Ruang Barisan Orlicz Selisih Dengan Fungsional Aditif Dan Kontinunya

Ukuran: px
Mulai penontonan dengan halaman:

Download "Ruang Barisan Orlicz Selisih Dengan Fungsional Aditif Dan Kontinunya"

Transkripsi

1 J. Math. and Its Appl. ISSN: X Vol. 2, No. 1, May. 2005, Ruang Barisan Orlicz Selisih Dengan Fungsional Aditif Dan Kontinunya Sadjidon Jurusan Matematia Institut Tenologi Sepuluh Nopember, Surabaya Abstra Pada paper ini dibahas tipe lain ruang barisan Orlicz selisih, l ϕ ( ), yang didefinisian sebagai: l ϕ ( ) := {x = (x ) : x l ϕ } dengan x = ( x ) = (x x 1 ). Selanjutnya, ruang yang dilengapi dengan norma x = x 1 + x lϕ merupaan ruang bernorma-f yang lengap dan juga mempunyai sifat AK. Berdasaran pengertian fungsional aditif dan ontinu pada ruang barisan Orlicz, l ϕ, dibahas fungsional aditif dan ontinu pada ruang barisan Orlicz selisih. Kata unci: Ruang bernorma-f yang lengap, Sifat AK, Ruang barisan Orlicz selisih, Fungsional aditif dan ontinu 1. Pendahuluan. Representasi fungsional aditif orthogonal pada beberapa ruang barisan telah banya dibicaraan antara lain dalam [1]. Sedangan untu ruang barisan, hususnya ruang barisan Orlicz [3][4] telah membahasnya secara lengap. Lebih lanjut [3] membahas fungsional aditif dan ontinu pada ruang barisan Orlicz. Sementara itu [2] memperenalan beberapa ruang barisan selisih antara lain l ( ), c 0 ( ). Berdasaran [2] ini serta memperhatian hasil-hasil penelitian dari [4], maa dicoba mengontrusi suatu ruang barisan selisih yang lain yaitu ruang barisan Orlicz 37

2 38 Ruang Barisan Orlicz Selisih Dengan Fungsional Aditif Dan Kontinunya sesilih. Disamping itu dengan memperhatian hasil-hasil dari [2] dapat dionstrusi pula fungsional aditif dan ontinu pada ruang barisan Orlicz selisih. 2. Ruang Bernorma-F Diberian X ruang barisan bilangan real yang merupaan ruang vetor atas R. Jia X dilengapi dengan norma-f yaitu norma. yang memenuhi : (i) x 0; x = 0 x = 0 (ii) x = x (iii) x + y x + y untu semua x, y X (iv) α n x (n) αx 0 jia α n α dan x (n) αx 0 maa X disebut ruang barisan bernorma-f. Jia X ruang barisan bernorma-f yang lengap, maa X disebut ruang Frechet. Selanjutnya, ruang Frechet X diataan ruang F K jia untu setiap, fungsi P : X R. dengan P (x) = x ontinu. Barisan blo {z n } di dalam ruang barisan X adalah suatu barisan dengan elemen e-n yaitu : z n = {0,, 0, z i(n 1)+1,, z i(n), 0, } dengan i(0) = 0 dan {i(n)} adalah suatu barisan nai dari bilangan asli. Misalan X suatu ruang barisan bernorma-f, maa X diataan mempunyai Gliding Hump Property (GHP ), jia untu setiap barisan blo {z n } dengan z n 0 untu n, terdapat suatu barisan bagian bilangan asli {n()} sehingga z n() X. Mudah dipahami bahwa setiap ruang barisan bernorma-f yang lengap mempunyai GHP. 3. Ruang Barisan Orlicz Selisih Diberian ϕ fungsi ontinu bernilai real nai pada [0, ) dengan ϕ(0) = 0 dan ϕ(t) = ϕ( t ) untu semua t. Fungsi ini disebut fungsi Orlicz. Suatu himpunan Orlicz dinotasian dengan l ϕ adalah himpunan semua x = {x } sehingga { } ρ(x) = < + atau l ϕ = x = {x }; ϕ(x ) < +

3 Sadjidon 39 Mudah ditunjuan bahwa himpunan Orlicz l ϕ merupaan himpunan onvex. Suatu fungsi ϕ diataan memenuhi ondisi δ 2 jia terdapat α > 0 dan β > 0 sehingga ϕ(2t) αϕ(t) untu t β Fungsi Orlicz ϕ ternyata memenuhi ondisi δ 2, sehingga himpunan Orlicz l ϕ merupaan ruang linier. Selanjutnya, didefinisian suatu norma pada l ϕ dengan: { ( ) } x x = inf ξ > 0; ρ ξ ξ untu setiap x l ϕ. Ruang l ϕ yang dilengapi dengan norma di atas merupaan ruang bernorma-f yang lengap atau ruang Frechet dan disebut ruang barisan Orlicz. Searang aan diberian pengertian ruang barisan Orlicz selisih. Seperti halnya ruang barisan Orlicz, himpunan barisan Orlicz selisih didefinisian sebagai: l ϕ ( ) = {x = (x ); x l ϕ } dengan x = ( x ) = (x x 1 ). Bahwa ruang l ϕ ( ) merupaan ruang linier. Selanjutnya, didefinisian suatu norma pada l ϕ ( ) dengan x = x 1 + x lϕ. Dengan norma ini, aan ditunjuan bahwa l ϕ ( ) merupaan ruang bernorma yang lengap. Hal ini aan dijabaran dalam teorema beriut. Teorema 3.1 Ruang l ϕ ( )merupaan ruang bernorma-f dengan norma x = x 1 + x lϕ. Buti. Diambil sebarang x, y l ϕ ( ) (i) Jelas bahwa x = x 1 + x lϕ 0. x = x 1 + x lϕ = 0 x 1 = 0 dan x = 0 x 1 = 0 dan x = x x 1 = 0 x 1 = = x 1 = x = 0, untu setiap x = θ (ii) x = x + ( x) lvarphi = x + x lvarphi = x + x lvarphi = x

4 40 Ruang Barisan Orlicz Selisih Dengan Fungsional Aditif Dan Kontinunya (iii) Aan ditunjuan x + y = x + y. x + y = x 1 + y 1 + x + y lvarphi x 1 + y 1 + x lvarphi + y lvarphi x 1 + x lvarphi + y 1 + y lvarphi x + y Dengan demiian x + y = x + y. (iv) α n x (n) αx = α n x (n) α n x + α n x αx α n x (n) α n x + α n x αx α n x (n) x + α n α x Jia α n α dan x (n) x 0, maa α n x (n) αx 0 Dengan demiian terbuti bahwa ruang barisan Orlicz selisih merupaan ruang bernorma-f. Teorema 3.2 Ruang l ϕ ( ) yang dilengapi dengan norma x = x 1 + x lϕ merupaan ruang bernorma-f yang lengap atau ruang Frechet dan disebut ruang barisan Orlicz selisih. Buti. Tinggal membutian bahwa l ϕ ( ) adalah lengap. Diberian {x (n) } adalah barisan di l ϕ ( ) sedemiian hingga Oleh arena itu x (n) x (m) 0, untu n, m x (n) x (m) = x (n) 1 x (m) 1 + x (n) x (m) lϕ 0, untu n, m Dengan demiian diperoleh : a. x (n) 1 x (m) 1 0, untu n, m b. x (n) x (m) lϕ 0 untu n, m atau (x (n) atau x (n) 1 ) (x(m) 1 ) 0, untu n, m 1 l ϕ 0 dan x (m) 1 l ϕ 0, untu n, m

