Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom [MA1124] KALKULUS II

Ukuran: px
Mulai penontonan dengan halaman:

Download "Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom [MA1124] KALKULUS II"

Transkripsi

1 Program Peruliahan asar Umum Seolah Tinggi Tenologi Telom Integral Lipat ua [MA4]

2 Integral Lipat ua Misalan z f(,) terdefinisi pada merupaan suatu persegi panjang tertutup, aitu : {(, ) : a b, c d} b a z c Zf(,) // [MA 4] d (, ). Bentu partisi [a,b] dan [c,d] menjadi n bagian.. Pilih (, ) pada setiap sub interval pada [ i, i- ] dan [ i, i- ] 3. Bentu jumlah iemann. n n i i f(, ) A 4. Jia n ( P ) diperoleh limit jumlah iemann. n n lim f(, ) A n i i Jia limit ada, maa z f(,) terintegralan iemann pada, ditulis n n f(, ) da lim f(, ) A n i i

3 Integral Lipat ua efinisi integral lipat dua : Misalan f suatu fungsi dua peubah ang terdefinisi pada suatu persegi panjang tertutup. Jia lim n P f (, ) A // [MA 4] ada, ita ataan f dapat diintegralan pada. Lebih lanjut f (, ) da lim P n f (, f (, )da ) A f (, )dd ang disebut integral lipat dua f pada diberian oleh : atau f (, )d d lim P n f (, ) 3

4 Arti Geometri Integral Lipat ua Jia z f(,) ontinu, f(,) pada persegpanjang, maa f (, ) da menataan volume benda padat ang terleta di bawah permuaan permuaan z f(,) dan di atas. // [MA 4] 4

5 Menghitung Integral Lipat ua Jia f(,) pada, maa volume dapat dihitung dengan metode irisan sejajar, aitu: (i) Sejajar bidang XOZ z z f(,) z A() b a A() c d a b b A ( ) f(, ) d a // [MA 4] 5

6 Menghitung Integral Lipat ua (Lanjutan) d d b d b f (, ) da A( ) d f (, ) d d Maa c c f, ) da a d b ( c a f (, ) d d c a f (, ) d d // [MA 4] 6

7 Menghitung Integral Lipat ua (lanjutan) (ii) Sejajar bidang YOZ z z f(,) z A() A() b a c d c d d A ( ) f(, ) d c // [MA 4] 7

8 Menghitung Integral Lipat ua (Lanjutan) b b d b d f (, ) da A( ) d f (, ) d d Maa a a f, ) da ( c b d a c f (, ) d d a c f (, ) d d // [MA 4] 8

9 Contoh + ( ). Hitung integral lipat dua beriut ini : 4 dimana {(,) 6, 4} Jawab: ( ) da ( ) d d da d d // [MA 4] 9

10 Atau, Contoh ( ) da ( ) d d + 4 ( ) 7 + d 6 d // [MA 4]

11 Contoh +. Hitung integral lipat dua beriut ini : sin( ) π/ dimana {(,) π/, π/} Jawab: sin ( ) da sin( ) + π/ π / π / + π / π / // [MA 4] d d cos( + ) d 6 π ( ) cos + + cos d π / π / π sin sin + π π sin sin( π ) + sin da

12 a Latihan. Hitung +. e d d ( ) b. d d. ( ) f, d d untu fungsi. c d + d a. f(,) ( + ) dengan [-, ] [, ] b. f(,) + dengan [, ] [, ] c. f(,) 3 cos dengan [-π/, π] [, ] // [MA 4]

13 Sifat Integral Lipat ua Misalan f(,) dan g(,) terdefinisi di persegipanjang. f (, ) da f (, ) da. ( f (, ) + g(, ) ) da f (, ) da g(, ) + 3. Jia +, maa (, ) da f (, ) da f (, ) f + 4. Jia f(,) g(,), maa (, ) da g( ) f, da da da // [MA 4] 3

14 Integral Lipat ua atas aerah Sembarang Ada dua tipe Tipe I {(,) a b, p() q() } Tipe II {(,) r() s(), c d } // [MA 4] 4

15 Tipe I q() Integral lipat dua pada daerah dapat dihitung sebagai beriut : a b p() f (, ) da b a q( ) f p( ) (, ) d d {(,) a b, p() q()} // [MA 4] 5

16 Tipe II d Integral lipat dua pada daerah dapat dihitung sebagai beriut : c r () s () d s() f (, )da c r() f (, ) d d {(,) r() s(), c d} // [MA 4] 6

17 Aturan Integrasi Urutan pengintegralan dalam integral lipat dua tergantung dari bentu (daerah integrasi). alam perhitunganna, adangala ita perlu merubah urutan pengintegralan. Hal ini dapat disebaban dengan perubahan urutan pengintegralan aan memudahan dalam proses integrasina. Oleh arena itu, langah pertama ita harus dapat menggambaran daerah integrasi, selanjutna ita dapat merubah urutan integrasi dengan mengacu pada setsa daerah integrasi ang sama. // [MA 4] 7

18 Contoh. Hitung ( ) e da, dibatasi,, sumbu ( e ) da ( e ) {(,), } e d ( ) e d d d ( ) e e e // [MA 4] 8

19 Contoh Atau dibali urutan pengintegralanna, aitu: {(,), } ( e ) ( e ) da e e e d d d d ( e e + e ) e e ( + ) e // [MA 4] 9

20 4 Contoh. e d d Jawab: aerah integrasina {(,) 4, / } iubah urutan pengintegralanna, aitu: {(,), } Sehingga 4 / // [MA 4] 4 e d d e e d e e 4 d d e d

21 Latihan.. 7. π 3 3 e 3 d d 3. sin cos d d 4. + π π d d sin( + ) d d ( + ) d d 8. π cos sin d d e 3 d d 6. e d d // [MA 4]

22 Integral lipat dalam oordinat utub/polar Hitung e + da, {(,) + 4} alam sistem oordinat artesius, integral ini sulit untu diselesaian. Sistem Koordinat Kutub r P(r,θ) Hubungan Kartesius Kutub r cos θ + r r sin θ θ tan - (/) r + θ θ (sumbu utub) // [MA 4]

23 Transformasi artesius e utub Misalan z f(,) terdefinisi pada persegipanjang utub {(r, θ) a r b, α θ β} A f(, ) da ra θβ rb? θα Sumbu Kutub θ A r - r Jia P, maa da r dr dθ Pandang satu partisi persegi panjang utub A Luas juring lingaran dengan sudut pusat θ adalah ½θr A ½ r θ- ½ r - θ ½ (r - r - ) θ ½ (r + r - ) (r - r - ) θ r r θ ( P panjang diagonal A) // [MA 4] 3

