DISTRIBUSI BINOMIAL berhasil gagal berhasil gagal berhasil gagal ya tidak success failed sukses atau berhasil gagal. sukses atau berhasil.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "DISTRIBUSI BINOMIAL berhasil gagal berhasil gagal berhasil gagal ya tidak success failed sukses atau berhasil gagal. sukses atau berhasil."

Transkripsi

1 DISTRIBUSI BINOMIAL Pendahuluan Distribusi binomial merupakan suatu proses distribusi probabilitas yang dapat digunakan apabila suatu proses sampling dapat diasumsikan sesuai dengan proses Bernoulli. Proses Bernoulli adalah suatu proses probabilitas yang dapat dilakukan berulang kali. Misalnya : Dalam pelemparan sekeping uang logam sebanyak 5 kali. Hasil setiap pelemparan uang logam tersebut hanya mungkin muncul sisi gambar atau angka saja. Dalam pengambilan kartu yang dilakukan secara berturut-turut, kemungkinan yang muncul hanya kartu merah atau kartu hitam saja. Dari contoh di atas dapat diberikan suatu label berhasil untuk sisi gambar dan label gagal untuk sisi angka ataupun sebaliknya. Begitu juga dengan pengambilan kartu, kita dapat memberi label berhasil untuk pengambilan kartu warna merah dan label gagal untuk pengambilan kartu warna hitam ataupun sebaliknya. Ulangan-ulangan tersebut bersifat bebas dan peluang berhasil atau gagal setiap ulangan memiliki probabilitas yang sama yaitu 50% atau ½. Sebenarnya ada sedikit persamaan antara distribusi binomial dengan distribusi poisson. Keduanya berusaha mencari kemungkinan yang timbul dari suatu peristiwa/kejadian yang ada. Namun ada beberapa hal yang membedakan penggunaan kedua distribusi tersebut yaitu: Distribusi binomial digunakan jika besarnya sampel (n) < 20 (kurang dari 20) dan nilai peluang berhasil dalam setiap ulangan (p) > 0.05 Distribusi poisson digunakan jika besarnya sampel (n) 20 (lebih dari 20 atau sama dengan 20) dan nilai peluang berhasil dalam setiap ulangan (p) 0.05 (kurang dari 0.05 atau sama dengan 0.05) Adapun ciri-ciri atau karakteristik distribusi binomial antara lain : a. Percobaan diulang sebanyak n kali b. Hasil setiap ulangan dapat dikategorikan dalam 2 kelas Misal : berhasil atau gagal ya atau tidak success atau failed c. Peluang berhasil atau sukses disimbolkan dengan p dan dalam setiap ulangan nilai p tetap, dimana p = 1 - q sedangkan peluang gagal dinyatakan dengan q dimana q = 1 - p d. Banyaknya keberhasilan dalam peubah acak disimbolkan dengan x e. Setiap ulangan bersifat bebas (independent) satu dengan lainnya. Catatan Untuk memberikan kemudahan dalam membedakan antara nilai p dan nilai q, terlebih dahulu harus ditetapkan yang mana yang merupakan kejadian yang dapat dikategorikan sukses atau berhasil dan yang mana kejadian yang dapat dikategorikan gagal. Perlu diingat bahwa kejadian yang menjadi pertanyaan ataupun ditanyakan dari suatu permasalahan bisa dikategorikan sebagai kejadian sukses atau berhasil. Dengan demikian kejadian yang menjadi pertanyaan dari suatu permasalahan dapat disimbolkan dengan p. Selain itu perlu diperhatikan juga penggunaan simbol yang tepat misalnya : Kurang dari disimbolkan dengan < Lebih dari disimbolkan dengan > Paling banyak disimbolkan dengan 10

2 Paling sedikit disimbolkan dengan Kurang dari sama dengan disimbolkan dengan Lebih dari sama dengan disimbolkan dengan Tujuan Praktikum Binomial Tujuan dari praktikum materi distribusi binomial ini adalah untuk membantu praktikan dalam mempelajari dan memahami bagaimana cara mencari nilai probabilitas (kemungkinan) dari suatu kejadian binomial (kejadian dengan jumlah sampel < 20 dan nilai peluang berhasil > 0.05) dengan menggunakan program R. Rumus umum binomial b (x;n,p) = C x n p x q n-x Keterangan : n = banyaknya kejadian berulang x = banyaknya keberhasilan dalam peubah acak x p = peluang berhasil dalam setiap ulangan dimana p = 1 - q q = peluang gagal dimana q = 1 - p Langkah-langkah mengoperasikan program R untuk distribusi binomial : a. Apabila diketahui x = Perintah mencari probabilitas binomial pada Script Window atau dbinom (x,n,p), maka tuliskan nilai x,n,p pada Script Window tersebut. kemudian tekan Submit maka pada output window akan muncul nilai probabilitasnya. b. Apabila diketahui nilai x Atau nilai x = sampai Perintah mencari probabilitas binomial pada Script Window adalah sum (dbinom (x,n,p)),maka tuliskan nilai x,n,p pada Script Window tersebut. kemudian tekan Submit maka pada output window akan muncul nilai probabilitasnya. c. Apabila diketahui kata-kata paling banyak atau x Tekan distribution, discret distributions, binomial distribution, lalu binomial tail probabilities. Input variabel value (s) = nilai x Contoh : Paling banyak 5 orang menyatakan tertarik menonton sepak bola. Maka nilai x 5, jadi input var value (s) =5 Input binomial trial = nilai n Input probability of success = (nilai p) Lalu pilih lower tail (karena ditanyakan probabilitas paling banyak ) Tekan ok Maka akan diperoleh nilai probabilitas tersebut. d. Apabila diketahui kata-kata paling sedikit atau x 11