5 Sadjidon 41 Karena ϕ ontinu dan nai pada [0, ), maa untu setiap diperoleh x (n) x (m) 0, untu n, m Aibatnya untu setiap barisan {x (n) } 1 adalah barisan Cauchy di R yang lengap, artinya untu setiap terdapat x R sedemiian hingga x (n) x untu n Selanjutnya dibentu x = {x }. Aan dibutian i. x (n) x 0, untu n x (n) x = x (n) 1 x 1 + x (n) x lϕ Sehingga untu n diperoleh a. x (n) 1 x 0 b. x (n) x 0, untu n = x (n) 1 x 1 + (x (n) 1 ) (x x 1 ) lϕ x (n) 1 x 1 + x (n) x lϕ + x (n) 1 x 1 lϕ Dengan demiian x (n) x 0, untu n. ii. Aan ditunjuan x l ϕ ( ) berarti menunjuan bahwa x l ϕ. Terdapat bilangan bulat positip N sehingga sedemiian hingga ϕ( x N x) < 1 < sehingga x N x l ϕ dengan l ϕ adalah linier, maa x l ϕ. Dengan demiian i dan ii dipenuhi. Jadi l ϕ ( ) lengap. x lϕ Beriutnya aan ditunjuan bahwa l ϕ ( ) mempunyai sifat AK yaitu x N 0 untu N. Untu menunjuan ini, diberian ( (x N ) x) ρ = ε =N+1 ( ) x x 1 ϕ = ε =N+1 ϕ ( ) x ε Karena ( x ) l ϕ ( ), maa terdapat bilangan bulat ( P, sehingga x (x N ) =N+1 ϕ ε ε x), untu setiap N P. Dengan demiian ρ ε ε untu setiap N P.

6 42 Ruang Barisan Orlicz Selisih Dengan Fungsional Aditif Dan Kontinunya Oleh arena itu x N x ε untu N P. Dengan ata lain x N x 0 untu N. Dari penjabaran di atas bahwa ruang barisan Orlicz selisih merupaan ruang Frechet, sehingga mempunyai GHP dan mempunyai sifat AK yaitu x N x lϕ 0 untu N, dengan x N = {x 1, x 2,, x N, 0, } dari setiap barisan x = (x ) l ϕ ( ). Maa ruang barisan Orlicz selisih memenuhi sifat x N x, untu setiap x l ϕ ( ). 4. Fungsional Aditif dan Kontinu pada Ruang Barisan Orlicz Selisih Searang aan dijabaran tentang Fungsional aditif dan ontinu pada ruang barisan orlicz selisih. Sebelumnya aan dibahas teorema-teorema yang aan digunaan untu mengonstrusi fungsional aditif dan ontinu pada ruang barisan Orlicz selisih sebagai beriut. Teorema 4.1 Diberian X ruang barisan yang mempunyai sifat AK. Jia f adalah fungsional aditif dan ontinu pada X, maa f(x) = g(, x ) ada, untu setiap x = {x } X. Dengan g(, 0) = 0 dan g(,.) ontinu, untu setiap N Buti. Diberian e yaitu barisan dengan elemen e- sama dengan 1 dan 0 untu yang lain. Karena X mempunyai sifat AK, maa untu setiap dan X memuat semua barisan berhingga, x N x 0, untu N. Oleh arena f aditif dan ontinu maa f(x N x) 0, untu N atau f(x N ) f(x) 0, untu N

7 Sadjidon 43 atau f(x) = lim N f(xn ) ( N ) = lim f x e N = lim = = N N f ( x e ) f ( x e ) g(, x ) dengan g(, t) = f(te ) dan g(, t) adalah fungsi ontinu untu setiap N. Teorema 4.2 Diberian X ruang barisan yang mempunyai GHP yang memuat semua barisan berhingga dan x N x, dan diberian f adalah fungsional pada X, jia g(, 0) = 0 dan g(,.) ontinu untu setiap N sehingga f(x) = g(, x ) maa f adalah fungsional aditif dan ontinu. ada, x = {x } X Buti. Aan dibutian f adalah ontinu. Searang andaian f tida ontinu di x X, maa terdapat barisan {y(i)} X sedemiian hingga y (i) x 0 untu i. Tetapi g(, y (i) ) g(, x ) > ε untu semua i. Aan disusun dua barisan dari bulat positip sebagai beriut : Ambil n(0) = 0 ; m(1) = 1 dan dipilih n(1) sedemiian hingga n(1) n(1) g(, y (m(1)) ) g(, x ) > ε =n(0)+1 arena g(,.) adalah ontinu untu = 1, 2,, n(1), maa terdapat m(2) > m(1) sedemiian hingga n(1) n(1) g(, y (m(2)) ) g(, x ) ε 2

8 44 Ruang Barisan Orlicz Selisih Dengan Fungsional Aditif Dan Kontinunya selanjutnya terdapat > n(1) sedemiian hingga g(, y (m(2)) ) g(, x ) > ε Dari edua pertidasamaan diatas didapat g(, y (m(2)) ) =n(1)+1 =n(1)+1 g(, x ) > ε 2 Secara umum dapat diperoleh barisan nai dari dua bulat positip {n(i)} dan {m(i)} sedemiian hingga n(i) g(, y (m(i)) ) g(, x ) > ε 2 =n(i 1)+1, untu setiap i = 1, 2, 3, =n(i 1)+1 Searang didefinisian barisan blo {z i } di X dengan z i = {0,, 0, y (m(i)) n(i 1)+1 x n(i 1)+1,, y (m(i)) n(i) x n(i), 0, } untu i = 1, 2, 3, Mengingat asumsi bahwa x N x diperoleh z i 2 y (m(i)) x 0, untu i arena X mempunyai GHP, maa terdapat sub barisan {i()} sedemiian hingga z = x i() X Oleh arena itu g(, z + x ) g(, x ) adalah onvergen. Yang ontradisi dengan pengandaian diatas. Dengan demiian f adalah ontinu di x untu setiap x X Aibat dari Teorema 4.1 dan Teorema 4.2 serta memperhatian sifat-sifat dari ruang barisan Orlicz selisih yang telah dijabaran di atas, maa dapat diontrusi fungsional aditif dan ontinu pada ruang barisan Orlicz selisih yang diberian dalam teorema beriut. Teorema 4.3 Fungsional f : l ϕ ( ) R aditif dan ontinu jia dan hanya jia f(x) = g(, x ) ada, untu setiap x = {x } l ϕ ( ) dengan g(, 0) = 0 dan g(,.) ontinu untu setiap N.

9 Sadjidon 45 Buti. Karena ruang barisan Orlicz selisih merupaan ruang Frechet, maa mempunyai GHP serta mempunyai sifat AK dan juga memenuhi sifat x N x, untu setiap x l ϕ ( ) serta aibat dari Teorema 4.1 dan Teorema 4.2. Pustaa [1] Chew, T. S., 1985, Orthogonally Additive Functionals, PhD. Disertation, national University of Singapore. [2] Cola, R and Miail ET, 1997, On some generalized difference sequence spaces and related matrix transformations, Hoaido mathematical Journal, Vol 26 (p ) Japan. [3] Lee, P.Y, 1993, Sequence Space and the Gliding Hump Property, SEA Bull, Math. 17, [4] Sadjidon dan Sri Daru, 2002, Ruang Barisan Orlicz, Maalah Thesis UGM.