24 Transformasi artesius e utub Sehingga f(, ) da f( r cosθ, r sinθ) r dr dθ p Contoh:. Hitung e. Hitung + da da, {(,) + 4}, adalah daerah di uadran I di dalam lingaran + 4 dan di luar + // [MA 4] 4

25 Contoh +. e da dengan {(,) + 4} Jawab. adalah daerah di dalam lingaran dengan pusat (,) jari-jari. {(r,θ) r, θ π} Sehingga e + da // [MA 4] π e r π r dr e r 4 e π e 4 ( ) dθ dθ π dθ θ r 5

26 Contoh. da dengan adalah persegipanjang utub di uadran I di dalam lingaran + 4 di luar + {(r,θ) r, θ π/} Sehingga r da π / // [MA 4] π / 3 3 r sinθ r dr dθ r 3 3 ( 8 ) ( ) π / 7 cosθ 3 7 sinθ dθ π / sinθ dθ θ r 6

27 Latihan. Hitung. Hitung 4 sin( + ) d d d d 3. Tentuan volume benda pejal di otan I di bawah paraboloid z + dan di dalam tabung + 9 dengan menggunaan oordinat utub. // [MA 4] 7

28 daerah sembarang/umum. {(r, θ) φ (θ) r φ (θ), α θ β}. {(r, θ) a r b, ψ (r) θ ψ (r)} rφ (θ) θβ rφ (θ) θα ra θψ (r) rb θψ (r) Sumbu Kutub Sumbu Kutub // [MA 4] 8

29 Tulisan daerah integrasi dalam oordinat polar Terlihat bahwa adalah lingaran dengan pusat di (,) dan berjari-jari Jadi, ( ) r r cos θ r r cos θ r (r cos θ ) r atau r cos θ Untu batas θ (dari gambar) θ π / θ π/ Sehingga, {(r, θ) r cos θ, π / θ π/} // [MA 4] 9

30 Tulisan daerah integrasi dalam oordinat polar θπ/4 + ( ) + ini merupaan lingaran pusat (,), jari-jari Untu batas r dihitung mulai r cos θ r sec θ hingga r cos θ Untu batas θ (dari gambar) θ θ π/4 Sehingga oordinat polarna adalah {(r, θ) sec θ r cos θ, θ π/4} // [MA 4] 3

31 Tulisan daerah integrasi dalam oordinat polar Terlihat bahwa adalah lingaran dengan pusat di (,) dan berjari-jari Jadi, + ( ) r r sin θ r r sin θ r (r sin θ ) r atau r sin θ Untu batas θ (dari gambar) θ θ π Sehingga, {(r, θ) r sin θ, θ π} // [MA 4] 3

32 Tulisan daerah integrasi dalam oordinat polar Untu batas r r cos θ r sec θ Untu batas θ (dari gambar) θ θ π/4 Sehingga oordinat polarna adalah {(r, θ) r sec θ, θ π/4} // [MA 4] 3

33 Contoh. Hitung + dd Jawab: ari soal terlihat batas untu dan : + ( ) + ini merupaan lingaran dengan pusat (,), jari-jari θπ/4 Koordinat polarna adalah {(r, θ) sec θ r cos θ, θ π/4} // [MA 4] 33

34 Contoh (Lanjutan) Sehingga, + d d π / 4 cosθ secθ. r r dr dθ π / 4 ( ) cosθ r ( cosθ secθ ) sec θ dθ π / 4 ( sinθ ln secθ + tanθ ) π / 4 π π π sin ln sec tan ln + ln ( ) ( ) + ln + dθ ( sin( ) ln sec( ) tan( ) ) // [MA 4] 34

35 Latihan. Hitung r dr dθ S. Hitung, S daerah dalam lingaran r 4 cosθ dan di luar r d d 3. Hitung (dengan oordinat utub) 4 da, daerah uadran I dari lingaran + antara dan // [MA 4] 35

a. Integral Lipat Dua atas Daerah Persegi Panjang

a. Integral Lipat Dua atas Daerah Persegi Panjang a. Integral Lipat ua atas aerah Persegi Panjang Misalan z = f(,) terdefinisi pada merupaan suatu persegi panjang tertutup, aitu : = {(, ) : a b, c d} b a z c d (,) Z=f(,). Bentu partisi [a,b] dan [c,d]

Lebih terperinci

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Integral Lipat Dua

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Integral Lipat Dua Universitas Inonusa Esa Unggul Faultas Ilmu Komputer Teni Informatia Integral Lipat ua Integral Lipat ua Misalan z = f(,) terefinisi paa merupaan suatu persegi panjang tertutup, aitu : = {(, ) : a b, c

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Integral Lipat-Dua dalam Koordinat Kutub Statistika FMIPA Universitas Islam Indonesia Terdapat beberapa kurva tertentu pada suatu bidang yang lebih mudah dijelaskan dengan menggunakan koordinat Kutub.

Lebih terperinci

Pada integral diatas, dalam mencari penyelesaiannya, pertama diintegralkan terlebih dahulu terhadap x kemudian diintegralkan lagi terhadap y.

Pada integral diatas, dalam mencari penyelesaiannya, pertama diintegralkan terlebih dahulu terhadap x kemudian diintegralkan lagi terhadap y. PENDAHULUAN Pada bagian ini akan dibahas perluasan integral tertentu ke bentuk integral lipat dua dari fungsi dua peubah Akan dibahas bentukbentuk integral lipat dalam koordinat kartesius koordinat kutub

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Integral Lipat-Dua dalam Koordinat Kutub Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 214 / 2 Integral Lipat-Dua dalam Koordinat Kutub Terdapat beberapa kurva tertentu pada suatu

Lebih terperinci

Dalam setiap sub daerah, pilih suatu titik P k (x k, y k ) dan bentuklah jumlah :

Dalam setiap sub daerah, pilih suatu titik P k (x k, y k ) dan bentuklah jumlah : INTEGAL GANDA Integral untu ungsi satu variable ita membentu suatu partisi dari interval [ab] menjadi interval-interval ang panjangna Δ = 3.n b a d lim n n Dengan cara ang sama Kita deinisian integral