3 Tekan distribution, discret distributions, binomial distribution, lalu binomial tail probabilities Perhatikan bahwa yang ditanyakan adalah paling sedikit, maka x atau x >. Contoh : Paling sedikit 5 orang menyatakan tertarik menonton sepak bola. Maka nilai x 5 atau x > 4 Input variabel value (s) = 4 Input binomial trial s = nilai n Input probability of success = (nilai p) lalu pilih upper tail (karena yamg ditanyakan probabilitas paling sedikit atau lebih dari ). Tekan ok Maka akan diperoleh nilai probabilitas tersebut. KASUS Berdasarkan data BPS mengenai warga yang menerima BLT, 40 % warga miskin menyatakan menerima BLT dan sisanya tidak menerima BLT. Apabila ditanyakan pada 5 orang warga miskin di Indonesia, berapakah probabilitas: a. Paling sedikit 4 orang diantaranya menerima BLT b. 3 orang diantaranya menerima BLT c. Paling banyak 2 orang tidak menerima BLT d. Ada 2 sampai 4 orang yang tidak menerima BLT JAWAB a. x 4 atau x > 3 2. Pilih menu Distribution, Discrete distributions, Binomial distribution, lalu Binomial tail probabilities 3. Masukkan variabel value (s) = 3, input binomial trial = 5, input probabilities of success = 0.4 serta pilih upper tail kemudian tekan tombol OK 12

4 4. Maka nilai probabilitas paling sedikit 4 orang menerima BLT adalah atau jika dinyatakan dalam bentuk persentase sebesar 87.04% b. X = 3 2. Perintah mencari probabilitas binomial pada script window adalah dbinom (x,n,p),, maka tuliskan pada script window dbinom (3,5,0.4) kemudian tekan tombol Submit 3. Maka output window muncul probabilitas 3 orang menerima BLT adalah atau jika dinyatakan dalam bentuk persentase sebesar % 13

5 Atau 2. Pilih menu Distribution, Discrete distributions, Binomial distribution, lalu Binomial probabilities 3. Isi nilai n pada kotak binomial trials = 5, kemudian input probabilities of success dengan nilai probabilitas berhasil ( probabilities of success = 0.4 ) kemudian tekan tombol OK 4. Maka output window muncul probabilitas 3 orang menerima BLT adalah atau jika dinyatakan dalam bentuk persentase sebesar % 14

6 c. x 2 2. Pilih menu Distribution, Discrete distributions, Binomial distribution, lalu Binomial tail probabilities. 3. Input nilai variabel value (s) = 2, input binomial trial = 5, input probabilities of success = 0.6 (karena yang ditanyakan yang tidak menerima BLT), kemudian pilih lower tail (karena yang ditanyakan paling banyak ) dan tekan tombol OK 4. Maka nilai probabilitas paling banyak 2 orang tidak menerima BLT adalah atau jika dinyatakan dalam bentuk persentase sebesar % 15

7 d. 2 x 4 2. Perintah mencari probabilitas binomial pada script window adalah sum(dbinom (x,n,p)),, maka tuliskan pada script window sum(dbinom (2:4,5,0.6)) 3. Tekan submit 4. Maka output window muncul probabilitas ada 2 sampai 4 orang yang tidak menerima BLT adalah atau jika dinyatakan dalam bentuk persentase sebesar

LAB MANAJEMEN DASAR MODUL STATISTIKA 1

LAB MANAJEMEN DASAR MODUL STATISTIKA 1 LAB MANAJEMEN DASAR MODUL STATISTIKA 1 Nama : NPM/Kelas : Fakultas/Jurusan : Hari dan Shift Praktikum : Fakultas Ekonomi Universitas Gunadarma Kelapa dua E531 1 UKURAN STATISTIK Pendahuluan Ukuran statistik

Lebih terperinci

LAB MANAJEMEN DASAR MODUL STATISTIKA 1

LAB MANAJEMEN DASAR MODUL STATISTIKA 1 LAB MANAJEMEN DASAR MODUL STATISTIKA 1 Nama : NPM/Kelas : Fakultas/Jurusan : Hari dan Shift Praktikum : Fakultas Ekonomi Universitas Gunadarma Kelapa dua E531 1 UKURAN STATISTIK Pendahuluan Ukuran statistik

Lebih terperinci

DISTRIBUSI POISSON Pendahuluan Rumus Pendekatan Peluang Poisson untuk Binomial P ( x ; µ ) = (e µ. µ X ) / X! n. p Rumus Proses Poisson

DISTRIBUSI POISSON Pendahuluan Rumus Pendekatan Peluang Poisson untuk Binomial P ( x ; µ ) = (e µ. µ X ) / X! n. p Rumus Proses Poisson DISTRIBUSI POISSON Pendahuluan Distribusi poisson diberi nama sesuai dengan penemunya yaitu Siemon D. Poisson. Distribusi ini merupakan distribusi probabilitas untuk variabel diskrit acak yang mempunyai

Lebih terperinci

PENDAHULUAN Definisi: Contoh Kasus:

PENDAHULUAN Definisi: Contoh Kasus: DISTRIBUSI PROBABILITAS 1 PENDAHULUAN Definisi: Distribusi probabilitas adalah sebuah susunan distribusi yang mempermudah mengetahui probabilitas sebuah peristiwa. Merupakan hasil dari setiap peluang peristiwa.

Lebih terperinci

LABORATORIUM MANAJEMEN DASAR STATISTIKA 1 PTA 2015/2016 NAMA : NPM : KELAS : KP : TUTOR : ASBAR :

LABORATORIUM MANAJEMEN DASAR STATISTIKA 1 PTA 2015/2016 NAMA : NPM : KELAS : KP : TUTOR : ASBAR : LABORATORIUM MANAJEMEN DASAR STATISTIKA 1 PTA 2015/2016 NAMA : NPM : KELAS : KP : TUTOR : ASBAR : FAKULTAS EKONOMI UNIVERSITAS GUNADARMA JAKARTA 2015 KATA PENGANTAR Puji syukur kami panjatkan kepada Tuhan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi Binomial adalah distribusi probabilitas diskrit jumlah keberhasilan dalam n percobaan ya/tidak(berhasil/gagal)

Lebih terperinci

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2 Pertemuan ke- 4 BAB III POPULASI, SAMPEL & DISTRIBUSI TEORITIS VARIABEL DISKRIT DAN FUNGSI PROBABILITAS 3.1 Variabel Random atau Variabel Acak Variabel yang nilainya merupakan suatu bilangan yang ditentukan