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini disampaian beberapa pengertian dasar yang diperluan pada bab selanutnya. Selain definisi, diberian pula lemma dan teorema dengan atau tanpa buti. Untu beberapa teorema

Lebih terperinci

KAJIAN TEOREMA TITIK TETAP PEMETAAN KONTRAKTIF PADA RUANG METRIK CONE LENGKAP DENGAN JARAK-W

KAJIAN TEOREMA TITIK TETAP PEMETAAN KONTRAKTIF PADA RUANG METRIK CONE LENGKAP DENGAN JARAK-W J. Math. and Its Appl. ISSN: 1829-605X Vol. 8, No. 2, November 2011, 43 49 KAJIAN TEOREMA TITIK TETAP PEMETAAN KONTRAKTIF PADA RUANG METRIK CONE LENGKAP DENGAN JARAK-W Sunarsini. 1, Sadjidon 2 Jurusan

Lebih terperinci

MENYELESAIKAN PERSAMAAN DIFFERENSIAL BILANGAN BULAT DAN BILANGAN RASIONAL

MENYELESAIKAN PERSAMAAN DIFFERENSIAL BILANGAN BULAT DAN BILANGAN RASIONAL MENYELESAIKAN PERSAMAAN DIFFERENSIAL BILANGAN BULAT DAN BILANGAN RASIONAL Sarta Meliana 1, Mashadi 2, Sri Gemawati 2 1 Mahasiswa Program Studi S1 Matematia 2 Dosen Jurusan Matematia Faultas Matematia dan

Lebih terperinci

BEBERAPA SIFAT QUASI-IDEAL MINIMAL PADA RING TRANSFORMASI LINEAR 1

BEBERAPA SIFAT QUASI-IDEAL MINIMAL PADA RING TRANSFORMASI LINEAR 1 BEBERAPA SIFAT QUASI-IDEAL MINIMAL PADA RING TRANSFORMASI LINEAR K a r y a t i Jurusan Pendidian Matematia FMIPA Uniersitas Negeri Yogyaarta e-mail : yatiuny@yahoo.com Abstra. Misalan R adalah ring, Q

Lebih terperinci

BEBERAPA SIFAT HIMPUNAN KRITIS PADA PELABELAN AJAIB GRAF BANANA TREE. Triyani dan Irham Taufiq Universitas Jenderal Soedirman

BEBERAPA SIFAT HIMPUNAN KRITIS PADA PELABELAN AJAIB GRAF BANANA TREE. Triyani dan Irham Taufiq Universitas Jenderal Soedirman JMP : Volume 4 Nomor 2, Desember 2012, hal. 271-278 BEBERAPA SIFAT HIMPUNAN KRITIS PADA PELABELAN AJAIB GRAF BANANA TREE Triyani dan Irham Taufiq Universitas Jenderal Soedirman trianisr@yahoo.com.au ABSTRACT.

Lebih terperinci

PELABELAN FUZZY PADA GRAF. Siti Rahmah Nurshiami, Suroto, dan Fajar Hoeruddin Universitas Jenderal Soedirman.

PELABELAN FUZZY PADA GRAF. Siti Rahmah Nurshiami, Suroto, dan Fajar Hoeruddin Universitas Jenderal Soedirman. JMP : Volume 6 Nomor, Juni 04, hal. - PELABELAN FUZZY PADA GRAF Siti Rahmah Nurshiami, Suroto, dan Fajar Hoeruddin Universitas Jenderal Soedirman email : oeytea0@gmail.com ABSTRACT. This paper discusses

Lebih terperinci

OSN 2014 Matematika SMA/MA

OSN 2014 Matematika SMA/MA Soal 5. Suatu barisan bilangan asli a 1, a 2, a 3,... memenuhi a + a l = a m + a n untu setiap bilangan asli, l, m, n dengan l = mn. Jia m membagi n, butian bahwa a m a n. Solusi. Andaian terdapat bilangan

Lebih terperinci

( x) LANDASAN TEORI. ω Ω ke satu dan hanya satu bilangan real X( ω ) disebut peubah acak. Ρ = Ρ. Ruang Contoh, Kejadian dan Peluang

( x) LANDASAN TEORI. ω Ω ke satu dan hanya satu bilangan real X( ω ) disebut peubah acak. Ρ = Ρ. Ruang Contoh, Kejadian dan Peluang LANDASAN TEORI Ruang Contoh Kejadian dan Peluang Suatu percobaan yang dapat diulang dalam ondisi yang sama yang hasilnya tida dapat dipredisi secara tepat tetapi ita dapat mengetahui semua emunginan hasil

Lebih terperinci

BAB III PENENTUAN HARGA PREMI, FUNGSI PERMINTAAN, DAN TITIK KESETIMBANGANNYA

BAB III PENENTUAN HARGA PREMI, FUNGSI PERMINTAAN, DAN TITIK KESETIMBANGANNYA BAB III PENENTUAN HARGA PREMI, FUNGSI PERMINTAAN, DAN TITIK KESETIMBANGANNYA Pada penelitian ini, suatu portfolio memilii seumlah elas risio. Tiap elas terdiri dari n, =,, peserta dengan umlah besar, dan

Lebih terperinci

Aplikasi diagonalisasi matriks pada rantai Markov

Aplikasi diagonalisasi matriks pada rantai Markov J. Sains Dasar 2014 3(1) 20-24 Apliasi diagonalisasi matris pada rantai Marov (Application of matrix diagonalization on Marov chain) Bidayatul hidayah, Rahayu Budhiyati V., dan Putriaji Hendiawati Jurusan

Lebih terperinci

Deret Pangkat. Ayundyah Kesumawati. June 23, Prodi Statistika FMIPA-UII

Deret Pangkat. Ayundyah Kesumawati. June 23, Prodi Statistika FMIPA-UII Keonvergenan Kesumawati Prodi Statistia FMIPA-UII June 23, 2015 Keonvergenan Pendahuluan Kalau sebelumnya, suu suu pada deret ta berujung berupa bilangan real maa ali ini ita embangan suu suunya dalam

Lebih terperinci

( s) PENDAHULUAN tersebut, fungsi intensitas (lokal) LANDASAN TEORI Ruang Contoh, Kejadian dan Peluang

( s) PENDAHULUAN tersebut, fungsi intensitas (lokal) LANDASAN TEORI Ruang Contoh, Kejadian dan Peluang Latar Belaang Terdapat banya permasalahan atau ejadian dalam ehidupan sehari hari yang dapat dimodelan dengan suatu proses stoasti Proses stoasti merupaan permasalahan yang beraitan dengan suatu aturan-aturan

Lebih terperinci

RINGKASAN SKRIPSI MODUL PERKALIAN

RINGKASAN SKRIPSI MODUL PERKALIAN RINGKASAN SKRIPSI MODUL PERKALIAN SAMSUL ARIFIN 04/177414/PA/09899 DEPARTEMEN PENDIDIKAN NASIONAL UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM YOGYAKARTA 2008 HALAMAN PENGESAHAN

Lebih terperinci

SUATU KLAS BILANGAN BULAT DAN PERANNYA DALAM MENGKONSTRUKSI BILANGAN PRIMA

SUATU KLAS BILANGAN BULAT DAN PERANNYA DALAM MENGKONSTRUKSI BILANGAN PRIMA SUATU KLAS BILANGAN BULAT DAN PERANNYA DALAM MENGKONSTRUKSI BILANGAN PRIMA I Nengah Suparta dan I. B. Wiasa Jurusan Pendidian MatematiaUniversitas Pendidian Ganesha E-mail: isuparta@yahoo.com ABSTRAK:

Lebih terperinci

IDEAL FUZZY NEAR-RING. Jl. A. Yani Km. 36 Banjarbaru, Kalimantan Selatan

IDEAL FUZZY NEAR-RING. Jl. A. Yani Km. 36 Banjarbaru, Kalimantan Selatan Jurnal Matematia Murni dan Terapan εpsilon Vol. 07, No.01, (2013), Hal. 21 32 IDEAL FUZZY NEAR-RING Saman Abdurrahman 1, Naimah Hijriati 2 dan Thresye 3 1,2,3 Program Studi Matematia Faultas MIPA Universitas

Lebih terperinci

SOLUSI KESTABILAN PADA MASALAH MULTIPLIKATIF PARAMETRIK (STABILITY SOLUTION OF PARAMETRIC MULTIPLICATIVE PROBLEMS)

SOLUSI KESTABILAN PADA MASALAH MULTIPLIKATIF PARAMETRIK (STABILITY SOLUTION OF PARAMETRIC MULTIPLICATIVE PROBLEMS) Prosiding Semirata15 bidang MIPA BKS-PTN Barat Hal 357-36 SOLUSI KESTABILAN PADA MASALAH MULTIPLIKATIF PARAMETRIK STABILITY SOLUTION OF PARAMETRIC MULTIPLICATIVE PROBLEMS) Budi Rudianto 1, Narwen Jurusan

Lebih terperinci

MATA KULIAH MATEMATIKA TEKNIK 2 [KODE/SKS : KD / 2 SKS] Ruang Vektor

MATA KULIAH MATEMATIKA TEKNIK 2 [KODE/SKS : KD / 2 SKS] Ruang Vektor MATA KULIAH MATEMATIKA TEKNIK [KODE/SKS : KD4 / SKS] Ruang Vetor FIELD: Ruang vetor V atas field salar K adalah himpunan ta osong dengan operasi penjumlahan vetor dan peralian salar. Himpunan ta osong

Lebih terperinci

( ) terdapat sedemikian sehingga

( ) terdapat sedemikian sehingga LATIHAN.. Misalan A R, : A R, c R adala titi cluster dari A (c, ). Maa pernyataan beriut equivalen : a. lim b. Barisan ( ) yan onveren e c seina dan >., maa barisan ( ) onveren e. Buti : lim ( ) Berarti

Lebih terperinci

BAB 5 RUANG VEKTOR UMUM. Dr. Ir. Abdul Wahid Surhim, MT.