Lebih terperinci

panjang yang berukuran x i dan y i. Ambil sebuah titik pada sub persegi d

panjang yang berukuran x i dan y i. Ambil sebuah titik pada sub persegi d INTEGAL ANGKAP. Integral angkap Dua. Volume dan Pusat Massa. Integral angkap Tiga.4 Koordinat Tabung dan Koordinat Bola.. Intergral angkap Dua Misal diberikan daerah di bidang XOY ang berbentuk persegi

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Integral Lipat Tiga

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Integral Lipat Tiga Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Integral Lipat Tiga [MA4] Integral Lipat Tiga pada Balok ( k, k, k ) B B k k 7/6/7 [MA 4]. Partisi balok B menjadi n bagian; B, B,, B k,,

Lebih terperinci

INTEGRAL RANGKAP DUA. diberikan daerah di bidang XOY yang berbentuk persegi panjang, {( )

INTEGRAL RANGKAP DUA. diberikan daerah di bidang XOY yang berbentuk persegi panjang, {( ) Matematika asar Misal INTEGAL ANGKAP UA diberikan daerah di bidang XO yang berbentuk persegi panjang, {( ) } =, y a b, y d dan fungsi dua peubah z = f (,y ) >. Maka untuk menghitung volume benda ruang

Lebih terperinci

Kegiatan Belajar 4. Fungsi Trigonometri

Kegiatan Belajar 4. Fungsi Trigonometri Page o Kegiatan Belajar A. Tujuan Pembelajaran Setelah mempelajari egiatan belajar, diharapan siswa dapat a. Menentuan nilai ungsi trigonometri b. Menentuan persamaan grai ungsi trigonometri c. Menggambar

Lebih terperinci

INTEGRAL TENTU. x 3. a=x 1. x 2. c 1. c 2. panjang selang bagian terpanjang dari partisi P. INTEGRAL LIPAT DUA

INTEGRAL TENTU. x 3. a=x 1. x 2. c 1. c 2. panjang selang bagian terpanjang dari partisi P. INTEGRAL LIPAT DUA INTEGAL TENTU Pehatian Gamba beiut: f D D a b a c c. n b Gamba Gamba P : panjang selang bagian tepanjang dai patisi P. Definisi: Misal f fungsi ang tedefinisi pada selang tetutup [a,b]. Jia lim n P i f

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x,y) pada = {(x,y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom [MA1124] KALKULUS II

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom [MA1124] KALKULUS II Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Integral Lipat Tiga [MA4] Integral Lipat Tiga pada Balok ( k, yk, k ) B y B k y k // [MA 4]. Partisi balok B menjadi n bagian; B, B,, B k,,

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x, y) pada = {(x, y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang

Lebih terperinci

KENNETH CHRISTIAN NATHANAEL

KENNETH CHRISTIAN NATHANAEL KENNETH CHRISTIAN NATHANAEL. Sistem Bilang Real. Fungsi dan Grafi. Limit dan Keontinuan 4. Limit Ta Hingga 5. Turunan Fungsi 6. Turunan Fungsi Trigonometri 7. Teorema Rantai 8. Turunan Tingat Tinggi 9.

Lebih terperinci

DIKTAT KALKULUS MULTIVARIABEL I

DIKTAT KALKULUS MULTIVARIABEL I DIKTAT KALKULUS MULTIVARIABEL I Oleh Atina Ahdika, S.Si, M.Si Ayundyah Kesumawati, S.Si, M.Si (Program Studi Statistika) FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 214/215

Lebih terperinci

Kumpulan soal-soal level seleksi provinsi: solusi:

Kumpulan soal-soal level seleksi provinsi: solusi: Kumpulan soal-soal level selesi provinsi: 1. Sebuah bola A berjari-jari r menggelinding tanpa slip e bawah dari punca sebuah bola B berjarijari R. Anggap bola bawah tida bergera sama seali. Hitung ecepatan

Lebih terperinci

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Integral Lipat Tiga

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Integral Lipat Tiga Univesitas Indonusa Esa Unggul Faultas Ilmu Kompute Teni Infomatia Integal Lipat Tiga Integal Lipat Tiga pada Balo (,, ) B B. Patisi balo B menjadi n bagian; B, B,, B,, B n Definisian = diagonal uang tepanjang

Lebih terperinci

Solusi Pengayaan Matematika Edisi 16 April Pekan Ke-4, 2005 Nomor Soal:

Solusi Pengayaan Matematika Edisi 16 April Pekan Ke-4, 2005 Nomor Soal: Solusi Pengayaan Matematia Edisi 6 pril Pean Ke-4, 00 Nomor Soal: -60. Jia. sin cos tan 00 00, maa nilai adalah... cos sin 00 00. 40 Solusi: [] sin cos tan 00 00 cos sin 00 00 sin sin 00 00 cos sin 00

Lebih terperinci

Deret Pangkat. Ayundyah Kesumawati. June 23, Prodi Statistika FMIPA-UII

Deret Pangkat. Ayundyah Kesumawati. June 23, Prodi Statistika FMIPA-UII Keonvergenan Kesumawati Prodi Statistia FMIPA-UII June 23, 2015 Keonvergenan Pendahuluan Kalau sebelumnya, suu suu pada deret ta berujung berupa bilangan real maa ali ini ita embangan suu suunya dalam

Lebih terperinci

Solusi Analitis Persamaan-persamaan Diferensial Orde-1 dengan Metode Analitis Persamaan Diferensial dengan konfigurasi VARIABEL TERPISAH

Solusi Analitis Persamaan-persamaan Diferensial Orde-1 dengan Metode Analitis Persamaan Diferensial dengan konfigurasi VARIABEL TERPISAH Solusi Analitis Persamaan-persamaan Diferensial Orde- dengan Metode Analitis.. Persamaan Diferensial dengan konfigurasi VARIABEL TERPISAH a. Bentuk Umum: f ( ) g( ), f dan g fungsi sembarang. b. Metode

Lebih terperinci

Trigonometri. G-Ed. - Dua sisi sama panjang atau dua sudut yang besarnya sama. - Dua sisi di seberang sudut-sudut yang sama besar panjangnya sama.