Lebih terperinci

NAMA : NPM : KELAS : KP : TUTOR : ASBAR : LAB. MANAJEMEN DASAR vii LITBANG PTA 16/17

NAMA : NPM : KELAS : KP : TUTOR : ASBAR : LAB. MANAJEMEN DASAR vii LITBANG PTA 16/17 NAMA : NPM : KELAS : KP : TUTOR : ASBAR : LAB. MANAJEMEN DASAR vii LITBANG PTA 16/17 KATA PENGANTAR KATA PENGANTAR Dengan menyebut nama Allah, kami panjatkan puji dan syukur ata kehadirat-nya, yang telah

Lebih terperinci

Modul Praktikum Distribusi Weibull DISTRIBUSI WEIBULL. Tujuan Praktikum:

Modul Praktikum Distribusi Weibull DISTRIBUSI WEIBULL. Tujuan Praktikum: DISTRIBUSI WEIBULL Tujuan Praktikum: Membantu mahasiswa memahami materi Pegambilan keputusan dari suatu kasus dengan menggunakan kaidah dan syarat I. PENDAHULUAN ini diperkenalkan oleh ahli fisikawan Swedia

Lebih terperinci

MODUL DISTRIBUSI PROBABILITAS EKSPONENSIAL

MODUL DISTRIBUSI PROBABILITAS EKSPONENSIAL MODUL DISTRIBUSI PROBABILITAS EKSPONENSIAL Tujuan Praktikum: Membantu mahasiswa memahami materi Distribusi Eksponensial Pengambilan keputusan dari suatu kasus dengan menggunakan kaidah dan syarat Distribusi

Lebih terperinci

Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif

Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif 6 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Variabel Acak Diskrit Distribusi

Lebih terperinci

MODUL PRAKTIKUM STATISTIKA 2. Laboratorium Jurusan. Manajemen Dasar. Fakultas Ekonomi UNIVERSITAS GUNADARMA. Versi 3.1. Tahun Penyusunan 2012

MODUL PRAKTIKUM STATISTIKA 2. Laboratorium Jurusan. Manajemen Dasar. Fakultas Ekonomi UNIVERSITAS GUNADARMA. Versi 3.1. Tahun Penyusunan 2012 MODUL PRAKTIKUM STATISTIKA 2 Versi 3.1 Tahun Penyusunan 2012 Tim Penyusun 1. Ir. Rina Sugiarti, MM 2. Lies Handrijaningsih, SE.,MM 3. Budi Sulistyo SE.,MM 4. Oktavia Anna Rahayu 5. Intan Permatasari Laboratorium

Lebih terperinci

DISTRIBUSI BINOMIAL STKIP SILIWANGI BANDUNG LUVY S ZANTHY KAPSEL SMA

DISTRIBUSI BINOMIAL STKIP SILIWANGI BANDUNG LUVY S ZANTHY KAPSEL SMA DISTRIBUSI BINOMIAL STKIP SILIWANGI BANDUNG LUVY S ZANTHY KAPSEL SMA 1 LUVY S. ZANTHY KAPSEL SMA 2 LUVY S. ZANTHY KAPSEL SMA 3 Distribusi Binomial O Dalam suatu percobaan statistik sering dijumpai pengulangan

Lebih terperinci

Distribusi Probabilitas Diskrit: Binomial & Multinomial

Distribusi Probabilitas Diskrit: Binomial & Multinomial Distribusi Probabilitas Diskrit: Binomial & Multinomial 6 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Variabel Acak Diskrit Distribusi Binomial Distribusi

Lebih terperinci

Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada. 1http://istiarto.staff.ugm.ac.id STATISTIKA. Discrete Probability Distributions

Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada. 1http://istiarto.staff.ugm.ac.id STATISTIKA. Discrete Probability Distributions Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA Discrete Probability Distributions 1http://istiarto.staff.ugm.ac.id Discrete Probability Distributions Distribusi Hipergeometrik Bernoulli

Lebih terperinci

BAB IV. DISTRIBUSI PROBABILITAS DISKRIT

BAB IV. DISTRIBUSI PROBABILITAS DISKRIT BAB IV. DISTRIBUSI PROBABILITAS DISKRIT A. Variabel random diskrit. Variabel random diskrit X adalah : Cara memberi nilai angka pada setiap elemen ruang sampel X(a) : Ukuran karakteristik tertentu dari

Lebih terperinci

DISTRIBUSI PELUANG TEORITIS

DISTRIBUSI PELUANG TEORITIS Distribusi Teoritis 1/ 15 DISTRIBUSI PELUANG TEORITIS 1. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.. PEUBAH ACAK Fungsi yang mendefinisikan

Lebih terperinci

Distribusi Peluang Teoritis. Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.

Distribusi Peluang Teoritis. Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan. Distribusi Peluang Teoritis. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan. Peubah Acak Fungsi yang mendefinisikan titik-titik contoh dalam ruang

Lebih terperinci

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG Tugas Kelompok Mata Kuliah Metodologi Penelitian Kuantitatif Judul Makalah Revisi DISTRIBUSI PELUANG Kajian Buku Pengantar Statistika Pengarang Nana Sudjana Tugas dibuat untuk memenuhi tugas mata kuliah

Lebih terperinci

Distribusi Peluang Teoritis

Distribusi Peluang Teoritis Distribusi Peluang Teoritis 1. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.. Peubah Acak Fungsi yang mendefinisikan titik-titik contoh dalam ruang

Lebih terperinci

KONSEP DASAR PROBABILITAS

KONSEP DASAR PROBABILITAS KONSEP DASAR PROBABILITAS PERTEMUAN VIII EvanRamdan PROBABILITAS Dalam menentukan banyaknya anggota kejadian, kadangkala kita tidak selalu dapat mendaftar semua titik sampel dalam percobaan tersebut. Untuk