BAB 5 RUANG VEKTOR UMUM. Dr. Ir. Abdul Wahid Surhim, MT. BAB 5 RUANG VEKTOR UMUM Dr. Ir. Abdul Wahid Surhim, MT. KERANGKA PEMBAHASAN. Ruang Vetor Nyata. Subruang. Kebebasan Linier 4. Basis dan Dimensi 5. Ruang Baris, Ruang Kolom dan Ruang Nul 6. Ran dan Nulitas

Lebih terperinci

BAB III DIMENSI PARTISI GRAF KIPAS DAN GRAF KINCIR

BAB III DIMENSI PARTISI GRAF KIPAS DAN GRAF KINCIR BAB III DIMENSI PARTISI GRAF KIPAS DAN GRAF KINCIR 3. Dimensi Partisi Graf Kipas (F n ) Berdasaran Proposisi dan Proposisi, semua graf G selain graf P n dan K n memilii 3 pd(g) n -. Lebih husus, graf Kipas

Lebih terperinci

KARAKTERISTIK POHON FUZZY

KARAKTERISTIK POHON FUZZY KARAKTERISTIK POHON FUZZY Yuli Stiawati 1, Dwi Juniati 2, 1 Jurusan Matematia, Faultas Matematia dan Ilmu Pengetahuan Alam, Universitas Negeri Surabaya, 60231 2 Jurusan Matematia, Faultas Matematia dan

Lebih terperinci

BAB 3 PRINSIP SANGKAR BURUNG MERPATI

BAB 3 PRINSIP SANGKAR BURUNG MERPATI BAB 3 PRINSIP SANGKAR BURUNG MERPATI 3. Pengertian Prinsip Sangar Burung Merpati Sebagai ilustrasi ita misalan terdapat 3 eor burung merpati dan 2 sangar burung merpati. Terdapat beberapa emunginan bagaimana

Lebih terperinci

BAB 3 RUANG BERNORM-2

BAB 3 RUANG BERNORM-2 BAB RUANG BERNORM-. Norm- dan Ruang ` De nisi. Misalan V ruang vetor atas R berdimensi d (dalam hal ini d boleh ta hingga). Sebuah fungsi ; V V! R yang memenuhi sifat-sifat beriut;. x; y 0 ia dan hanya

Lebih terperinci

Penggunaan Induksi Matematika untuk Mengubah Deterministic Finite Automata Menjadi Ekspresi Reguler

Penggunaan Induksi Matematika untuk Mengubah Deterministic Finite Automata Menjadi Ekspresi Reguler Penggunaan Indusi Matematia untu Mengubah Deterministic Finite Automata Menjadi Espresi Reguler Husni Munaya - 353022 Program Studi Teni Informatia Seolah Teni Eletro dan Informatia Institut Tenologi Bandung,

Lebih terperinci

METODE FUNGSI PENALTI EKSTERIOR. Skripsi. Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains Program Studi Matematika

METODE FUNGSI PENALTI EKSTERIOR. Skripsi. Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains Program Studi Matematika METODE FUNGSI PENALTI EKSTERIOR Sripsi Diajuan untu Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains Program Studi Matematia Disusun Oleh : Maria Martini Leto Kurniawan NIM : 03409 PROGRAM STUDI

Lebih terperinci

PELABELAN SUPER SISI AJAIB PADA GRAF MULTI STAR

PELABELAN SUPER SISI AJAIB PADA GRAF MULTI STAR LAPORAN PENELITIAN BERSAMA DOSEN-MAHASISWA PELABELAN SUPER SISI AJAIB PADA GRAF MULTI STAR Ketua Tim: ABDUSSAKIR, M.Pd FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG

Lebih terperinci

Optimasi Non-Linier. Metode Numeris

Optimasi Non-Linier. Metode Numeris Optimasi Non-inier Metode Numeris Pendahuluan Pembahasan optimasi non-linier sebelumnya analitis: Pertama-tama mencari titi-titi nilai optimal Kemudian, mencari nilai optimal dari fungsi tujuan berdasaran

Lebih terperinci

3.1 TEOREMA DASAR ARITMATIKA

3.1 TEOREMA DASAR ARITMATIKA 3. TEOREMA DASAR ARITMATIKA Definisi 3. Suatu bilangan bulat > disebut (bilangan) rima, jia embagi ositif bilangan tersebut hanya dan. Jia bilangan bulat lebih dari satu buan bilangan rima disebut (bilangan)

Lebih terperinci

SIFAT P-KONVEKS PADA RUANG FUNGSI MUSIELAK-ORLICZ TYPE BOCHNER. Yulia Romadiastri

SIFAT P-KONVEKS PADA RUANG FUNGSI MUSIELAK-ORLICZ TYPE BOCHNER. Yulia Romadiastri Jurnal Matematika Murni dan Terapan εpsilon Vol. 07, No.01, 013, Hal. 1 1 SIFAT P-KONVEKS PADA RUANG FUNGSI MUSIELAK-ORLICZ TYPE BOCHNER Yulia Romadiastri Program Studi Tadris Matematika Fakultas Tarbiyah

Lebih terperinci

Keterbatasan Lokal Suatu Operator Superposisi Pada Ruang Barisan Real. Lina Nurhayati, Universitas Sanggabuana

Keterbatasan Lokal Suatu Operator Superposisi Pada Ruang Barisan Real. Lina Nurhayati, Universitas Sanggabuana Keterbatasan Lokal Suatu Operator Superposisi Pada Ruang Barisan Real Lina urhayati, Universitas Sanggabuana nurhayati_lina@yahoo.co.id Abstrak Misalkan P suatu operator superposisi terbatas dan T adalah

Lebih terperinci

2.1 Bilangan prima dan faktorisasi prima

2.1 Bilangan prima dan faktorisasi prima BAB 2 BILANGAN PRIMA 2.1 Bilangan prima dan fatorisasi prima Definisi 2.1.1. Bilangan bulat p > 1 diataan prima jia ia hanya mempunyai pembagi p dan 1. Dengan ata lain bilangan prima tida mempunyai pembagi

Lebih terperinci

Y = + x + x x + e, e N(0, ), Residual e=y -Yˆ

Y = + x + x x + e, e N(0, ), Residual e=y -Yˆ Yogyaarta, 26 Noember 206 ISSN : 979 9X eissn : 25 528X ANALISIS PSEUDOINVERS DAN APLIKASINYA PADA REGRESI LINEAR BERGANDA Kris Suryowati Program Studi Statistia, Faultas Sains erapan, Institut Sains dan

Lebih terperinci

BAB IV APLIKASI PADA MATRIKS STOKASTIK

BAB IV APLIKASI PADA MATRIKS STOKASTIK BAB IV : ALIKASI ADA MARIKS SOKASIK 56 BAB IV ALIKASI ADA MARIKS SOKASIK Salah satu apliasi dari eori erron-frobenius yang paling terenal adalah penurunan secara alabar untu beberapa sifat yang dimilii

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Fuzzy 2.1.1 Dasar-Dasar Teori Fuzzy Secara prinsip, di dalam teori fuzzy set dapat dianggap sebagai estension dari teori onvensional atau crisp set. Di dalam teori crisp

Lebih terperinci

SOLUSI BAGIAN PERTAMA

SOLUSI BAGIAN PERTAMA SOLUSI BAGIAN PERTAMA 1. 13.. 931 3. 4 9 4. 63 5. 3 13 13 6. 3996 7. 1 03 8. 3 + 9 9. 3 10. 4 11. 6 1. 9 13. 31 14. 383 8 15. 1764 16. 5 17. + 7 18. 51 19. 8 0. 360 1 SOLUSI BAGIAN PERTAMA Soal 1. Misalan

Lebih terperinci

GENERALISASI METODE TALI BUSUR UNTUK MENYELESAIKAN PERSAMAAN TAK LINEAR SUNARSIH

GENERALISASI METODE TALI BUSUR UNTUK MENYELESAIKAN PERSAMAAN TAK LINEAR SUNARSIH GENERALISASI METODE TALI BUSUR UNTUK MENYELESAIKAN PERSAMAAN TAK LINEAR SUNARSIH DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2011 ABSTRACT SUNARSIH.