Trigonometri. G-Ed. - Dua sisi sama panjang atau dua sudut yang besarnya sama. - Dua sisi di seberang sudut-sudut yang sama besar panjangnya sama. Gracia Education Page 1 of 6 Trigonometri Pengertian Dasar Jumlah sudut-sudut dalam suatu segitiga selalu 180. Segitiga-segitiga istimewa: 1. Segitiga Siku-siku (Right-angled Triangle) - Salah satu sudutnya

Lebih terperinci

x d x t 0 t d t d t d t Kecepatan Sesaat

x d x t 0 t d t d t d t Kecepatan Sesaat Kecepatan Sesaat Kecepatan sesaat suatu benda dapat diketahui dengan cara menghitung kecepatan rata-rata benda tersebut untuk selang waktu ang sangat singkat atau t mendekati nol. Penulisanna secara matematis

Lebih terperinci

= definit postif untuk konstanta p yang = 0 mempunyai dua akar postif,

= definit postif untuk konstanta p yang = 0 mempunyai dua akar postif, 000 SOAL UNTUK MATEMATIKA CEPAT TEPAT MATEMATIKA. Fungsi kuadrat y ( p ) ( p ) = + + + definit postif untuk konstanta p yang memenuhi adalah. Jika persamaan kuadrat p ( p p) + 4 = 0 mempunyai dua akar

Lebih terperinci

MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI

MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI MODUL MATEMATIKA II Oleh: Dr. Eng. LILYA SUSANTI DEPARTEMEN RISET TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL KATA PENGANTAR Puji sukur kehadirat Allah SWT

Lebih terperinci

Vektor-vektor Yang Tegak Lurus dan Vektor-vektor Yang Paralel

Vektor-vektor Yang Tegak Lurus dan Vektor-vektor Yang Paralel Ruang Vetor Vetor-vetor Yang Tega Lurus dan Vetor-vetor Yang Paralel - Dua vetor dan saling tega lurus atau (aitu cos θ 0), ia o 0 atau ia : + + 0 - Dua vetor dan saling paralel ia omponen-omponenna sebanding

Lebih terperinci

7. RESIDU DAN PENGGUNAAN. Contoh 1 Carilah titik singular dan tentukan jenisnya dari fungsi berikut a. f(z) = 1/z

7. RESIDU DAN PENGGUNAAN. Contoh 1 Carilah titik singular dan tentukan jenisnya dari fungsi berikut a. f(z) = 1/z MATEMATIKA 6 TEKNIK Residu dan Penggunaan 6 7. RESIDU DAN PENGGUNAAN 7.. RESIDU DAN KUTUB disebut titik singular dari f() bila f() gagal analitik di tetapi analitik pada suatu titik dari setiap lingkungan

Lebih terperinci

DIKTAT KALKULUS MULTIVARIABEL I

DIKTAT KALKULUS MULTIVARIABEL I DIKTAT KALKULUS MULTIVARIABEL I Oleh Atina Ahdika, S.Si, M.Si Ayundyah Kesumawati, S.Si, M.Si (Program Studi Statistika) FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 214/215

Lebih terperinci

Koordinat Kartesius, Koordinat Tabung & Koordinat Bola. Tim Kalkulus II

Koordinat Kartesius, Koordinat Tabung & Koordinat Bola. Tim Kalkulus II Koordinat Kartesius, Koordinat Tabung & Koordinat Bola Tim Kalkulus II Koordinat Kartesius Sistem Koordinat 2 Dimensi Sistem koordinat kartesian dua dimensi merupakan sistem koordinat yang terdiri dari

Lebih terperinci

BAB I SISTEM KOORDINAT

BAB I SISTEM KOORDINAT BAB I SISTEM KOORDINAT 1.1 Sistem Koordinat Sistem koordinat adalah suatu cara ang digunakan untuk menentukan letak suatu titik pada bidang ( R ) atau ruang ( R ). Beberapa macam sistem koordinat ang kita

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini disampaian beberapa pengertian dasar yang diperluan pada bab selanutnya. Selain definisi, diberian pula lemma dan teorema dengan atau tanpa buti. Untu beberapa teorema

Lebih terperinci

1.1 Fungsi Dua Peubah Atau Lebih 1.2 Turunan Parsial Fungsi Dua Peubah atau Lebih

1.1 Fungsi Dua Peubah Atau Lebih 1.2 Turunan Parsial Fungsi Dua Peubah atau Lebih ] 1 Pada Bab 1 ini akan dibahas antara lain sebagai berikut. 1.1 Fungsi Dua Peubah Atau Lebih 1.2 Turunan Parsial Fungsi Dua Peubah atau Lebih Tema sentral dari bab ini adalah kalkulus dari fungsi peubah

Lebih terperinci

III HASIL DAN PEMBAHASAN

III HASIL DAN PEMBAHASAN Fungsi periodizer kutub tersebut dapat dituliskan pula sebagai: p θ, N, θ 0 = π N N.0 n= n sin Nn θ θ 0. () f p θ, N, θ 0 = π N N j= j sin Nj θ θ 0 diperoleh dengan menyubstitusi variabel θ pada f θ =

Lebih terperinci

ANALISA VEKTOR. Skalar dan Vektor

ANALISA VEKTOR. Skalar dan Vektor ANALISA VEKTOR Skalar dan Vektor Skalar merupakan besaran ang dapat dinatakan dengan sebuah bilangan nata. Contoh dari besaran skalar antara lain massa, kerapatan, tekanan, dan volume. Sedangkan besaran

Lebih terperinci

dengan vektor tersebut, namun nilai skalarnya satu. Artinya

dengan vektor tersebut, namun nilai skalarnya satu. Artinya 1. Pendahuluan Penggunaan besaran vektor dalam kehidupan sehari-hari sangat penting mengingat aplikasi besaran vektor yang luas. Mulai dari prinsip gaya, hingga bidang teknik dalam memahami konsep medan

Lebih terperinci

Modul 10. Fungsi Trigonometri

Modul 10. Fungsi Trigonometri Modul 10 Fungsi Trigonometri 10.1. Fungsi Gonometri Sudut Lancip A c a b 0 A Sudut adalah sudut lancip dengan titik sudut 0, sedang titik A adalah salah satu titik pada kaki sudut tersebut. Jika 0A diproeksikan

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Integral Garis

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Integral Garis Pogam Pekuliahan Dasa Umum Sekolah Tinggi Teknologi Telkom Integal Gais [MA] Integal Gais Definisi Integal gais Integal gais di bidang Misalkan pesamaan paamete kuva mulus ( di bidang (t (t ; a t b maka

Lebih terperinci

Bagian 7 Koordinat Kutub

Bagian 7 Koordinat Kutub Bagian 7 Koordinat Kutub Bagian 7 Koordinat Kutub mempelajari bagaimana teknik integrasi yang telah Anda pelajari dalam bagian sebelumnya dapat digunakan untuk menyelesaikan soal yang berhubungan dengan

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I dan Gradien dan Gradien Statistika FMIPA Universitas Islam Indonesia dan Gradien Turunan-turunan parsial f x (x, y) dan f y (x, y) mengukur laju perubahan (dan kemiringan garis singgung) pada arah sejajar

Lebih terperinci

SIFAT-SIFAT INTEGRAL LIPAT

SIFAT-SIFAT INTEGRAL LIPAT TUGAS KALKULUS LANJUT SIFAT-SIFAT INTEGAL LIPAT Oleh: KAMELIANI 46 JUUSAN MATEMATIKA FAKULTAS MATEMATIKA AN ILMU PENGETAHUAN ALAM UNIVESITAS NEGEI MAKASSA 4 SIFAT-SIFAT INTEGAL LIPAT A. SIFAT-SIFAT INTEGAL

Lebih terperinci

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika. Kode Paket 634. Oleh : Fendi Alfi Fauzi 1. x 0 x 2.