Lebih terperinci

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan

Lebih terperinci

PERBANDINGAN KURVA PADA DISTRIBUSI UNIFORM DAN DISTRIBUSI BINOMIAL

PERBANDINGAN KURVA PADA DISTRIBUSI UNIFORM DAN DISTRIBUSI BINOMIAL Statistika, Vol., No., Mei PERBANDINGAN KURVA PADA DISTRIBUSI UNIFORM DAN DISTRIBUSI BINOMIAL Moh. Yamin Darsyah, Dwi Haryo Ismunarti Program Studi S Statistika Universitas Muhammadiyah Semarang, Jl. Kedung

Lebih terperinci

FORMAT LAPORAN MODUL V DISTRIBUSI SAMPLING

FORMAT LAPORAN MODUL V DISTRIBUSI SAMPLING FORMAT LAPORAN MODUL V DISTRIBUSI SAMPLING ABSTRAK ABSTRACT KATA PENGANTAR DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN BAB I PENDAHULUAN (kata pengantar) 1.1 Latar Belakang 1.2 Tujuan Penulisan

Lebih terperinci

Model dan Simulasi Universitas Indo Global Mandiri

Model dan Simulasi Universitas Indo Global Mandiri Model dan Simulasi Universitas Indo Global Mandiri Nomor random >> angka muncul secara acak (random/tidak terurut) dengan probabilitas untuk muncul yang sama. Probabilitas/Peluang merupakan ukuran kecenderungan

Lebih terperinci

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas Probabilitas Bagian Probabilitas A) = peluang (probabilitas) bahwa kejadian A terjadi 0 < A) < 1 A) = 0 artinya A pasti terjadi A) = 1 artinya A tidak mungkin terjadi Penentuan nilai probabilitas: Metode

Lebih terperinci

Tipe Peubah Acak. Diskret. Kontinu

Tipe Peubah Acak. Diskret. Kontinu 2 N i 1 x i N 2 Tipe Peubah Acak Diskret Segugus nilai dari suatu peubah acak yang dapat dicacah (countable) Misalkan X = banyaknya tendangan penalti yang berhasil dilakukan oleh pemain A Kontinu Nilai-nilai

Lebih terperinci

MATERI KULIAH STATISTIKA

MATERI KULIAH STATISTIKA MATERI KULIAH STATISTIKA III. TEORI PROBABILITAS 1. Operasi himpunan a. Gabungan atau union b. Interseksi atau irisan Contoh soal 1 : Dalam sebuah eksperimen pelemparan 1 buah dadu, terdapat kejadian :

Lebih terperinci

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω SAMPLE SPACE, SAMPLE POINTS, EVENTS Sample space,ω, Ω adalah sekumpulan semua sample points,ω, ω yang mungkin; dimana ω Ω Contoh 1. Melemparkan satu buah koin:ω={gambar,angka} Contoh 2. Menggelindingkan

Lebih terperinci

DISTRIBUSI PROBABILITAS DISKRET

DISTRIBUSI PROBABILITAS DISKRET DISTRIBUSI PROBABILITAS DISKRET 1 OUTLINE BAGIAN II Probabilitas dan Teori Keputusan Konsep-konsep Dasar Probabilitas Diskret Distribusi Normal Teori Keputusan Pengertian Distribusi Probabilitas Binomial

Lebih terperinci

MODUL UJI NON PARAMETRIK (CHI-SQUARE/X 2 )

MODUL UJI NON PARAMETRIK (CHI-SQUARE/X 2 ) MODUL UJI NON PARAMETRIK (CHI-SQUARE/X 2 ) Tujuan Praktikum: Membantu mahasiswa memahami materi Distribusi Chi Square Pengambilan keputusan dari suatu kasus dengan menggunakan kaidah dan syarat Distribusi

Lebih terperinci

STATISTIK PERTEMUAN V

STATISTIK PERTEMUAN V STATISTIK PERTEMUAN V Variabel Random/ Acak variabel yg nilai-nilainya ditentukan oleh kesempatan/ variabel yang bernilai numerik yg didefinisikan dlm suatu ruang sampel 1. Variabel Random diskrit Variabel

Lebih terperinci

Beberapa Peubah Acak Diskret (1) Kuliah 8 Pengantar Hitung Peluang

Beberapa Peubah Acak Diskret (1) Kuliah 8 Pengantar Hitung Peluang Beberapa Peubah Acak Diskret (1) Kuliah 8 Pengantar Hitung Peluang rahmaanisa@apps.ipb.ac.id Outline Peubah acak Bernoulli Peubah acak binom Peubah acak geometrik Latihan dan Diskusi Review Peubah Acak

Lebih terperinci

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling Rengganis Banitya Rachmat rengganis.rachmat@gmail.com 4. Distribusi Probabilitas Normal dan Binomial

Lebih terperinci

R Commander - Rcmdr. A. Instalasi & Menu dalam Rcmdr 1. Instalasi

R Commander - Rcmdr. A. Instalasi & Menu dalam Rcmdr 1. Instalasi + R Commander - Rcmdr Seperti kita telah pelajari dan lihat sebelumnya, R adalah perangkat lunak statistik berbasiskan perintah (command driven), yang sepertinya dapat memberi kesulitan bagi pengguna pemula

Lebih terperinci

1.1 Konsep Probabilitas

1.1 Konsep Probabilitas TEORI DASAR PROBABILITAS 1.1 Konsep Probabilitas Probabilitas/peluang secara umum dapat diartikan sebagai ukuran matematis terhadap kecenderungan akan munculnya sebuah kejadian. Secara matematis peluang

Lebih terperinci

Distribusi Probabilitas Diskrit: Poisson

Distribusi Probabilitas Diskrit: Poisson Distribusi Probabilitas Diskrit: Poisson 7.2 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Pendahuluan Pendekatan Binomial Poisson Distribusi Poisson Kapan distribusi

Lebih terperinci

Contoh: Aturan Penjumlahan. Independen. P(A dan B) = P(A) x P(B)

Contoh: Aturan Penjumlahan. Independen. P(A dan B) = P(A) x P(B) Aturan Penjumlahan Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(A atau B)= P(A)+P(B) Not Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(Aatau B): P(A)+P(B) P(A dan B) Contoh:

Lebih terperinci

Distribusi Probabilitas Diskret Teoritis

Distribusi Probabilitas Diskret Teoritis Distribusi robabilitas Diskret Teoritis Distribusi robabilitas Teoritis Diskret Distribusi seragam diskret (discrete uniform distribution) Distribusi hipergeometris (hypergeometric distribution) Distribusi

Lebih terperinci

CARA MENGGUNAKAN APLIKASI

CARA MENGGUNAKAN APLIKASI CARA MENGGUNAKAN APLIKASI Untuk menjalankan aplikasi sistem pakar untuk melakukan diagnosis penyakit jantung dengan teorema bayes, yaitu : Jalankan aplikasi sistem pakar dengan memilih toolbar start pada

Lebih terperinci

STATISTIK INDUSTRI 1. Random Variable. Distribusi Peluang. Distribusi Peluang Diskrit. Distribusi Peluang Diskrit 30/10/2013 DISKRIT DAN KONTINYU

STATISTIK INDUSTRI 1. Random Variable. Distribusi Peluang. Distribusi Peluang Diskrit. Distribusi Peluang Diskrit 30/10/2013 DISKRIT DAN KONTINYU STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Distribusi Peluang DISKRIT DAN KONTINYU Random Variable Random variable / peubah acak: Suatu fungsi yang mengaitkan suatu bilangan real dengan tiap elemen

Lebih terperinci

ATURAN DASAR PROBABILITAS. EvanRamdan

ATURAN DASAR PROBABILITAS. EvanRamdan ATURAN DASAR PROBABILITAS BEBERAPA ATURAN DASAR PROBABILITAS Secara umum, beberapa kombinasi dari kejadian dalam sebuah eksperimen dapat dihitung probabilitasnya berdasarkan dua aturan, yaitu: 1) Aturan

Lebih terperinci

TEORI PROBABILITAS 1

TEORI PROBABILITAS 1 TEORI PROBABILITAS 1 Berapa peluang munculnya angka 4 pada dadu merah??? Berapa peluang munculnya King heart? Berapa peluang munculnya gambar? 2 PELUANG ATAU PROBABILITAS adalah perbandingan antara kejadian

Lebih terperinci

: Distribusi Peluang. : D. Rizal Riadi

: Distribusi Peluang. : D. Rizal Riadi MATERI 3 Mata Kuliah Dosen : Distribusi Peluang : Statistik : D. Rizal Riadi Mengingat data kuantitatif dipengaruhi faktor-faktor ketidakpastian dan variasi yang disebabkan akurasi instrumen penelitian

Lebih terperinci

Pierre-Simon Laplace. Born 23 March 1749 Beaumont-en-Auge, Normandy, France Died 5 March 1827 (aged 77) Paris, France Mempelajari peluang dalam judi

Pierre-Simon Laplace. Born 23 March 1749 Beaumont-en-Auge, Normandy, France Died 5 March 1827 (aged 77) Paris, France Mempelajari peluang dalam judi Blaise Pascal Born June 19, 1623 Clermont-Ferrand, France Died August 19, 1662 (aged 39) Paris, France Memenangkan taruhan tentang hasil tos dua dadu yang dilakukan berulang-ulang Pierre-Simon Laplace

Lebih terperinci

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30 DISTRIBUSI TEORITIS Distribusi teoritis merupakan alat bagi kita untuk menentukan apa yang dapat kita harapkan, apabila asumsi-asumsi yang kita buat benar. Distribusi teoritis memungkinkan para pembuat

Lebih terperinci

Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1

Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Peubah Acak 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Definisi Peubah Acak Peubah acak adalah peubah yang mengkarakterisasikan setiap elemen dalam ruang sampel dengan suatu bilangan real.

Lebih terperinci

PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA

PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA Saintia Matematika Vol. 1, No. 3 (2013), pp. 299 312. PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA Raini Manurung, Suwarno Ariswoyo, Pasukat Sembiring Abstrak.

Lebih terperinci

I. PENDAHULUAN II. TINJAUAN PUSTAKA

I. PENDAHULUAN II. TINJAUAN PUSTAKA I. PENDAHULUAN 1.1 Latar Belakang Pada kehidupan sehari-hari, distribusi probabilitas dapat ditemukan dalam banyak hal yang dapat memberikan manfaat dalam penerapannya. Distribusi probabilitas merupakan

Lebih terperinci

DISTRIBUSI PROBABILITAS (PELUANG)

DISTRIBUSI PROBABILITAS (PELUANG) DISTRIBUSI PROBABILITAS (PELUANG) Distribusi Probabilitas (Peluang) Distribusi? Probabilitas? Distribusi Probabilitas? JURUSAN PENDIDIKAN FISIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA Distribusi = sebaran,

Lebih terperinci

I. PENDAHULUAN II. TINJAUAN PUSTAKA

I. PENDAHULUAN II. TINJAUAN PUSTAKA I. PENDAHULUAN 1.1 Latar Belakang Pada kehidupan sehari-hari, distribusi probabilitas dapat diterapkan dalam banyak hal yang memberikan keuntungan serta manfaat dalam pengaplikasiannya. Misalnya, pada

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 3 Sebaran Peluang Peubah Acak

STK511 Analisis Statistika. Pertemuan 3 Sebaran Peluang Peubah Acak STK511 Analisis Statistika Pertemuan 3 Sebaran Peluang Peubah Acak Beberapa Konsep Dasar Percobaan statistika: kegiatan yang hasil akhir keluarannya tidak diketahui di awal, tetapi kemungkinan-kemungkinannya

Lebih terperinci

Teori Probabilitas 3.2. Debrina Puspita Andriani /

Teori Probabilitas 3.2. Debrina Puspita Andriani    / Teori Probabilitas 3.2 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Konsep Probabilitas Ruang Sampel Komplemen Kejadian Probabilitas Bersyarat Berapa peluang munculnya