Lebih terperinci

MENENTUKAN TURUNAN DAN SIFAT-SIFAT TURUNAN DARI FUNGSI 1/f(x) DAN h(x)/f(x) ABSTRACT

MENENTUKAN TURUNAN DAN SIFAT-SIFAT TURUNAN DARI FUNGSI 1/f(x) DAN h(x)/f(x) ABSTRACT MENENTUKAN TURUNAN DAN SIFAT-SIFAT TURUNAN DARI FUNGSI 1/(x DAN h(x/(x Yuliana Saitri 1, Sri Gemawati 2, Musraini 2 1 Mahasiswa Program Studi S1 Matematia 2 Dosen Jurusan Matematia Faultas Matematia dan

Lebih terperinci

STUDI PENYELESAIAN PROBLEMA MIXED INTEGER LINIER PROGRAMMING DENGAN MENGGUNAKAN METODE BRANCH AND CUT OLEH : RISTA RIDA SINURAT

STUDI PENYELESAIAN PROBLEMA MIXED INTEGER LINIER PROGRAMMING DENGAN MENGGUNAKAN METODE BRANCH AND CUT OLEH : RISTA RIDA SINURAT TUGAS AKHIR STUDI PENYELESAIAN PROBLEMA MIXED INTEGER LINIER PROGRAMMING DENGAN MENGGUNAKAN METODE BRANCH AND CUT OLEH : RISTA RIDA SINURAT 040803023 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

TRANFORMASI MATRIKS PADA RUANG BARISAN KONVERGEN

TRANFORMASI MATRIKS PADA RUANG BARISAN KONVERGEN TRANFORMASI MATRIKS PADA RUANG BARISAN KONVERGEN Wahidah Alwi Dosen pada Jurusan Mateatia Faultas Sains dan Tenologi UIN Alauddin Maassar Eail. Teno_sains@yahoo.co Abstract: The calculus have introduce

Lebih terperinci

INTEGRAL NUMERIK KUADRATUR ADAPTIF DENGAN KAIDAH SIMPSON. Makalah. Disusun guna memenuhi tugas Mata Kuliah Metode Numerik. yang dibimbing oleh

INTEGRAL NUMERIK KUADRATUR ADAPTIF DENGAN KAIDAH SIMPSON. Makalah. Disusun guna memenuhi tugas Mata Kuliah Metode Numerik. yang dibimbing oleh INTEGRAL NUMERIK KUADRATUR ADAPTIF DENGAN KAIDAH SIMPSON Maalah Disusun guna memenuhi tugas Mata Kuliah Metode Numeri yang dibimbing oleh Dr. Nur Shofianah Disusun oleh: M. Adib Jauhari Dwi Putra 146090400111001

Lebih terperinci

MASALAH VEKTOR EIGEN MATRIKS INVERS MONGE DI ALJABAR MAX-PLUS

MASALAH VEKTOR EIGEN MATRIKS INVERS MONGE DI ALJABAR MAX-PLUS Seminar Sains Penidi Sains VI UKSW Salatiga Juni 0 MSLH VEKTOR EIGEN MTRIKS INVERS MONGE DI LJBR MX-PLUS Farida Suwaibah Subiono Mahmud Yunus Jurusan Matematia FMIP Institut Tenologi Sepuluh Nopember Surabaya

Lebih terperinci

Bilangan Bulat. Modul 1 PENDAHULUAN

Bilangan Bulat. Modul 1 PENDAHULUAN Modul Bilangan Bulat Prof. Drs. Gatot Muhsetyo, M.Sc. D PENDAHULUAN alam modul Bilangan Bulat ini diuraian tentang awal pembahasan bilangan sebagai ebutuhan hidup manusia, meliputi bilangan asli, bilangan

Lebih terperinci

MAT. 12. Barisan dan Deret

MAT. 12. Barisan dan Deret MAT.. Barisan dan Deret i Kode MAT. Barisan dan Deret U, U, U3,..., Un,... Un a + (n-)b U + U +..., Un +... n?? Sn? BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT

Lebih terperinci

EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH

EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni Prodi Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmailcom Info: Jurnal MSA Vol 3 No 1 Edisi: Januari

Lebih terperinci

tidak mempunyai fixed mode terdesentralisasi, dapat dilakukan dengan memberikan kompensator terdesentralisasi. Fixed mode terdesentralisasi pertama

tidak mempunyai fixed mode terdesentralisasi, dapat dilakukan dengan memberikan kompensator terdesentralisasi. Fixed mode terdesentralisasi pertama BB IV PENGENDLIN TERDESENTRLISSI Untu menstabilan sistem yang tida stabil, dengan syarat sistem tersebut tida mempunyai fixed mode terdesentralisasi, dapat dilauan dengan memberian ompensator terdesentralisasi.

Lebih terperinci

OPERATOR PADA RUANG BARISAN TERBATAS

OPERATOR PADA RUANG BARISAN TERBATAS OPERATOR PADA RUANG BARISAN TERBATAS Muslim Ansori *,Tiryono 2, Suharsono S 2,Dorrah Azis 2 Jurusan Matematika FMIPA Universitas Lampung,2 Jln. Soemantri Brodjonegoro No Bandar Lampung email: ansomath@yahoo.com

Lebih terperinci

ANALISIS PERBANDINGAN KOMULAN TERHADAP BEBERAPA JENIS DISTRIBUSI KHUSUS Analysis of Comulans Comparative on some Types of Special Distribution

ANALISIS PERBANDINGAN KOMULAN TERHADAP BEBERAPA JENIS DISTRIBUSI KHUSUS Analysis of Comulans Comparative on some Types of Special Distribution Jurnal Bareeng Vol. 8 No. Hal. 5 0 (04) ANALISIS PRBANDINGAN OMULAN TRHADAP BBRAPA JNIS DISTRIBUSI HUSUS Analysis of Comulans Comparative on some Types of Special Distribution ABRAHAM ZACARIA WATTIMNA,

Lebih terperinci

TRANSFORMASI LINIER PADA RUANG BANACH

TRANSFORMASI LINIER PADA RUANG BANACH TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni, S.Si., M.Pd Jurusan Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmail.com ABSTRAK Info: Jurnal MSA Vol. 2 No. 1 Edisi: Januari Juni

Lebih terperinci

Konvergensi Barisan dan Teorema Titik Tetap

Konvergensi Barisan dan Teorema Titik Tetap JURNAL SAINS DAN SENI ITS Vol. 5 No. (016) 337-350 (301-98X Print) A-59 Konvergensi Barisan dan Teorema Titik Tetap pada Ruang b-metrik Cahyaningrum Rahmasari, Sunarsini, dan Sadjidon Jurusan Matematika,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Tinjauan Pustaa Untu menacapai tujuan penulisan sripsi, diperluan beberapa pengertian dan teori yang relevan dengan pembahasan. Karena itu, dalam subbab ini aan diberian beberapa