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika. Kode Paket 634. Oleh : Fendi Alfi Fauzi 1. x 0 x 2. Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket 6 Oleh : Fendi Alfi Fauzi. lim x 0 cos x x tan x + π )... a) b) 0 c) d) e) Jawaban : C Pembahasan: lim x 0

Lebih terperinci

3. ORBIT KEPLERIAN. AS 2201 Mekanika Benda Langit. Monday, February 17,

3. ORBIT KEPLERIAN. AS 2201 Mekanika Benda Langit. Monday, February 17, 3. ORBIT KEPLERIAN AS 2201 Mekanika Benda Langit 1 3.1 PENDAHULUAN Mekanika Newton pada mulanya dimanfaatkan untuk menentukan gerak orbit benda dalam Tatasurya. Misalkan Matahari bermassa M pada titik

Lebih terperinci

Sistem Koordinat dalam 2 Dimensi Ruang Mengingat kembali sebelum belajar kalkulus

Sistem Koordinat dalam 2 Dimensi Ruang Mengingat kembali sebelum belajar kalkulus Sistem Koordinat dalam 2 Dimensi Ruang Mengingat kembali sebelum belajar kalkulus Sistem Koordinat pada Bidang Datar Disusun dengan pasangan angka urut (ordered pair) (a,b) : a dan b berturut- turut adalah

Lebih terperinci

Hendra Gunawan. 11 April 2014

Hendra Gunawan. 11 April 2014 MA1201 MATEMATIKA 2A Hendra Gunawan emester II, 2013/2014 11 April 2014 Kuliah ang Lalu 12.1 Fungsi dua (atau lebih) peubah 12.2 Turunan Parsial 12.3 Limitdan Kekontinuan 12.4 Turunan fungsi dua peubah

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 36

Ringkasan Kalkulus 2, Untuk dipakai di ITB 36 Ringkasan Kalkulus 2, Untuk dipakai di ITB 36 Irisan Kerucut animation 1 animation 2 Irisan kerucut adalah kurva ang terbentuk dari perpotongan antara sebuah kerucut dengan bidang datar. Kurva irisan ini

Lebih terperinci

20. TRANSFORMASI. A. Translasi (Pergeseran) ; T = b. a y. a y. x atau. = b. = b

20. TRANSFORMASI. A. Translasi (Pergeseran) ; T = b. a y. a y. x atau. = b. = b . TRANSFORMASI A. Translasi (Pergeseran) ; T b a + b a atau b a B. Refleksi (Pencerminan). Bila M matriks refleksi berordo, maka: M atau M. Matriks M karena refleksi terhadap sumbu, sumbu, garis, dan garis

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Dua Peubah

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Dua Peubah Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Dua Peubah [MA114] Sistem Koordinat Kuadran II Kuadran I P(,) z P(,,z) Kuadran III Kuadran IV R (Bidang) Oktan 1 R 3 (Ruang) 7/6/007

Lebih terperinci

A. 3 x 3 + 2x + C B. 2x 3 + 2x + C. C. 2 x 3 + 2x + C. D. 3 x 3 + 2x + C. E. 3 x 3 + 2x 2 + C A. 10 B. 20 C. 40 D. 80 E. 160

A. 3 x 3 + 2x + C B. 2x 3 + 2x + C. C. 2 x 3 + 2x + C. D. 3 x 3 + 2x + C. E. 3 x 3 + 2x 2 + C A. 10 B. 20 C. 40 D. 80 E. 160 7. UN-SMA-- Diketahui sebidang tanah berbentuk persegi panjang luasnya 7 m. Jika panjangnya tiga kali lebarnya, maka panjang diagonal bidang tanah tersebut m m m m m 7. UN-SMA-- Pak Musa mempunyai kebun

Lebih terperinci

FISIKA. Kelas X GETARAN HARMONIS K-13. A. Getaran Harmonis Sederhana

FISIKA. Kelas X GETARAN HARMONIS K-13. A. Getaran Harmonis Sederhana K-13 Kelas X FISIKA GETARAN HARMONIS TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, amu diharapan memilii emampuan sebagai beriut. 1. Memahami onsep getaran harmonis sederhana pada bandul dan pegas

Lebih terperinci

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika Univesitas Indonusa Esa Unggul Fakultas Ilmu Kompute Teknik Infomatika Integal Gais Integal Gais Definisi Integal gais Integal gais di bidang Misalkan pesamaan paamete kuva mulus ( di bidang (t (t ; a

Lebih terperinci

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA gambar 5.1 Luasan di bawah permukaan 61 Pada Matematika Dasar I telah dipelajari integral tertentu b f ( x) dx yang dapat didefinisikan, apabila f

Lebih terperinci

Pendahuluan. 1.1 Latar Belakang

Pendahuluan. 1.1 Latar Belakang Pendahuluan 1.1 Latar elakang Geometri datar, merupakan studi tentang titik, garis, sudut, dan bangun-bangun geometri yang terletak pada sebuah bidang datar. erbagai mekanisme peralatan dalam kehidupan

Lebih terperinci

Hendra Gunawan. 5 Maret 2014

Hendra Gunawan. 5 Maret 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 5 Maret 014 Kuliah yang Lalu 10.1 Parabola, aboa, Elips, danhiperbola a 10.4 Persamaan Parametrik Kurva di Bidang 10.5 SistemKoordinatPolar 11.1 Sistem

Lebih terperinci

MACLAURIN S SERIES. Ghifari Eka

MACLAURIN S SERIES. Ghifari Eka MACLAURIN S SERIES Ghifari Eka Taylor Series Sebelum membahas mengenai Maclaurin s series alangkah lebih baiknya apabila kita mengetahui terlebih dahulu mengenai Taylor series. Misalkan terdapat fungsi

Lebih terperinci

B. Pengertian skalar dan vektor Dalam mempelajari dasar-dasar fisika, terdapat beberapa macam kuantitas kelompok besaran yaitu Vektor dan Skalar.