Lebih terperinci

ANALISIS DATA SECARA RANDOM PADA APLIKASI MINITAB DENGAN MENGGUNAKAN DISTRIBUSI PELUANG

ANALISIS DATA SECARA RANDOM PADA APLIKASI MINITAB DENGAN MENGGUNAKAN DISTRIBUSI PELUANG LAPORAN RESMI PRAKTIKUM PENGANTAR METODE STATISTIKA MODUL 3 ANALISIS DATA SECARA RANDOM PADA APLIKASI MINITAB DENGAN MENGGUNAKAN DISTRIBUSI PELUANG Oleh : Diana Nafkiyah 1314030028 Nilamsari Farah Millatina

Lebih terperinci

A. Fungsi Distribusi Binomial

A. Fungsi Distribusi Binomial Jurnal Peta Konsep Daftar Hadir MateriA SoalLatihan Materi MIPA DISTRIBUSI BINOMIAL DAN PENARIKAN KESIMPULAN Kelas XI, Semester 3 A. Fungsi Distribusi Binomial www.yudarwi.com A. Fungsi Distribusi Binomial

Lebih terperinci

KONSEP DASAR PROBABILITAS

KONSEP DASAR PROBABILITAS KONSEP DASAR PROBABILITAS PENDAHULUAN Tanpa kita sadari kehidupan kita sehari-hari selalu berhubungan dengan matematika, khususnya peluang. Misalnya dalam pemilihan umum terdapat 5 orang calon presiden,

Lebih terperinci

PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA SKRIPSI RAINI MANURUNG

PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA SKRIPSI RAINI MANURUNG 1 PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA SKRIPSI RAINI MANURUNG 110823011 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

PROBABILITAS BERSYARAT. Dr. Julan Hernadi

PROBABILITAS BERSYARAT. Dr. Julan Hernadi 1 PROBABILITAS BERSYARAT Dr. Julan Hernadi 1 Pendahuluan Tujuan utama dari pemodelan probabilitas adalah untuk menentukan bagaimana kecenderungan suatu kejadian A muncul bila kita melakukan percobaan.

Lebih terperinci

D I S T R I B U S I P R O B A B I L I T A S

D I S T R I B U S I P R O B A B I L I T A S D I S T R I B U S I P R O B A B I L I T A S Amiyella Endista Email : amiyella.endista@yahoo.com Website : www.berandakami.wordpress.com Distribusi Probabilitas Kunci aplikasi probabilitas dalam statistik

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Probabilitas (Peluang) Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya

Lebih terperinci

SEBARAN PELUANG DISKRET

SEBARAN PELUANG DISKRET SEBARAN PELUANG DISKRET Beberapa Peubah Acak Diskret Seragam Bernoulli Binomial Hipergeometrik Binom Negatif Geometrik Poisson Peubah Acak Seragam Bila setiap kemungkinan percobaan memiliki kesempatan

Lebih terperinci

Peubah Acak. Bab 4. Definisi 4.1 Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R

Peubah Acak. Bab 4. Definisi 4.1 Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Bab 4 Peubah Acak Definisi 4. Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Contoh 4. Jika Y adalah peubah acak banyaknya sisi muka yang muncul pada pelemparan tiga sisi

Lebih terperinci

PENGOLAHAN DATA STATISTIK DENGAN MENGGUNAKAN PROGRAM MINITAB FAURANI SANTI SINGAGERDA

PENGOLAHAN DATA STATISTIK DENGAN MENGGUNAKAN PROGRAM MINITAB FAURANI SANTI SINGAGERDA PENGOLAHAN DATA STATISTIK DENGAN MENGGUNAKAN PROGRAM MINITAB FAURANI SANTI SINGAGERDA 2014 1 MODUL 1 PENGENALAN MINITAB Tujuan Praktikum : Memperkenalkan beberapa operasi dari paket perangkat lunak Minitab.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Probabilitas Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya tidak pasti (uncertain

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS DISKRIT Distribusi binomial Distribusi binomial - Distribusi peluang diskrit Distribusi geometrik Distribusi hipergeometrik Distribusi poison BERNOULLI TRIAL

Lebih terperinci

Pertemuan Ke-1 BAB I PROBABILITAS

Pertemuan Ke-1 BAB I PROBABILITAS Pertemuan Ke-1 BAB I PROBABILITAS 1.1 Arti dan Pentingnya Probabilitas Probabilitas merupakan suatu nilai untuk mengukur besarnya tingkat kemungkinan terjadinya suatu kejadian yang acak. Kejadian Acak

Lebih terperinci

BAB 8 DISTRIBUSI PELUANG DISKRIT

BAB 8 DISTRIBUSI PELUANG DISKRIT BAB 8 DISTRIBUSI PELUANG DISKRIT A. Peluang Peluang atau yang sering disebut sebagai probabilitas dapat dipandang sebagai cara untuk mengungkapkan ukuran ketidakpastian/ ketidakyakinan/ kemungkinan suatu

Lebih terperinci

PETUNJUK PROTUES. Mode Selector Toolbar berikut ini beberapa bagian selector toolbar yang umum digunakan untuk simulasi aplikasi mikrokontroler :

PETUNJUK PROTUES. Mode Selector Toolbar berikut ini beberapa bagian selector toolbar yang umum digunakan untuk simulasi aplikasi mikrokontroler : PETUNJUK PROTUES Mode Selector Toolbar berikut ini beberapa bagian selector toolbar yang umum digunakan untuk simulasi aplikasi mikrokontroler : Selection Mode Component Mode Wire Label Mode Buses Mode

Lebih terperinci

Pada umumnya suatu eksperimen dapat dikatakan eksperimen binomial apabila memenuhi syarat sbb:

Pada umumnya suatu eksperimen dapat dikatakan eksperimen binomial apabila memenuhi syarat sbb: DISTRIBUSI BINOMIAL CONTOH KASUS Seorang petugas ingin menghitung probabilitas untuk mendapatkan 4 bola lampu yang rusak dari suatu sampel acak sebanyak 20 bola lampu, apabila diketahui bahwa 10 % dari

Lebih terperinci

CHAPTER 7 DISCRETE PROBABILITY

CHAPTER 7 DISCRETE PROBABILITY CHAPTER 7 DISCRETE PROBABILITY 1 7.1 AN INTRODUCTION TO DISCRETE PROBABILITY 2 Sejarah 1526: Cardano menulis Liber de Ludo Aleae (Book on Games of Chance). Abad 17: Pascal menentukan kemungkinan untuk