Lebih terperinci

Sifat-sifat Nilai Eigen dan Vektor Eigen Matriks atas Aljabar Maxplus

Sifat-sifat Nilai Eigen dan Vektor Eigen Matriks atas Aljabar Maxplus J. Sains Dasar () Sifat-sifat Nilai Eigen dan Vetor Eigen Matris atas ljabar Maxplus (The Properties of Eigen Value and Eigen Vector of Matrices Over Maxplus lgebra) Musthofa * dan Nienasih inatari * Jurusan

Lebih terperinci

Implementasi Algoritma Pencarian k Jalur Sederhana Terpendek dalam Graf

Implementasi Algoritma Pencarian k Jalur Sederhana Terpendek dalam Graf JURNAL TEKNIK POMITS Vol. 2, No., (203) ISSN: 2337-3539 (230-927 Print) Implementasi Algoritma Pencarian Jalur Sederhana Terpende dalam Graf Anggaara Hendra N., Yudhi Purwananto, dan Rully Soelaiman Jurusan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar belakang

BAB 1 PENDAHULUAN. 1.1 Latar belakang BAB PENDAHULUAN. Latar belaang Metode analisis yang telah dibicaraan hingga searang adalah analisis terhadap data mengenai sebuah arateristi atau atribut (jia data itu ualitatif) dan mengenai sebuah variabel,

Lebih terperinci

PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA DENGAN METODE TRANSFORMASI DIFERENSIAL SUTRIANI HIDRI

PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA DENGAN METODE TRANSFORMASI DIFERENSIAL SUTRIANI HIDRI PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA DENGAN METODE TRANSFORMASI DIFERENSIAL SUTRIANI HIDRI Jurusan Matematia, FMIPA, Universitas Negeri Maassar Email: nanni.cliq@gmail.com Abstra. Pada artiel ini dibahas

Lebih terperinci

BAB IV METODE BELAJAR HEBBIAN

BAB IV METODE BELAJAR HEBBIAN BAB IV MEODE BELAJAR HEBBIAN - Aturan Hebb meruaan salah satu huum embelajaran jaringan neural yang ertama. Diemuaan oleh Donald Hebb (949). Hebb lahir di Chester, Nova Scotia, ada ergantian abad. - Isinya

Lebih terperinci

EKSISTENSI MATRIKS PENGGANDA DAN DEKOMPOSISI MATRIKS PENGGANDA PYATT DAN ROUND DARI SISTEM NERACA SOSIAL EKONOMI

EKSISTENSI MATRIKS PENGGANDA DAN DEKOMPOSISI MATRIKS PENGGANDA PYATT DAN ROUND DARI SISTEM NERACA SOSIAL EKONOMI EKSSTES MTRKS PEGGD D DEKOMPOSS MTRKS PEGGD PYTT D ROUD DR SSTEM ERC SOSL EKOOM Doni Hartono Badan Pengaian dan Penerapan Tenologi Bud P. Resosudarmo Badan Pengaian dan Penerapan Tenologi dan Pasca Sarana

Lebih terperinci

BEBERAPA MODIFIKASI METODE NEWTON RAPHSON UNTUK MENYELESAIKAN MASALAH AKAR GANDA. Supriadi Putra, M,Si

BEBERAPA MODIFIKASI METODE NEWTON RAPHSON UNTUK MENYELESAIKAN MASALAH AKAR GANDA. Supriadi Putra, M,Si BEBERAPA ODIFIKASI ETODE NEWTON RAPHSON UNTUK ENYELESAIKAN ASALAH AKAR GANDA Suriadi Putra,,Si Laboratorium Komutasi Numeri Jurusan atematia Faultas atematia & Ilmu Pengetahuan Alam Universitas Riau Kamus

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS TRIDIAGONAL DENGAN ENTRI DIAGONAL UTAMA TIDAK KONSTAN DAN BERULANG IRESA APRILIANI

NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS TRIDIAGONAL DENGAN ENTRI DIAGONAL UTAMA TIDAK KONSTAN DAN BERULANG IRESA APRILIANI NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS TRIDIAGONAL DENGAN ENTRI DIAGONAL UTAMA TIDAK KONSTAN DAN BERULANG IRESA APRILIANI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA DENGAN METODE TRANSFORMASI DIFERENSIAL. Sutriani Hidri. Ja faruddin. Syafruddin Side, ABSTRAK

PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA DENGAN METODE TRANSFORMASI DIFERENSIAL. Sutriani Hidri. Ja faruddin. Syafruddin Side, ABSTRAK PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA DENGAN METODE TRANSFORMASI DIFERENSIAL Syafruddin Side, Jurusan Matematia, FMIPA, Universitas Negeri Maassar email:syafruddinside@yahoo.com Info: Jurnal MSA Vol. 3

Lebih terperinci

PENDAHULUAN TINJAUAN PUSTAKA

PENDAHULUAN TINJAUAN PUSTAKA 1 Latar Belaang PENDAHULUAN Sistem biometri adalah suatu sistem pengenalan pola yang melauan identifiasi personal dengan menentuan eotentian dari arateristi fisiologis dari perilau tertentu yang dimilii

Lebih terperinci

Penempatan Optimal Phasor Measurement Unit (PMU) dengan Integer Programming

Penempatan Optimal Phasor Measurement Unit (PMU) dengan Integer Programming JURAL TEKIK POMITS Vol. 2, o. 2, (2013) ISS: 2337-3539 (2301-9271 Print) B-137 Penempatan Optimal Phasor Measurement Unit (PMU) dengan Integer Programming Yunan Helmy Amrulloh, Rony Seto Wibowo, dan Sjamsjul

Lebih terperinci

VARIASI NILAI BATAS AWAL PADA HASIL ITERASI PERPINDAHAN PANAS METODE GAUSS-SEIDEL

VARIASI NILAI BATAS AWAL PADA HASIL ITERASI PERPINDAHAN PANAS METODE GAUSS-SEIDEL SEMINAR NASIONAL PENDIDIKAN SAINS Peningatan Kualitas Pembelajaran Sains dan Kompetensi Guru melalui Penelitian & Pengembangan dalam Menghadapi Tantangan Abad-1 Suraarta, Otober 016 VARIASI NILAI BATAS

Lebih terperinci

PEBANDINGAN METODE ROBUST MCD-LMS, MCD-LTS, MVE-LMS, DAN MVE-LTS DALAM ANALISIS REGRESI KOMPONEN UTAMA

PEBANDINGAN METODE ROBUST MCD-LMS, MCD-LTS, MVE-LMS, DAN MVE-LTS DALAM ANALISIS REGRESI KOMPONEN UTAMA PEBANDINGAN METODE ROBUST MCD-LMS, MCD-LTS, MVE-LMS, DAN MVE-LTS DALAM ANALISIS REGRESI KOMPONEN UTAMA Sear Wulandari, Nur Salam, dan Dewi Anggraini Program Studi Matematia Universitas Lambung Mangurat

Lebih terperinci

KENNETH CHRISTIAN NATHANAEL

KENNETH CHRISTIAN NATHANAEL KENNETH CHRISTIAN NATHANAEL. Sistem Bilang Real. Fungsi dan Grafi. Limit dan Keontinuan 4. Limit Ta Hingga 5. Turunan Fungsi 6. Turunan Fungsi Trigonometri 7. Teorema Rantai 8. Turunan Tingat Tinggi 9.