B. Pengertian skalar dan vektor Dalam mempelajari dasar-dasar fisika, terdapat beberapa macam kuantitas kelompok besaran yaitu Vektor dan Skalar. ANALISIS VEKTOR A. Deskripsi Materi ini akan membahas tentang pengertian, sifat, operasi dan manipulasi besaran fisik scalar dan vector. Pada pembahasan materi medan elektromagnetik berikutna akan melibatkan

Lebih terperinci

Integral Ganda. a f (x) dx = R f (x) dx: Misalkan D adalah

Integral Ganda. a f (x) dx = R f (x) dx: Misalkan D adalah oki neswan FMIPA-ITB Integral Ganda Pengertian Integral Ganda Integral ganda f (; ) da adalah perumuman dari integral R b a f () d R f () d: Misalkan adalah [a;b] daerah ang berada dalam persegi panjang

Lebih terperinci

FT UNIVERSITAS SURABAYA VARIABEL KOMPLEKS SUGATA PIKATAN. Bab V Aplikasi

FT UNIVERSITAS SURABAYA VARIABEL KOMPLEKS SUGATA PIKATAN. Bab V Aplikasi Bab V Aplikasi Selain aplikasi yang sudah diperkenalkan di bab I, teori variabel kompleks masih memiliki banyak ragam aplikasi lainnya. Beberapa di antaranya akan dibahas di dalam bab ini. Perhitungan

Lebih terperinci

BAB II FUNGSI DAN GRAFIK FUNGSI

BAB II FUNGSI DAN GRAFIK FUNGSI BAB II FUNGSI DAN GRAFIK FUNGSI. Funsi. Graik Funsi. Barisan dan Deret.4 Irisan Kerucut. Funsi Dalam berbaai aplikasi, korespondensi/hubunan antara dua himpunan serin terjadi. Sebaai contoh, volume bola

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratn Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral Darpublic BAB 6 Fungsi Trignmetri 6.. Peubah Bebas Bersatuan Derajat Berikut ini adalah fungsi-fungsi trignmetri dengan sudut

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4.0. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

VEKTOR. Besaran skalar (scalar quantities) : besaran yang hanya mempunyai nilai saja. Contoh: jarak, luas, isi dan waktu.

VEKTOR. Besaran skalar (scalar quantities) : besaran yang hanya mempunyai nilai saja. Contoh: jarak, luas, isi dan waktu. VEKTOR Kata vektor berasal dari bahasa Latin yang berarti "pembawa" (carrier), yang ada hubungannya dengan "pergeseran" (diplacement). Vektor biasanya digunakan untuk menggambarkan perpindahan suatu partikel

Lebih terperinci

TRIGONOMETRI 1. E. Grafik Fungsi Trigonometri 11/13/ Peta Konsep. E. Grafik Fungsi Trigonometri

TRIGONOMETRI 1. E. Grafik Fungsi Trigonometri 11/13/ Peta Konsep. E. Grafik Fungsi Trigonometri //05 Jurnal Peta Konsep Daftar Hadir MateriE TRIGONOMETRI SoalLK Kelas X, Semester E. Grafik Fungsi Trigonometri SoalLatihan Materi Umum Ukuran Sudut Perbandingan trigonometri Perbandingan trigonometri

Lebih terperinci

PERBANDINGAN DAN FUNGSI TRIGONOMETRI

PERBANDINGAN DAN FUNGSI TRIGONOMETRI PERBANDINGAN DAN FUNGSI TRIGONOMETRI D. Rumus Perbandingan Trigonometri di Semua Kuadran Dalam pembahasan sebelumna, kita telah melihat nilai perbandingan trigonometri untuk sudut sudut istimewa ang besarna

Lebih terperinci

Matematika Teknik Dasar-2 3 Bilangan Kompleks - 2. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Matematika Teknik Dasar-2 3 Bilangan Kompleks - 2. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Matematika Teknik Dasar-2 3 Bilangan Kompleks - 2 Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Rekap Dari materi sebelumnya telah dipelajari operasi dalam bilangan kompleks (penambahan,

Lebih terperinci

( x) LANDASAN TEORI. ω Ω ke satu dan hanya satu bilangan real X( ω ) disebut peubah acak. Ρ = Ρ. Ruang Contoh, Kejadian dan Peluang

( x) LANDASAN TEORI. ω Ω ke satu dan hanya satu bilangan real X( ω ) disebut peubah acak. Ρ = Ρ. Ruang Contoh, Kejadian dan Peluang LANDASAN TEORI Ruang Contoh Kejadian dan Peluang Suatu percobaan yang dapat diulang dalam ondisi yang sama yang hasilnya tida dapat dipredisi secara tepat tetapi ita dapat mengetahui semua emunginan hasil

Lebih terperinci

Ruang Barisan Orlicz Selisih Dengan Fungsional Aditif Dan Kontinunya

Ruang Barisan Orlicz Selisih Dengan Fungsional Aditif Dan Kontinunya J. Math. and Its Appl. ISSN: 1829-605X Vol. 2, No. 1, May. 2005, 37 45 Ruang Barisan Orlicz Selisih Dengan Fungsional Aditif Dan Kontinunya Sadjidon Jurusan Matematia Institut Tenologi Sepuluh Nopember,

Lebih terperinci

Geometri Bintang Berotasi Pada Keadaan Ambang

Geometri Bintang Berotasi Pada Keadaan Ambang Geometri Bintang Berotasi Pada Keadaan Ambang Iwan Setiawan dan Muhammad Farchani osyid Kelompo iset Kosmologi, Astrofisia, dan Fisia Matematia Jurusan Fisia Faultas Matematia dan Ilmu Pengetahuan Alam

Lebih terperinci

TE Teknik Numerik Sistem Linear. Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember

TE Teknik Numerik Sistem Linear. Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember TE9467 Teknik Numerik Sistem Linear Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF TEORI 3 CONTOH 4 SIMPULAN 5 LATIHAN OBJEKTIF