Lebih terperinci

Teori Peluang Diskrit

Teori Peluang Diskrit Teori Peluang Diskrit Peluang Diskrit Apa yang terjadi jika keluaran dari suatu eksperimen tidak memiliki peluang yang sama? Dalam kasus ini, peluang p(s) dipadankan dengan setiap keluaran s S, di mana

Lebih terperinci

ANALISIS KEMAMPUAN PROSES PADA DATA BERDISTRIBUSI BINOMIAL

ANALISIS KEMAMPUAN PROSES PADA DATA BERDISTRIBUSI BINOMIAL ANALISIS KEMAMPUAN PROSES PADA DATA BERDISTRIBUSI BINOMIAL Makalah Untuk Memenuhi Tugas Mata Kuliah Pengendalian Kualitas Statistik Yang Dibina Oleh Bapak Hendro Permadi Nama Kelompok: Sudarsono (309312422762)

Lebih terperinci

Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a n(a B) = n(a) + n(b) n(a n(a B) Kejadia

Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a n(a B) = n(a) + n(b) n(a n(a B) Kejadia HUKUM PROBABILITAS Pertemuan ke ke--4 Didin Astriani Prasetyowati, M.Stat Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a n(a B) = n(a) +

Lebih terperinci

TAKARIR. komputer sebagai sarana mempresentasikan materi belajar

TAKARIR. komputer sebagai sarana mempresentasikan materi belajar TAKARIR Complement komplemen Computer aided instruction pembelajaran yang melibatkan penggunaan komputer sebagai sarana mempresentasikan materi belajar Drill and practice pelatihan materi dengan contoh

Lebih terperinci

STATISTIK NONPARAMETRIK (1)

STATISTIK NONPARAMETRIK (1) PERTEMUAN KE-1 Ringkasan Materi: STATISTIK NONPARAMETRIK (1) Statistik nonparametrik disebut juga statistik bebas distribusi/ distributif free statistics karena tidak pernah mengasumsikan data harus berdistribusi

Lebih terperinci

PENCACAHAN RUANG SAMPEL

PENCACAHAN RUANG SAMPEL PENCACAHAN RUANG SAMPEL PERTEMUAN VII EvanRamdan PENDAHULUAN Tanpa kita sadari kehidupan kita sehari-hari selalu berhubungan dengan matematika, khususnya peluang. Misalnya dalam pemilihan umum terdapat

Lebih terperinci

PENGENALAN APLIKASI STATISTICAL PRODUCT AND SERVICE SOLUTIONS (SPSS)

PENGENALAN APLIKASI STATISTICAL PRODUCT AND SERVICE SOLUTIONS (SPSS) MODUL 8 PENGENALAN APLIKASI STATISTICAL PRODUCT AND SERVICE SOLUTIONS (SPSS) Tujuan Praktikum : Mahasiswa mengenal aplikasi pengolah data statistik yaitu SPSS Mahasiswa dapat menggunakan aplikasi SPSS

Lebih terperinci

Pertemuan Ke-13. np 0 (1-p 0 ) dimana : n = banyak sampel

Pertemuan Ke-13. np 0 (1-p 0 ) dimana : n = banyak sampel Pertemuan Ke-13 6.6 Pengujian Hipotesis mengenai Proporsi Dalam pengujian hipotesis untuk proporsi langkahlangkah yang dilakukan sama seperti pengujian hipotesis untuk rata-rata. X np 0 Z 0 = np 0 (1-p

Lebih terperinci

5. Peluang Diskrit. Pengantar

5. Peluang Diskrit. Pengantar 5. Peluang Diskrit Pengantar Semua yang telah dipelajari di dalam teori pencacahan (counting) akan menjadi dasar dalam perhitungan peluang terjadinya suatu peristiwa. Dalam pembahasan berikut, istilah

Lebih terperinci

RENCANA MUTU PEMBELAJARAN. I. Standar Kompetensi : Menyelesaikan masalah probabilitas baik secara teoritik maupun aplikasinya dalam kehidupan.

RENCANA MUTU PEMBELAJARAN. I. Standar Kompetensi : Menyelesaikan masalah probabilitas baik secara teoritik maupun aplikasinya dalam kehidupan. RENCANA MUTU PEMBELAJARAN Nama Dosen : N. Setyaningsih, MSi. Program Studi : Pendidikan Matematika Kode Mata Kuliah : 306203 Nama Mata Kuliah : Probabilitas Jumlah sks : 3 sks Semester : III Alokasi Waktu

Lebih terperinci

UJI NONPARAMETRIK (CHI SQUARE / X2)

UJI NONPARAMETRIK (CHI SQUARE / X2) UJI NONPARAMETRIK (CHI SQUARE / X2) 5 92 Objektif Mahasiswa dapat menghitung uji parametik dan uji nonparametric Mahasiswa dapat menguji ada atau tidaknya interdependensi antara variable kuantitatif yang

Lebih terperinci

Pertemuan 2. Hukum Probabilitas

Pertemuan 2. Hukum Probabilitas Pertemuan 2 Hukum Probabilitas Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a B) = n(a) + n(b) n(a B) Kejadian majemuk adalah gabungan atau

Lebih terperinci

matematika DISTRIBUSI VARIABEL ACAK DAN DISTRIBUSI BINOMIAL K e l a s A. Penarikan Sampel dari Suatu Populasi Kurikulum 2013 Tujuan Pembelajaran

matematika DISTRIBUSI VARIABEL ACAK DAN DISTRIBUSI BINOMIAL K e l a s A. Penarikan Sampel dari Suatu Populasi Kurikulum 2013 Tujuan Pembelajaran Kurikulum 20 matematika K e l a s XI DISTRIBUSI VARIABEL ACAK DAN DISTRIBUSI BINOMIAL Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami perbedaan