Lebih terperinci

II. TINJAUAN PUSTAKA. sebuah teknik yang baru yang disebut analisis ragam. Anara adalah suatu metode

II. TINJAUAN PUSTAKA. sebuah teknik yang baru yang disebut analisis ragam. Anara adalah suatu metode 3 II. TINJAUAN PUSTAKA 2.1 Analisis Ragam (Anara) Untu menguji esamaan dari beberapa nilai tengah secara sealigus diperluan sebuah teni yang baru yang disebut analisis ragam. Anara adalah suatu metode

Lebih terperinci

Kegiatan Belajar 4. Fungsi Trigonometri

Kegiatan Belajar 4. Fungsi Trigonometri Page o Kegiatan Belajar A. Tujuan Pembelajaran Setelah mempelajari egiatan belajar, diharapan siswa dapat a. Menentuan nilai ungsi trigonometri b. Menentuan persamaan grai ungsi trigonometri c. Menggambar

Lebih terperinci

BAB IV PERHITUNGAN HARGA PREMI BERDASARKAN FUNGSI PERMINTAAN PADA TITIK KESETIMBANGAN

BAB IV PERHITUNGAN HARGA PREMI BERDASARKAN FUNGSI PERMINTAAN PADA TITIK KESETIMBANGAN BAB IV PERHITUNGAN HARGA PREMI BERDASARKAN FUNGSI PERMINTAAN PADA TITIK KESETIMBANGAN Berdasaran asumsi batasan interval pada bab III, untu simulasi perhitungan harga premi pada titi esetimbangan, maa

Lebih terperinci

TITIK TETAP NADLR FUNGSI MULTI NILAI KONTRAKTIF PADA RUANG METRIK ( ) Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60111

TITIK TETAP NADLR FUNGSI MULTI NILAI KONTRAKTIF PADA RUANG METRIK ( ) Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60111 TITIK TETAP NADLR FUNGSI MULTI NILAI KONTRAKTIF PADA RUANG METRIK ( ) Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60111 Abstract. In this paper was discussed about Nadlr fixed

Lebih terperinci

MATA KULIAH METODE RUNTUN WAKTU. Oleh : Entit Puspita Nip

MATA KULIAH METODE RUNTUN WAKTU. Oleh : Entit Puspita Nip MAA KULIAH MEODE RUNUN WAKU Oleh : Entit Puspita Nip 08 JURUSAN PENDIDIKAN MAEMAIKA FAKULAS PENDIDIKAN MAEMAIKA DAN ILMU PENGEAHUAN ALAM UNIVERSIAS PENDIDIKAN INDONESIA 00 //00 Entit Puspita BEBERAPA KONSEP

Lebih terperinci

BAB 2 TEORI PENUNJANG

BAB 2 TEORI PENUNJANG BAB EORI PENUNJANG.1 Konsep Dasar odel Predictive ontrol odel Predictive ontrol P atau sistem endali preditif termasu dalam onsep perancangan pengendali berbasis model proses, dimana model proses digunaan

Lebih terperinci

FUNGSI BANTU NONPARAMETRIK BARU UNTUK MENYELESAIKAN OPTIMASI GLOBAL

FUNGSI BANTU NONPARAMETRIK BARU UNTUK MENYELESAIKAN OPTIMASI GLOBAL Seminar Nasional Matematia dan Apliasinya, 2 Otober 27 FUNGSI BANTU NONPARAMETRIK BARU UNTUK MENYELESAIKAN OPTIMASI GLOBAL Ridwan Pandiya #, Emi Iryanti #2 # S Informatia, Faultas Tenologi Industri dan

Lebih terperinci

Solusi Pengayaan Matematika Edisi 16 April Pekan Ke-4, 2005 Nomor Soal:

Solusi Pengayaan Matematika Edisi 16 April Pekan Ke-4, 2005 Nomor Soal: Solusi Pengayaan Matematia Edisi 6 pril Pean Ke-4, 00 Nomor Soal: -60. Jia. sin cos tan 00 00, maa nilai adalah... cos sin 00 00. 40 Solusi: [] sin cos tan 00 00 cos sin 00 00 sin sin 00 00 cos sin 00

Lebih terperinci

Penggunaan Metode Bagi Dua Terboboti untuk Mencari Akar-akar Suatu Persamaan

Penggunaan Metode Bagi Dua Terboboti untuk Mencari Akar-akar Suatu Persamaan Jurnal Penelitian Sains Volume 16 Nomor 1(A) Januari 013 Penggunaan Metode Bagi Dua Terboboti untu Menari Aar-aar Suatu Persamaan Evi Yuliza Jurusan Matematia, FMIPA, Universitas Sriwijaya, Indonesia Intisari:

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom [MA1124] KALKULUS II

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom [MA1124] KALKULUS II Program Peruliahan asar Umum Seolah Tinggi Tenologi Telom Integral Lipat ua [MA4] Integral Lipat ua Misalan z f(,) terdefinisi pada merupaan suatu persegi panjang tertutup, aitu : {(, ) : a b, c d} b a

Lebih terperinci

Teorema Titik Tetap di Ruang Norm-2 Standar

Teorema Titik Tetap di Ruang Norm-2 Standar Teorema Titik Tetap di Ruang Norm- Standar Muh. Nur Universitas Hasanuddin Abstract Pada tulisan ini, akan dipelajari ruang norm- standar, yakni ruang hasil kali dalam yang dilengkapi dengan norm- standar.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Statisti Inferensia Tujuan statisti pada dasarnya adalah melauan desripsi terhadap data sampel, emudian melauan inferensi terhadap data populasi berdasaran pada informasi yang

Lebih terperinci

TEOREMA TITIK TETAP PADA RUANG BERNORMA CONE BERNILAI-

TEOREMA TITIK TETAP PADA RUANG BERNORMA CONE BERNILAI- JURNAL SAINS DAN SENI POMITS Vol. 1, No. 1, (2013) 1-6 1 TEOREMA TITIK TETAP PADA RUANG BERNORMA CONE BERNILAI- Hajar Grestika Murti, Erna Apriliani, Sunarsini Jurusan Matematika, Fakultas Matematika dan

Lebih terperinci

I. PENDAHULUAN. Teori graf merupakan salah satu bagian ilmu dari matematika dan merupakan

I. PENDAHULUAN. Teori graf merupakan salah satu bagian ilmu dari matematika dan merupakan I. PENDAHULUAN. Latar Belaang Teori graf merupaan salah satu bagian ilmu dari matematia dan merupaan poo bahasan yang relatif muda jia dibandingan dengan cabang ilmu matematia yang lain seperti aljabar

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belaang Model Loglinier adalah salah satu asus husus dari general linier model untu data yang berdistribusi poisson. Model loglinier juga disebut sebagai suatu model statisti

Lebih terperinci

PERENCANAAN JUMLAH TENAGA PERAWAT DI RSUD PAMEKASAN MENGGUNAKAN RANTAI MARKOV

PERENCANAAN JUMLAH TENAGA PERAWAT DI RSUD PAMEKASAN MENGGUNAKAN RANTAI MARKOV PERENCANAAN JUMLAH TENAGA PERAWAT DI RSUD PAMEKASAN MENGGUNAKAN RANTAI MARKOV Nama Mahasiswa : Husien Haial Fasha NRP : 1207 100 011 Jurusan : Matematia FMIPA-ITS Dosen Pembimbing : Drs. Suharmadi, Dipl.

Lebih terperinci

SIMULASI FILTER KALMAN UNTUK ESTIMASI SUDUT DENGAN MENGGUNAKAN SENSOR GYROSCOPE

SIMULASI FILTER KALMAN UNTUK ESTIMASI SUDUT DENGAN MENGGUNAKAN SENSOR GYROSCOPE SIMULASI FILR KALMAN UNUK SIMASI SUDU DNGAN MNGGUNAKAN SNSOR GYROSCOP Wahyudi *), Adhi Susanto **), Sasongo Pramono **), Wahyu Widada ***) Abstact he Kalman filter is a recursive solution to the process

Lebih terperinci

DISTRIBUSI SKEW-NORMAL SKRIPSI

DISTRIBUSI SKEW-NORMAL SKRIPSI UNIVERSITAS INDONESIA DISTRIBUSI SKEW-NORMAL SKRIPSI RIYANTO D SETYAWAN 766884 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI SARJANA MATEMATIKA DEPOK JULI Distribusi sew-..., Riyanto D Setyawan,

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN

BAB III HASIL DAN PEMBAHASAN 15 BAB III HASIL DAN PEMBAHASAN 3.1Relasi Dispersi Pada bagian ini aan dibahas relasi dispersi untu gelombang internal pada fluida dua-lapisan.tinjau lapisan fluida dengan ρ a dan ρ b berturut-turut merupaan