Lebih terperinci

BAB III DIMENSI PARTISI GRAF KIPAS DAN GRAF KINCIR

BAB III DIMENSI PARTISI GRAF KIPAS DAN GRAF KINCIR BAB III DIMENSI PARTISI GRAF KIPAS DAN GRAF KINCIR 3. Dimensi Partisi Graf Kipas (F n ) Berdasaran Proposisi dan Proposisi, semua graf G selain graf P n dan K n memilii 3 pd(g) n -. Lebih husus, graf Kipas

Lebih terperinci

Open Source. Not For Commercial Use. Vektor

Open Source. Not For Commercial Use. Vektor Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Vektor Vektor adalah sebuah besaran ang mempunai nilai dan arah. Secara geometri vektor biasana digambarkan sebagai anak panah berarah (lihat gambar di samping)

Lebih terperinci

Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus

Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus BAB 7. GERAK ROTASI 7.1. Pendahuluan Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus Sebuah benda tegar bergerak rotasi murni jika setiap partikel pada benda tersebut

Lebih terperinci

Matematika EBTANAS Tahun 1999

Matematika EBTANAS Tahun 1999 Matematika EBTANAS Tahun 999 EBT-SMA-99-0 Akar-akar persamaan kuadrat + = 0 adalah α dan β. Persamaan kuadrat baru yang akar-akarnya (α + ) dan (β + ) + = 0 + 7 = 0 + = 0 + 7 = 0 + = 0 EBT-SMA-99-0 Akar-akar

Lebih terperinci

21. SOAL-SOAL TRANSFORMASI GOMETRI

21. SOAL-SOAL TRANSFORMASI GOMETRI 21. SOAL-SOAL TRANSFORMASI GOMETRI Maka rotasi terhadap R[, 18 ] = cos18 sin18 sin18 cos18 UAN22 1. Bayangan garis y = 2x + 2 yang dicerminkan terhadap garis y= x adalah: A. y = x + 1 C. y = 2 x - 1 E.

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN 10.1 PENDAHULUAN Sebelum mambahas it fungsi di suatu titik terlebih dahulu kita akan mengamati perilaku suatu fungsi bila peubahnya mendekati suatu bilangan ril c tertentu. Misal

Lebih terperinci

Sudaryatno Sudirham. Studi Mandiri. Fungsi dan Grafik. Darpublic

Sudaryatno Sudirham. Studi Mandiri. Fungsi dan Grafik. Darpublic Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik ii Darpublic BAB 1 Pengertian Tentang Fungsi dan Grafik 1.1. Fungsi Apabila suatu besaran memiliki nilai ang tergantung dari nilai besaran lain, maka

Lebih terperinci

Xpedia Matematika. Kapita Selekta Set 05

Xpedia Matematika. Kapita Selekta Set 05 Xpedia Matematika Kapita Selekta Set 05 Doc. Name: XPMAT9705 Doc. Version : 0-07 halaman 0a Garis singgung pada kurva y=x -x + akan sejajar dengan sumbu x di titik yang absisnya... x = x = 0 x = 0 dan

Lebih terperinci

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN 05 yosprens.wordpres.com SOAL DAN PEMBAHASAN MATA UJI MATEMATIKA TKD SAINTEK SBMPTN 05 Berikut ini 5 soal mata uji matematika beserta pembahasannya yang diujikan

Lebih terperinci

FUNGSI KHUSUS DALAM BENTUK INTEGRAL

FUNGSI KHUSUS DALAM BENTUK INTEGRAL FUNGSI KHUSUS DALAM BENTUK INTEGRAL FUNGSI FAKTORIAL Definisi n e d n! Buktikan bahwa :!! e d e d e ( ) Terbukti FUNGSI Gamma Definisi ( ) p p e d ; p > Hubungan fungsi Gamma dengan fungsi Faktorial (

Lebih terperinci

, ω, L dan C adalah riil, tunjukkanlah

, ω, L dan C adalah riil, tunjukkanlah . Jika z j j PROBLEM SE# Sistem Bilangan Kompleks, tentukanlah bagian riil dan bagian imajiner dari bilangan kompleks z z. Carilah harga dan y yang memenuhi persamaan : y j y, j, ( ) ( ). Carilah bentuk

Lebih terperinci

BAB III DESAIN DAN APLIKASI METODE FILTERING DALAM SISTEM MULTI RADAR TRACKING

BAB III DESAIN DAN APLIKASI METODE FILTERING DALAM SISTEM MULTI RADAR TRACKING Bab III Desain Dan Apliasi Metode Filtering Dalam Sistem Multi Radar Tracing BAB III DESAIN DAN APLIKASI METODE FILTERING DALAM SISTEM MULTI RADAR TRACKING Bagian pertama dari bab ini aan memberian pemaparan

Lebih terperinci

MATEMATIKA. Sesi TRANSFORMASI 2 CONTOH SOAL A. ROTASI

MATEMATIKA. Sesi TRANSFORMASI 2 CONTOH SOAL A. ROTASI MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN 14 Sesi NGAN TRANSFORMASI A. ROTASI Rotasi adalah memindahkan posisi suatu titik (, y) dengan cara dirotasikan pada titik tertentu sebesar sudut tertentu.

Lebih terperinci

Kalkulus Peubah Banyak Modul Pembelajaran. January UNIVERSITAS MUHAMMADIYAH MALANG ALFIANI ATHMA PUTRI ROSYADI, M.Pd

Kalkulus Peubah Banyak Modul Pembelajaran. January UNIVERSITAS MUHAMMADIYAH MALANG ALFIANI ATHMA PUTRI ROSYADI, M.Pd Kalkulus Peubah Banyak Modul Pembelajaran January UNIVERSITAS MUHAMMADIYAH MALANG ALFIANI ATHMA PUTRI ROSYADI, M.Pd IDENTITAS MAHASISWA NAMA : KLS/NIM :. KELOMPOK:. A l f i a n i A t h m a P u t r i R

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral Darpublic Hak cipta pada penulis, SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham Darpublic,

Lebih terperinci

Kinematika. 1 Kinematika benda titik: posisi, kecepatan, percepatan

Kinematika. 1 Kinematika benda titik: posisi, kecepatan, percepatan ekan #1 Kinematika Mekanika membahas gerakan benda-benda fisis. Kita akan memulai pembahasan kinematika benda titik. Kinematika aitu topik ang membahas deskripsi gerak benda-benda tanpa memperhatikan penebab

Lebih terperinci

Danang Mursita Sekolah Tinggi Teknologi Telkom Bandung 2002

Danang Mursita Sekolah Tinggi Teknologi Telkom Bandung 2002 Bandung DAFTAR ISI Judul Kata Pengantar Daftar Isi i ii iv Bab Fungsi Real. Sistem Bilangan Real. Fungsi dan Grafi 6. Limit dan eontinuan.4 Limit ta Hingga dan Limit di Ta Hingga 7 Bab Turunan dan Penggunaan.

