penjuln tiket penerngn tujun Medn dn Sury dri seuh gen tiket selm empt hri erturut-turut disjikn dlm tel erikut.

Lebih terperinci

INTEGRAL. 1. Macam-macam Integral. Nuria Rahmatin TIP L. A. Integral Tak Tentu

INTEGRAL. 1. Macam-macam Integral. Nuria Rahmatin TIP L. A. Integral Tak Tentu INTEGRAL Nuri Rhmtin 5000006 TIP L. Mcm-mcm Integrl A. Integrl Tk Tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C

Lebih terperinci

Persiapan US Matematika 12 IPA

Persiapan US Matematika 12 IPA Persipn US Mtemtik 1 IPA tnggl US: Sbtu, 5 Mret 017 1 1 9. Hitunglh lg 5.... 5 4 lg 100 lg 10 1. Jik = 4, b =, & c = 1 mk nili 1 b c lg 6 lg 4 10. Hitunglh lg 1. Tentukn jik 81 1 9 p 1 p. Tentukn p jik

Lebih terperinci

PEMBAHASAN. A. Teorema Pythagoras 1. Luas persegi dan luas segitiga siku-siku Perhatikan Gambar 1! D. Gambar 1

PEMBAHASAN. A. Teorema Pythagoras 1. Luas persegi dan luas segitiga siku-siku Perhatikan Gambar 1! D. Gambar 1 PEMBAHASAN A. Teorem Pythgors 1. Lus persegi dn lus segitig siku-siku Perhtikn Gmr 1! D s A s B Gmr 1 Pd gmr terseut tmpk seuh persegi ABD yng pnjng sisiny s stun pnjng. Lus persegi ABD = sisi sisi L =

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP 2013 TINGKAT KABUPATEN

PEMBAHASAN SOAL OSN MATEMATIKA SMP 2013 TINGKAT KABUPATEN www.sip-osn.blogspot.com @Mret 0 PEMBAHASAN SOAL OSN MATEMATIKA SMP 0 TINGKAT KABUPATEN. B. x ( x ) ( x + )( x ) ( x ( ) )( x ) ( x + )( x )( x + )( x ) (d fktor) Tidk d penjelsn tentng fktor hrus bilngn

Lebih terperinci

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L. INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl

Lebih terperinci

MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X

MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 6 Sesi N INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR Apliksi integrl erikutn dlh menentukn volume end ng memiliki sumu putr. Contoh endn dlh tung,

Lebih terperinci

BAB IV METODE ANALISIS RANGKAIAN

BAB IV METODE ANALISIS RANGKAIAN BAB IV METODE ANALISIS RANGKAIAN. Anlisis Arus Cng Anlisis rus cng memnftkn hukum Kirchoff I (KCL) dn hukum Kirchoff I (KVL). Contoh - Tentukn esr rus dlm loop terseut dn gimn rh rusny? Ohm 0V 0V Ohm 0V

Lebih terperinci