Lebih terperinci

UJI BARTLETT. Elty Sarvia, ST., MT. Fakultas Teknik Jurusan Teknik Industri Universitas Kristen Maranatha Bandung. Scheffe Multiple Contrast Procedure

UJI BARTLETT. Elty Sarvia, ST., MT. Fakultas Teknik Jurusan Teknik Industri Universitas Kristen Maranatha Bandung. Scheffe Multiple Contrast Procedure 8/9/01 UJI TUKEY UJI DUNCAN UJI BARTLETT UJI COCHRAN UJI DUNNET Elty Sarvia, ST., MT. Faultas Teni Jurusan Teni Industri Universitas Kristen Maranatha Bandung Macam Metode Post Hoc Analysis The Fisher

Lebih terperinci

- Persoalan nilai perbatasan (PNP/PNB)

- Persoalan nilai perbatasan (PNP/PNB) PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL Persamaan diferensial biasanya digunaan untu pemodelan matematia dalam sains dan reayasa. Seringali tida terdapat selesaian analiti seingga diperluan ampiran

Lebih terperinci

SIFAT-SIFAT HIMPUNAN PROXIMINAL

SIFAT-SIFAT HIMPUNAN PROXIMINAL Prima: Jurnal Pendidikan Matematika Vol. 2, No. 1, Januari 2018, hal. 49-56 P-ISSN: 2579-9827, E-ISSN: 2580-2216 SIFAT-SIFAT HIMPUNAN PROXIMINAL Arta Ekayanti Universitas Muhammadiyah Ponorogo, Jl. Budi

Lebih terperinci

DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1. Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS. Abstrak

DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1. Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS. Abstrak DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1 An-2 1. PENDAHULUAN Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS Abstrak Tujuan dari tulisan ini adalah membahas tentang integral Lebesgue

Lebih terperinci

PENERAPAN DYNAMIC PROGRAMMING DALAM WORD WRAP Wafdan Musa Nursakti ( )

PENERAPAN DYNAMIC PROGRAMMING DALAM WORD WRAP Wafdan Musa Nursakti ( ) PENERAPAN DYNAMIC PROGRAMMING DALAM WORD WRAP Wafdan Musa Nursati (13507065) Program Studi Teni Informatia, Seolah Teni Eletro dan Informatia, Institut Tenologi Bandung Jalan Ganesha No. 10 Bandung, 40132

Lebih terperinci

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks 0. Pendahuluan Analisis Fourier mempelajari berbagai teknik menganalisis sebuah fungsi dengan menguraikannya sebagai deret atau integral fungsi tertentu (yang sifat-sifatnya telah kita kenal dengan baik,

Lebih terperinci

khazanah Sistem Klasifikasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunakan Jaringan Syaraf Tiruan Backpropagation informatika

khazanah Sistem Klasifikasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunakan Jaringan Syaraf Tiruan Backpropagation informatika hazanah informatia Jurnal Ilmu Komputer dan Informatia Sistem Klasifiasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunaan Jaringan Syaraf Tiruan Bacpropagation Yusuf Dwi Santoso *, Suhartono Program

Lebih terperinci

BAB III KEKONVERGENAN LEMAH

BAB III KEKONVERGENAN LEMAH BAB III KEKONVERGENAN LEMAH Bab ini membahas inti kajian tugas akhir. Di dalamnya akan dibahas mengenai kekonvergenan lemah beserta sifat-sifat yang terkait dengannya. Sifatsifat yang dikaji pada bab ini

Lebih terperinci

Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua

Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua II. LANDASAN TEORI 2.1 Limit Fungsi Definisi 2.1.1(Edwin J, 1987) Misalkan I interval terbuka pada R dan f: I R fungsi bernilai real. Secara matematis ditulis lim f(x) = l untuk suatu a I, yaitu nilai

Lebih terperinci

KONVERGENSI DAN KELENGKAPAN PADA RUANG QUASI METRIK

KONVERGENSI DAN KELENGKAPAN PADA RUANG QUASI METRIK JURNAL SAINS DAN SENI POMITS Vol 2, No 1, (2013) 1-6 1 KONVERGENSI DAN KELENGKAPAN PADA RUANG QUASI METRIK Fikri Firdaus, Sunarsini, Sadjidon Jurusan Matematika, Fakultas Matematika Ilmu Pengetahuan Alam,

Lebih terperinci

PERTEMUAN 02 PERBEDAAN ANTARA SISTEM DISKRIT DAN SISTEM KONTINU

PERTEMUAN 02 PERBEDAAN ANTARA SISTEM DISKRIT DAN SISTEM KONTINU PERTEMUAN 2 PERBEDAAN ANTARA SISTEM DISKRIT DAN SISTEM KONTINU 2. SISTEM WAKTU DISKRET Sebuah sistem watu-disret, secara abstra, adalah suatu hubungan antara barisan masuan dan barisan eluaran. Sebuah

Lebih terperinci

Sah Tidaknya Sidik Ragam. Data Bermasalah. Data Bermasalah PERANCANGAN PERCOBAAN (DATA BERMASALAH)

Sah Tidaknya Sidik Ragam. Data Bermasalah. Data Bermasalah PERANCANGAN PERCOBAAN (DATA BERMASALAH) Sah Tidanya Sidi Ragam PERANCANGAN PERCOBAAN (DATA BERMASALAH) Oleh: Dr. Ir. Dirvamena Boer, M.Sc.Agr. HP: 081 385 065 359 Universitas Haluoleo, Kendari dirvamenaboer@yahoo.com http://dirvamenaboer.tripod.com/

Lebih terperinci

BAB II LANDASAN TEORI. Graf adalah kumpulan simpul (nodes) yang dihubungkan satu sama lain

BAB II LANDASAN TEORI. Graf adalah kumpulan simpul (nodes) yang dihubungkan satu sama lain 8 BAB II LANDASAN TEORI 2.1 Teori Graf 2.1.1 Definisi Graf Graf adalah umpulan simpul (nodes) yang dihubungan satu sama lain melalui sisi/busur (edges) (Zaaria, 2006). Suatu Graf G terdiri dari dua himpunan

Lebih terperinci

khazanah Sistem Klasifikasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunakan Jaringan Syaraf Tiruan Backpropagation informatika

khazanah Sistem Klasifikasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunakan Jaringan Syaraf Tiruan Backpropagation informatika hazanah informatia Jurnal Ilmu Komputer dan Informatia Sistem Klasifiasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunaan Jaringan Syaraf Tiruan Bacpropagation Yusuf Dwi Santoso *, Suhartono Departemen

Lebih terperinci

CATATAN KULIAH RISET OPERASIONAL

CATATAN KULIAH RISET OPERASIONAL CATATAN KULIAH RISET OPERASIONAL Pertemuan minggu pertama ( x 50 menit) Pemrograman Bulat Linear (Integer Linear Programming - ILP) Tuuan Instrusional Umum : Mahasiswa dapat menggunaan algoritma yang

Lebih terperinci

TUGAS I RANCANGAN PERCOBAAN BAB I

TUGAS I RANCANGAN PERCOBAAN BAB I TUGAS I RANCANGAN PERCOBAAN Nama : Dwi Shinta Marselina A. Pengertian Desain Esperimen BAB I Desain Esperimen Merupaan langah-langah lengap yang perlu di ambil jauh sebelum esperimen dilauan supaya data

Lebih terperinci

KENDALI OPTIMAL PADA MASALAH INVENTORI YANG MENGALAMI PENINGKATAN

KENDALI OPTIMAL PADA MASALAH INVENTORI YANG MENGALAMI PENINGKATAN KENDALI OPTIMAL PADA MASALAH INVENTORI YANG MENGALAMI PENINGKATAN Pardi Affandi, Faisal, Yuni Yulida Abstra: Banya permasalahan yang melibatan teori sistem dan teori ontrol serta apliasinya. Beberapa referensi

Lebih terperinci