Lebih terperinci

Metode Statistika (STK 211) Pertemuan ke-5

Metode Statistika (STK 211) Pertemuan ke-5 Metode Statistika (STK 211) Pertemuan ke-5 rrahmaanisa@apps.ipb.ac.id Memahami definisi dan aplikasi peubah acak (peubah acak sebagai fungsi, peubah acak diskrit dan kontinu) Memahami sebaran peubah acak

Lebih terperinci

PELUANG. Permutasi dengan beberapa elemen yang sama: Dari n obyek terdapat n

PELUANG. Permutasi dengan beberapa elemen yang sama: Dari n obyek terdapat n PELUANG Bab 11 1. Faktorial Faktorial adalah perkalian bilangan asli berurutan Hasil perkalian dari n bilangan asli pertama yang terurut dikatakan sebagai n faktorial (n!) n! n( n 1)( n 2)...3.2.1 5! =

Lebih terperinci

BAB 7 STATISTIK NON-PARAMETRIK

BAB 7 STATISTIK NON-PARAMETRIK BAB 7 STATISTIK NON-PARAMETRIK Salah satu bagian penting dalam ilmu statistika adalah persoalan inferensi yaitu penarikan lesimpulan secara statistik. Dua hal pokok yang menjadi pembicaraan dalam statistik

Lebih terperinci

SOAL PELUANG KELAS XI MATEMATIKANET.COM 1.! B. 4 2 C. 2 2 D. E. 2 2 A. 840 B. 504 C. 162 D. 84 E. 168

SOAL PELUANG KELAS XI MATEMATIKANET.COM 1.! B. 4 2 C. 2 2 D. E. 2 2 A. 840 B. 504 C. 162 D. 84 E. 168 SOAL PELUANG KELAS XI MATEMATIKANET.COM 1.!!. A. B. 4 2 C. 2 2 D. 2 2 2.!!!. A. 840 B. 504 C. 162 D. 84 168 3. Untuk menuju kota C dari Kota A harus melewati kota B. Dari kota A menuju kota B melewati

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi binomial adalah distribusi probabilitas diskret jumlah keberhasilan dalam n percobaan ya/tidak (berhasil/gagal)

Lebih terperinci

KONSEP DASAR PROBABILITAS

KONSEP DASAR PROBABILITAS KONSEP DASAR PROBABILITAS Definisi: Probabilitas adalah peluang suatu kejadian Manfaat: Manfaat mengetahui probabilitas adalah membantu pengambilan keputusan yang tepat, karena kehidupan di dunia tidak

Lebih terperinci

Bab 11 PELUANG. Contoh : 5! = = 120

Bab 11 PELUANG. Contoh : 5! = = 120 PELUANG Bab 11 1. Faktorial Faktorial adalah perkalian bilangan asli berurutan Hasil perkalian dari n bilangan asli pertama yang terurut dikatakan sebagai n faktorial (n!) n! n( n 1)( n 2)...3.2.1 5! =

Lebih terperinci

MK Statistik Bisnis 2 MultiVariate. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1

MK Statistik Bisnis 2 MultiVariate. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Descriptive Statistics mengandung metoda dan prosedur yang digunakan untuk pengumpulan, pengorganisasian, presentasi dan memberikan karakteristik terhadap himpunan

Lebih terperinci

Distribusi Teoritis Probabilitas

Distribusi Teoritis Probabilitas Distribusi Teoritis Probabilitas Topik Distribusi teoritis Binomial Distribusi teoritis Poisson Distribusi teoiritis Normal 2 Distribusi Teoritis Probabilitas Distr. Teoritis Probabilitas Diskrit Kontinyu

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS BAB 7 DISTRIBUSI PROBABILITAS Kompetensi Menjelaskan distribusi probabilitas Indikator 1. Menjelaskan distribusi hipergeometris 2. Menjelaskan distribusi binomial 3. Menjelaskan distribusi multinomial

Lebih terperinci

Pertemuan 1 KONSEP DASAR PROBABILITAS

Pertemuan 1 KONSEP DASAR PROBABILITAS Pertemuan 1 KONSEP DASAR PROBABILITAS Pengantar Banyak kejadian dalam kehidupan sehari-hari yang sulit diketahui dengan pasti, terutama kejadian yang akan datang. Meskipun kejadian-kejadian tersebut tidak

Lebih terperinci

Probabilitas = Peluang (Bagian II)

Probabilitas = Peluang (Bagian II) Probabilitas = Peluang (Bagian II) 3. Peluang Suatu Kejadian Peluang dalam pengertian awam "kemungkinan" Mis : 1. Hari ini kemungkinan besar akan turun hujan 2. Kemungkinan tahun depan inflasi akan mencapai

Lebih terperinci

BAB II DISTRIBUSI PROBABILITAS

BAB II DISTRIBUSI PROBABILITAS BAB II DISTRIBUSI PROBABILITAS.1. VARIABEL RANDOM Definisi 1: Variabel random adalah suatu fungsi yang memetakan ruang sampel (S) ke himpunan bilangan Real (R), dan ditulis X : S R Contoh (Variabel random)

Lebih terperinci

BAB V UJI COBA DAN IMPLEMENTASI. dalam implementasi tersebut terdiri dari Form menu, Form Master, Form transaksi,

BAB V UJI COBA DAN IMPLEMENTASI. dalam implementasi tersebut terdiri dari Form menu, Form Master, Form transaksi, 1. BAB V UJI COBA DAN IMPLEMENTASI Implementasi sistem merupakan hasil perancangan dan desain dari sistem informasi penggajian yang telah dibuat di atas. Di dalam implementasi sistem ini nantinya juga

Lebih terperinci

Nilai Harapan / Nilai Ekspektasi

Nilai Harapan / Nilai Ekspektasi EKSPEKTASI Misalkan sebuah eksperimen menghasilkan k peristiwa, dan peluang masing-masing peristiwa P 1, P, P k dan untuk tiap peristiwa terdapat satuan (bobot d 1, d d k ) maka ekspektasi eksperimen itu

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Seiring dengan berjalannya waktu, ilmu pengetahuan dan teknologi (sains dan teknologi) telah berkembang dengan cepat. Salah satunya adalah ilmu matematika yang

Lebih terperinci