Lebih terperinci

RINGKASAN SKRIPSI MODUL PERKALIAN

RINGKASAN SKRIPSI MODUL PERKALIAN RINGKASAN SKRIPSI MODUL PERKALIAN SAMSUL ARIFIN 04/177414/PA/09899 DEPARTEMEN PENDIDIKAN NASIONAL UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM YOGYAKARTA 2008 HALAMAN PENGESAHAN

Lebih terperinci

Arahnya diwakili oleh sudut yang dibentuk oleh A dengan ketigas umbu koordinat,

Arahnya diwakili oleh sudut yang dibentuk oleh A dengan ketigas umbu koordinat, VEKTOR Dalam mempelajari fisika kita selalu berhubungan dengan besaran, yaitu sesuatu yang dapat diukur dan dioperasikan. da besaran yang cukup dinyatakan dengan nilai (harga magnitude) dan satuannya saja,

Lebih terperinci

BAB I ANALISIS VEKTOR

BAB I ANALISIS VEKTOR BAB I ANALISIS VEKTOR A. Deskripsi Materi ini akan membahas tentang pengertian, sifat, operasi dan manipulasi besaran fisik scalar dan vector. Pada pembahasan materi medan elektromagnetik berikutna akan

Lebih terperinci

MATEMATIKA TEKNIK II BILANGAN KOMPLEKS

MATEMATIKA TEKNIK II BILANGAN KOMPLEKS MATEMATIKA TEKNIK II BILANGAN KOMPLEKS 2 PENDAHULUAN SISTEM BILANGAN KOMPLEKS REAL IMAJINER RASIONAL IRASIONAL BULAT PECAHAN BULAT NEGATIF CACAH ASLI 0 3 ILUSTRASI Carilah akar-akar persamaan x 2 + 4x

Lebih terperinci

( )( ) ISTIYANTO.COM. Pembahasan: Nomor 2 Bentuk sederhana dari A. B. C. D. E. 5 a b. Pembahasan: Nomor 3. Bentuk sederhana dari

( )( ) ISTIYANTO.COM. Pembahasan: Nomor 2 Bentuk sederhana dari A. B. C. D. E. 5 a b. Pembahasan: Nomor 3. Bentuk sederhana dari ISTIYANTO.COM Pembahasan: Nomor (a b Bentuk sederhana dari (a b A. a b a b a b ab 9 a b 8 adalah Pembahasan: Soal UN Matematika IPA Dapatkan Buku Bank Soal Matematika SMA karangan Istiyanto untuk memudahkan

Lebih terperinci

1. Pengertian Tentang Fungsi dan Grafik

1. Pengertian Tentang Fungsi dan Grafik Darpublic Oktober 3 www.darpublic.com. Pengertian Tentang Fungsi dan Grafik Fungsi Apabila suatu besaran memiliki nilai ang tergantung dari nilai besaran lain, maka dikatakan bahwa besaran tersebut merupakan

Lebih terperinci

PAKET 4. Paket : 4. No Soal Jawaban 1 Luas Segiempat PQRS pada gambar di bawah ini adalah. A. 120 cm 2 B. 216 cm 2 C. 324 cm 2 D. 336 cm 2 E.

PAKET 4. Paket : 4. No Soal Jawaban 1 Luas Segiempat PQRS pada gambar di bawah ini adalah. A. 120 cm 2 B. 216 cm 2 C. 324 cm 2 D. 336 cm 2 E. PAKET 4 Jumlah Soal : 0 soal Kompetensi :. Bangun Datar. Trigonometri. Bangun Ruang 4. Barisan dan Deret Compile By : Syaiful Hamzah Nasution No Soal Jawaban Luas Segiempat PQRS pada gambar di bawah ini

Lebih terperinci

2. Untuk interval 0 < x < 360, nilai x yang nantinya akan memenuhi persamaan trigonometri cos x 2 sin x = 2 3 cos adalah

2. Untuk interval 0 < x < 360, nilai x yang nantinya akan memenuhi persamaan trigonometri cos x 2 sin x = 2 3 cos adalah Soal Babak Semifinal OMITS 007. Hubungan antara a dan b agar fungsi f x = a sin x + b cos x mempunyai nilai stasioner di x = π adalah a. a = b b. a = b d. a = b e. a = b a = b. Untuk interval 0 < x < 60,

Lebih terperinci

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan . (5 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan dengan H). Kecepatan awal horizontal bola adalah v 0 dan

Lebih terperinci

Kumpulan soal-soal level seleksi Kabupaten: Solusi: a a k

Kumpulan soal-soal level seleksi Kabupaten: Solusi: a a k Kumpulan soal-soal level selesi Kabupaten: 1. Sebuah heliopter berusaha menolong seorang orban banjir. Dari suatu etinggian L, heliopter ini menurunan tangga tali bagi sang orban banjir. Karena etautan,

Lebih terperinci

Kegiatan Belajar 2. Identitas Trigonometri

Kegiatan Belajar 2. Identitas Trigonometri Kegiatan Belaja A. Tujuan Pembelajaan Setelah mempelajai kegiatan belaja, dihaapkan siswa dapat a. Menggunakan identitas tigonometi dalam penelesaian b. Membuktikan identitas tigonometi sedehana dengan

Lebih terperinci

PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA

PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 49 PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut

Lebih terperinci

(A) 3 (B) 5 (B) 1 (C) 8

(A) 3 (B) 5 (B) 1 (C) 8 . Turunan dari f ( ) = + + (E) 7 + +. Turunan dari y = ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( ) ( + ) (E) ( ) ( + ) 7 5 (E) 9 5 9 7 0. Jika f ( ) = maka f () = 8 (E) 8. Jika f () = 5 maka f (0) +

Lebih terperinci

4. 1 Spesifikasi Keadaan dari Sebuah Sistem

4. 1 Spesifikasi Keadaan dari Sebuah Sistem Dalam pembahasan terdahulu ita telah mempelajari penerapan onsep dasar probabilitas untu menggambaran sistem dengan jumlah partiel ang cuup besar (N). Pada bab ini, ita aan menggabungan antara statisti

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci